
U
N

IV
E R S IT A

S

S
A

R
A V I E N

S
I S

Universität des Saarlandes

FR Computerlinguistik

Well-formed Default Unification in
Multiple Inheritance Hierarchies

Diplomarbeit

vorgelegt von Christian Husodo Schulz

Erstgutachter: Prof. Dr. Dr. h.c. mult. Wolfgang Wahlster

Zweitgutachter: Dr. Jan Alexandersson

April 17, 2008

Declaration

I, the undersigned hereby declare that the work contained in this thesis is
my own original work, and has not previously in its entirety or in part been
submitted at any university for any degree.

Saarbrücken, April 17, 2008

Christian Schulz

i

ii

Acknowledgements

I am very greatful to prof. Wolfgang Wahlster for allowing me to write my
thesis at the DFKI and working at interesting issues.

I would like to express my gratitude to my supervisor doc. Jan Alexan-
dersson for spending much of his time in reading my drafts, for having con-
versations and especially for having the needed patience to attend this work
and keeping me focussed in my research.

Also I have to mention the fructuous exchange with my friends at the
DFKI Massimo Romanelli, Jan Schehl.

iii

iv

Contents

1 Introduction 3
1.1 Outline . 10

2 Prerequisites—Theory 11
2.1 Type Hierarchy . 12
2.2 TFS . 14
2.3 Well-Formed Unification . 18
2.4 Credulous Default Unification 21

3 A Prescription of Well-formed Default Unification 23
3.1 The Assimilation Process . 24

3.1.1 Specialization . 25
3.1.2 Generalization . 26

3.2 Type Preprocessing . 27
3.2.1 Account for Multiple Results during Type Preprocessing 28
3.2.2 Termination of the Search for valid Type Configurations 32
3.2.3 Reformulation of Carpenter’s Definition for BPO Hi-

erarchies . 36
3.3 The Algorithm . 39

3.3.1 Algorithm of the Default Unification 43

4 Prerequisites—Practice 47
4.1 Type Description Language—T DL 48

4.1.1 The Structure of T DL Grammars 49
4.1.2 Open World vs. Closed World 50

4.2 The flop Preprocessor . 52
4.2.1 The Functions of flop 52
4.2.2 ShUG . 55

v

4.3 Implementing the Lattice Operations 56
4.3.1 Proper Types . 56
4.3.2 Synthetic Types . 56
4.3.3 Leaf Types . 58
4.3.4 mlb Calculation between Proper Types 58
4.3.5 mlb Calculation between Proper Types and Leaf Types 61
4.3.6 mlb Calculation between Leaf Types 62
4.3.7 mub Calculation . 63
4.3.8 mlb Calculation between Leaf Types Revised 67
4.3.9 Grouping the Hierarchy 69

5 An Implementation of Well-formed Default Unification 71
5.1 Precomputation on Types . 72

5.1.1 Delta Iterator . 73
5.1.2 Detection of Deltas due to Non-Determinism 75

5.2 AVM related Functions . 80
5.2.1 The Design of TFS . 80
5.2.2 The Unifier Procedures 82
5.2.3 An Extract of an Example 94

6 Conclusions and Future Work 99
6.1 Summary . 99
6.2 Future Work . 101

A Import of the Type Hierarchy 105
A.1 Binary file generated by flop 105

A.1.1 Sections . 105
A.2 Binary file read in by ShuG 110

A.2.1 undump int . 110
A.2.2 undump short . 110
A.2.3 undump string . 110
A.2.4 undump node . 110
A.2.5 undump arc . 111
A.2.6 undump bitcode . 111
A.2.7 Header section . 111
A.2.8 TOC section . 111
A.2.9 Symbol-table section 112
A.2.10 Hierarchy section . 112

vi

A.2.11 Constraints section . 112
A.2.12 Supertypes section . 113

B Building the Type Hierarchy 115

C Commented Output of a Concrete Default Unification 119
References . 177

vii

viii

List of Figures

1.1 The slash operator of the priority union identifies which input
structure is default or non-default. In the example taken from
(Kaplan, 1987, P. 180), the part of non-default structure A
associated to q, overwrites the corresponding counterpart in B. 5

1.2 An excerpt from the SmartKom ontology showing the more
general entertainment frame and the two specialized frames
performance and broadcast. 8

2.1 A prototypical hierarchy featuring maximal upper bounds and
minimal lower bounds. 13

2.2 Within the dotted circles we have the type definitions together
with their appropriate maximal extensions. We say that all
structures that are subsumed by the type definitions are well-
formed. 16

2.3 A type hierarchy sample that motivates the well-formed uni-
fication in (Copestake,1992). 19

3.1 Multiple results due to two abstract background types that
have no subsumption relation. The grey cloud indicates an
area within all possible types except top and bottom may oc-
cur in a partial order, where the subsumption relation between
the types below and above the cloud still holds. 29

3.2 Multiple results due to two different abstract cover types, that
are not under subsumption relation. 30

3.3 The number of results corresponds to the cartesian product of
the number of ”different” abstract backgrounds and abstract
covers. 31

ix

3.4 The break condition during the search for abstract background
types in BCPO hierarchy holds if the supertype of the back-
ground type is not subsumed by the least upper bound be-
tween the background type and the cover type. In this case
the type of the cover is at the same time the abstract cover
type. 32

3.5 On the left the abstract background type t1 is subsumed by
the mub, t1 ∈ ⊓t(tco, tbg), while on the right it is not subsumed
by a mub of cover type and background type. 33

3.6 Is t1 a valid abstract background type, though it subsumes the
mub t3 between tco and tbg ? 35

3.7 This sample hierarchy features type configurations that pro-
duce also results during default unification that are not most
specific. The observation reveals that the members of the type
configurations 〈t0, tco〉, 〈t2, t3〉 and 〈t6, t7〉 are related in par-
allel by the subsumption ordering. We argue that given the
latter type configuration, the two other options are not rele-
vant anymore. 37

4.1 With T DL as starting point the system passes the type hier-
archy in an intermediate format generated by the flop prepro-
cessor to a wrapper class called ShUG (“Shallow Unification
Grammars”, see 4.2.2) that stores the type hierarchy in a java
object. 47

4.2 A sample of type definitions in T DL 50
4.3 The open world case to the left incorporates T DL to integrate

a newly generated type definition into the type hierarchy if we
have no explicit join of the avm types a and b. The same case
would produce the bottom type as output when accepting the
closed world assumption.The grey area represents the domain
of the type definitions in our type hierarchy. 51

4.4 PET—System Overview and Experimental Setup 53
4.5 The emergence of synthetic types 57
4.6 Handling multiple results in mlb processing 60
4.7 Finding mlb between a leaf type and a proper type 61
4.8 Finding mlb between a leaf type and a leaf type 62
4.9 Failure of the original encoding when calculating mub. Note

that missing bit-positions are equal to 0. 64

x

4.10 Type encoding for mub processing. 68

4.11 The encoding into groups . 69

5.1 Given the Delta queue is empty the expansion to the next
higher layers in the hierarchy happens as long expansion is
possible, see line 7, 8 and none among background supertypes
has a mlb with the cover type, see line 15. 73

5.2 Sorting out already visited background candidates. The blue
lines show the path 〈tbg/t5/t4/t3〉 and the red lines display the
movement on the path 〈tbg/t5/t7/t6/t3〉. 74

5.3 On the right side the synthetic type is placed so that we have a
unique lower bound between t2 and the type of the cover. The
red arcs substitute the original direct subsumption relation
represented by the green arc between tco, t3 and between t2
and t4 (Option 1). On the left side the synthetic type is placed
so that we have a unique lower bound between t0 and t1. The
red arcs substitute the original direct subsumption relation
represented by the green arc between t1 and t4 (Option 2). . . 77

5.4 The expansion of layers depends on the fact if the supertype
is still on the path to the mub, see line 8. If it is the case
that the supertype yields a Delta, the background supertype
gets removed in line 20. Though before discarding a path it
is crucial to check if the specialization succeeds. Other Deltas
are identified by the iteration over the synthetic types in 24-30. 78

5.5 Equivalence relation between an ambiguous TFS and the res-
olution to all its interpretations. 80

5.6 A TFS Object consists of a list containing Feature Value Pair
Objects and a list containing Feature Value List Objects . . . 81

5.7 The incremental construction of the resulting TFS during the
default unification process. 90

xi

1

5.8 Overview of the interactions of the single parts in the imple-
mentation. After the cover is passed to the default unifier,
the delta iterator gets instantiated. The query of the next
Delta follows the specialization that decides if the processing
is delayed by the query of the next Delta or if it continues
with the generalization and at last the overlay operation. The
latter component comprises the recursive application of the
entire procedure to the internal structure of the assimilated
structures. 93

5.9 This image represents the effect of the first Delta request, en-
tailing the expansion to all supertypes in the first layer atop
the background type. The hierarchy refers to a fragment of
the implemented type hierarchy in the figure B.1. The green
lines indicate the navigated route computed by the Delta it-
erator. The red lines indicate that the unification between
the TFS of the cover argument and the prototype structure of
the abstract cover type fails, whereas the blue line says that
unification succeeds. 94

5.10 The second request of a Delta effectuate the expansion to all
supertypes in the second layer atop the background type. . . . 96

B.1 Type Hierarchy A . 116
B.2 Type Hierarchy B . 117
B.3 Type Hierarchy C . 118

2

Chapter 1

Introduction

Commonsense reasoning embraces the concept to draw conclusions on the
basis of partial information and also inconsistent information that we retract
in order to obtain a more complete information. It is a shared knowledge
that this type of logic by reasoning with defaults is non-monotonic (Moore,
1995; Wahllöf, 1996).

Since the late 80’s non-monotonic inference has been a prominent the-
oretical issue (Daelemans, Smedt, & Gazdar, 1992). Especially in the area
of computer linguistics the research of default reasoning has a great impact.
In parallel, analogous to considerations in software engineering to favor the
use of object-orientation in computer science, it becomes desirable to embed
linguistic theories in inheritance networks. Linguistic theories such as Sys-
temic Functional Grammar (Halliday & Matthiessen, 2004), Word Grammar
(Fraser & Hudson, 1992), or HPSG (Pollard & Sag, 1994) make use of inheri-
tance to describe linguistic structures at the lexical, morphological, syntactic,
or semantic (conceptual) levels. A wide spread opinion is that single inher-
itance network (orthogonal inheritance) are not suitable to the description
of natural languages. For instance in the context of lexical maintenance,
morphological and syntactic properties are frequently disjoint, i. e., the sub-
categorization class of a verb is not predictable from its conjugation class,
and vice versa. Multiple inheritance permits the two types of information
to be separated by isolating them in distinct subhierarchies. More general
preferences concerning the properties of multiple inheritance hierarchies are
basically similar to the benefits of object-oriented programming language,
including (1) parsimony—inheritance lexicons are smaller in comparison to
their full-entry counterparts; (2) maintenance comfort—instead of changing

3

4

or correcting numerous individual entries, modifications to a couple of nodes
may be sufficient; (3) uniformity—it is possible to refer the same allocation of
inference to different levels of linguistic description; (4) modularity—multiple
inheritance permits distinct to apply for distinct levels of linguistic descrip-
tion; (5) interaction—it is possible to express the fact if a lexical property at
one level of description, e. g., syntactic gender depends on a lexical property
at another level of description, e. g., the phonology of a word-final vowel.

The linking of multiple inheritance with default reasoning represents one
of the key issues in the knowledge representation literature, where strategies
of how to deal with the inheritance of mutually contradictory information
from two or more parent nodes have been offered. Subsequently it has made
possible a range of applications that can be attributed to two distinct moti-
vations.

One major topic is the attempt to embrace linguistically significant gen-
eralizations in an inheritance hierarchy, where default reasoning acts as an
extension to the common unification-based hierarchies. For throughout all
linguistical disciplines a series of restricted default inheritance languages have
been designed. Among the most early striking solutions to encapsulate non-
monotonic behaviour in inheritances is the specification in syntactic theory of
GPSG (Gazdar, 1987). For the purpose to express exceptional behaviour to-
wards more specific concepts in the hierarchy, GPSG requires to make heavy
use of defaults.

Thereinafter (Shieber, 1986) proposes an operation add, which adds in-
formation of a feature structure A to a feature structure B, as far as this
information is not in conflict with information in B.

Bouma (Bouma, 1990, 1992) provides a definition of default unification1

as an operation similar to ordinary unification with the difference that non-
default parts of the structure take precedence in case of unification failure.

While the application of Bouma’s language FML is associated to the syn-
tactical level of linguistic description, ELU in (Russell, Carroll, & Warwick,
1991; Russell, Ballim, Carroll, & Warwick-Armstrong, 1992) represents an
underlying formalism dealing with the morphological aspect. A goal in lexi-
con maintenance is having the capability to make general statements about
classes of words and also to adhere exceptions to such statements affecting
individual words and subclasses. ELU employs the multiple default inheri-

1The term default unification is commonly used and refers to the operation deployed
to most of the works treating with default reasoning.

5

tance mechanism to describe regularity, subregularity and exceptions when
classifying the properties of words.

The concern in this work aligns with the second motivation of default
reasoning consisting in the use of a variety of general non-monotonic logics
for formalizing pragmatic components of NLP and dialog systems.

A uniformity to all approaches in non-monotonic logics is established since
(Kaplan, 1987) has suggested to consider the operation qualified to combine
default with the non-default information as an asymmetric operation that
is not commutative and not transitive. In literature, numerous variants of
terms for the purpose to indicate the distinction of what is default and non-
default come across.2 Kaplan’s notion of priority union provides the technical
background to his analysis of gapping constructions.

A =







q r
s t
u v





B =







q m
s t
p l





A/B =











q r
s t
u v
p l











Figure 1.1: The slash operator of the priority union identifies which input
structure is default or non-default. In the example taken from (Kaplan, 1987,
P. 180), the part of non-default structure A associated to q, overwrites the
corresponding counterpart in B.

Carpenter (Carpenter, 1993) introduces a new approach to the notion
of default unification. He defines two default unification operations called
credulous and skeptical default unification. The idea behind the credulous
operation is to generalize the default structure until it unifies with the strict
structure. Unlike the previous strategies to replace conflicting parts by the
strict information, he suggests in case of clashes to relax the specificity on the
defeasible part to achieve consistency with the strict structure. Carpenter
states that the definition of the generalized default might be not determin-
istic, which entails that the credulous variant allows having multiple results.
On the other hand the skeptical version would finally collapse diverse results

2Defaults are alternatively described by synonyms as defeasible, background, old, source

and non-default as strict, cover, new, target. Within the principal part of this work we
stick to the terms strict, cover on one side and defeasible, background on the other side.

6

into a unique one. Carpenter implicitly assumes an existing inheritance hier-
archy that organizes the subsumption relation between the structures. Strict
and defeasible information is described by feature structures that are par-
tially ordered according to a subsumption ordering that can be interpreted
as an ordering on the amount of conveyed information. Accordingly, Car-
penter’s definition of default unification heavily motivates the use of a typed
feature structure language, henceforth TFS, that is a synthesis of several
key concepts stemming from unification-based grammar formalisms, knowl-
edge representation languages and logic programming. It offers declarative
framework, with all the advantages of logical formalisms: expressive power,
simplicity, and sound formal semantics.

