
The hOCR Microformat for OCR Workflow and Results

Thomas M. Breuel
U. Kaiserslautern and DFKI

Trippstadter Str. 122
67663 Kaiserslautern

Germany
tmb@iupr.net

Abstract

Large scale scanning and document conversion ef-
forts have led to a renewed interest in OCR systems
and workflows. This paper describes a new format for
representing both intermediate and final OCR results,
developed in response to the needs of a newly developed
OCR system and ground truth data release. The format
embeds OCR information invisibly inside the HTML
and CSS standards and therefore can represent a wide
range of linguistic and typographic phenomena with al-
ready well-defined, widely understood markup and can
be processed using widely available and known tools.
The format is based on a new, multi-level abstraction of
OCR results based on logical markup, common typeset-
ting models, and OCR engine-specific markup, making
it suitable both for the support of existing workflows and
the development of future model-based OCR engines.

1 Introduction

Over the history of OCR systems, a significant num-
ber of formats have been proposed for representing the
output of OCR systems. We can distinguish three
major classes of OCR output formats: logical for-
mats, suitable for direct use of OCR results by end
users (RTF, HTML, LaTeX, and Microsoft Word),
OCR engine-specific formats [5, 9], and benchmark-
ing formats [11, 10] proposed for benchmarking vari-
ous aspects of OCR systems. Many OCR engines sup-
port multiple output formats and represent informa-
tion (like text) redundantly within those formats, and
commercial and research engines each have their own,
mutually incompatible formats.

We are currently developing a multi-lingual OCR
system that is targeting the major writing systems
and languages of the world, and is intended to deal

with a wide variety of layouts. In addition, our system
will have to integrate into existing workflows and text
databases. In choosing an output format for our sys-
tem, we evaluated many of the existing formats and en-
countered numerous limitations. For example, existing
formats usually have limited multi-lingual capabilities,
lack support for many common typographic phenom-
ena, lack a well-defined underlying page and typeset-
ting model, and often force the use of separate formats
for final output and intermediate results.

Faced with these and other limitations of existing
formats, it was important to find an alternative solu-
tion. To this end, we defined a number of requirements:

• the ability to cope with common typographic and
layout phenomena in the major languages and
writing systems

• the ability to support all processing stages in an
OCR system with a single format

• the ability to represent layout information in terms
of a generative typesetting model

• the ability to encapsulate existing OCR engine
output formats

• the ability to represent and associate information
from different stages of OCR processing

Furthermore, ideally, we wanted to reuse as much of
existing formats and tools as possible, and we wanted
a format that permitted future extensibility. As we will
see, our format fulfills all these requirements.

2 A Microformat

Our approach to addressing the various require-
ments without creating a complex new format from
scratch has been to adopt HTML/XHTML [2] as

Authorized licensed use limited to: Technische Universitat Kaiserslautern. Downloaded on September 10, 2009 at 08:04 from IEEE Xplore. Restrictions apply.

the basis format, together with CSS (cascading style
sheets) [4, 8] for representing typographic markup, and
to enhance this format by embedding additional infor-
mation using facilities of standard HTML. One of the
key benefits of using HTML+CSS as the foundation of
is the hundreds of man-years that has been invested
into those formats in identifying typographic and lin-
guistic phenomena across a wide variety of languages
and scripts, and defining markup to represent those
phenomena. For example, HTML and CSS provide
support for representing fonts, styles, hyphenation,
flexible spacing, justification, kashida (flexible Arabic
characters), Urdu ligatures, Japanese ruby, mixed hor-
izontal/vertical layout, inline changes in writing direc-
tion, and many others. None of the existing OCR for-
mats address this wealth of linguistic and typographic
phenomena.

Existing standards-conforming HTML output from
an OCR system is already minimally compliant OCR
output in our system, albeit without any OCR spe-
cific information (e.g., geometric information). Adding
OCR specific information to this format then means
incorporating a few tags to the HTML output that in-
dicate geometric and OCR-specific information. These
additional tags do not alter the appearance of the out-
put, are fully compliant with the HTML standard, and
are processed and preserved when the HTML is pro-
cessed using standard tools.

This is accomplished by using the DIV and SPAN tags;
these tags have no specific meaning in HTML, but they
may be used to associate style and other information
with regions of text inside an HTML document. Both
tags allow a small number of standard attributes, in-
cluding the class, style and title attribute. The
class attribute is used for identifying a tag as belong-
ing to a particular class or application; we use this at-
tribute to identify tags representing OCR information.
In particular, all OCR-related tags have a class of ocr
or ocrx .

