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Abstract

This paper presents work in the context of the certification of a safety component for autonomous service
robots, and investigates the potential advantages offered by formally modelling the domain knowledge,
specification and implementation in a theorem prover in higher-order logic. This allows safety properties to
be stated in an abstract manner close to textbook mathematics. The automatic proof checking alleviates
correctness concerns, and provides a seamless development process from high-level safety requirements down
to concrete implementation. Moreover, the formalisation can be checked for correctness automatically, and
the certification review process can focus on the correctness of the specification and safety cases.
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1 Introduction

In this paper, we report on work being done in the context of the SAMS project
where a safety component for autonomous mobile service robots is being developed
and certified as SIL-3 compliant. The purpose of the safety component is to calculate
a safety zone for the moving robot, and stop the robot when an obstacle enters the
safety zone, thus protecting both the robot and the obstacle from a collision. The
safety properties are formulated at a very abstract level: e.g. that the robot does
not collide with any obstacles is formulated in terms of geometry (polygons and sets
of points changing over time), which is very different from the actual code. We keep
the modelling of the domain mathematically close to what is found in textbooks
on geometry and physics (providing the foundations of robotics), and formalise it
in higher-order logic in a theorem-prover (in our case, Isabelle [16]). We further
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model the implementation in the theorem prover as well, achieving a seamless de-
sign process with a clear and formally proven relationship between abstract safety
properties and implementation. We believe this approach is generally useful in a
setting aiming for a certification: The formal modelling and proof makes explicit all
hidden assumptions which may have been used in specifications, implementation or
proofs, and focuses the certification process on examining the safety specification
and the explicit assumptions, as the proofs can be checked automatically.

The paper is structured as follows: Sect. 2 gives an overview of the project. We
consider how to specify safety properties in Sect. 3, using a motivating example,
and show how to prove them correct with respect to an implementation in Sect. 4.
Sect. 5 gives a simplified account of the whole development, demonstrating the
seamless development cycle, and Sect. 6 concludes.

2 The SAMS Project

The SAMS project aims at developing and certifying a safety component for au-
tonomous mobile service robots. The component will provide a self-contained, con-
figurable, state-of-the-art collision avoidance service for mobile robots such as auto-
mated guided vehicles or mobile service robots. The sensor input will be provided by
a safety laser scanner. This device determines the distance to obstacles by sending
out a laser pulse and measuring the time until the reflection is received. It scans a
planar slice of the environment by rotating the laser beam (similar to a lighthouse)
while taking measurements. The scanner itself is certified, so we trust the data it
provides.

Industrial solutions for safe collision avoidance are available but suffer from in-
flexibility. They are usually based on safety laser-scanners with a few preconfigured
safety zones stopping the vehicle whenever an obstacle is detected in the safety zone.
The disadvantage is the small number of static safety zones. This requires that one
safety zone covers many different velocities, and thus necessarily overestimates most
of them, leading to over-cautious motion.

Fig. 1: Safety zone for vehicle
taking a slight left turn.

Our solution is to compute a safety zone in
real-time based on the vehicle’s current veloc-
ity and angular velocity. It is defined as the
area covered by the vehicle until it comes to a
full stop plus a safety margin (Fig. 1). When
an obstacle is detected in this safety zone, the
vehicle is stopped. This way, the vehicle can
always travel as fast as safe.

Solutions like this are well-known in the sci-
entific robotics community [12,8,13] but none
of these has ever been certified according to
norms as required by the machinery directive
(2006/42/EC) for use of automated machines in the workplace (and soon for ser-
vice robots as well). Thus, our objective of certifying a state-of-the-art collision
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avoidance algorithm under IEC 61508 (the relevant norm) as a SIL-3 compliant
safety component is novel, from the robotics point of view as well as from the certi-
fication point of view. Safety certification in an industrial setting typically involves
hardly any complex algorithms and norms such as DIN EN ISO 10218 emphasise
hardware-based solutions, e.g. physical separation by a cage or a light curtain.
What is novel in our project is that the safety function to be certified is based on
software and sophisticated algorithms.