The first detailed description of an algorithm realizing Carpenter’s defini-
tion with the use of TFS has been provided by (Grover, Brew, Manandhar, &
Moens, 1994). Its implementation in ALE (Carpenter & Penn, 1998) uses the
specification of priority union in (Grover et al., 1994) to resolve parallelism-
dependent anaphora, i. e., verb phrase ellipsis. The resolution mechanism is
based on the linguistic discourse model of (Prüst, Scha, & Berg, 1994). The
term most specific common denominator (MSCD) represents the test for par-
allelism between two discourse unit constituents (DCU). Moreover it refers
in the scope of Carpenter’s definition to the alleviated version of the default
structure that is consistent with the strict information. The actual ellipsis
resolution is executed separately, where the structure of MSCD is combined
with the target.

The underlying formalism of Grover’s priority union suffers from draw-
backs regarding both the computational and the theoretical point of view.
The algorithm in (Grover et al., 1994) decomposes the source into atomic
feature structures (Moshier, 1988) and unifies consecutively each atomic fea-
ture structure with the strict structure until the unification fails. The clash
during unification depends on which order the atomic feature structures are
unified with the strict structure. Thus unification is executed n! times—
where n corresponds to the number of atomic structures in the defeasible
part of the argument—between background’s atomic feature structure and
the cover to receive all possible results. Finally, since the algorithm may
produce redundant results, we must sort out the most informative feature
structures.

The theoretical concern attests that atomic feature structures do not be-
long to any type or type description. It is questionable to allow the arbitrary

7

unification of atomic feature structures out of the source with the target,
since it is unclear which meaning the set of atomic feature structures has
that is unifiable with strict structure. Grover also challenges the fact whether
MSCD sufficiently incorporates a characteristic generalization of the defea-
sible source and states that their formalism lacks giving a formal notion of
the common ground that is supposed to establish parallelism .

An algorithm linear to the size of the structures involved is introduced by
lenient default unification in (Ninomiya, Miyao, & Tsujii, 2002). In contrast
to Carpenter’s credulous default unification, the goal of the algorithm in case
of clashes is to maximize the information content of the resulting structure
by “pushing” the affected values of the default structure towards the leafs.
Though their approach somehow omits the requirement to have well-typed
result, since the effect of introducing types to feature structures possibly
produces feature structure that are not well-typed.

Whereas in (Lascarides & Copestake, 1999) the realization of an order
independent persistent default unification is based on the agreement “Only
parts of the feature structure which are fully type compatible with the non-
default structure are split” as stated in (Copestake, 2002). An interesting
novelty based on the marking of default information as it has been previously
presented by (Young & Rounds, 1993) is that default unification is described
as a binary, order-independent (i.e., commutative and associative) operation.
However some of other postulated properties for default unification conflict
with Carpenter’s definition and further are not applicable to tasks of the kind
as in (Grover et al., 1994). According to their formalism, default unification
may fail if strict information itself already incorporates inconsistency. Car-
penter does not take into account the potential that strict input information
contains already conflicts and so default unification always succeeds. Further
property of the order independent persistent default unification is that it re-
turns always a single result, which is also not an indispensable desideratum
according to Carpenter, see credulous default unification.

The overlay operation in (Alexandersson & Becker, 2007, 2004; Alexan-
dersson, Becker, & Pfleger, 2004; Alexandersson & Becker, 2003) as (Grover
et al., 1994) contains a precise formalization of Carpenter’s credulous de-
fault unification. Their approach to heavily utilize type hierarchies during
default unification brings together favorable computational properties and
also declarative semantics attributed to the resulting structures. Further,
the analysis is realized in an appealing constraint-based architecture for an
object-oriented language based on multiple inheritance, TFSs, and unifica-

8

tion. A slim version of the overlay specification considering single inheritance
hierarchies has been implemented in the SmartKom system (Wahlster, 2003;
Wahlster & Wahlster, 2006), a multi-modal dialog system with a frame-based
meaning representation. SmartKom models the user’s intention in a dialog
system where conclusions referring to the last user’s utterance are based on
previous knowledge collected during a dialog. The defeasible part is related
to the last instance of the knowledge frame that might be overwritten by
new information. Within a new event during the dialog, the locutor possibly
introduces additional information to the context that conflicts with the given
context, i. e., change of topic, previous information is revised, some parts in
the context are no longer valid thus redundant. To deal with the latter case,
parts of the discourse context are to be inherited such that interpretation
of the actual instance in the dialog is complete and consistent with the new
information.

A simplified excerpt of the ontology describing the frames discussed above
is shown in figure 1.2. Consider the following example of a dialog3 between

...
location

PERFORMANCE

beginTime

...
channel

BROADCAST

...

ENTERTAINMENT

TOP

at some location

A named entertainment

A named broadcast
on some channel

A named performance

Figure 1.2: An excerpt from the SmartKom ontology showing the more
general entertainment frame and the two specialized frames performance
and broadcast.

a user who is seeking information about the movie and TV program and the
SmartKom system:

(1) User: I’d like to go to the movies tonight.

(2) SmartKom: Here (ր) are the films showing in Heidelberg.

3The only multi-modal aspect of this dialog is the presentation of the actual film titles
on the display and a pointing gesture by the presentation agent, marked by ր.

9

(3) User: No, there is nothing interesting there,

(4) User: what is showing on TV?

After the system’s reply (2), the context contains information about the topic
going to the movies and some details like in Heidelberg and tonight. Note,
that in the SmartKom system, certain defaults, e. g., the location Heidel-
berg in this example, are incorporated into the representation of the user
utterances. The next user utterance (3) could be seen as meta-talk, signal-
ing a change of topic which is then made explicit in the final utterance (4).
Since the two topics movies and TV are clearly related, some of the informa-
tion from the old context should be retained, i. e., in Heidelberg and tonight.

Thus the default unification formalization in (Alexandersson & Becker,
2007) is used in the SmartKom system as a general purpose mechanism
for enriching the interpretation of some communicative action with consis-
tent information from some defeasible structure. In addition they provide a
scoring function that is a precise specification of how a distinction based on
informational content with respect to the default and strict structure among
the multiple results can be realized.

This work performs an extension to the default unification presented in
(Alexandersson & Becker, 2007) concerning the theoretical and the practical
aspect without taking into account an evaluation-based mechanism like the
scoring function. Firstly, the algorithm of the default unification is adapted
to multiple inheritance type hierarchies omitting the requirement to have
a unique greatest lower bound. This implies to deal with a finite poset
permitting two or more types to feature joins as a set of disjunctive and
disjoint types. Consequently, appropriate observations are needed to light
up the great impact this property has on the default unification formalism
in (Alexandersson & Becker, 2007). Moreover the constraint-based archi-
tecture of the type feature language has been enhanced approving the well-
formedness condition on TFSs discussed by (Copestake, 1992). Analogously
we provide an adequate and efficient implementation of the default unifica-
tion operation featuring the properties introduced in the theoretical analysis.

1.1 Outline 10

1.1 Outline

Chapter 2 : Prerequisites - Theory

The next chapter serves with necessary theoretical foundations, con-
taining essential formal specifications of the type hierarchy, type feature
structure and the unification operation on TFSs.

Chapter 3 : A Prescription of Well-formed Default Unification

The main contribution in the thesis is to give finalized version to the
already detailed specification of the algorithm respecting Carpenter’s
credulous default unification, based on extensive study of all sorts of
eventualities encountered in multiple inheritance bounded hierarchies
that are not complete.

Chapter 4 : Prerequisites - Practice

A suitable type hierarchy for the purpose of experimenting the default
unification procedure is given by T DL (Krieger, 1995) that offers suf-
ficient capability to provide the basis of this work. However essential
adjustments for the purpose of implementing the default unifier were
necessary concerning the open world type system of T DL (Gerdemann,
1995a). Those are in particular modifications applied to the type hier-
archy by flop preprocessor to obtain the BCPO condition.

Chapter 5 : An Implementation of Well-formed Default Unifica-
tion

This chapter describes the impact that the framework of T DLand flop

has on the implementation. Eventually it comes up with additional pro-
posals to optimize the default unification procedure. In the following
commented pseudo codes corresponding not only to the modification
but also to entirely implemented modules illustrate the course of action
in the described procedure respectively. Finally we give an excerpt of
a more complex example with a detailed demonstration of the single
steps during the default unification procedure.

Chapter 6 : Conclusions and Future Work

At last an overview of the main contributions and some anticipations
of future works are presented.

Chapter 2

Prerequisites—Theory

This chapter will give the required knowledge and definitions in order to
understand and to be able to give a precise specification of the default uni-
fication procedure.

As in (Alexandersson & Becker, 2007) the specification of the default
unification algorithm is to be interpreted as an operationalization of the
formal characterization of the credulous default unification in (Carpenter,
1993). Therefore many definitions are related or are taken from the latter
work introducing the concepts of types, feature structures, henceforth FS,
and lattices.

A crucial difference to the common analysis of lattice theory is that we
allow multiple inheritance, where different types may inherit from an equal
set of types. Such a property gives on one side more expressiveness to some
hierarchy but implies also on the other side complex impacts on the required
operations referred to the hierarchy.

Further we agree that a TFS that is included in the set of the maximal
extension of a type definition is well-formed. Moreover we consider it to be
an essential issue to maintain the well-formed condition on the structures,
if we want to apply the required operations for the purpose of the default
unification calculation. In particular we relate the unification on TFSs to
the specification of well-formed unification presented in (Copestake, 1992).
Finally this chapter seclude with Carpenter’s essential definition of the cred-
ulous default unification.

11

2.1 Type Hierarchy 12

2.1 Type Hierarchy

First of all, we have to specify our inheritance hierarchy as a type hierarchy.
For this purpose, we need a set Type of types ordered according to their
specificity, i. e., given t, t′ ∈ Type, if t′ inherits information from t, then t′ is
said to be more specific. At this point, we also say that t subsumes t′, and
write it t ⊑ t′.1

Definition 1 Partial Order

A relation ⊑ on a set of types Type is a partial order in case it is:� reflexive, i. e., ∀t1 ∈ Type we have t1 ⊑ t1� antisymmetric, i. e., ∀t1, t2 ∈ Type if t2 ⊑ t2 ∧ t2 ⊑ t1 then t1 = t2� transitive, i. e., ∀t1, t2, t3 ∈ Type if t1 ⊑ t2 ∧ t2 ⊑ t3 then t1 ⊑ t3

2

The bounded complete partial order condition (BCPO, (Carpenter, 1992))
on lattices assumed in the definition of the inheritance hierarchy given in
(Alexandersson & Becker, 2007) says that for any subset T of Type there
is a greatest lower bound and a least upper bound.2 Saying that for each
t, t′ ∈ Type there is a unique upper bound tu with tu ≥ t, tu ≥ t′ and also
unique lower bound tl with tl ≤ t, tl ≤ t′. In our analysis the strict bounded
completeness conditions on the inheritance hierarchy has been relaxed to
allow the existence of minimal upper bounds and maximal lower bounds3

(B. Davey, 1990).

Definition 2 Maximal/Minimal Lower/Upper Bounds

Given T ⊂ Type and ta, tb ∈ Type,� if ta ⊔t tb = T and T is the set of maximal lower bounds, then for each
t′ ∈ T , we have

1In terms of a types as sets denotational semantics, increasing information content
decreases the denotation, i. e., if t ⊑ t′ then [[t]] ⊇ [[t’]].

2We refer later on to glb and lub respectively.
3We refer later on to mub and mlb respectively.

2.1 Type Hierarchy 13

⊤

a b

c d

⊥

Figure 2.1: A prototypical hierarchy featuring maximal upper bounds and
minimal lower bounds.

– ta ⊑ t′, tb ⊑ t′

– If t′ ⊑ t′′ or t′′ ⊑ t′, and t′′ ∈ T then t′ = t′′� if ta ⊓t tb = T and T is the set of minimal upper bounds, then for each
t′ ∈ T , we have

– ta ⊒ t′, tb ⊒ t′

– If t′ ⊑ t′′ or t′′ ⊑ t′, and t′′ ∈ T then t′ = t′′

2

The example in the figure 2.1 is a partial order 〈Type,⊑〉, where the join
⊔(a, b) would have to be defined non-deterministically to generate c and d
as possible results. Dually we have as meet ⊓(c, d) the results a and b. In
this work we assume to consider the partial orders to be bounded, that is
all hierarchies have a greatest element top and a least element bottom . We

2.2 TFS 14

suggest here that more specific types are placed towards the bottom and
dually more general types towards the top.

Such hierarchies have been, for instance, installed to SFP domains (Plotkin,
1976) or to partial orders (Vickers, 1989). Further similar concepts of non-
determinism arise in the context of universal unification (Siekmann, 1984)
and some notions of set-valued FSs (Pollard & Moshier, 1990).

2.2 TFS

The definition of the TFS is based on the concept of labelled finite-state
automaton (Carpenter, 1993) with arcs connecting nodes to features, with
the difference that nodes are exclusively labelled by types. A node is labelled
to either a complex structure, that is a type with outgoing arcs or to a atomic
structure a type without any features4.

Definition 3 TFS

A TFS is a tuple F = 〈Q, q, θ, δ〉 where:� Q is a finite set of nodes with the root q� q is the unique root node� θ : Q→ Type is a total node typing function� δ : Feat×Q→ Q is a partial feature value function

2

In order to map the monotonicity condition on the type hierarchy to
the TFS, we must establish a definition that associates features with types.
Given a set of features Feat and a set of types Type:

Definition 4 Appropriateness

Let 〈Type,⊑〉 be an inheritance hierarchy and f ∈ Feat. Then we define
a partial function Approp : Feat× Type→ Type where

4Structures performing such a property are also called atomic type.

2.2 TFS 15

Feature introduction For every feature f ∈ Feat there is a most general
type Intro(f) ∈ Type such that Approp(f, Intro(f)) is defined

Downward closure/Right monotonicity If Approp(f, τ) is defined and
τ ⊑ σ, then Approp(f, σ) is also defined and Approp(f, τ) ⊑ Approp(f, σ)

2

Translating the definition informally, the first condition says that for each
feature f there is a type t ∈ Type, where f is introduced and it does not exist
some other type t′ ∈ Type, such that f occurs in t′ and t′ ⊑ t. The second
condition says that for a feature f , if it is the case that f is defined for a type
t, then f will be propagated to all subtypes of t and for any t′ and t ⊑ t′ we
have Approp(f, t) ⊑ Approp(f, t′).

There are some versions of TFS languages (also including (Carpenter,
1992); (Gerdemann & King, 1994); (Krieger, 1994a); (Smolka, 1992), (Emele
& Zajac, 1990)) that does not take into account the constraint specification
given by (Copestake, 1992). Adopting the notion of constraint specification
as a template description (Shieber, 1986), we can construct powerful typed
inheritance hierarchies while defining only a fraction of all possible extended
TFSs (Copestake, 1996). Inheritance hierarchies in this way are relevant
from a computational viewpoint and as well as theoretical one. We give now
a definition of the most general satisfier, that is adapted from the concept of
the constraint specification in (Copestake, 1992).

Definition 5 Most General Satisfier

Given an inheritance hierarchy 〈Type,⊑〉, a type t ∈ Type and a set of
TFS, FS and for each F ′ ∈ FS , F ′ meets the appropriateness condition we
have a partial function MGsat :⊆ Type→ FS such that
MGsat(t)→ F = 〈Q, q, θ, δ〉, where:

1. θ(q) = t.

2. For all F ′ =〈Q′, q′, θ′, δ′〉 and θ(q′) = t, then F ⊑ F ′.

3. For all q ∈ Q we have the condition θ(q 6⊒ θ(q) .)

2

2.2 TFS 16

t1

[

A : bool

]

t1 [A : true] t1 [A : false]

t2





A : true

B : bool





t2

[

A : true

B : true

]

t2

[

A : true

B : false

]

t3





A : bool

C : false





t3

[

A : true

C : false

]

t3

[

A : false

C : false

]

Figure 2.2: Within the dotted circles we have the type definitions together
with their appropriate maximal extensions. We say that all structures that
are subsumed by the type definitions are well-formed.

