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Abstract
In this paper, we describe the ICSI 2007 language recognition
system. The system constitutes a variant of the classic PPRLM
(parallel phone recognizer followed by language modeling) ap-
proach. We used a combination of frame-by-frame multilayer
perceptron (MLP) phone classifiers for English, Arabic, and
Mandarin and one open loop hidden Markov Model (HMM)
phone recognizer (trained on English data). The maximum
likelihood language modeling is substituted by support-vector-
machines (SVMs) as a more powerful, discriminative classifi-
cation method. Rank normalization is used as a normalization
method superior to mean-variance normalization. Results are
presented on the NIST 2005 language recognition evaluation
(LRE05) set and a test set taken from the LRE07 training cor-
pus. The average NIST cost of the system on the LRE05 set is
0.0886.

1. Introduction
The ICSI 2007 language recognition system constitutes a vari-
ant of the classic PPRLM (parallel phone recognition followed
by language modeling) approach which is commonly used for
this task. The basic idea of PPRLM is to model the phonotac-
tic characteristics of the languages l1,...,ln in the test by means
of a statistical language model. As frontends, either a single or
multiple phone recognizers are used. In the former case the ap-
proach is called PRLM (without “parallel”). It is beneficial to
use an open loop phone recognition, i.e. to not apply (language-
specific) phonotactic constraints during the decoding. Using
parallel phone recognition proved to be beneficial over using
a single one [1].

The novel aspect of our approach is that we used a combi-
nation of multiple frame-by-frame multilayer perceptron (MLP)
phone classifiers trained on English, Arabic, and Mandarin data
and one hidden Markov model (HMM) open loop phone rec-
ognizer (trained on English data). Taking into account a recent
enhancement of the PPRLM approach on the backend (see for
example [2, 3]), we used the n-gram counts of phones as fea-
tures to train support vector machines (SVM) instead of build-
ing an actual maximum-likehood language model. Besides a
more sophisticated decision function, this variant is character-
ized by supporting a combination of different n-grams, say bi-
grams and trigrams. It also supports an immediate combination
of multiple frontends on the feature level.

Discriminative training as a modification of the PPRLM ap-

proach is also described by [4]. The authors used three streams
of phones produced by recognizers trained on Arabic, English,
and Spanish data, respectively. The performance of SVMs
(discriminative training) is compared with maximum likelihood
language modelling. A 0.7 % absolute improvement (5.2 %
EER with LM and 4.5 % EER with SMVs) on the LRE 03 eval-
uation set in the 30 seconds condition is reported. [5] postulate
a short-term cepstral system using shifted delta cepstral (SDC)
coefficients in conjunction with an SVM backend. Although the
SVM system alone was inferior to the baseline Gaussian Mix-
ture Model (GMM) on the 30 seconds NIST LRE 03 test (6.1 %
versus 4.8 % EER), the two system could be effectively com-
bined obtaining an EER of 3.2 %.

The remainder of this paper is organized as follows: sec-
tion 2 describes the training data we used as well as the pre-
processing method; section 3 provides a general overview over
the system components; section 3.1 describes the various phone
recognizer frontends; section 3.2 provides a description of the
rank normalization procedure; the training of the support vector
machines is detailed in section 3.3; section 3.4 provides the pro-
cessing speed measures; in section 4, results on the 2005 NIST
language recognition evaluation (LRE05) as well as our devel-
opment test set (an excerpt of the training data) are presented.

2. Training data
We used the training data provided by NIST for this years
language recognition evaluation1. It comprises fourteen lan-
guages: Arabic (ARA), Bengali (BEN), Chinese (CHIN), En-
glish (ENG), Farsi (FAR), German (GER), Hindustani (HIN),
Japanese (JAP), Korean (KOR), Russian (RUS), Spanish (SPA),
Tamil (TAM), Thai (THA), and Vietnamese (VIE).

The data preprocessing scheme is depicted in Figure 1. In
the first step, Wiener filtering was applied to the original conver-
sations to reduce the amount of noise. Hereafter, the files were
split into individual conversation sides containing the left and
the right channel, respectively. An intensity-based silence de-
tector was applied to both parts, splitting them into individual
dialog turns and removing the silence in-between. The detec-
tor’s parameters include an intensity threshold which was set to
20 dB (everything below that threshold is considered as silence)
as well as a threshold for the minimum length of silence. The
latter was set to one second to avoid splitting at pauses that pos-
sess a linguistic purpose rather than marking the end of a turn.

1see http://www.nist.gov/speech/tests/lang/2007/



Figure 1: Data preprocessing.

The turns varied in length between one and 80 seconds. Accord-
ingly, the original conversations typically consisted of between
25 and 50 turns. In the third preprocessing step, turns were con-
catenated with one or more successors until the desired length
is reached.

In the experiments presented here, we only created 30 sec-
onds long conversations. However, it is also possible to gener-
ate different data sets for the three and ten seconds conditions.
With adapting the intensity and pause duration thresholds used
in step two, smaller pieces can be obtained which facilitates the
creation of shorter training conversations.