3 Specification of Safety Properties

Typical safety requirement place specific constraints on control parameters (e.g.
this valve should not be open longer than a specified time) or comprise generally
understood high-level requirements (e.g. a concurrent system should not deadlock).
In contrast, robotics is a rich and complex domain. It needs geometry and physics
to describe the behaviour of the system, and the requirements are formulated in
terms of this complex domain. In our case, the main safety requirement is that
the robot does not collide with obstacles, which is formulated in terms of geometry
and physics, rather remote on a conceptual level from any code. Moreover, the
algorithms used to calculate the safety zones are fairly sophisticated, as they are
parametric over the braking model of the robot, which at the same time needs to be
simple, so it can be established with very few measurements, accurate, so the safety
zones are not too large, and conservative, so the safety zones are not too small.

The problem is exacerbated by the fact that robotics has no previous history
of formal methods, so there are no set of best practices, established specification
languages or well-developed tools specific to the domain available. Thus, the most
important question is how to specify safety properties. For specifications to be
credible for an external certification authority, they should be formulated as com-
prehensible as possible and abstractly, not too close to an implementation.

For example, we model the contour of the robot as a polygon, and obstacles
as arbitrary connected sets of points. A collision occurs if a point is both inside
an obstacle and the polygon. Thus, we have to formalise the property of a point
being inside a polygon. Fig. 2 shows an efficient textbook implementation which
determines whether a point p is inside a convex polygon poly[0..n-1]. It can
be easily specified, once we define the inside I1 (p1, . . . , pn) ⊂ R

2 of a polygon. A
straightforward way would be to define it as those points which are left of all edges,
using the index i modulo n:

isLft(p; a, b) ⇔ (p − a) · (b − a)⊥ ≤ 0, with ( x
y )⊥ = (−y

x ) (1)

I1 (p1, . . . , pn) =
{
p ∈ R

2
∣∣∀i : isLft(p; pi, pi+1)

}
(2)

From a practical point of view this is a good specification. It requires only elemen-
tary arithmetic and corresponds almost directly to the efficient implementation in
Fig. 2, making code verification easy. However, since it is so close the same con-
ceptual error could spoil both implementation and specification (e.g. mistakenly
comparing for larger than zero). Hence, although proven the code is not as credible
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bool i sL e f tO f ( Point p , Point a , Point b)
{ return −(p . x−a . x )∗ ( b . y−a . y ) + (p . y−a . y )∗ ( b . x−a . x)>=0; }
bool i s I n s i d e ( Point p , Point ∗ poly , int n) {

int i ;
for ( i =0; i<n ; i++)

i f ( ! i sL e f tO f (p , poly [ i ] , poly [ ( i+1)%n ] ) ) return f a l s e ;
return t rue ;

}

Fig. 2. A typical C implementation to determine whether a point p is inside a convex polygon poly[0..n-1].

as it should be. Furthermore, it is not immediately obvious that (2) defines what
one would intuitively call the interior.

By contrast, our philosophy is to avoid these problems by starting from an
abstract but mathematically intuitive definition. We first define the polygon outline
as the union of all edges

L(p1, . . . , pn) =
n⋃

i=1

{
(1 − λ)pi + λpi+1

∣∣∣λ ∈ [0 . . . 1]
}

(3)

and following the Jordan curve theorem [1] define the inside of any outline L ⊂ R
2

as the union of L with all bounded connected-components of R
2 − L.

x ∼A y ⇔ ∃φ : [0 . . . 1] continuous−−−−−−→ A : φ(0) = x, φ(1) = y (4)

CC(A) =
{
{y ∈ A|x ∼A y}

∣∣∣x ∈ A
}

(5)

bnd(C) ⇔ ∃d ∈ R : ∀x ∈ C : |x| ≤ d (6)