The definition of the most general satisfier implies also the notion of well-
formedness of a TFS given an inheritance hierarchy.

Definition 6 Well-Formed TFS

Some TFS F ′ = 〈Q′, q′, θ′, δ′〉 is well-formed if MGsat(θ′(q′)) ⊑ F ′. 2

2.2 TFS 17

Figure 2.2 illustrates an example of a type hierarchy, that would corre-
spond to the definition of the language of TFS we use here. Subsequently we
will switch between the terms most general satisfier5, the prototype structure
of a type t and type definitions in general.

We further adopt the notion, that two type definitions are not equal,
if they can be extended to distinct collections of maximal FSs (Carpenter,
1992). Thus this implicates that we accept the assumption in (Alexandersson
& Becker, 2007), that for each type t ∈ Type there is a possibly empty set of
features introduced by type t. Copestake in contrast suggests for their TFS
language, that given a set Feat′ ⊂ Feat where Appfeat(t) = Feat′ and further
Appfeat(t′) = Feat′ it follows that t = t′. Appfeat is a partial function taken
from (Copestake, 1992) that is analogous to the Approp, but instead Appfeat

assigns a type to an appropriate set of features.

This is a relevant change to (Alexandersson & Becker, 2007), where the
notion of MGSat does not explicitly satisfy the well-formedness condition
above. For instance the figure in 2.2 satisfies the appropriateness condition.
If we leave out the well-formedness condition it would be feasible to replace
the value true at feature A with bool for the type definition t2, while still
maintaining the appropriateness condition. So in addition to the type def-
inition t2 in the figure 2.2 the modified version of the TFS would be also
qualified to be a MGSat for t2 in the hierarchy. In principle when omit-
ting the well-formed condition we can have many different MGSats that all
satisfy the appropriateness condition. Hence a hierarchy that respects the
well-formedness condition is one concrete hierarchy among many hierarchies
following the appropriateness condition. We will see that it is crucial to have
a concrete specification of the type definitions when integrating them into
the default unification processing.

The last condition defining MGSat inhibits the generation of TFSs con-
taining cycles, that is referred to the compatability condition in (Copestake,
1992). Strictly speaking the compatability condition entails the prevention
to assign the top type to a feature, regardless what type definition we want
to determine. Though, if we look at the illustration in the figure 2.3 adopted
from (Copestake, 1992), we note that the compatability condition is vio-
lated. The design of the type hierarchy viewable in the appendix B, that
is integrated into the built up system does not follow the latter constraint
as well. The treatment of cyclic structures during the processing is not re-

5Henceforth we use sporadically also the abbreviation MGSat.

2.3 Well-Formed Unification 18

quired. Cycles would only be generated if we extended type definitions to all
TFSs satisfying the type definition. For the purpose of experimenting with
the default unification processing in a realistic environment, it is sufficient
given the type definitions to check the well-formedness of the conveyed ar-
guments. So in practice, instead of considering the compatability condition
in the broadest sense, it is satisfactory to shift the task of excluding cyclic
structures to the construction of the type hierarchy, where the type definition
itself may not contain cycles.

2.3 Well-Formed Unification

Given the TFS language we want to specify the unification between two
TFSs, that is an essential operation during the default unification process.
Therefore a definition of the subsumption relation between two type feature
structures, that is derived from the very elegant definition in (Moshier, 1988),
we give first below:

Definition 7 Subsumption

F = 〈Q, q, θ, δ〉 is said to subsume F ′ = 〈Q′, q′, θ′, δ′〉, F ′ ⊑ F , iff there is
a total function h : Q→ Q′ such that:� h(q) = q′� θ(q) ⊒ θ′(h(q)) for every q ∈ Q� h(δ(f, q)) = δ′(f, h(q)) for every q ∈ Q and feature f such that δ(f, q)

is defined

2

The definition says that a TFS F subsumes another TFS F ′ if and only
if all features in F are also present in F ′ and the type assigned by F to a
feature subsumes the type assigned by F ′ to the same feature in the type
ordering. We can now define unification as a binary operation over two type
feature structures bringing together their informational content.

2.3 Well-Formed Unification 19

Definition 8 Unification

The unification F ⊔ F ′ of two TFSs F and F ′ is taken to be maximal
lower bounds of F and F ′ in the collection of well-formed TFSs ordered by
subsumption. 2

⊤

t1

[

A : bool

]

t2

[

B : ⊤
]

t3





A : true

B :⊤





Figure 2.3: A type hierarchy sample that motivates the well-formed unifica-
tion in (Copestake,1992).

Even if in the introduced definition of the unification we assume implicitly
as maximal lower bounds have to be well-formed TFSs, we must explicitely
extend the unification from a binary to a ternary operation. For the unifi-
cation process in order to yield a well-formed result it is required to unify
additionally with the type’s MGSat of the resulting structure. An illustra-
tion based on the hierarchy in figure 2.3 exemplifies the inconsistency, that
may arise when leaving out the additional step. Note that we still consider
the unification operation in a non-deterministic environment such as in figure
2.1. Therefore the resulting structure of a unification is supposed to be a set
of well-formed TFSs. Thus two TFSs are unifiable if their unification does
not result in a set containing one single element that is equal with bottom .

2.3 Well-Formed Unification 20

Given the type hierarchy in the figure 2.3 we have t3 = t1 ⊔t t2 and

MGsat(t1)⊔MGsat(t2) = { t3





A : bool

B : ⊤



 }, but MGsat(t3) 6⊑ t3





A : bool

B : ⊤





Now consider the well-formed TFSs F1, F2, F3

F1 = t2

[

B :⊤
]

F2 = t1

[

A : bool

]

F3 = t1

[

A : false

]

with the following unifications:

1.) F1 ⊔ F2 = { t3





A : bool

B : ⊤



 } 2.) F1 ⊔ F3 = { t3





A : false

B : ⊤



 }

If we omit to unify with the appropriate MGSat we run the risk as in
the first case of accepting a TFS that does not satisfy the type definition,
though it is in subsumption relation with the MGSat. In the second case
the unification would result in the production of a TFS, that is even not
consistent with the type definition.

In (Copestake, 1992), the unification procedure comprising the generation
of only well-formed results is referred to as well-formed unification. Equally
we also state the definition of the unification with respect to the conservation
of the well-formedness of TFSs.

Definition 9 Unification revised

The unification F ⊔ F ′ of two TFSs F =〈Q, q, θ, δ〉 and F ′=〈Q′, q′, θ′, δ′〉
is given by {F ⊔ F ′ ⊔MGsat(θ(q) ⊔t θ(q′))}. The result, if unification does
not fail is a non-empty set containing well-formed TFSs only. 2

2.4 Credulous Default Unification 21

2.4 Credulous Default Unification

The general idea of default unification is to maintain as much of the default
information as possible, as long as it does not conflict with the strict infor-
mation. This notion is totally incorporated by the definition of credulous
default unification in (Carpenter, 1993), that embodies the full power of de-
fault unification in a simple and clear manner. Although Carpenter uses FSs
in his description, we easily can apply the definition of credulous default uni-
fication to TFSs. All we have to do, is to consider the subsumption ordering
on types or type definitions instead of FSs. Given that the strict information
is conveyed by type feature structure F we have:

Definition 10 Credulous Default Unification

F
<
⊔c G = {F ⊔ G′ | G′ ⊑ G is maximal such that F ⊔ G′ is defined} 2

The credulous default unification of the defeasible information in F and the
strict information in G is defined as the set of unifications between a TFS F
and all TFSs G′ subsuming G with a maximal amount of information com-
patible with F . In the defeasible TFS there is always a set of information
compatible with the information in the strict TFS, since the case is included
if we have only an empty set of TFSs (G′ corresponds to top) that is consis-
tent with the strict TFS. This implies that two TFSs can always be default
unified.

We can state the following concerning the properties of the default unifi-
cation operation:

Proposition 1� It is always defined as already mentioned. The set F
<
⊔c G is never

empty.� It is potentially ambiguous as we have a set containing TFSs.� It is not commutative, we have therefore
<
⊔c(F, G) 6=

<
⊔c(G, F).

Though if ⊔(F, G) is defined then
<
⊔c(F, G) =

<
⊔c(G, F). So the default

unification operation in case strict information and defeasible informa-
tion are consistent is reducible to the unification in the definition 9.

2.4 Credulous Default Unification 22� If H ∈ F
<
⊔c G then F ⊑ H .

All strict information is preserved as every result is expressed as the
unification of the strict information and the compatible subset of in-
formation in the defeasible source.� It is always finite, since the defeasible TFS has a finite number of atomic
FS (Moshier, 1988) to be combined with the strict TFS.� It is well-formed as we will see in the next section.

The alternative proposition of Carpenter to do skeptical default unifica-
tion, where we get always a result as well though exactly one result is not
an adequate option to realize for instance discourse processing in (Grover et
al., 1994). Moreover possibly valuable default information that is consistent
with the strict information will be thrown away.
In the working out of the algorithm we will stick to Carpenter’s definition
and refer simply to default unification.

Chapter 3

A Prescription of Well-formed
Default Unification

The novelty in the algorithm firstly presented in (Alexandersson & Becker,
2003) is the approach, that most of the computation of the default unifica-
tion can be covered by taking into acount types only. The suggestion is to
break down the default unification process into a two stage operation. Re-
ferring to the most recent work (Alexandersson & Becker, 2007), we adopt
the conception of two operations described as the assimilation process and
the overlay process. Also we will meet the convention to use the terms cover
representing the strict information and background referring to the defeasible
information.

Assimilation is a preprocessing step that first computes the tar-
get types for the cover and background. After, the cover and
the background will be translated to their appropriate target
types.

Overlay performs type assignment by combining the informa-
tion from the two FSs returned by the assimilation.

The latter operation should not be confused with the Overlay engine in
(Alexandersson & Becker, 2007) representing the default unification opera-
tion together with the scoring function. In this work we will not refer to the
latter functionality.

23

3.1 The Assimilation Process 24

3.1 The Assimilation Process

The assimilation is the part of the algorithm that incorporates the main con-
tribution to the computation of the default unification. A great part in the
computation implies to operate on types, which at the same time motivates
having a type hierarchy as a backing component in the default unification.
The type preprocessing occupies the main part of the assimilation process.
However the assimilation does not consider exclusively lattice operations.
After having identified the appropriate target types for the cover and the
background we need adequate operations that take over the translation: we
call the operation performing the translation from the cover to the appropri-
ate target type specialization and analogously the translation concerning the
background generalization.

So given the type of the cover tco and the type of the background tbg the
assimilation process comprises three operative components:

Type Preprocessing are lattice operations required for identi-
fying t′bg ∈ Type with the property t′bg ⊑ tbg and t′bg ⊔t tco 6=
{⊥} and t′co ∈ Type where tco ⊑ t′co and t′bg ⊑ t′co.

Specialization of cover to the MGSat of t′co.

Generalization of background to t′bg.

On the basis of a type hierarchy we can calculate directly the desired type
that subsumes the background’s type and that is consistent with the type
of the cover. Since type preprocessing does not have to take into account
the internal structure1 of cover and background, the well-formedness issue
during this operation is not relevant. A separate and profound analysis of the
first component in the assimilation process, studying intricate eventualities
appearing in multiple inheritance hierarchies is discussed in the next section.

Given that both specialization and generalization transforms the internal
structure of a TFS, we explicitely examine as next in which manner the
well-formedness condition is affected during the translation. We put forward
that if the well-formedness condition is maintained in each step concerning
a single operation during the assimilation, then it is also the case that the
entire assimilation procedure respects well-formedness.

1We consider the internal structure of a TFS to be all substructures that are reachable
from the root node.

3.1 The Assimilation Process 25

3.1.1 Specialization

The underlying operation in the specialization is equal to the unification
in the definition 9. The unification has two functions. Firstly, to check if
the cover will satisfy the well-formedness of the target type and secondly,
to execute the translation to the target type. Given the hierarchy in figure
2.3, suppose we want to specialize the well-formed TFS t2[A : false] to the
type t3, we would get a type clash at the feature A. This means that if
unification fails, the well-formedness condition on TFS in the following oper-
ations is no longer valid. If this is the case then another target type for the
cover must be identified. This would imply the detection of another target
type for the background as well. So well-formedness during specialization is
maintained, since the translation to the target type happens first if unifica-
tion succeeds. During the whole default unification process we perform the
unification always between the cover and the MGSat of a target type. Under
these circumstances it is not necessary to apply the additional step in the
definition of the unification on the root level of the arguments.

As already mentioned, the explicit definition of the MGSat is missing in
(Alexandersson & Becker, 2007). We know that the appropriateness condi-
tion alone on TFSs induces many type hierarchies to be permissible. How-
ever the use of simple unification presupposes the condition to allow only
one concrete version of the type hierarchy. In particular the additional step
in the revised unification to unify also with the result’s MGSat is redundant
in type hierarchies where for all t, t′ ∈ Type, f ∈ Feat and t ⊑ t′ we have
Approp(f, t) = Approp(f, t′). Actually this constraint does not appear to be
useful to be imposed on TFSs. So in order to maintain the condition on
TFSs to satisfy their MGSat in type hierarchies entailed by the appropri-
ateness condition, it is inevitable to apply the revised unification procedure.
Hence it is not correct to factor out this consideration and to use the simple
unification as in (Alexandersson & Becker, 2007).

3.1 The Assimilation Process 26

3.1.2 Generalization

The definition of the generalization step is similar to the one in (Alexan-
dersson & Becker, 2007). The following definition slightly differs, since we
take also the MGSat of the target type into consideration. We assume ad-
ditionaly a function, given a node q Closure(q) that computes the subset of
nodes reachable from q including q. Given two types t, tg, where tg ⊑ t and
f ∈ Feat:

Definition 11 Generalization

Let F = 〈Q, q, θ, δ〉 with θ(q) = t and MGsat(tg) = 〈Qg, qg, θg, δg〉, then
G(F, tg) is the generalization of F to a type tg is a TFS 〈Q′, q′, θ′, δ′〉, where� q′ = q� Q′ = {q′} ∪ {Closure(qi)|δg(f, qg) =↓ and δ(f, q) = qi, qi ∈ Q}� θ′ = {θ(q) = ti|q ∈ Q′ − {q′}} ∪ {θ′(q′) = tg}� δ′ = {δ(fk, ql) = qm|ql ∈ Q′}

2

During the generalization it is assured, that the well-formedness condition
on TFSs is maintained. Due to subsumption ordering on types, the internal
structure of some TFS t′ is also appropriate to the MGSat of a type that
subsumes the type t′.

Proof : Given that the background bg is a well-formed TFS 〈Qbg, qbg, θbg, δbg〉,
the appropriate prototype MGsat(θ(qbg)) and the type definition of the target
type MGsat(t′bg) we know that:� t′bg ⊑ θ(qbg) and further MGsat(t′bg) ⊑ MGsat(θ(qbg))� Aducting the law of transitivity on subsumption ordering we can state

that MGsat(t′bg) ⊑ MGsat(θ(qbg)) ⊑ bg 2

3.2 Type Preprocessing 27

3.2 Type Preprocessing

In this section we will emphasize the role of the preprocessing on types in the
assimilation process during the computation of the default unification. The
general notion of the preprocessing is to look for a type more general than
the type of the background structure and a type more specific than the type
of the cover, where both types are in subsumption relation.