In the case of the test data, the original conversations were
recovered after the silence removal. Table 1 summarizes the
statistics for the training, background, and test data sets. The
samples for the development test set were selected randomly
from the data set of each language but not used for training.

3. System description
Figure 2 provides an overview over the system. After prepro-
cessing, the data was conveyed to multiple frontends consisting
of a unit recognition and an n-gram counting component. After
normalization, the relative n-gram counts were concatenated to
a single large feature vector and fed into a support vector ma-
chine (SVM).

3.1. Phone recognition frontends

We were using four different phone recognizer frontends: (1)
The English open-loop DECIPHER recognizer [6], developed by
SRI. Our version of DECIPHER uses gender-dependent, 3-state
hidden Markov models for open-loop phone recognition. The
Markov models were trained using mel-frequency cepstral co-
efficient features of order 13 plus first and second order deriva-

data set median length total

Arabic 32.0 s 40.0 h

Bengali 29.8 s 2.9 h

Chinese 31.9 s 67.9 h

English 31.0 s 84.0 h

Hindustani 32.5 s 43.6 h

Spanish 32.9 s 83.3 h

Farsi 33.0 s 12.5 h

German 33.6 s 44.5 h

Japanese 33.7 s 26.3 h

Korean 32.6 s 37.6 h

Russian 29.7 s 2.9 h

Tamil 33.9 s 37.5 h

Thai 29.9 s 2.9 h

Vietnamese 33.4 s 40.3 h

background 32.1 s 453.6 h

devtest (from training data) 18.6 s 9.2 h

LRE05 29.4 s 30.3 h

Table 1: Length of conversations sides and total amount of au-
dio after preprocessing for training, background, and test sets.
The background data set is comprised of all training data sets
plus a small amount of data not used for training.



Figure 2: Schematic diagram of the ICSI 2007 language recognition system.

tives, with overall dimensionality of 39, on the Switchboard I
and II corpora [7]; (2-4) Multi-layer perceptron (MLP) phone
classifiers were built for English, Arabic, and Mandarin Chinese
languages. The inputs comprised PLP features plus first and
second derivatives, with a fast GMM-based estimate for vocal
tract length normalization, over a local context of 9 consecutive
frames. A feed-forward network structure fully connects the in-
puts to a large hidden layer, which is connected to output units
corresponding to the phones of a language. For each frame of
a test utterance, a phone label is determined as the network’s
output unit with the maximal activation.

For English, gender-specific MLPs with 20800 hidden units
were trained on 2000 hours of 8kHz conversational telephone
speech, classifying 46 phones; gender was detected with GMM
likelihoods. For Arabic, a gender-independent MLP with 10000
hidden units was trained on 465 hours of 16kHz broadcast news,
classifying 36 phones. For Mandarin, a gender-independent
MLP with 15000 hidden units was trained on 870 hours of
16kHz broadcast news, classifying 71 phones; to aid discrim-
ination of tonal vowels, the PLP inputs were augmented with
pitch-based features. For the latter two, the 8kHz samples are
up-sampled to 16kHz prior to the recognition.

The MLP-based phone recognizers generated frame-by-
frame phone labels. In this vein, the length of the phones is
taken into account by the relative counts of homogenous tri-
grams (e.g. 67 67 67).

In an earlier version of the system the phonotactic differ-
ence between languages were learned on the basis of counts
of abstract phone-like sub-word units [8] that are generated by
models trained on the actual LRE training data. Note, that “real”
phone recognizers cannot be trained with that data because the
transcriptions or phonetic annotations are not provided. An ad-
vantage of this approach was that the “phone set” – i.e. the
number of abstract classes – could be chosen according what
might be appropriate in a multilingual context. Ideally, one sub-
word unit recognizer could be built for each language in the test.
However, despite some reasonable results on the LRE03 evalu-

ation set, this variant performed one order of magnitude worse
than the one described here on the LRE05 test (the NIST cost
value has been at the order of 0.20). This was presumably due
to channel issues and requires further investigation.

3.2. Normalization

The relative n-gram counts were first rank-normalized [13] in
order to obtain comparable ranges for all features and to map
the n-gram frequencies to a uniform distribution. An ordered
list of values was created for each feature using the background
data. The rank of a given value then corresponds to the posi-
tion in the list divided by the total number of occurrences of the
respective feature in the background data (see section 2). Zero
values corresponding to instances in which a particular unit has
not occurred in a given sample, were mapped to zero. The ranks
lie in the closed interval from 0 to 1 and were used as the nor-
malized value. The feature-value-rank triples were stored in a
lookup-table. In testing, linear interpolation was applied if a
given triple did not exist. To save memory and processing time,
only the most frequent triples were loaded at startup. However,
to be able to experiment with the number of features actually
used in model training, the less frequent features were normal-
ized as well (the respective triples were loaded when they oc-
curred for the first time). With rank normalization, the differ-
ence between two normalized feature values corresponds to the
percentage of background samples that fall between the two val-
ues. Accordingly, differences were emphasized in high density
regions and compressed in low density regions. In the pre-tests
we performed, rank normalization outperformed mean-variance
normalization.