I2(L) = L ∪
⋃

{C ∈ CC(R2 − L)|bnd(C)} (7)

I2(p1, . . . , pn) = I2(L(p1, . . . , pn)) (8)

Intuitively, A is the complement of the outline L, so x∼A y, iff there is a connection
between x and y not crossing the outline (4). CC(A) defines equivalence classes
under this relation (5) and I2 unites those classes not extending to infinity (7). The
definition is very general, since it is defined not only for convex polygons but for any
polygon and even any outline. And it is very abstract yet intuitive, corresponding
well to the established mathematical theory. This definition can be reviewed by
an external expert who is not a programmer, thus introducing crucial redundancy
into the review process. But it needs substantial theory to be formulated and to
be related to an algorithmic formulation such as (2), and is hence more prone to
errors unless our proofs are checked automatically. Fortunately, tools for this have
reached a state where such a project is feasible.

4 Formal Proof and Modelling

By formalising the domain model inside a theorem prover, we can specify safety
properties at an abstract level in terms of the domain and not the implementation.
The modelling, being close to conventional textbook mathematics, is easier and
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Fig. 3. (a) For a general polygon, the areas defined by I1, I2, I3 form a chain I1 ⊂ I2 ⊂ I3. For a
convex polygon, they are all equal. (b) A degenerate polygon with two points which is excluded by the
¬dgn precondition. (c) The definition of the winding number ω(p; pi, pi+1) for a single edge. The winding
number for the whole polygon is ∈ Z, for a single edge it is fractional, proportional to the angle.

more readily understood than formalisations in a specification or modelling lan-
guage such as the UML — an important aspect for the certification process where
specifications have to be presented to, and discussed with an independent reviewer
(the certification agency). In the context of certification, the formal aspect is par-
ticularly valuable, as it alleviates the need to check proofs for correctness — this
can be done automatically by Isabelle. All that remains to be checked is that the
specifications adequately model the safety properties, and that all assumptions are
met. Thus, the formal modelling makes explicit any hidden assumptions that may
underlie a specific implementation or specification. For tool support, we have chosen
Isabelle, because we know it well; other possible tools are Coq [2] or PVS [17].

Picking up on the two definitions of the interior of a convex polygon above, we
will present a proof that the abstract definition (8) is equivalent to the algorithmic
definition of (2) at a level suitable to be formalised in Isabelle, showing our approach
at work.

4.1 Definition of convexity

Fig. 2 determines whether a point is inside a convex polygon, so to specify it we
need a notion of convexity as well. Pragmatically, following (2) one would define a
polygon to be convex iff all vertices are to the left of all edges.

conv1(p1, . . . , pn) ⇔ ∀i, j : isLft(pj ; pi, pi+1) (9)

Again, the definition of convexity is close to the implementation, not immediately
obvious and may require discussion with the certification authority. Even worse,
strictly speaking, convexity is a property of the polygon’s inside. With (9), this
connection is completely lost, because (2) does only make sense for convex polygons,
so it is impossible to argue about polygon that have a non-convex inside. Overall, (2)
and (9) make the definitions very technical and the overall verification less credible.

On the other hand, building on (8) it is possible to define convexity of arbitrary
sets C ⊂ R

2 and then call a polygon convex iff its inside is convex.

conv2(C) ⇔ ∀x ∈ C, y ∈ C, λ ∈ [0 . . . 1] : (1 − λ)x + λy ∈ C (10)
conv2(p1, . . . , pn) ⇔ conv2(I2(p1, . . . , pn)) (11)
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Before we go into the details of the proof, we add three more notions important
for verifying routines operating on convex polygons. First, we technically need the
notion of a degenerate polygon where all vertices are collinear (Fig. 3b).

dgn(p1, . . . , pn) ⇔ ∀i, j : (pj − pi) · (pi+1 − pi)⊥ = 0 (12)

Second, the convex hull of a set A ⊂ R
2 is the smallest convex superset

CH(A) =
⋂

{B |A ⊂ B ⊂ R
2, conv2(B)}. (13)

With this notation a third way of defining the inside of a convex polygon is possible,
namely as the convex hull of all vertices.