In the following we formulate specifications for types referred in the last
section to as target types. Let us assume, that tbg is the type of the back-
ground and tco is the type of the cover, then we have:

Definition 12 Abstract Background Type

The abstract background type t′bg of tbg is defined, if ⊔t(t
′

bg, tco) 6= ∅,
where t′bg ⊑ tbg. 2

In other words an abstract background type is the type of a candidate
among the supertypes of the original background structure, that has a mlb
with the type of the cover. Its definition refers to the target type of the
background. Analogously the abstract cover type represents the target type
of the cover:

Definition 13 Abstract Cover Type

The abstract cover type t′co of tco is defined, if T ′

co = ⊔t(t
′

bg, tco) 6= ∅
and t′co ∈ T ′

co. 2

Resuming the terms yet defined together, we introduce the notion of the
type configuration.

Definition 14 Type Configuration

A type configuration 〈t′bg, t
′

co〉 is a pair of type identifiers consisting of the
abstract background type and the abstract cover type . 2

Further we specify the resulting TFSs after the translation of the cover
structure to the abstract cover type and the translation of the background
structure respectively.

3.2 Type Preprocessing 28

Definition 15 Abstract Cover Structure

Let co be a TFS of the cover argument, then co′ = co ⊔ t′co =↓ is defined
as the abstract cover structure. 2

Definition 16 Abstract Background Structure

Let bg be a TFS of the background argument, then bg′ = G(bg, t′bg) is
defined as the abstract background structure. 2

3.2.1 Account for Multiple Results during Type Pre-
processing

What makes default unification in our account more complicated is the possi-
bility, that due to the multiple inheritance hierarchy more than one abstract
background type proves to be a candidate for a successful default unifica-
tion. In the following we will see the most perspicuous constellations in the
multiple inheritance hierarchies provoking the emergence of multiple results
when preprocessing on types. Since we are considering the bounded partial
orders (BPO)2 ignoring the completeness property, the presented scenarios
producing ambiguous results also imply the situations in BCPO hierarchies
generating multiple results.

In the first introduced case multiple results is caused by having two or
more type configurations, where the respective abstract background types
have no subsumption relation among each other. The image in the figure
3.1 represents a typical occurrence of type relations in multiple inheritance
hierarchies. Note that the example is not a BCPO, since ⊔t(t1, t2) is {tbg, t3}.
Given the abstract background type t1 and t2, we get the abstract cover types
⊔t(t1, tco) = {t3} and ⊔t(t2, tco) = {t3} 3. We obtain as type configurations
〈t1, t3〉 and 〈t2, t3〉. We assume that the specialization of the cover tco to t3 is
successful and yields co′t3 , then we would generalize the background to t1 and
also to t2 yielding in bg′

t1
and bg′

t2
respectively. At this point we can already

verify, that the default unification may differ in the outcome when referring

2The depicted example hierarchies represent only the relevant fragment of some bigger
structure containing a top and a bottom.

3Concerning the presented scenario, a similar source for multiple results would be the
case if the abstract cover types subsume each other. That case though certainly does not
imply the to have potentially two equal results at the end

3.2 Type Preprocessing 29

t1 t2 tco

tbg t3 t4

Figure 3.1: Multiple results due to two abstract background types that have
no subsumption relation. The grey cloud indicates an area within all possible
types except top and bottom may occur in a partial order, where the sub-
sumption relation between the types below and above the cloud still holds.

to 〈t1, t3〉 or to 〈t2, t3〉. After the generalization, the two distinct abstract
background structures contain different set of features that modify different
parts within the abstract cover structure. But this constellation in the hi-
erarchy may also result in equal TFSs. Such an outcome is unpredictable
neither during the type preprocessing nor on the level when combining the
abstract cover structure with the abstract background structure4.

If we want to capture all relevant type configurations we have to keep
track of every path leading from the background to its supertypes, even if
on some path an abstract background type has already been detected and
specialization of cover to the abstract cover type succeeds. It is not possible
to rule out that a more general abstract background type under the same
path may yield also a successful specialization that would lead to a different
relevant result during the default unification. Figure 3.2 displays that the two

4The composition of the abstract background structure and the abstract cover structure
is described by the overlay operation we specify later on.

3.2 Type Preprocessing 30

t1 t2 tco

tbg t3 t4

Figure 3.2: Multiple results due to two different abstract cover types, that
are not under subsumption relation.

type configurations have different abstract cover types that do not subsume
each other. We identify the valid type configurations 〈t2, t3〉 and 〈t2, t4〉,
since t2 is the only abstract background calculating abstract cover types
⊔t(t2, tco) = {t3, t4}. The sample hierarchy implicates also the case with
two type configurations containing two different abstract background types
subsuming each other. Consequently as far as the search concerns, it is not
feasible to stop querying the next supertype even if the currently visited type
turns out to be a valid abstract background type.

This particular behaviour we attribute to the allowance of the non-determinism
type hierarchies, see definition 2 on page 12. A crucial point that now arises
is that Carpenter’s definition presumes to not concur in this observation.
According to Carpenter we consider structures subsuming the background
with an maximal amount of information to be compatible with the cover.
It appears that there is a contradiction to our observation that an abstract
background type candidate detected on the path where some more specific
abstract background type has been found already, would not represent a po-
tential abstract background structure. We postpone this issue and come back
to it later on.

3.2 Type Preprocessing 31

t1 t2 tco

tbg t3 t4

Figure 3.3: The number of results corresponds to the cartesian product of
the number of ”different” abstract backgrounds and abstract covers.

The image in figure 3.3 comprises the latter situation together with the
displayed scenario in the figure 3.1. We get now two different abstract back-
ground types and two different abstract cover types where each are pairs
that do not subsume each other. In this case we have four valid type config-
urations for the overlay process, that are 〈t1, t3〉, 〈t1, t4〉, 〈t2, t3〉 and 〈t2, t4〉.
Generally, the maximal number of possible results due to the preprocessing
is calculated by the following proposition:

Proposition 2

The number of multiple type configurations is equal to the cartesian prod-
uct between the set of abstract background types Tbg and the set of abstract
cover types Tco, if the following conditions hold:� ∀t, t′ ∈ Tbg it is the case that t 6⊑ t′ and t 6= t′.� ∀t, t′ ∈ Tco it is the case that t 6⊑ t′ and t 6= t′.� ∀t ∈ Tbg and ∀t′ ∈ Tco it is the case that t ⊑ t′.

3.2 Type Preprocessing 32

3.2.2 Termination of the Search for valid Type Con-

figurations

The detection of valid type configurations is driven by the identification of
abstract background types. An important issue that has not been specified
yet is the break condition, i. e., when the search of the abstract background
types terminates.

⊓t(tbg, tco)

tbg tco

⊥

Figure 3.4: The break condition during the search for abstract background
types in BCPO hierarchy holds if the supertype of the background type is
not subsumed by the least upper bound between the background type and
the cover type. In this case the type of the cover is at the same time the
abstract cover type.

In the given analysis and algorithm in (Alexandersson & Becker, 2007)
the search for abstract background types is narrowed down to the candidates
that are situated exclusively on the path between the type of background
and the lub of cover and background. During the type preprocessing we
would impose a constraint on the background supertypes to be subsumable
by the lub type. The exploration of the abstract background types would

3.2 Type Preprocessing 33

stop for those paths when the next abstract background type in question is
not anymore subsumed by the type of lub. The lub node represents the most
specific TFS with the internal structure, i. e., the intersection of features that
occurs in the background as well as in the cover. Hence if it is the case, that
the search for some potential abstract background type arrives at the lub
type, the ”default” resulting structure of a default unification is the cover
argument itself. It is evident when taking a look at figure 3.4 that the type
of the abstract cover type is equal to the type of the cover.

t0

t1 t2

tbg tco

t0

t1 t2

tco

tbg t3

Figure 3.5: On the left the abstract background type t1 is subsumed by the
mub, t1 ∈ ⊓t(tco, tbg), while on the right it is not subsumed by a mub of cover
type and background type.

In the next step we want to clarify if this break condition is still valid in
multiple inheritance hierarchies performing the non-determinism aspect. In-
stead of a constraint on abstract background types to be a subtype of the lub
type, we apply a constraint on abstract background types to be subsumed by
the type of mub. On the left side of figure 3.5, we have as mub between the
types of cover and background t1 and t2, that are at the same time also two
valid abstract background types. The adoption of the constraint imposed on
abstract background types to be subsumable, correctly identifies 〈t1, tco〉 and

3.2 Type Preprocessing 34

〈t2, tco〉 as type configurations in the given situation. Though if we replaced
the node of the cover’s type definition by some other type definition and
shifting the former one level higher in the hierarchy, we would modify the
mub between cover and background while keeping the subsumption relations
concerning the other types. The right side of the image demonstrates that
the mub between the types of cover and background is t2 and further t2 is
a valid abstract background type. However it is justified to state that in
addition to t2 also the type t1 is still an abstract background type, hence a
source for an additional result during the default unification. A modification
of the constraint by shifting the layers of supertypes to be explored higher
than in the version of (Alexandersson & Becker, 2007) would detect the type
t1 as an abstract background type. A suitable option for the search termi-
nation is to stop the expansion to the next supertypes for those paths, when
the currently visited type subsumes the mub type. Applying the modified
constraint to the scenario on the right side, we would correctly capture the
type configurations 〈t2, tco〉 and 〈t1, t3〉.

The just formulated constraint would still limit the search space to some
extent and cope with the last described scenario provoked by the non-determinism
in the type hierarchy to deliver all possibly results during the default unifi-
cation. In the following we revise the definition of the abstract background
by taking into account the last insight into a feasible constraint imposed on
abstract backgrounds.

Definition 17 Abstract Background Type Revised

An abstract background type is the type of a candidate among the super-
types of the original background, that has a mlb with the type of the cover
structure, and does not subsume the mub between type of cover and type of
background. 2

Now the question arises, if even a scenario exists, where the last stated
constraint does not hold anymore? The concrete example displayed in fig-
ure 3.6, suggests that the type configuration with t0 as abstract background
and t7 as abstract cover type is plausible in addition to 〈t4, t6〉. After all, t7
contains the information in the cover structure and valid information com-
municated by the background structure added to the properties inherited

3.2 Type Preprocessing 35

t0

t1 t2 t3

t4 tco

tbg t6 t7

Figure 3.6: Is t1 a valid abstract background type, though it subsumes the
mub t3 between tco and tbg ?

by t2. Here again allowing t0 to be an abstract background type, we aban-
don a partition of Carpenter’s definition of credulous default unification. The
background’s supertype t0 that is supposed to be a valid abstract background
type subsumes the already identified abstract background type t4. In general
accepting abstract background types subsuming the mub, here t3, infers to
accept also abstract background types subsuming other candidates. Those
are the detected abstract background types subsumed by the type of mub
and especially the type of mub itself. At this point it is questionable to allow
abstract background types subsuming the type of cover that are not at the
same the mub between cover and background. We assume that mub of the
cover and background is a valid abstract background type. Given by the
definition that the mub subsumes the cover type we have always the con-
stellation that the cover type is equal to the abstract cover type, since the
mlb between the mub (abstract background type) and the cover type is again
the cover type. This is analogous for all background’s supertypes subsuming
the mub like t0 in figure 3.6. Consequently t7 is not an option for being an

3.2 Type Preprocessing 36

abstract cover type, since the mlb of the questionable abstract background
type t0 and tco is only tco. Given that t7 is excluded from being an abstract
cover type we are able to exclude t0 from being an abstract background type
as well. Hence the revised notion of the abstract background type still holds.

3.2.3 Reformulation of Carpenter’s Definition for BPO
Hierarchies

Now we want to clarify the issue if we are still able to stick to Carpenter’s
definition, although our analysis reveals that valid abstract background types
do not need to be the most specific ones in the subsumption ordering. Our
claim is that allowing more general abstract background type to be a source
of multiple results does not necessarily conflict with Carpenter’s core notion
of credulous default unification.

Carpenter suggests to consider all possible subsets of the shared structures
in background and cover to be the most specific structures in the subsump-
tion ordering that hold the condition to unify with the cover. From this it
follows that the unifications of the cover and the most specific generalized
backgrounds are most specific as well. We actually can circumscribe the de-
fault unification of two TFS to be FSs subsumed by valid type definitions,
i. e., the MGSat of the abstract cover type, that are closest in the hierarchy
to the structure of the ”non-existing” unifier. Hence those are in particu-
lar well-formed TFSs that are most specific and subsume the ”non-existing”
unifier. We keep on mind that Carpenter’s definition of default unification
suffices for taking into account all relevant results that arise in a hierarchy
following the BCPO condition while in a hierarchy that is only a bounded
partial order, the definition would ignore possible results.

We reformulate Carpenter’s fundamental credulous default unification as
follows:

Definition 18 Credulous Default Unification Revised

F
<
⊔c G = {F ⊔ G′ | G′ ⊑ G such that F ⊔ G′ is defined and maximal}

2

3.2 Type Preprocessing 37

The definition says that the result of credulous default unification be-
tween the cover F and the background G are represented by unifications
between F and G′, where G′ subsumes the background G, that are defined
and most specific.

In the analysis of the constellations in the BPO hierarchies up to this point
we have identified an upper limit of the search space for abstract background
types generating a valid result during default unification. Though it is not
clarified if all results contributed by those abstract background types also
produce most specific results.

t0

t1 t2 tco

t6 t3 t4

tbg t7 t5

Figure 3.7: This sample hierarchy features type configurations that produce
also results during default unification that are not most specific. The observa-
tion reveals that the members of the type configurations 〈t0, tco〉, 〈t2, t3〉 and
〈t6, t7〉 are related in parallel by the subsumption ordering. We argue that
given the latter type configuration, the two other options are not relevant
anymore.

On the basis of the sample hierarchy in the figure 3.7 we seek to give a
specification of type configurations, that are relevant for further processing
to identify a most specific result during default unification. Our fundamental
account to sources of multiple results during default unification enables to

3.2 Type Preprocessing 38

identify the appropriate type configurations linked to the scenario with two
or more abstract background types not under subsumption relation and the
constellation with two or more abstract cover types not under subsumption
relation. We assume that all type configurations available from the hierarchy
subsequently produce results, i. e., specialization does not fail.

Given the hierarchy in figure 3.7 we identify the following type configu-
rations:

1.)
〈t1, t4〉
〈t2, t5〉

}

: where t1 6⊑ t2, t1 6⊒ t2

2.)
〈t2, t5〉
〈t2, t3〉

}

: where t5 6⊑ t3, t5 6⊒ t3

3.) 〈t6, t7〉

4.) 〈t0, tco〉

We have altogether five distinct type configurations, where three of them
included in point 1 and 2 are evoked by the scenarios featuring the non-
determinism. The type configurations under point 3 and 4 are due to ordi-
nary multiple inheritance and have no involvement to non-determinism. If
we compare 〈t0, tco〉 and 〈t2, t3〉 we can discover that t0 ⊑ t2 and tco ⊑ t3.
It is evident that the abstract cover structure and the abstract background
structure translated by 〈t0, tco〉 subsume respectively the abstract cover struc-
ture and the abstract background structure generated by 〈t2, t3〉. Hence the
type configuration 〈t0, tco〉 during default unification results in a TFS that
subsumes the result contributed by 〈t2, t3〉. Since 〈t0, tco〉 does not yield a
most specific result during the default unification, we want the algorithm to
exclude such TFSs. Analogously 〈t2, t3〉 is related to 〈t6, t7〉, so we do not
want the type configuration 〈t2, t3〉 as well to be included for further aspects
in the processing.

In order to exclude results that are not most specific, we need to specify
a subsumption ordering on type configurations.