The style attribute is used for associating style in-
formation with regions of text; we are using it directly
to associated typographic and layout information with
text in the standard way defined by the CSS standard.
The title attribute may contain arbitrary text, and
we use it to encode tag specific information.

For the hOCR format, we will refer to DIV or
SPAN tags that contain OCR-related information as el-
ements, and we refer to the information encoded in its
title attribute as properties. In fact, the hOCR for-
mat is equivalent to (and can be automatically trans-
lated to and from) an XML format, in which the hOCR
elements and properties correspond to XML tags and
attributes (the size of the two representations is ap-

hOCR format:

<div class="ocr_block"

title="bounds 112 17 213 53">text...</div>

XML equivalent:

<ocr_block

bounds="112 17 213 53">text...</ocr_block>

Figure 1. hOCR markup is fully equivalent to
well-formed XML and can naturally be trans-
formed into XML automatically and without
loss of information. (Note that the reverse is
not true: arbitrary XML cannot easily be em-
bedded as a format.)

proximately the same). In that sense, none of the ac-
tual design of hOCR is tied to its representation as
a format, and all the considerations and design go-
ing into hOCR apply equally well to a possibly future
XML-based format. Note, however, that the reverse is
not true: an XML format cannot be automatically and
naturally converted to a format, since many XML con-
structs are difficult to encode naturally and readably
inside a format.

3 Supported Markup

Above, we have described the hOCR formatin terms
of its embedding into HTML. Just as important is what
hOCR is actually representing–the content elements.
In fact, the content elements could easily form the basis
of a non-HTML OCR markup language as well.

3.1 Logical Markup

Most document types have a tree structure, repre-
senting nested large scale to small scale divisions of
the document. Within that tree structure, the text
itself is represented linearly in reading order. Not
only is this structure shared, but most document types
and markup languages have common, recurring section
types, found in document types like memoranda, arti-
cles, etc. The hOCR logical markup elements define
and represent these most commonly found divisions.
Like all hOCR markup, this markup is options; if it
does not fit the particular needs of a document type,
OCR systems are free to omit these, or use other em-
bedded formats to represent their specific document
structures.

Of course, HTML itself has its own set of hierar-
chical document structuring elements (H1 through H4,

2

Authorized licensed use limited to: Technische Universitat Kaiserslautern. Downloaded on September 10, 2009 at 08:04 from IEEE Xplore. Restrictions apply.

ocr_document
ocr_linear

ocr_title
ocr_author
ocr_abstract
ocr_part

ocr_chapter [H1]
ocr_section [H2]

ocr_sub*section [H3,H4]
ocr_display
ocr_blockquote [BLOCKQUOTE]
ocr_par [P]

Figure 2. Logical markup available in hOCR.
This is markup for the logical hierarchy of
a document, independent of where or how
on the page it is rendered. This particu-
lar markup is usable both for individual doc-
uments (memos, articles, etc.), as well as
compound documents consisting of multi-
ple, possibly interleaved, texts (newspapers,
magazines, collections).

P, etc.). Those structuring elements are recognized
by many HTML processing applications and browsers.
hOCR recommends a mapping of hOCR structuring
elements onto HTML elements that OCR systems can
use if there is no other reason to prefer alternative map-
pings. Note that when a mapping is used, the hOCR
elements can be encoded directly in the HTML tags,
as in <p class="ocr_par" title="...">.

One important element is ocr_linear, used for rep-
resenting output for document types like newspapers.
Newspapers generally consist of multiple stories, each
with a fairly regular, linear document structure (title,
author, sections, paragraphs, etc.) and with text in
reading order. However, the different articles of the
newspaper themselves do not have a unique reading
order; at the top level, the document is a collection of
unordered articles, each of which is a self-contained lin-
ear document (possibly with cross-references to other
documents). This relationship is represented by the
ocr_document and ocr_linear elements.

3.2 Typesetting Markup

In the previous section, we have discussed markup
for representing common linear document structure,
found in many typesetting and word processing sys-
tems. In order to generate paginated, printed output,
typesetting systems and word processors use a nearly
universal typesetting model that divides each page

ocr_page
ocr_carea ("content area")

ocr_line [SPAN]
ocr_float

(subclasses for images, formulas, etc.)
ocr_separator
ocr_noise

Figure 3. Typesetting-related elements repre-
sent blocks and floats that are filled with the
document content in reading order in stan-
dard typesetting models.

into blocks and floats ([1], [6], Microsoft Word, Adobe
Framemaker). Typesetting is performed by flowing the
linear, logically marked up text into these boxes in
reading order. The combination of logical markup and
typesetting markup permits us to use hOCR as an in-
termediate format for performing OCR as model-based
reverse typesetting, an approach advocated, for exam-
ple by Kopec and Chou [7].