I3(p1, . . . , pn) = CH({p1, . . . , pn}) (14)

4.2 Proving the equivalence to the algorithmic definitions

We now have an easily comprehensible, abstract definition from which we want to
derive the more algorithmic definitions as lemmas, namely overall

conv1 ∧¬dgn ⇒ conv2 ∧ I1 = I2 = I3 (15)

where for brevity we omit the argument (p1, . . . , pn). We assume ¬dgn and proceed
by showing I1 ⊂ I2 ⊂ I3 and I3 ⊂ I1, if conv1 holds (Fig. 3a).

The first inclusion I1 ⊂ I2 is the most difficult to prove. We adapt an argument
of [15, §7]. Let p ∈ R

2 − L be a point. We consider the winding number, i.e. the
number of times the polygon “winds around” p and observe

(i) The winding number is constant in each connected component of R
2 − L.

(ii) The winding number is 0 for p with sufficiently high |p|.
(iii) The winding number is ≥ 1 for all p ∈ I1 −L, if ¬dgn.

From these three properties it follows that all p ∈ I1 lie in a bounded connected
component of R

2 − L and hence in I2. In detail, we define the winding number of a
single edge as the signed angle that edge has with p (Fig. 3b) divided by 2π. The
winding number of a polygon is the sum for all edges.

ω(p; a, b) =
1
2π

atan2
(
(b − p) · (a − p)⊥, (b − p) · (a − p)

)
(16)

ω(p) = ω(p; p1, . . . , pn) =
n∑

i=1

ω(p; pi, pi+1) (17)

We now show (i), (ii), (iii).
(i) Each ω(p; pi, pi+1) is continuous in p if p is not on the edge pipi+1, since

atan2 is continuous except on {0}×R
−
0 . Hence ω(p) is continuous on R

2 −L. Since
the polygon is a loop of edges, ω(p) ∈ Z, justifying the name winding number. So
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ω(φ(λ)) is constant on any path φ in R
2−L and hence constant on every connected

component of R
2 − L.

(ii) It is |ω(p; a, b)| ≤ 1
2π asin

( |b−a|
|p−a|

)
≤ |b−a|

4|p−a| . So, for fixed a, b ∈ R
2 and

|p| → ∞, ω(p; a, b) → 0. Since ω(p) ∈ Z, ω(p) = 0 for sufficiently large |p|.
(iii) The condition isLft(p; a, b) implies ω(p; a, b) ≥ 0 since p is not on the edge

ab. So ω(p; pi, pi+1) ≥ 0 for all i and ω(p) ≥ 0. Could all ω(p; pi, pi+1) be 0? Then p

would be on the infinite line through pipi+1 for all i. But then the lines pipi+1 and
pi+1pi+2 would have two distinct points in common, namely pi+1 and p. So they
were identical and by induction all lines would be identical contradicting ¬dgn. So,
at least one ω(p; pi, pi+1) > 0 and so is ω(p) > 0.

For I2 ⊂ I3 imagine p ∈ I2 and a line through p. This line must leave I2,
thus intersecting L at one point on each side of p, because otherwise I2 would be
unbounded. Now L ⊂ I3, since L =

⋃n
i=1 CH({pi, pi+1}). As p lies on a line between

points in I3 and I3 is convex, it is in I3 itself.
For conv1 ⇒ I3 ⊂ I1, assume conv1 holds and consider one polygon edge pipi+1.

By (9) all pj are on the left of this edge. The set of points left of an edge is convex.
So the convex hull of {p1, . . . , pn}, i.e. I3, is completely left of that edge too. Since
this holds for all edges, I3 ⊂ I1. So, I1 = I2 = I3 and since I3 is by definition convex,
conv2 holds.