3.3 The Algorithm 39

Proposition 3

Given two type configurations with tconf = 〈tconf 1
, tconf 2

〉 and t ′conf =
〈t′conf 1

, t′conf 2
〉, then we say that tconf is more specific than t ′conf , if t ′conf 1

⊑ tconf 1

and t ′conf 2
⊑ tconf 2

. We adequately write t ′conf ⊑ tconf to express the subsump-
tion ordering on type configurations.

Additionally we propose a mapping from tuples consisting of translated
TFS, i. e., the abstract background structure and the abstract cover struc-
ture, to the ordinary type configuration for the purpose to ease the specifica-
tion of redundant type configurations in the algorithm of well-formed default
unification.

Proposition 4

Given a tuple Tconf = 〈bg′, co′〉 with bg ′ = 〈Qbg′, qbg′ , θbg′, δbg′〉 and co ′ =
〈Qco′, qco′, θco′, δco′〉, we assume ζ(Tconf) = 〈t′bg, t

′

co〉 where θ(qbg′) = t′bg, θ(qco′) =
t′co.

Now we are able on the level of type preprocessing to make statements
over the background’s supertypes that do not subsume the mub of cover and
background, if they yield to most specific results in the default unification.
Though as mentioned already given the scenario in figure 3.1, where we have
the same abstract cover type in two distinct type configurations type, we
have still to consider the possibility to obtain equal results.

3.3 The Algorithm

In this section we point out the algorithm of the default unification. First
we put the introduced processings concerning the precomputational issues
into appropriate sequential steps in order to give a complete formalization of
the assimilation process. The course of action of the assimilation algorithm
slightly differs from (Alexandersson & Becker, 2007). Firstly generalization
is not executed until specialization does not fail. Consequently there is at
most one generalization involved per default unification procedure. Further
we do not unify iteratively with all type definitions on the way towards the
target type. Given the target types, we consider it to be more sound to try
to unify first with the prototype structure of the target type, whose unifier
would be in principle also the optimal and desired solution. If unification

3.3 The Algorithm 40

fails at this point then the next appropriate target type of the background
would give us the next target type for the cover. This approach would rather
start at the expected result and then gradually move away from the more
specific to the more general target type of the cover. A dual approach to the
assimilation is to reverse the type preprocessing. Instead of qualifying the
abstract cover type by the detected abstract background type we could do it
also the other way around, that is, checking the subtypes of the cover type
if they have a mub with the type of the background. The further processing
is then analogue to the algorithm presented in the following.

Algorithm 1 Assimilation

Let co and bg be two TFS(covering and background) such that co =
〈Qco, qco, θco, δco〉 and bg = 〈Qbg, qbg, θbg, δbg〉. Further we have tbg := θbg(q̄bg)
and tco := θco(q̄co). The assimilation of co and bg, A(bg, co) = Ω, where Ω is
a set of pairs of bg′ and co′ such that:

CONTROL FLOW COMMENTS

(1) if
tbg ⊑ tco

then

bg′ = bg, co′ = co algorithm terminates,

〈bg′, co′〉 ∈ Ω
assimilation results
into a singleton

(2) if
tco ⊑ tbg

if

⊔(co,MGsat(tbg)) 6= ∅
specialization has a
valid result

then

CO ′ = ⊔(co,MGsat(tbg)),
bg′ = bg

{bg ′} × CO ′ ⊆ Ω

algorithm terminates
and results into the
cartesian product of
the bg singleton and
the result of the
specialization

else

go to (3.1) with T (tbg), tmub = tco
unification has failed
during specialization

3.3 The Algorithm 41

(3) else

Tmubs := ⊓t(tbg, tco)
find minimal upper
bounds of tco and tbg

for each tmub ∈ tmubs

go to (3.1) with T (tbg)

(3.1) T (t) := {t′bg|t
′

bg ⊑ t with t′bg find appropriate
is maximal and ⊔t(t

′

bg , tco) 6= ∅} supertypes of tbg

for each tbg′ ∈ T (tbg)

go to (3.2)

(3.2) if
t′bg ⊑ tmub break condition

then

HALT
expansion of node
stopped at t′bg

else
for each tmlb ∈ ⊔t(t

′

bg, tco)

go to (3.3)

(3.3) if

〈t′bg , tmlb〉 6⊑ t′conf ,∀ t′conf
block tbg′ if result would
not be most speficic

where t′conf = ζ(T ′

conf), T
′

conf ∈ Ω

then
go to (3.4)

else
go to (3.1) with T (t′bg)

(3.4.) if

⊔(co,MGsat(tmlb)) 6= ∅
specialization has a
valid result

then

3.3 The Algorithm 42

CO ′ = ⊔(co,MGsat(tmlb))
bg′ = G(bg, t′bg)

{bg ′} × CO ′ ⊆ Ω

go to (3.1) with T (t′bg)

algorithm continues
to scan bg’s supertypes -
the intermediate result,
the cartesian product of
the bg singleton and the
result of the specializa-
tion represents a subset
of the final result

else

go to (3.1) with T (t′bg)
unification has failed
during specialization

(1.) represents the trivial case concerning the type preprocessing. In the
case of the scenario that the background type subsumes the cover type, the
type configuration is given without computing new target types. In particu-
lar it is not required to navigate through the hierarchy, since both cover and
background have the target types already represented by their own types.
It follows that the assimilation for those kind of argument will not produce
multiple results during the default unification.

Whereas in (2.), if specialization is possible then the result of assimilation
corresponds to the cartesian product of the type feature structures resulting
from unification between cover and background. Up to this point we have
in principle an equivalence between the effect of the default unification pro-
cess and the unification process between cover and background. However if
specialization to the cover’s target type fail, we have to shift the target type
for the background towards the mub between tbg and tco , that is eventually
handled by the last and main case of the algorithm.

(3.) says that there is no subsumption relation between cover and back-
ground, hence it requires to search after appropriate background supertypes.
During the allocation of possible abstract background types represented by
the function T : Type → P(Type), we assume that T returns all next su-
pertypes that have a mlb with the type of the cover that is not equal to the
empty set. The tracking of a path is pursued as long as the visited nodes
are not subsumed by the mub, otherwise the generation of potential abstract
background types is stopped.

3.3 The Algorithm 43

The production of only most specific results is given by comparing the
abstract background types t′bg and the associated abstract cover types tmlb

to the already used type configurations that are recorded along the assimi-
lation process. Therefore we scan Ω containing the results up to that point
processing and tranform the tuple of translated structures to the represen-
tation of type configuration with the function given in the proposition 4.
Consequently, if the current type configuration is not rejected, that is it does
not subsume any of the already employed type configurations, we do the
translations to the appropriate target types. We take as intermediate result
referring to some abstract background type as the cartesian product of the
specialization’s outcome, a set of abstract cover structures, and the result of
the generalization that has always a unique result. At the end Ω represents a
collection of tuples containing an abstract background structure and an ab-
stract cover structure, that are most specific in the analog sense we specified
subsumption ordering on type configurations.

3.3.1 Algorithm of the Default Unification

Before defining the default unification procedure including the overlay func-
tionality, we need a function given a type feature structure TFS, that points
from some appropriate feature of TFS to the internal structure, again a TFS.

Definition 19 Feature Value

Let F = 〈Q, q, θ, δ〉 be a well-formed TFS and f ∈ Feat, such that f is
defined for δ(q). Then the Feature Value of F with respect to f , F(F, f) is
a TFS F ′ = 〈Q′, q′, θ′, δ′〉, where� q′ = δ(f, q)� Q′ = Closure(q′)� θ′ = {θ(qi) = ti|qi ∈ Q′}� δ′ = {δ(fk, ql) = qm|ql ∈ Q′}

2

3.3 The Algorithm 44

Finally we give the specification of the default unification procedure made
up of the specified assimilation algorithm and the now introduced overlay
operation, that determines how the pairs of abstract background structures
and abstract cover structures are to be combined.

Algorithm 2 Default Unification

Let co and bg be two TFSs. The default unification defaultunify(bg, co)
is determined by the following:

Let A(bg, co) = Ω then for each 〈bg′, co′〉 ∈ Ω and

bg′ := 〈Qbg′, qbg′ , θbg′, δbg′〉
co′ := 〈Qco′, qco′, θco′, δco′〉

do overlay(bg′, co′) = 〈Qo, qo, θo, δo〉, where� qo := qco′� θo(qo) := θco′(qco′) ∪ θbg′(qbg′)� δo(f, qo) := f ∈ Feat :

(1.1) δco′(f, qco′) if f 6∈ Appfeat(bg′) and f ∈ Appfeat(co′),

(1.2) defaultunify(F(bg ′, f),F(co ′, f)) if f ∈ Appfeat(bg′)
and f ∈ Appfeat(co′)

After assimilation the combining rule of overlay basically looks for shared
features in the abstract cover structure and in the abstract background struc-
ture, where default unification applies on the arguments given by the defini-
tion 19. The recursion in the specification causes that the default unification
algorithm gets executed successively each time a stage deeper in the interme-
diate structures of the arguments. In particular substructures of cover and
background are modified after each call of the default unifier, i. e., each time
overlay combines the previously assimilated parts stemming from background
and cover respectively and determines the resulting types of the structures on
the current level. Thus instead of attaching single values to the shared fea-
tures we have to assign a set of TFSs due to possible multiple results resulting
from the overlay of more than one pair of assimilated backgrounds and covers.
In this theoretical analysis we suppress a representational formalization con-
cerning this issue. However the subsequent chapter that describes the imple-
mentation based on this algorithm will explicitely propose a solution to treat

3.3 The Algorithm 45

more complex TFS that allows a transition function δ : Feat × Q → P (Q)
with features pointing to a set of TFSs.

Finally, as for the case that we have a feature only in the cover we just
need to absorb the feature value pair to the result. In addition we never have
the constellation with the assimilated background consisting features that are
not in cover, because a valid type configuration by definition entails that the
abstract background type subsumes the abstract cover type. It follows that
at least all features in the abstract background type are also in the abstract
cover type.

3.3 The Algorithm 46

Chapter 4

Prerequisites—Practice

This chapter introduces the underlying system for the implementation of the
default unifier consisting of the type description language—T DL by Ulrich
Krieger and Ulrich Schäfer (Krieger, 1995) and the flop preprocessor by Ulrich
Callmeier (Callmeier, 2001). Further we go into modifications concerning the
requirements the default unification sets to the two components.

T DL flop Binary Grammar

ShUG

T DLAPI

.tdl .grm

.grm

Java Object

Figure 4.1: With T DL as starting point the system passes the type hierarchy
in an intermediate format generated by the flop preprocessor to a wrapper
class called ShUG (“Shallow Unification Grammars”, see 4.2.2) that stores
the type hierarchy in a java object.

47

4.1 Type Description Language—T DL 48

4.1 Type Description Language—T DL

The main contribution of T DL to the thesis is that T DL provides the im-
plementation of a type system. T DL is a unification based grammar devel-
opment environment and realizing a grammar formalism for TFSs (Krieger,
1995) supporting HPSG and also other feature-based grammars. Within the
DISCO project at the DFKI a HPSG grammar for the German-language was
developed. Together with UDINE , an untyped unification engine allowing
the use of other logical connectives, they build the main modules in DISCO.
Besides providing the environment for developing grammars, the main task
of T DL in DISCO is taking over the unification of two TFSs, deciding by
referring to the information provided by the type hierarchy, whether they are
by type definition compatible or not.

The Expressivity of T DL sticks with the set-theoretical semantics worked
out in (Smolka, 1988). In particular T DL represents a subset of first order
logic. As for TFSs specified in 2, T DL is an adequate and sufficiently power-
ful tool for the purpose of our TFS language. A type definition s :=< t, φ >
in T DL is a compact representation of a complex expression, where t is a
type constraint concerning super- and subtype relationships and the feature
constraints (attribute-value pairs) φ states the necessary features and their
values that are in our case again type definitions.

Formally

s :=< t, φ >, φ := [ATTR1 q, ATTR2 p]

corresponds to the following first order formula, where attributes/features
are interpreted as binary relations and types as unary predicates,

∀.s(x)→ t(x) ∧ ATTR1(x, q) ∧ATTR2(x, p)

and below we have the adequate type definition realized in the T DL format.

s := t & [ATTR1 q , ATTR2 p]

4.1 Type Description Language—T DL 49

4.1.1 The Structure of T DL Grammars

The definition of TFS in 6 does not exhaust the full power of T DL. Type
definitions in T DL allows also to define other constructs like instances or
templates. Since the main focus we have here is on type definitions, we will
not go into the whole syntax of the T DL grammar. For more details of the
full language in T DL one might find answers in the T DL reference manual
(Krieger, 1994b).

The relevant BNF forms formulating type definitions in T DL is given in
the following specification of the input syntax in BNF form, adapted from
the definitions in the T DL reference manual concerning type definition.� type-def → type avm-def ’.’� type → IDENTIFIER� avm-def → ’:=’ conjunction� conjunction → term | term ’&’ conjunction� term → type | feature-term� feature-term → [’[’attr-val-list’]’]� attr-val-list → attr-val [’,’ attr-val-list]� attr-val → attr-list conjunction� attr-list → attribute [’.’ attr-list]� attribute → IDENTIFIER

A very convenient property in the specification is defining a type by the
direct supertype relationships the type performs. Besides stating type sub-
sumption relation, there is an effect to save writing each time the feature
constraints that are already defined among the supertypes. If we want to
narrow down inherited feature constraints, we have to overwrite the corre-
sponding feature constraints while respecting the subsumption ordering in
the hierarchy.

4.1 Type Description Language—T DL 50

Below is a sample of type definitions viz type hierarchy in T DL format,
that is also part of the built type hierarchy for testing the default unification
operation. It is easy to recognize that all types inherit from one single type
top and the types t32 and t34 respectively inherit from 2 different supertypes,
thus realizing multiple inheritance. The corresponding directed acyclic graph
to this type hierarchy is displayed in the appendix by the figure B.2.

:begin :type.

t26 := *top* & [FT26 *top*].

t27 := t26 & [FT27 t1].

t28 := t27 & [FT26 t1].

t29 := t27 & [FT26 t1, FT27 t5].

t30 := t27 & [FT26 t7, FT27 t2].

t31 := t28 & [FT28 bool].

t32 := t28 & t29 & [FT26 t9, FT27 t8].

t33 := t29 & [FT26 t11, FT27 t9].

t34 := t30 & t32 & [FT26 t12, FT27 t8].

:end :type.

Figure 4.2: A sample of type definitions in T DL

4.1.2 Open World vs. Closed World

T DL provides a tool to write grammar in interactive mode. Unlike LOGIN
(Äıt-Kaci & Nasr, 1986), ALE (Carpenter & Penn, 1998) or LIFE (Äıt-

4.1 Type Description Language—T DL 51

Kaci, 1993), T DL does not enforce the grammar writer to specify the type
subsumption a priori. T DL allows the grammar writer to choose between
a type hierarchy with an open world or with a closed world concept. T DL
applies sort types to represent the close world semantics. They correspond to
the partial order we have on types. The so-called avm types in T DL would
correspond to type definitions. We see in the figure 4.3 the different behaviour
of avm types in the closed world and open world assumption respectively.

open world
assumption

⊤

a b

c

⊤

a b

a∧b

closed world
assumption

⊤

a b

c

⊤

a b

⊥

Figure 4.3: The open world case to the left incorporates T DL to integrate a
newly generated type definition into the type hierarchy if we have no explicit
join of the avm types a and b. The same case would produce the bottom

type as output when accepting the closed world assumption.The grey area
represents the domain of the type definitions in our type hierarchy.