3.3 Engine-Specific Markup

At the lowest level, the hOCR format represents
OCR engine-specific, physical layout, like text blocks,
images, and other page content. This kind of physical
markup is the most commonly found output of exist-
ing OCR systems. Common elements include “text
blocks”, “figures”, “lines”, and “words”.

However, unlike typesetting markup, which is gen-
erally well-defined in terms of typesetting models, the
kind of physical markup produced by OCR engines
is implementation dependent. For example, a “text
block” in an engine may be defined in terms of the ex-
istence of whitespace separators of minimal size, or the
alignment of individual characters. Likewise, “blocks”
are often also style-dependent; for example, a docu-
ment rendered in a style with vertical inter-paragraph
spacing may be represented with a single block for each
paragraph, while in the same document rendered in a
different style, an entire column of multiple paragraphs
may be returned as a single block in the OCR system.
In contrast, in a typesetting model of page layout, these
two styles would be represented in the same way as a
flowable content area, which would also correspond to
the underlying page layout in the source document in
any of the standard typesetting systems.

Another source of implementation dependencies is
the definition of words. OCR systems sometimes define
“words” in terms of spacing, at other times linguisti-

3

Authorized licensed use limited to: Technische Universitat Kaiserslautern. Downloaded on September 10, 2009 at 08:04 from IEEE Xplore. Restrictions apply.

cally.
In order to indicate that engine-specific markup is

not portable between OCR engines, its elements are
prefixed with ocrx_ instead of ocr_. Common phys-
ical markup tags are ocrx_block, ocrx_line, and
ocrx_word. Authors are free to extend the set of ocrx_
elements as needed.

Given that physical markup is OCR engine specific,
the question arises why one would want to represent it
at all. The reason is that many existing workflows al-
ready rely on this kind of markup. For example, a spe-
cific workflow may run the Abbyy or Textbridge OCR
engine and then perform rule-based post-processing of
the physical layout information produced by those sys-
tems. By having a portable, OCR-engine independent
representation of these features, we can carry forward
engine-specific information and yet use portable tools
to manipulate the content. Furthermore, although this
kind of markup is engine-specific, there are many com-
monalities so that code that works for one engine can,
after some testing and modification, be used with an-
other engine.

3.4 Character Recognition

We have already mentioned above that one advan-
tage of the hOCR format over other OCR formats
is that it can reuse the expertise that has gone into
the development of textual representations for HTML.
Generally speaking, all common style-, font-, script-,
language-, and typesetting-specific phenomena (hy-
phenation, spacing, ruby, kashida, etc.) are to be rep-
resented using their HTML, CSS, and Unicode repre-
sentations.

One area where existing HTML does not provide
an obvious representation is in the representation of
segmentation and recognition alternatives and weights.
Generally, segmentation alternatives are represented
using the HTML INS and DEL tags, with associated
classes and additional information encoded in the el-
ements. In terms of recognition confidences and geo-
metric segmentation information, hOCR provides two
sets of properties: engine-specific properties (com-
monly, “confidence scores” and “bounding boxes”),
and engine-independent properties (posterior probabil-
ities and character cutting paths).

3.5 Meta Information

An important requirement for hOCR files is that
their headers contain information about what kind of
processing was used in order to obtain the output.
This information consists not only of the usual OCR

import libxml2,re,os,string

doc = libxml2.parseFile(’doc.xhtml’)
lines = doc.xpathEval("//*[@class=’ocr_line’]")
for line in lines:

textnodes = line.xpathEval(".//text()")
for node in textnodes:

print node.getContent()

Figure 4. Example of processing hOCR
markup in Python. This outputs the text con-
tained in the document line-by-line. Simple
processing of hOCR documents is enabled
by relying on standard DOM functions, avail-
able for HTML processing.

meta information (software version numbers, scan reso-
lution, number of pages, processing host, etc.), but also
includes headers that indicate the capabilities of the
OCR engine. In particular, the hOCR meta informa-
tion must indicate which kind of markup the engine is
capable of generating, regardless of whether the actual
document contains that markup. Without this meta
information, it is impossible to tell whether the lack of
a specific markup in an OCR output file (e.g., para-
graphs, language identification) is due to the absence
of the corresponding markup in the source document,
or due to the inability of the OCR engine to recognize
that form of markup. OCR system capabilities are in-
dicated using HTML meta tags simply by listing the
element names and attributes the OCR system is, in
principle, capable of generating. Inclusion of this meta
information is therefore an important part of an OCR
system independent OCR format.