Some final remarks: conv1 and conv2 are not equivalent for technical reasons,
since conv1 requires a counter-clockwise ordering of the polygon. The degenerate
polygons, for which dgn holds are also well handled by I2 and I3 but must be
excluded, because I1 defines an infinite line then. Overall, for non-degenerated
convex polygons, (conv1 ∧¬dgn), the definitions of “inside” are equivalent (I1 =
I2 = I3) and the inside is convex (conv2).

4.3 Formal proof: is it worth it?

The formalisation of the above pen-and-pencil proof is subject to ongoing work.
We have formulated the necessary definitions (I1, I2, I3, conv1 and conv2) in Isabelle.
The main inclusion theorems have been proven using several intermediate lemmas;
however, some of the more technical lemmas (mainly concerned with non-linear
arithmetics) still need to be proven formally, so the proof is still incomplete. 3

As pointed out above, once the proof is fully formalised, there is no need to
discuss it any further with the certification authority, and reviews can focus on
the specification. Further, we claim this approach increases the credibility of the
specification. When using (2) as a definition, there are potential errors in the
specification of isInside (Fig. 2) that would not be found in the whole software
verification process. Imagine we had forgotten to specify conv1 as a precondition for
isInside. Using I2, this error is found since the implementation does not comply
with the specification. However, if I1 is used, isInside still complies with the
specification, since both are identical. The error would not have been uncovered

3 The current version of the proof scripts is available at http://www.dfki.de/sks/sams/download/
safecert08.tgz.
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during verification, because if I1 is used in the overall specification the program is
still formally correct. So if a user entered a non-convex robot contour such as in
Fig. 3a, the system would implicitly assume a smaller robot, namely the dark area
in Fig. 3a. This is of course a critical safety fault.

A second error was actually uncovered by the formalisation: we had not realized
that ¬dgn is needed as a precondition. Without it, a two point polygon (a, b) would
be interpreted as an infinite line by I1(a, b) (Fig. 3b). This is also critical, e.g. if
the polygon represents free space.

Therefore, formalising proofs for well-known theorems may actually help in the
certification. In mathematical textbooks, there are often contextual or tacit as-
sumptions, and definitions may vary subtly from textbook to textbook. This may
lead to special cases, such as dgn above, being overlooked. However, if the proof is
formalised in Isabelle, all preconditions and assumptions are made explicit, elimi-
nating this potential source of errors.

5 A Safety Case for a Simplified Robot

We will now demonstrate the seamless transition from a high-level, formal specifi-
cation of safety properties to low-level correctness assertions of the software on a
control system. The scenario we consider in this paper is a simplified version of the
one used in the SAMS project.

5.1 Modelling the world

Our goal is to prove that a robot equipped with our obstacle avoidance control sys-
tem does not collide with any objects in its environment. This safety requirement
should be formulated at a high level without any reference to internals of the robot,
such as the software running on its control system. We therefore create a formal
model of the robot’s environment (the world) and state the required safety asser-
tions therein. Since the robot’s sensors (odometry and laser scanner) only provide
two-dimensional information, the world is modelled as the real plane R

2. Objects in
the world are simply connected sets of points. In this simplified world, lines denote
walls or other boundaries, while circles denote all other obstacles. The robot itself
is modelled as a single point with an orientation. Because objects, including the
robot, may move or change their shape over time, they are modelled as a function
over time of type R

+
0 → α (with R

+
0 interpreted as time and α any type), called

behaviours. E. g., robot : R
+
0 → R

2 yields the robot’s position for each point in time.
Appropriate specifications of these functions restrict their behaviour. Higher-order
logic is particularly well suited for specifying properties of functions; e. g. we can
define a predicate is cont : (R+