In the glb computation, T DL differs between the external glb that deals
with avm types and the internal glb concerned with type subsumption rela-
tion on sort types. Both approaches work with the type encoding method
presented in (Äıt-Kaci, Boyer, Lincoln, & Nasr, 1989), that enables the exe-
cution of lattice computation in O(n). The bit-encoding method of the types
will be discussed in detail later on.

4.2 The flop Preprocessor 52

One crucial point that arises here is the fact that T DL offers the possi-
bility to modify the type hierarchy afterwards by redefinition of types or the
extension of the type hierarchy when creating new type definitions during
unification, reflecting the option having a type hierarchy with an open world
nature. Whereas the latter choice represents a reasonable device of the in-
cremental grammar development, concerning the needs of a type hierarchy
as being a “playground” in order to test the default unification operation,
we accept the closed world assumption in the type hierarchy. Given the type
definitions, the type hierarchy as such is initiated once at the beginning and
will be not modified in the course of action. The initialization of the type
hierarchy is carried out by reading the T DL grammar in the preprocessor
flop.

4.2 The flop Preprocessor

The flop preprocessor generates an binary intermediate form of the T DL
grammar form. The binary file is then read in by ShUG at runtime. It con-
tains the information conveyed by the grammar sources , i. e., type hierarchy,
type constraints. A point to mention here is that also flop is not designed to
accept the full language of T DL. The flop preprocessor defines a conjunctive
subset of T DL that omits various forms of disjunctions and negations.

The preprocessor was implemented within Callmeier’s master thesis as a
part of a system that is called PET, see the figure 4.4. The aim in his work
was to set up a modular environment for experimenting with different and
the most influential approaches concerning algorithms for graph unification.
The set of building blocks includes objects like chart, agenda, grammar, type

hierarchy and type feature structure. Using alternative implementations of
one object allows to have controlled experiments when comparing different
approaches. While the evaluation refers to one aspect of processing, PET
alters between the different unification algorithms.

4.2.1 The Functions of flop

The flop preprocessor covers an important range of tasks. The motivation
of flop is having a conversion of the grammar source into a representation

4.2 The flop Preprocessor 53

Figure 4.4: PET—System Overview and Experimental Setup

suitable for efficient processing. The features of flop are the following:

Type Expansions In the T DL grammar we allow the use of symbol names
to represent types referring to complex constraints (type definitions).
The configurable expansion technique taken from (Krieger & Schäfer,
) reconstructs the idiosyncratic constraints of a type and also the con-
straints inherited from the supertypes.

Unfilling of type definitions After expansion, structures and substruc-
tures in type definitions that fulfil the condition of its maximal ap-
propriate type are removed except for the root level ((Götz, 1993),
(Gerdemann, 1995b)).

Inferring appropriateness conditions In the grammar, some feature f
is introduced exactly once at some type definition. In the following,
subtypes of that type definition inherit the feature f . The reuse of
the same feature name in some other type definition will cause the
generation of the binary output to fail. Moreover flop checks also, if the
monotonocity condition at the feature values is respected. If we do not
consider the subsumption ordering on the feature values, flop will send
out an adequate warning. That finally means, that flop presupposes

4.2 The flop Preprocessor 54

the grammar to meet the appropriateness condition. Therefore it is
the task of the grammar writer to meet the appropriateness condition
in the built up type hierarchy.

Decomposition of the type hierarchy for FS encoding purposes. A set
of feature configurations that each is assigned by unique identifier is
defined to ease the unification processing. At runtime, a mapping from
types to feature configurations allows an efficient check if two types have
the same feature configuration. Given the feature configurations, for
two types with different feature configuration we have an additional
mapping from feature to the feature position and its inverse. That
facilitates the unification process by iterating over the positions in one
single TFS.

Constructing lower semi-lattice The mechanisms in PET requires that
the type hierarchy is a BCPO, but it does not assume that the con-
dition is considered by the grammar writer. During the semi-lattice
computation flop possibly modifies the type hierarchy to accomplish
the BCPO condition. The type hierarchy as it is specified by the gram-
mar writer is represented in flop as a directed graph and is computed
to an encoded image using the bit-coding technique in (Äıt-Kaci et al.,
1989).

For the efficiency purpose, it is reasonable to save recurring tasks such
as syntax checking, uncovering consistency and the expansion of constraints.
As well for this work, since there is no need for a dynamic type hierarchy it
is convenient to factor out those tasks. Some of the features in flop during
the construction of the type hierarchy are adopted in the implementation
of the default unifier. The technique to normalize feature constraints used
during unification is related to the type expansion and the unfilling issue.
The partial expansion of TFSs allows to save unification processes beyond
the root level of two argument structures, if both fulfil the requirements of
the prototype. Therefore the resulting TFS still remains unexpanded and
unfilled for those internal structures equal to the most general satisfiers re-
spectively. Further a modified approach of the iteration over features of a
feature configuration is also realized in the implementation of the unification
processes. Considering the last point among the functionalities of flop we
will go more in detail in the next section.

4.2 The flop Preprocessor 55

4.2.2 ShUG

The output of flop consists of several sections in fixed order. Some of them,
like rules section containing grammar rules or also the lexicon section contain-
ing the full form lexicon are not relevant for the default unification operation
and so are left out in the discussion. In this context the important sections
are the toc, symbol table, hierarchy, constraints and the supertypes sections.
The section toc stores information of other section’s offsets, indicating the lo-
cation of stored informations from the grammar file. The wrapper class ShUG
reads in the desired sections and by configuring the tocReader method it is
easy to determine which sections to be visited or not. Further, it was manda-
tory for the following computation to extend ShUG by a method that reads
in the direct subsumption relation among types. We have those information
in the supertypes section of the binary file and the final supertype calculation
is a simple look-up of the map between types and their supertypes. From
there we can also easily infer a mapping from types to subtypes. The symbol

table section delivers information about the mapping between an internal
type identifier, an int and its symbol name in the grammar source, a string.
The most essential section parts are the hierarchy—and the constraints sec-
tion. Former section occupies the type encoding for efficient glb processing
and the latter section instantiates the TFSs in their unexpanded form. The
output file format is specified more in detail in A.1. The illustration of the
methods in ShUG to translate the binary output in objects of Java is given
in A.2.

4.3 Implementing the Lattice Operations 56

4.3 Implementing the Lattice Operations

The structure and the information adhered to the image of the type hierarchy
returned by the flop preprocessor are for a few reasons not appropriate for
our scope. In this subsection, we will give a sketch of the encoding technique
employed by flop and its impact on the lattice operations we need to com-
pute and address the issues that are to be modified in terms of an efficient
implementation of the default unifier. The type hierarchy produced by flop

makes a distinction between three different sort of types, i. e., proper types,
leaf types and synthetic types.

4.3.1 Proper Types

Our main interest lies on proper types that are located in areas of the type
hierarchy featuring multiple inheritance property. A crucial difference con-
cerning the implementational aspect between leaf types and proper types
is that leaf types have the property not to be assigned to a bit-code while
proper types features an encoded image. The applied encoding method is
the transitive closure taken from (Äıt-Kaci et al., 1989). Let x1, x2, ..., xn be
elements of the hierarchy, in this case we consider proper types, then a tran-
sitive closure matrix is a two-dimensional array of 0’s and 1’s whose (i, j)th
element is 1 if and only if xi is an ancestor of xj . Hence for a proper type
t1 each bit-position is uniquely assigned to a proper type ti in the hierarchy
and embodies further the information if t1 subsumes ti.

4.3.2 Synthetic Types

Equally to the proper types, synthetic types have also bit-code map. Syn-
thetic types are introduced by flop to maintain the BCPO condition that is
imposed on the type hierarchy. A synthetic type is added if two different
types have more than one unifier and they are not equal. That corresponds
to the non-determinism issue and further the definitions for maximal lower
bound and minimal upper bound in 2.

The BCPO condition requires for each pair of types to have by defini-
tion a unique greatest lower bound and a unique least upper bound. In the
scenario of figure 4.5 the bit-AND operation between γ(d) and γ(f) does ex-
actly yield the code of the synthetic type that will be added to the hierarchy.1

1γ(t) is a function that maps a type identifier to its bit-encoding representation

4.3 Implementing the Lattice Operations 57

⊤

a b

γ(a) ∧ γ(b)

c d

⊥

Figure 4.5: The emergence of synthetic types

The BCPO construction algorithm in flop takes as input the type hier-
archy as specified by the grammar writer and the output is a graph repre-
sentation of the embedding BCPO. The procedure is carried out in 3 main
steps:

1. Calculate the γ(t) for each type t, based on the AssignCode function
from Ait-Kaci et al. (Äıt-Kaci et al., 1989).

2. For each (ordered) pair of types (t1, t2), the outcome of the bit-wise and

between t1 and t2 must have some correspondency with some existing
code in the type hierarchy. If not a new type, a synthetic type is added.
The check is to be repeated until no more new types have to be inserted.

3. The last step consists of the reordering of the subsumption relationships
including the new synthetic types. For that purpose, it suffices to
modify the subsumption relations of the parent nodes and the child
nodes of the synthetic types.

4.3 Implementing the Lattice Operations 58

4.3.3 Leaf Types

Callmeier’s thesis defines leaf types as types that have no descendants and
only a single immediate ancestor. However, the outcome of the different type
hierarchies fed in flop reveals that also types with descendants are assigned to
be leaf types. Actually flop referres leaf types to types with the property to
have exactly one single ancestor and for all its subtypes the condition holds,
that they have at most one supertype. To put it in another way, if a type is
a leaf type then its substructure must be a tree and the parent node is the
root node of the substructure. Omitting leaf types from encoding during the
preprocessing of flop has a justification based on the motivation of the task
to offer a unification based grammar development environment, where the
needed lattice operation considers solely the glb calculation. In order to ac-
quire gain in terms of efficiency, flop identifies leaf types given their property
not to be necessarily encoded for efficient glb processing. Callmeier compares
the processing time—provoked by the most time consuming task during pre-
processing, the semi-lattice computation—between three different grammar
frameworks realized in T DL a Japanese grammar, a German grammar and
the LinGO grammar. As he stated, the significant difference in preprocessing
time of the German grammar is attributed to the larger number of non-leaf
types. Besides, the used encoding technique employs one bit per type in the
hierarchy, when considering large-scale grammars we have a noteable saving
in the storage of the hierarchie’s encoded image.

In order to have the appropriate implementation of lattice operations
introduced in the previous chapter, we have first to annul the embedding
of the type hierarchy into the least structure following the BCPO condition
that contains it. In particular we have to exploit the information delivered by
the synthetic types and enable the lattice computations to generate multiple
results. Synthetic types as such cannot make part of any lattice operations
outcome. The mlb processing considers the calculation between two proper
types, two leaf types and between proper types and leaf types. As for the
calculation of mub we compute an additional encoding for all types.

4.3.4 mlb Calculation between Proper Types

As commented in the appendix A.2, the bit-code part in the flop output is
represented as Integers determined in length by ending zeros. For the pur-

4.3 Implementing the Lattice Operations 59

pose of the glb processing ShUG stores the bit-codes of each proper type
as arrays of ints, where the ints with a higher position in the array are ap-
pended at the beginning of the code (little-endian order). The length of
the array is therefore determined by the quotient of the number of proper
types in the hierarchy and the bit-size of an int (32). The identification
of the bit-code of each type is organized by a mapping between an iden-
tifier of a proper type or a synthetic type (an int) on the corresponding
bit-code and vice versa. The efficient glb processing basically happens on
the singular bit-wise AND operation between the int arrays of the type ar-
guments. The resulting code maps uniquely to one proper type or one syn-
thetic type. In the following the glb procedure of pairs of arguments, where
bit-calculation was performed already, is reduced to a simple lookup in the
hashtable, consisting of a mapping between an array-like encoding of pair
of types (type identifier(t1) + number of types ∗ type identifier(t2)) and the
saved result, an int Array. This technique is adapted from the indexed mem-
oization in (Michie, 1968) that basically incorporates the function to tabulate
results of executed applications. Same approach we apply also later during
the default unification process to save computations.

The occurrence of synthetic types in the type hierarchy benefits the con-
version of the glb operation present in ShUG into a mlb operation. The
detection of multiple results is supported by simply verifying if the result-
ing type is a synthetic type or not. If the resulting code after the bit-AND
operation corresponds to a synthetic type, then the final result must be its
descendants. Further it is relevant to check if we have among the direct de-
scendants of a synthetic type other synthetic types located. In this case, the
subtype query must be done iteratively until all synthetic types are replaced
by their descendant proper types. Note that, if we are visiting subtypes or
supertypes successively in a multiple inheritance environment, we have the
case to probably visit some type more than once. Thus in this case we must
sort out duplicate types and types in subsumption relation, whereas in the
latter case the more general type is redundant. A point to remark is that
only the case when we compute mlb between proper types, it is possible to
have multiple results, since as mentioned already only types with a bit-code
image are located in multiple inheritance areas of the hierarchy.

The two sample hierarchies given in the figure 4.6 show first the mod-
ifications executed by the preprocessing on the hierarchy developed by the
grammar writer and secondly, the resulting consequences that must be con-

4.3 Implementing the Lattice Operations 60

Before flop

a b

c d

e f

After flop

a b

a ∧ b d

c a ∧ b ∧ c

e f

Figure 4.6: Handling multiple results in mlb processing

sidered when calculating the mlb. The original hierarchy is exposed on the
left side, while the hierarchy with two added synthetic types is visualized
on the right side. The red lines represents the modulated subsumption rela-
tions. The reason why two synthetic types are added is due to multiple joins
between the types a and b, and between the types b and d. Having a look at
the original hierarchy, it is not difficult to spot c and f as the mlb between
a and b, while it appears to be more tricky to make out e and f to be the
mlb of b and d. As for the mlb calculation between a and b referring to the
hierarchy produced by flop, we must recursively identify the subtypes of the
synthetic type a ∧ b, that corresponds to the inverse image of the resulting
code of γ(a) AND γ(b) and we get after all the set {c, e, f} as result. Since
c subsumes e, e is not a relevant result and we have finally as result {c, f}.

4.3 Implementing the Lattice Operations 61

4.3.5 mlb Calculation between Proper Types and Leaf

Types

Given the property of leaf types, we observe two optional constellations be-
tween a proper type tp and a leaf type tl. Or tp located in the hierarchy
with multiple inheritance structures subsumes tl or they are not comparable
and thus incompatible. So for the mlb calculation between a leaf type and
a proper type it is necessary to know if the proper type is among the types
under the path that leads from the leaf type to the root node. Given the set
of proper types and leaf types Tp, Tl ∈ Type we define t ∈ Tp as:

Definition 20 Most specific proper type (MSPT)
For each leaf type tl ∈ Tl, there is t the most specific proper type, Θ(tl) such
that t ⊑ tl, and for all proper types t′ ∈ Tp it applies t 6⊑ t′ with t 6= t′. 2

t1

t3 ← Θ(t2)

t2

Figure 4.7: Finding mlb between a leaf type and a proper type

In the following we will use also the minimal proper type to denote the
same definition. In practice, given a proper type tp and leaf type tl, and Θ(tl)
one must check if tp ⊑ Θ(tl). If yes, the mlb is the leaf type itself, if not,
there is no mlb viz. the result is bottom . Since the subsumption check is now
to be executed between types with a bit-encoding, we can use the bit-AND
operation on γ(tp) and γ(Θ(tl)). In particular the leaf type argument is not

4.3 Implementing the Lattice Operations 62

subsumed by the proper type argument if the resulting code is not equal with
the code of the minimal proper type of the leaf type.