The normalized features were assigned to a unique (con-
tinuous) feature number because the actual trigram name (e.g.
128096003 for coding the trigram 128-096-003) suggests a
much larger number of features than actually exist. When com-
bining multiple frontends, a respective index was added to the
feature number.



3.3. Model training

The maximum likelihood classification, which represents the
backend of the classic PPRLM approach, was replaced by a dis-
criminative training with support vector machines (SVMs). The
ability of SVMs to handle very large feature vectors enabled us
to use uni-, bi-, and trigrams simultaneously and combine mul-
tiple frontends. We used the SVM LITE implementation [14].

The number of components of the feature vectors was re-
duced by only choosing 30 % of the trigrams (unigrams and bi-
grams do no contribute as much to the total number of features).
This lead to a total number of 136591 features.

For each each language li, a one-against-all SVM with a
second order polynomial kernel was trained, using the training
examples of li as positive examples and the training examples
all other languages as negative examples. The model for Arabic,
for example, was trained on Arabic as positive examples and all
other languages test as negative examples. The bias which re-
sults from a larger number of negative examples was compen-
sated by choosing an appropriate “j-parameter” – a cost-factor
by which training errors on positive examples outweigh errors
on negative ones. For the time being, we haven’t experimented
with the “c-parameter”, the trade-off between the training error
and the margin.

T-norm score normalization was applied to the scores. With
t-norm, scores for a test utterances were generated against the
impostor models in order to estimate the impostor score distri-
bution [15]. The mean and variance of the distribution was used
to normalize the score of the target model:

STN (X) =
S(X) − µimpostor(X)

σimpostor(X)
(1)

where STN (X) is the normalized score, S(X) is the orig-
inal score, and µimpostor(X) and σimpostor(X) are the mean
and standard deviation of the distribution of scores for test ut-
teranceX against the set of impostor speaker models.

The decision threshold was obtained by testing the models
using the development test set. The threshold we applied was
the one that generates the equal error rate (EER) rather than the
one that minimizes the NIST cost function (see below). Given
that the costs for misses and false alarm are equally weighted,
we believed that the EER threshold exhibits a better generaliza-
tion across different test sets.

3.4. Processing speed

We performed a processing speed test on a single 64 bit dual
core AMDTMOpteronTMprocessor (operated in 32 bit mode)
running on a Linux 2.6.9 operating system. The data was an
excerpt of the LRE 2005 (30 seconds) test corpus and was pre-
processed using the scheme described in section 2 (the time for
preprocessing was not included in the measure). The processing
speed was calculated as the total amount of speech processed
(30 hours) divided by the total amount of CPU time. The result
was 0.935. Note that the system supports parallel processing as
the various frontends can be applied at the same time. In that
case the processing speed would be 2.44.

4. Experimental Results
We performed experiments on the development test set as well
as on the 2005 NIST language recognition evaluation (LRE05)
set (see table 2). The test was designed as a detection test: Each
language was consecutively used as target language. A decision
threshold was applied to the score of the respective model to
decide whether or not a given segment corresponded to the tar-
get language. The decision error was expressed in terms of the
probability of false alarms (Pfa), the number of trials for which
the decision of the system was ’yes’ but the segment language
was not the target language relative to the number of occur-
rences of the target language in the data set, and the probability
of false rejects (Pfr), the number of trials for which the decision
of the system was ’no’ but the segment language was in fact the
target language relative to the number of non-target languages.

The upper part of Table 4 presents the probabilities of false
alarms (Pfa) for a given pair of target and non-target languages.
For the target Chinese, Asian non-targets (Japanese and Korean)
produced more false alarms than the others which indicates the
similarity of the languages. According to Table 4, other pairs of
similar languages are English and German, Hindi and Tamil, as
well as Japanese and Korean. The results on the development
test set also indicate similarities between Arabic and both Farsi,
Bengali and Russian, and Tamil and Vietnamese.

In the lower part of Table 4 the probabilities of false alarms
(Pfa) and misses (Pmiss) are combined into a single number that
represents the cost performance of a system as used by NIST for
the language recognition evaluations. The cost value represents
an application-motivated cost model and is defined as:

C(LT , LN ) = CMiss ∗ PTarget ∗ PMiss(LT ) + CF A ∗
(1 − PTarget) ∗ PF A(LT , LN )

where LT and LN are the target and non-target languages, and
CM iss, CF A, and PTarget are application model parameters.
Here, the application parameters are CMiss = CF A = 1, and
PTarget = 0.5

The average cost of the system presented here was 0.0886.
The decision-error-tradeoff (DET) curve is presented in Figure
3. Table 4 as well as Figure 3 were created using the scoring
software provided by NIST for the 2007 2.
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ERROR RATES: Pfa(Lt,Ln) on LRE05
ARA BEN CHI ENG FAR GER HIN JAP KOR RUS* SPA TAM THA VIE
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Figure 3: Decision Error Tradeoff (DET) curve on the LRE05
evaluation set.
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