3.6 Other Content

Let us note briefly that other common typeset-
ting objects already have common representations for
their embedding into HTML: MathML for mathemat-
ics, ChemML for chemical formulas, the IMG tag for
bitmapped images, and SVG for vector graphics.

In addition, there is a wealth of additional embedded
formats already available for encoding information such
as resume structures, addresses, identity, personal re-
lationships, and bibliographic references. Furthermore,
the hOCR format itself may be extended, or separate,
additional OCR-related embedded formats may be de-
fined for handling special needs such as indexing, table
of contents, etc.

4

Authorized licensed use limited to: Technische Universitat Kaiserslautern. Downloaded on September 10, 2009 at 08:04 from IEEE Xplore. Restrictions apply.

4 Tool Support

The hOCR format has been developed over the last
12 months and we have gathered significant hands-on
experience with it. It has been used by different groups
as a workflow format representing the output of com-
mercial OCR systems, as the output format of a newly
developed OCR system (to be released in open source
format), and as the format for the release of OCR
ground truth for research in OCR. Both integration
into existing HTML output routines of OCR engines,
as well as development of new hOCR generators from
scratch has turned out to be easy.

The ability to use tools intended for standard HTML
with hOCR has turned out to be very useful. Out-
put in hOCR format can be viewed and edited using
standard HTML viewers and HTML editors. It can
also be processed using standard DOM processing tools
(see Figure 4). Such processing generally preserves the
hOCR information and presents all levels of OCR out-
put (content, physical, typesetting, logical) within a
single, consistent document.

The specific properties of hOCR have also made
it possible to create general-purpose tools that work
for many different OCR engines. For example, post-
processing of the output of commercial OCR systems
(e.g., deriving logical layout information from engine
specific output, replacing engine-specific fonts with
standard HTML fonts) can be implemented using tools
that transform hOCR input into hOCR output and
only require small amounts of adaptation to different
OCR engines. We have also begun creating a standard
suite of evaluation tools that measure OCR accuracy
and the performance of different levels of layout anal-
ysis directly on hOCR-encoded OCR output.

5 Conclusions

The hOCR format introduces several distinct con-
cepts in OCR output formats and workflows: the use
of HTML-based embedded formats for the representa-
tion of OCR outputs, the use of typesetting models in
the design of OCR formats, and the use of a single for-
mat for representing results of all levels of OCR within
a single output file. The format has proven itself for
about a year in actual use now, and it will be the basis
of the OCRopus [3] open source OCR system and an
upcoming release of ground truth data from scanned
books and magazines. We hope that a universal, ex-
tensible standards-based OCR format, together with
ground truth data, OCR software, and various tools
will be persuasive enough to induce both commercial
vendors and researchers to standardize on a single pro-

cessing and interchange format. A full specification of
the hOCR format and sample documents are available
at xxxxxx.

References

[1] Extensible stylesheet language (xsl) version 1.1.
http://www.w3.org/TR/xsl/, 2001.

[2] HTML/XHTML Specifications.
http://www.w3.org/MarkUp, 2006.

[3] The ocropus ocr system home page, 2007.

[4] Bert Bos, Hakon Wium Lie, Chris Lilley, and Ian
Jacobs. Cascading Style Sheets, level 2: CSS2
Specification.
http://www.w3.org/TR/REC-CSS2/, 1998.

[5] Daniel S. Connelley and Beth Paddock. Xdoc
data format: Technical specification. Xerox
Imaging Systems part no. 00-07571-00, 2000.

[6] Donald Knuth. TeXbook. Addison-Wesley, 1984.

[7] G. E. Kopec and P. A. Chou. Document image
decoding using markov source models. IEEE
PAMI, 16(6), 1994.

[8] Eric A. Meyer and Bert Bos. Introduction to
CSS3. http://www.w3.org/TR/css3-roadmap/,
2001.

[9] Nuance, Inc. SSDOC-SCHEMA2 (XML
Schema).
http://www.scansoft.com/omnipage/xml/SSDOC-
SCHEMA2.xml,
2006.

[10] RAF Technologies, Inc. (Redmond, WA).
Illuminator user’s manual.
http://documents.cfar.umd.edu/
resources/source/illuminator.html, 1995.

[11] B. Yanikoglu and L. Vincent. Pink panther: a
complete environment for ground-truthing and
benchmarking document page segmentation.
Pattern Recognition, 31:1191–1204, 1998.

5

Authorized licensed use limited to: Technische Universitat Kaiserslautern. Downloaded on September 10, 2009 at 08:04 from IEEE Xplore. Restrictions apply.