The frequent use of the recursive search starting from the leaf type after
the next proper type among the parents node is expensive. Hence, it makes
sense during the construction of the type hierarchy to identify all most specific
proper types and set a link between all the appropriate children (leaf types)
and the corresponding most specific proper type. The look-up functionality
from leaf types to their most specific proper types is an added feature to
the system to have a more efficient mlb computation between proper types
and leaf types. The initialization of the look-up table is done once when
the hierarchy is built up in ShUG. In the figure 4.7, t1 is the proper type
argument and t2 the leaf type argument. The MSPT of the leaf type t2 is
defined by the look-up function Θ(t2) pointing to t3. Since t1 subsumes t3
entailing t1 subsumes t2, we have at last t2 as mlb between t1 and t2.

4.3.6 mlb Calculation between Leaf Types

← Θ(t1) = Θ(t2)

t1

t2

Figure 4.8: Finding mlb between a leaf type and a leaf type

Concerning the mlb processing between two leaf types, we differentiate
considering the scenario if both types are located in the same tree structure
and the scenario when they are not inside the same tree structure. The
former issue implicates that both arguments have the same MSPT whereas

4.3 Implementing the Lattice Operations 63

in the latter case the MSPT differs thus we can already conclude that the
mlb processing calculates the bottom type as result. In case there are two
leaf types as arguments located in a big tree, remember that all types in the
tree are not assigned to a bit-code, we must collect for both arguments all
their supertypes up to the MSPT. Further we would have to check for both
if one argument is contained by the set of supertypes of the other argument
and vice versa. So if t2 is detected among the supertypes of t1 then the mlb
between t1 and t2 results in t1. If there is no type intersection between the
supertypes of both arguments, the leaf type arguments are not under the
same path. Hence we have again bottom as the result. Accordingly in the
figure 4.8 the mlb between t1 and t2 is determined by the fact that t1 resides
among the supertypes of t2. Hence t2 is the mlb for t1 and t2. This rather
laborious mlb procedure we replace by a more efficient method that is intro-
duced later on.

Next we establish a new bit-encoding for all types due to the necessity
of a mub calculation and we will argue why the existing information in the
encodings is not desirable.

4.3.7 mub Calculation

For the default unification it is relevant for the purpose of the assimilation
process to feature either an efficient method that calculates the minimal
upper bound of two types. Since the given framework was not aimed to
support lub operation, this issue is a matter that is necessary to be wholly
integrated to the system.

First I want to line out why the existing encoding is not an adequate
foundation for a mub calculator. The figure in 4.9 shows a hierarchy that
would demonstrates the insufficiency of the original encoding. The desired
scenario is marked by the framed encoded types. By the way the type in the
middle with the code 111 is a synthetic type, therefore it does not occupy
a bit-position representing the own type in the hierarchy. Now if we want
to compute mub(g, f) one possibly refers to the duality between the bit-
AND and the bit-OR operator and applies the latter to achieve as intend,
the reversed effect of the mlb operation. However if we perform the bit-OR
between code of the arguments γ(g) and γ(f), the resulting code would not

4.3 Implementing the Lattice Operations 64

a
111111111

b
1101001

c
11101101

e
101011

d
1101

a, b
111

f
10101

g
11

h
101

i
1

Figure 4.9: Failure of the original encoding when calculating mub. Note that
missing bit-positions are equal to 0.

correspond to the code of the desired result. 2

2γ−1 represents the mapping from a bit-code to the appropriate type identifier

4.3 Implementing the Lattice Operations 65

11 OR 10101 = 11101, γ−1(11101) = ?

The point is that all information—bit-positions from other types, that are
inherited along the path from the type f with the code 10101 to the code
of the desired result c are not incorporated in the resulting code. In order
to get the type c that is represented by the code 11101101, it is inevitable
to search for the most specific type with the encoding that subsumes the
code of the calculated result. Technically, it means to request for all types
the subsumption relation with the resulting code and to filter out among the
types subsuming the result code, the most specific ones. Avoiding this labo-
rious correction, it is reasonable to implement new type encodings designed
for the mub operation.

Fundamentally the type encoding for the mub operation is also based
upon the algorithm of Ait-Kaci. Hence the underlying algorithm that has
been performed by the flop preprocessor is also valid here with the difference,
that the order of the types to be encoded ought to be carry out reversely and
the resulting code of some type is determined by the type encoding of its
parents and not of its children.

Therefore an important matter to be investigated is to find out in which
order the types are to be encoded. It must be guaranteed, if some type t is
to be encoded, that there is no other type t′ that subsumes t and t′ has no
code yet. Due to the hierarchy allowing multiple inheritance, determining
the order by simply performing a depth first search over the children is not
satisfying. For instance referring to the given hierarchy in the figure 4.9 the
type h would be collected before its supertype f . This is resolved by the
check if the currently visited type has already been visited. Hence we have
to look if the collection of visited types in for the encoding appropriate order
already contains it. If so it gets sorted out and added at the end of the
collection.

The progress of the correct encoding order for the hierarchy in the figure
4.10 would look like this:

1. (a)

2. (a,b,c)

3. (a,b,c,d,(a,b))

4. (a,b,c,d,(a,b),g)

5. (a,b,c,d,(a,b),g,i)

4.3 Implementing the Lattice Operations 66

6. (a,b,c,d,(a,b),i,g,h)

7. (a,b,c,d,(a,b),g,h,i)

8. (a,b,c,d,g,h,i,(a,b),e)

9. (a,b,c,d,i,(a,b),e,g,h)

10. (a,b,c,d,(a,b),e,g,h,i)

11. (a,b,c,d,(a,b),e,g,h,i)

12. (a,b,c,d,(a,b),e,g,h,i,f)

13. (a,b,c,d,(a,b),e,g,i,f,h)

14. (a,b,c,d,(a,b),e,g,f,h,i)

The first correction in the order happens in step 6, when the type g gets
visited for the second time across the synthetic type as the parent node,
where the first time it was visited over the type d as the parent node. Thus
the type g gets shifted to the end of the order. Type h is either a subtype of
the synthetic type, since it has not been already visited before it gets added
to the very end of the order. Also in the next step a correction is executed,
when type i is visited twice. This continues for every path that leads from
each type to the bottom and at the end we have the order of types required
for their correct encoding in step 14.

In the original version of the encoding the first type assigned to a code
is the bottom. Now we start the encoding at the top type. According to
Ait-Kaci’s AssignCode, each type is a result of:

γ(t) = 2P ∨
n
∨

i=1

γ(xi) , parents(t) = xi, ..., xn

Since the first type to be encoded the top has no parents, its type is simply
assigned to 2P , where P is zero. The number P gets raised by one after each
type encoding. After assigning top to a bit-code, we have when encoding the
next type, P = 1. Hence 2P generates the bit-position that is reserved to
the encoded type and with each encoded type excluding synthetic types the
bit-length increases.

4.3 Implementing the Lattice Operations 67

The procedure of the encoding of types given the just determined order
is as follows:

γ(a) := 20 = 1

γ(b) := 21 ∨ γ(a) = 01 ∨ 1 = 11

γ(c) := 22 ∨ γ(a) = 001 ∨ 1 = 101

γ(d) := 23 ∨ γ(b) = 0001 ∨ 11 = 1101

γ(a, b) := γ(b) ∨ γ(c) = 11 ∨ 101 = 111

γ(e) := 24 ∨ γ(c) = 00001 ∨ 101 = 10101

γ(g) := 25 ∨ γ(d) ∨ γ(a, b) = 000001 ∨ 1101 ∨ 111 = 111101

γ(f) := 26 ∨ γ(e) = 0000001 ∨ 10101 = 1010101

γ(h) := 27 ∨ γ(a, b) ∨ γ(f) = 00000001 ∨ 111 ∨ 1010101 = 11101011

γ(i) := 28 ∨ γ(g) ∨ γ(h) = 000000001 ∨ 111101 ∨ 11101011 = 111111111

The desired encoding to calculate mub concerning the sample hierarchy
in the figure 4.9 is showed in the figure 4.10, where the bit-AND operator
provides the unique code of c taking the codes of g and f as arguments. The
treatment of synthetic types happens in a dual manner to the one during the
mlb operation.

4.3.8 mlb Calculation between Leaf Types Revised

A consequence having also a mapping of the leaf types to a bit-code is that we
can replace the method in ShUG that employs a search over the supertypes
for both leaf types arguments. Instead the bit-AND operator, the bit-OR
operator applied to the bit-encodings generated for mub processing provides
the correct result when identifying the mlb between two leaf types. Due to
the tree structure where leaf types are located, no inconsistency occurs when
taking the same bit-codes that are generated for the mub operation. As we
have seen the mlb calculation of two leaf types is reduced to the subsump-
tion check between the types. The subsumption relation is confirmed if the
resulting code of the bit-AND operation is equal to one of the arguments. In
the type encoding for mub, the information of the subsumption relation to
all respective supertypes is adhered to each type. Hence in case subsumption

4.3 Implementing the Lattice Operations 68

a
1

b
11

c
101

e
10101

d
1101

a, b
111

f
1010101

g
11101

h
11101011

i
111111111

Figure 4.10: Type encoding for mub processing.

check succeeds one type incorporates all the supertype relation featured by
the other type.

4.3 Implementing the Lattice Operations 69

4.3.9 Grouping the Hierarchy

We realize that there are compression methods to lower the increase in the
bit-length during the bit-encoding of the types. To get around occupying one
digit for each type, different approaches have been suggested, one of them is
dividing the hierarchy into code blocks.

In this modified realization of the modulation technique in (Äıt-Kaci et
al., 1989), rather than to encode all types top-down and thereby to increase
with each encoded type the bit-length, the goal is to divide the hierarchy
into subgroups and for each subgroup the encoding of types starts from the
most specific type in the subgroup. Each subgroup is uniquely identified by
a number that is embodied by a defined part of the bit-code. Therefore the

0

1 10 11

Figure 4.11: The encoding into groups

bit-code consists of a part that identifies the subgroup and a remaining part
that is reserved for the encodings of types in the respective subgroup. The
proposal here regarding the definition of subgroups in the hierarchy is given
by the distinction between leaf types and proper types. In general the out-
put of flop breaks down some type hierarchy into a structure similar to the
sample exemplified in the figure 4.11. Some graph structure containing the
proper types is located at the top of the hierarchy with some tree structures
containing leaf types that are attached somewhere at the fringe of the graph.
Those types that connects the graph with the tree structures are minimal

4.3 Implementing the Lattice Operations 70

proper types.
So in practice the number of minimal proper types in a hierarchy determines
the length of the bit-code that is to be added to the codes of all types in
the hierarchy. By enumerating over the minimal proper types we obtain
an identifier that is to be converted to the corresponding bit-representation.
This part of the code identifying to which subgroup the type is assigned to,
occupies the first bit-positions of the full bit-code. Applied to the schematic
hierarchy in the figure 4.11, we have four subgroups with the additional code
in the respective structure. At the end we have reduced the bit-length of the
bit-code to the number of types in the subgroup containing the most types
plus the bit-length of the bit-representation of the number of minimal proper
types in the type hierarchy.

Instead of int Arrays, we use objects of the BitSet class in Java in the
implementation of the type encoding. Accordingly we can skip to manage
the arrays length linked to the number of types to be encoded.

Chapter 5

An Implementation of
Well-formed Default
Unification

The following chapter discusses in detail the setup of the different imple-
ments in order to run and experiment with the default unifier. The first
section describes the realization of the type preprocessing and points out the
motivation of the extensive realization of the lattice operations.

The realization of the approach in the theoretical analysis regarding the
preprocessing on types in the previous chapter is embodied by the notion of
the Delta Iterator. In the following we give two different options of the search
of abstract background types. The first option sticks to the constraints of
the theoretical analysis. As for the second alternative we return to put the
focus on synthetic types and show how they can contribute to identify directly
type configurations involved in an area of non-determinism. We mention that
the implemented type hierarchy viewable in the appendix B is designed to
experiment with the observations done considering the multiple inheritance
property. In this context the behaviour of the assimilation operating with
leaf types is not relevant. Leaf types are involved in a hierarchy structure
that corresponds to trees. The assimilation procedure in trees is a trivial
variant of the required treatment in multiple inheritance hierarchies, wherein
ambiguity would not arise during the default unification.

The second section gives insight into the structural design of the overall
implementation. The main functionalities of components such as the uni-
fier for the specialization and the default unifier are illustrated by means of

71

5.1 Precomputation on Types 72

pseudo code excerpts. Lastly an entry for a concrete complex scenario of the
default unification referring to the hierarchy in B is given with the detailed
demonstration of the single procedural steps.

5.1 Precomputation on Types

Carpenter’s definition to consider all possible subsets of the shared structures
in background and cover that have most specific unifications with the cover
has been analogously implemented in ALE (Grover et al., 1994). The effect of
the assimilation process however is exactly the same in a sense that all valid
type definitions unifiable with the cover, that are closest in the hierarchy to
the structure of the ”non-existing” unifier are to be identified. This happens
recursively from the top most level of the cover up to the point when a
feature points to an atomic type value. Exploiting the expressiveness of the
type hierarchy it is possible to classify intermediate structures and results to
types and type definitions throughout the computation.

In the developed system the task of the assimilation is as well divided by
one module that undertakes the task in the assimilation dealing only with
types, the types preprocessing themselves and one other module that moni-
tors the types preprocessing and takes over the specialization and generalization.
A description of the realization of the former module is given in this section.
The types preprocessing in the assimilation process represent the kernel in the
implementation of the default unification algorithm. In the previous chapter
we have made relevant observations regarding the intricacy of multiple inher-
itance hierarchies enabling the translation of the assimilation algorithm into
a real application. We know the types preprocessing during the default uni-
fication process takes over the work that can be mastered without expanding
types to TFSs. Therefore it stands for the component where the efficiency of
the default unification algorithm rests upon, since ”weighty” processings with
large memory consumption are avoided. The precomputation with types re-
quires to browse abundantly through the type hierarchy. For each recursive
call of the default unification it is necessary to start one assimilation process.
The assimilation itselves implies one mub query and theoretically a number
of mlb queries concordant to the number of all supertypes of the background
that do not subsume the mub. Hence a valuable prerequisite is to resort to
an efficient implementation of the needed lattice operations via bit-encoding.

5.1 Precomputation on Types 73

5.1.1 Delta Iterator

————————————————————————————

PROCEDURE update()

1 WHILE supertypes.isNotEmpty and deltas.isEmpty

2 supertypes' = supertypes.copy

3 supertypes.clear()

4 FOR all supertype in supertypes'
5 FOR all supertype' in supertype.getsupertypes()

6 and mub in mub(covertype, backgroundtype)

7 IF supertype'.isSynthetic nor supertype'.isVisited
8 nor supertype'.subsumes(mub) THEN

9 supertypes.add(supertype')
10 ENDIF

11 ENDFOR

12 ENDFOR

13 ...

14 FOR all supertype in supertypes

15 IF mlb(covertype, supertype).isNotEmpty THEN

16 FOR all mlb in mlb(covertype, supertype)

17 deltas.add(cover, supertype, mlb)

18 ...

19 ENDWHILE

————————————————————————————

Figure 5.1: Given the Delta queue is empty the expansion to the next higher
layers in the hierarchy happens as long expansion is possible, see line 7, 8
and none among background supertypes has a mlb with the cover type, see
line 15.