0 → R
2) → bool that characterises exactly the con-

tinuous functions. The specifications of functions representing objects can roughly
be separated into two parts: (a) properties that generally hold, like continuous
movement (we exclude teleportation: is cont(robot)), finite size, or connectedness
(objects with ‘gaps’ are naturally interpreted as distinct objects), and (b) object-
specific properties, like maximum velocity of the robot (∀t. |D(robot)(t)| < vmax ,
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where D is the differential operator), its braking deceleration or reaction times.
The main safety requirement is very easy: The robot shall never touch any of

the surrounding objects. Since the control software applied in this case can only
guarantee this requirement w.r.t. a static environment in which objects are not
moving, we add a premiss fixing the world to be static. A preliminary formalisation
of the safety requirement looks thus

[∀t, t′. ∀o ∈ Obs. o(t) = o(t′)
]

=⇒ ∀t. ∀o ∈ Obs. robot(t) /∈ o(t) (18)

where Obs is the set of all functions representing objects in the world, each of which
is of type R

+
0 → P(R2).

5.2 Tying together world and control system

Obviously, general physical specifications about robot , like continuous movement
and adherence to some maximum velocity, do not suffice to prove statement (18).
We have to express the fact that the robot is influenced by its control software,
which in our case is a reactive system. This means that a safety routine is called in
a cyclic fashion (every N milliseconds), receiving input from the robot’s sensors and
producing a simple output which indicates whether to initiate an emergency stop or
to continue driving. The cycle length is in this case given by the scan frequency of
the laser scanner. In each cycle, fresh data from the scanner and the odometry form
the basis of the routine’s output. This is modelled by introducing discrete behaviours
of type N → α, which are functions that yield a value at discrete points in time,
i. e. at each cycle. The translation from cycle number to point in time is given
by d2c : N → R

+
0 . We distinguish between discrete input and output behaviours:

input behaviours model data that is available at each run of the safety routine, and
depend on the state of the real world model; output behaviours represent a program
and its output, and may depend on the real world only through input behaviours.
This models the restriction that the only information about the world available to
a program is through its discrete inputs.

The most important discrete behaviours of our example are:

• An input behaviour scanner : N → List(N) modelling the distance measurements
of the scanner

• An input behaviour odo : N → Z
2 yielding the discrete (angular and translational)

velocity approximations by the odometry.
• An output behaviour stop : N → bool representing the control software.

Specifications relating to the discrete behaviour scanner describe properties of
the employed laser scanner. From this basic input behaviour we derive a behaviour
that yields a list of points in the world instead of distance measurements; this
is a simple geometric transformation requiring the robot’s current position and
orientation as well as the measured distances:

s canne r p t s : : nat −> List ( r e a l )
s canne r p t s n = let t = d2c (n)
in d i s t t o p t s ( scanner (n ) , robot ( t ) , o r i e n t a t i o n ( t ) )
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Given this definition, a simple way to model scanner precision is by saying that
for each point yielded by scanner pts, there must be an object in the vicinity (here:
δ length units) that caused this measurement:

∀n. ∀p ∈ scanner pts(n). ∃o ∈ Obs. |o(d2c(n)) − p| < δ

Even more important is the assertion that for each measured distance d there are
no obstacles inside the area covered by the laser beam up to d. This area takes the
shape of an acute-angled cone, as the beam slightly diverges over distance.

∀n.∀p ∈ scanner pts(n). ∀o ∈ Obs. cone(p, robot(d2c(n))) ∩ o(d2c(n)) = ∅

This example also shows how discrete input and continuous behaviours are
linked: cycle n happens at time d2c(n), and the output of scanner pts (and thereby
the output of scanner) depends on the current position of the obstacles in the world.
Hence, the input to the control software is no longer arbitrary, but in correspon-
dence with the environment, modulo scanner imprecision. Similar specifications
must be given for the odometry.

For reasons of efficiency and tool support, the safety routine is implemented in
C using the MISRA guidelines [14]. Roughly, the safety routine has to ensure that
the robot may continue driving only if the sensors’ data indicate that in no possible
case an emergency stop will be necessary until the next cycle of the program. In
particular, it must incorporate all possible latencies of the concrete system. If the
routine cannot give this guarantee, it must halt the robot. This is a very general
(and standard) technique for safeguarding with reactive systems.

The following statement expresses the fact that the stop behaviour which repre-
sents the control software actually restricts the possible motion of the robot. When
an emergency stop is signalled (stop(n) = True), then after a certain reaction time
Treact the robot will decelerate with at least the specified minimum amount of abrk .

∀n t. stop(n) ∧ d2c(n) + Treact ≤ t ∧ 0 < |vrobot(t)| (19)
=⇒ arobot(t) ≤ abrk < 0

5.3 Tying together control program and its implementation

To create a formal connection between the stop function representing the control
software and the aforementioned C program implementing it, we formalised the
C semantics in the logic. A type S models the state of C programs (values of
global and local variables), data types represent C programs and expressions, and a
semantic function sem c maps program terms to state transformers st : S → α×S,
where α stands for the possible return value of the expression or program. In
particular, a state transformer sr : S → bool×S represents the implemented safety
routine. To capture the fact that this routine is called in each cycle, we define an
embedding function that turns a state transformer into a discrete output behaviour.
The definition is shown in Fig. 4; it is parametric over the state transformer phi , so
that embed st(sr) yields the desired output behaviour. stop is then simply defined
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embed st : : (S −> (Bool , S ) ) −> nat −> (Bool , S )
embed st phi 0 = (False , i n i t i a l s t a t e )
embed st phi n = let ( pre b , p r e s ) = embed st phi (n−1)

in phi ( update ( pre s , scanner (n ) , odo (n ) ) )

Fig. 4. Turning a state transformer phi into a discrete behaviour.

/∗@ requ i r e s \ v a l i d p t r (v , 0 , l en ) &&
@ ensure s (\ f o r a l l i n t i ; 0 <= i && i < l en −−> v [ i ] <= \ r e s u l t ) &&
@ ( c t r == \ o ld ( c t r ) + 1) ∗/
int upper bound ( int ∗v , int l en ) ;

Fig. 5. Simple example specification of a C function. The returned value is specified to be larger than any
element of the given array v.

as its first projection. In cycle 0, no emergency stop is signalled; initial state
corresponds to the state the safety routine is started in. In all other cycles, the
input behaviours are evaluated for the current cycle, and the state that resulted
from the last execution is updated with the new inputs: update(pre s, si , oi); this
new state is then fed into the safety routine state transformer, its value yielding
the behaviour’s new state. The Boolean output is also determined by the state
transformer.

Discrete output behaviours as defined here are reminiscent of functions in the
synchronous programming language Lustre [10,4]. We have not investigated the
connection deeply, but we require similar restrictions on what an allowed output
behaviour is. For example, to model memory constraints an output behaviour may
only use a finite number of input behaviour values (say, from the last N cycles) in
its definition. Moreover, for causality reasons an output behaviour may only depend
on past and present inputs.

5.4 Specification of C Programs

To state and prove properties of C functions in our framework, we use a specification
language that annotates the actual code, rather than specifying the resulting state
transformer afterwards. This way, specification and code are developed side by
side. We follow existing approaches like JML [3] or Caduceus [7]. Fig. 5 shows a
simple example with pre- and post-conditions attached to a function (ensures and
requires clause, respectively). The pre-/post-conditions are specified in first-order
logic, where a formula’s free variables are identified with program variables. So in
the ensures clause of Fig. 5, v is interpreted as upper_bound’s parameter, while ctr
is assumed to be a global variable. Operator \old in the postconditions refers to
the value of a variable in the state before the function was executed.

Similar to the code, these specifications are also translated into the logic, where
their semantics is given as state predicates, i. e. functions pre : S → bool for
pre-conditions and post : (S × S) → bool for post-conditions, which are in fact
predicates about both the initial and the final state due to the presence of the \old
predicate. Very classically, a function is then considered to satisfy its specification
if, when run in a state that satisfies the pre-condition, the function’s interpretation
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as a state transformer maps that state to one that satisfies the post-condition. A
weakest-precondition style calculus [5,18] allows us to conveniently prove programs
correct.

Once we have proved that all functions of the safety routine satisfy their spec-
ifications, we can use this fact to prove properties of the behaviour obtained by
applying embed st to the safety routine’s state transformer. In particular, we can
prove that this output behaviour yields True when the safety routine determines
an emergency stop is necessary. Together with the assertion (19) that the robot
will actually halt when the control software signals an emergency stop, we can then
prove the overall safety assertion, namely that the robot does not collide with its
environment.

5.5 Summary

The simplified scenario demonstrated how it is possible to tie together the high-level
safety requirements of a whole system, and the low-level specification of control
system inputs and the software running on that control system. All this is being
done within the Isabelle prover, avoiding large gaps that in most other approaches
would have to be overcome by a leap of faith, even though in the presentation above
we had to omit many details.

However, we also made some simplifying assumptions. Firstly, we do not have a
notion of computation time within the logic. This is not a huge oversimplification,
because the only timing requirement is that every run of the control program must
finish execution in one cycle and this must be taken into account as a latency.
Secondly, the system hardware is idealised. We do not take random or systematic
hardware failures into account. This is in accordance with the certification, which
in our project focuses on software and assumes that hardware faults can be dealt
with in a standard manner.

6 Conclusions

This paper has presented the approach to software certification as employed by the
SAMS project. Our methodology is summed up as follows:

• Safety properties are stated as abstract, and as early in the development process
as possible, using a formalisation of concepts from the foundations of robotics
(geometry and physics);

• all proofs are done formally in Isabelle;
• the implementation is done in C and modelled in Isabelle, allowing a seamless

formal development from the abstract specification down to the code.

The approach has three main advantages: because the specification is stated very
abstractly, with an emphasis on mathematical concepts rather than computation,
its review can focus on the main aspects, and uncover conceptual errors which would
have gone unnoticed otherwise (see Sect. 4.3). Because the actual proofs are fully
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formalised, they can be checked by machine and do not need to be discussed or
reviewed further; the review process can concentrate on the specifications. Also,
during the course of the formal proof, hidden assumptions in the specification are
uncovered which can then be made explicit.

There is of course a huge body of related work on formal methods using the-
orem proving. Not many of these address certification; an exception is the recent
certification of Gemalto’s implementation of Java Card technology according to the
Common Criteria (CC) [9], using the Coq proof assistant. The SCADE suite [6] can
generate code from models, and is certified for use with all SILs, but does not use a
theorem prover. In robotics, the KoSePro project [11] explicitly addresses certified
safety, but in the more traditional vein adumbrated in Sect. 2. In summary, the
combination of certification, formal proof and robotics in SAMS is quite unique.

The approach is not without drawbacks, of course. Firstly, formal proof is hard,
and in particular the automatic proof support for real-valued arithmetic statements
often occuring in robotics is not good as one might hope for. Hence, a formalisation
on the scale undertaken here is not industrially viable yet; however, once concepts
have been formalised and proven they can be reused for other projects in this area
(e. g. the domain modelling of Sec. 4). Further, the concept of formal proof is alien
to most industrial certification agencies. For the SAMS project, we are currently in
discussions with a German certification authority, TÜV Süd; once this methodology
has been established, others will be able to benefit. The certification with the TÜV
is explicitly focusing on the software, with the aim of establishing our project as a
prototypical certification.

Presently, the SAMS project is in the second of its three years. Our software
is currently about 13.5 kloc of C code, and the proof scripts amount to 4.5 kloc
of Isabelle proof script for the formalisation of the implementation model, and 1.5
kloc for the domain model.

For future work, we plan to certify the correctness of an algorithm which detects
collisions in three dimensions, which has been developed recently, in extensions of
the two-dimensional case presented in this paper.
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