The current implementation of the type preprocessing is designed to ex-
amine each level in the hierarchy starting at the level where the background
is situated and then proceed checking succesively the higher levels. Rather
the approach that would collect all the type configurations in question by
doing the search in one go, we suggest to implement an iterator that en-
ables to explore the next upper level in the hierarchy on demand. Basically
the search for the abstract background types is supervised by identifying
the next layer consisting of background’s supertypes that fulfil some defined
constraint. In particular the layer by layer exploration is stopped if an ap-
propriate supertype on any of the paths emanate from the background type
has been detected, that features a mlb with the type of cover. As a result it

5.1 Precomputation on Types 74

would be easy to impose additional conditions on the types and to discharge
priorly default unification process for certain type configurations. Further
we have a clear separation within the default unification process between
the computation dealing with types only and the calculation involving the
internal structure.

t1

t3 tco

t6

t4 t7

t5

tbg t2

Figure 5.2: Sorting out already visited background candidates. The blue
lines show the path 〈tbg/t5/t4/t3〉 and the red lines display the movement on
the path 〈tbg/t5/t7/t6/t3〉.

We call the component in the implementation representing the type pre-
processing the Delta Iterator. A Delta corresponds to the concept of type
configurations with the trivial difference, that Deltas are triple containing
also the type of the cover. The queue containing Deltas is updated (see figure
5.4) each time after the query if there is a next Delta in the queue. Though
as long as the queue with Deltas is not empty, the iterator just outputs on

5.1 Precomputation on Types 75

demand the next Delta in the queue. During the update the expansion to
the next layer of valid supertypes is not executed until all Deltas obtained
by some layer have already been supplied.

Given some hierarchy, the Delta Iterator would not hand over anymore
Deltas, when the expansion to a higher level does not return any valid su-
pertype. We have three conditions to sort out supertypes, declaring that an
appropriate supertype may not be represented by:

1. A type subsuming any of the mub between cover and background.

2. Synthetic types.

3. A type that is already visited in a previous stage of type preprocessing.

We haven’t seen the condition under point 3 yet, that is actually a useful
constraint we can impose on a early level of the default unification in order
to save waste processings. It is a simple and effective constraint to rule out
supertypes of the background type that have already been visited. In the fig-
ure 5.2, when we proceed to collect the background supertype layer by layer
the type t3 would be visited twice. During the search t3 is an appropriate
supertype of two different paths in the fourth and fifth layer. Note that the
search considers also the level of the background in the search space, since
the background can be in itself an abstract background structure.

5.1.2 Detection of Deltas due to Non-Determinism

Depending on the hierarchy theoretically some path including possible ab-
stract background types could converge arbitrarily near the top before some
abstract background type candidate gets located. Hence the tracking of some
path all the way up may turn out to be futile, after having checked innumer-
ous types. In particular, if we are pursuing a path that has no mub with the
cover which per default will come across the top then in the worst case we
may reach the top without crossing any type having an mlb with the cover
type.

According to the analysis how multiple results arise from type preprocess-
ing there are two alternatives caused by non-determinism in the hierarchy
structure:

5.1 Precomputation on Types 76

Option 1 Given a valid type configurations tconf = 〈tbg′ , tco′〉 and there is
tmub ∈ ⊓t(tbg, tco), tmub 6= ⊤ such that tmub ⊑ tbg′ . For each type
configuration t′conf = 〈tbg′′ , tco′′〉 such that tbg′′ ⊑ tbg′ and tco′ 6⊑ tco′′,
tco′ 6⊒ tco′′ we know that t′conf yields a result that is forwarded by non-
determinism.

Option 2 Given a valid type configurations tconf = 〈tbg′ , tco′〉 and there is
no tmub ∈ ⊓t(tbg, tco) such that tmub ⊑ tbg′ . For each type configuration
t′conf = 〈tbg′′ , tco′′〉 such that tbg′′ ⊑ tbg′ and tco′ 6⊑ tco′′, tco′ ⊒ tco′′
we know that t′conf and tconf yield a result that is forwarded by non-
determinism.

Since we have a conversion of the type hierarchy into a BCPO, we propose
a strategy to locate directly valid type configurations that are evoked by the
non-determinism. The synthetic types produced by flop are embedded into
the hierarchy in order to eliminate the non-determinism concerning the joins
and the meets of two types. Hence it is feasible to entail non-determinism if
a synthetic type has been added to the hierarchy. Further all added synthetic
types can be easily identified and isolated during the construction of the type
hierarchy.

Now we want to define the property of those synthetic types that play a
role in the two options when multiple results during default unification arise
because of the non-determinism. In the figure 5.3 on the left the type configu-
rations 〈t6, t3〉 and 〈t2, t4〉 yield both valid results. The subsumption ordering
between abstract background type and abstract cover type of the latter has
been modified by flop. Since t2 and tco have no unique lower bound a syn-
thetic type has been inserted between t2, tco and their mlb, {t3, t4}. Hence
the synthetic type has the property to be in direct subsumption relation with
abstract background type and the abstract cover type. The situation on the
right side concerning the second option, where the corresponding abstract
background type is not subsumed by the mub between the types of cover
and background can be described analogously.

Instead of identifying valid type configurations by climbing up the hi-
erarchy and to check for the background’s supertypes if they are abstract
background types, we now need to look after the synthetic types that fulfil
the following specification of type configurations that are generated by the
non-determinism:

5.1 Precomputation on Types 77

⊤

t1 t0

t2

t6 tco

t2 ∧ tco

tbg t3 t4

⊤

t1 t0

t1 ∧ t0t6 t2 tco

tbg t3 t4

Figure 5.3: On the right side the synthetic type is placed so that we have
a unique lower bound between t2 and the type of the cover. The red arcs
substitute the original direct subsumption relation represented by the green
arc between tco, t3 and between t2 and t4 (Option 1). On the left side the
synthetic type is placed so that we have a unique lower bound between t0
and t1. The red arcs substitute the original direct subsumption relation
represented by the green arc between t1 and t4 (Option 2).

Proposition 5

Given some tbg′ ⊑ tbg and some tco ⊑ tco′, for each t′syn ∈ Tsyn and
tbg′ ⊑ t′syn, t′syn ⊑ t′co′ it follows that 〈tbg′, tco′〉 is a valid type configuration.

The adequate update procedure likely needs to iterate less times to de-
liver all valid Deltas in the hierarchy in comparison to the firstly introduced
function. Note that the type configurations, that are not involved in non-
determinism we still identify by the search after abstract background types.
Though it is not necessary after having found an abstract background type
to keep on tracking the associated path. Further paths that are not under
a mub can be omitted as well, since all type configurations assigned from
detected abstract background types located on such paths are subject to
non-determinism. Actually the first step during the search in the alternative

5.1 Precomputation on Types 78

————————————————————————————

PROCEDURE update()

1 WHILE supertypes.isNotEmpty and deltas.isEmpty

2 supertypes' = supertypes.copy

3 supertypes.clear()

4 FOR all supertype in supertypes'
5 FOR all supertype' in supertype.getSupertypes()

6 and mub in mub(covertype, backgroundtype)

7 IF supertype'.isSynthetic nor supertype'.isVisited
8 and mub.subsumes(supertype') THEN

9 supertypes.add(supertype')
10 ENDIF

11 ENDFOR

12 ENDFOR

13 ...

14 FOR all supertype in supertypes

15 IF mlb(covertype, supertype).isNotEmpty THEN

16 FOR all mlb in mlb(covertype, supertype)

17 deltas.add(new Delta(cover, supertype, mlb))

18 ENDFOR

19 // corresponding Delta results in a successful specialization...

20 supertypes.remove(supertype)

21 ...

22 ENDWHILE

23 ...

24 WHILE deltas.isEmpty

25 synthetictype = synthetictypes.next()

26 supertype' = synthetictype.getSupertype().getElement(0)

27 subtype' = synthetictype.getSubtype().getElement(0)

28 IF supertype'.subsumes(backgroundtype)
29 and subtype'.subsumes(covertype) THEN

30 deltas.add(cover, supertype', subtype')
31 ...

32 ENDWHILE

————————————————————————————

Figure 5.4: The expansion of layers depends on the fact if the supertype is
still on the path to the mub, see line 8. If it is the case that the supertype
yields a Delta, the background supertype gets removed in line 20. Though
before discarding a path it is crucial to check if the specialization succeeds.
Other Deltas are identified by the iteration over the synthetic types in 24-30.

5.1 Precomputation on Types 79

update function corresponds to the constraint on background types when
dealing with BCPO hierarchies as described in (Alexandersson & Becker,
2007).

When comparing the two introduced update procedures, we establish that
the effect of both approaches results into the same set of type configurations.
The benefit of one or the other procedure depends on the structure of the
hierarchy. Certainly it is reasonable to use the second version, if the hierarchy
performs sparsely non-determinism. Even more redundant lattice operations
would be executed by the first version in a BCPO hierarchy. Though, given
a shallow hierarchy that is highly non-deterministic, then probably the first
version needs less iteration to return the next Delta. Some prior knowledge
about the structure of the hierarchy therefore can help to make decision on
the proper constraints for the background supertypes.

Whatever option we want to consider, both approaches embody the no-
tion to have an ongoing interaction between the actual default unification
with the type preprocessing. The implementation permits to extend, and to
modify easily the conditions on the types to be default unified. In particular
the constraints imposed on the supertypes of the background to be abstract
background types are considered to be an exchangeable part in the imple-
mentation. The technique to process the next Delta only by the explicit
instruction is also a good starting position to alternate between constraints
even during the processing. Further, it is possible to monitor the Delta iter-
ator by some extensions to the system, where constraints for the search after
type configurations may be imposed from outside the Delta iterator. Besides
the adhered stop mechanism of the expansion to the next layer of supertypes,
the termination of the type preprocessing can be terminated by an external
device as well.

5.2 AVM related Functions 80

5.2 AVM related Functions

In the previous section the fundamental device as a precomputational step
in the default unification has been discussed in great detail. The realization
of the type preprocessing as an iterator to calculate the next type config-
urations on demand turns out to be useful as an interactive tool allowing
to communicate with other engines. The part of the implementation that
monitors the entire default unification process including the precomputation
on types represents the matter in this section.

5.2.1 The Design of TFS

One challenging task was to find a solution to cope with all the generated
structures due to the potential multiple results emerging from the type pre-
processing and also from the specialization process. A reasonable measure
in order to master the possibly rampant production of results during the de-
fault unification is specifying a compact format of TFS object that is able to
express ambiguity. In the presented algorithm, features are assigned to the
overlay of possibly multiple outcome of the assimilation procedure. In order
to realize the option that features are allowed to point in addition to a single
structure, to a disjunction of TFSs as well, we extend the realization of the
TFSs given by the T DL API.

t1





























A :







t2

[

C : t

]

t3

[

D : f

]







B :







t4

[

E : bool

]

t5

[

F : bool

]







C : t6

[

G : f

]





























=







































































t1













A : t2

[

C : t

]

B : t4

[

E : bool

]

C : t6

[

G : f

]













, t1













A : t3

[

D : f

]

B : t4

[

E : bool

]

C : t6

[

G : f

]













,

t1













A : t2

[

C : t

]

B : t5

[

F : bool

]

C : t6

[

G : f

]













, t1













A : t3

[

D : f

]

B : t5

[

F : bool

]

C : t6

[

G : f

]



















































































Figure 5.5: Equivalence relation between an ambiguous TFS and the resolu-
tion to all its interpretations.

5.2 AVM related Functions 81

public class TFS extends FeatureStructure {

protected ArrayList<FeatureValueList> units;

protected ArrayList<FeatureValuePair> elements;

protected Typehierarchy typeHierarchy =

(Typehierarchy)this.grammar;

... }

public class FeatureValuePair {

private short feature;

private TFS value;

... }

public class FeatureValueList {

private short feature;

private ArrayList<TFS> value;

... }

Figure 5.6: A TFS Object consists of a list containing Feature
Value Pair Objects and a list containing Feature Value List Ob-
jects

A representation of an ambiguous TFS we interpret as an attribute value
matrix (AVM), with a finite set of features that are assigned to either a
TFS or a set of TFSs. Considering the atomic structures (Carpenter, 1993)
of a TFS, the equation in the figure 5.5 reveals that the number of atomic
structures including all resolved structures may grow exponentially as to the
number of atomic structures in the ambiguous case. The implementation of
the default unification is designed to be able to deal with ambiguous struc-
ture, i. e., a resulting ambiguous TFS developed from specialization may get
an argument for a recursive call of the default unifier. For representational
concerns the implementation allows however the conversion of an ambiguous
structure to all resolved structures as well. In the simplified fragment of code
5.6 the TFS object differs between attribute value pairs, where in one case
the value represents a single TFS object and in the other case we have the
value as a list of TFS object. A TFS object is linked to a type hierarchy
object that contains crucial information like a fixed finite set of features and
a function that maps from a type identifier to the corresponding prototype
structure. Type definitions are TFS objects, where embedded TFS objects

5.2 AVM related Functions 82

assigned by some feature f are expanded in case:� f is firstly introduced and points to a TFS object, that is not equal
with its type definition.� f is inherited by some more general type definition and points to a
TFS object more specific than the adequate TFS object of the direct
supertype.

Unlike T DL, the methods responsible for the construction of a TFS ob-
ject do always check the well-formedness condition referring to the given type
hierarchy. An appropriate warning will be send out if the structure object
does not meet the requirements of its type definition. Analogously an am-
biguous TFS object is required to fulfil the well-formedness conditions for all
its interpretations.

According to the expressiveness of ambiguous TFS structures, it is re-
quired to adapt basic functions operating on TFSs such as copying methods,
the subsumption check on two TFS objects or the test if two TFS objects are
equally structured. Moreover the required extensions to the implementation
we apply to the unification procedure.

5.2.2 The Unifier Procedures

A new implementation of the common unification operation is necessary,
since the unifier provided by T DL would not consider having multiple results
during the unification. The unification in T DL is based upon the calculation
of the greatest lower bound, where synthetic types due to the open world
assumption belong to the domain of feasible unifiers. Other consequence
of the open world assumption is that the resulting TFS must not satisfy
its most general satisfier implying that well-formedness condition on TFS
objects is not assured. In the theoretical analysis the definition of well-
formed unification says that unification A must not only succeed between the
arguments. The unification is not successful before A does not fail to unify
as well with the type definition of the type of A. In the following we present
extractions out of the implementation in a pseudo code manner realizing the
well-formed unifier on TFS objects. In the header of the procedure we have
the listing of employed acronyms and overall variables.

Line 4 checks if the mlb between the types of the arguments yields the
bottom. If yes the empty list will be returned. The overall unification proce-
dure will throw an exception if the list will remain empty for each unification

5.2 AVM related Functions 83

————————————————————————————

fvp := FeatureValuePair

fvl := FeatureValueList

th = TypeHierarchy

PROCEDURE unify1(tfs2)

1 unifications = new Collection<TFS>

2 mlbs = th.mlb(this.getType(), tfs2.getType())

3 IF mlbs.size() is 1 and mlbs.get() is bottom THEN

4 return unifications //empty list cause unification to fail

5 ENDIF

6 IF this.getFvps().isEmpty() and this.getFvls().isEmpty()

7 and tfs.getFvps().isEmpty() and tfs.getFvls().isEmpty()

8 FOR all mlb in mlbs

9 unifications.add(new TFS(mlb,th))

10 ENDFOR

11 return unifications

12 ENDIF

13 FOR all mlb in mlbs

14 tfs = unify2(mlb,tfs)

15 IF tfs is not NULL

16 unifications.add(tfs);

17 ENDIF

18 ENDFOR

19 return unifications

————————————————————————————

assigned to any feature. If both arguments do not have any structure inside
their body it is the case that either the structures are atomic or they are
equal to their type definitions. For both cases it is sufficient to instantiate
TFS objects embodying the types of mlb while referring to the appropriate
type hierarchy and return those structure as result of the unification. Thus
the recursive procedure of unification will end up to meet the condition in
line 6 and 7. Further the interception of computing unification between TFS
objects performing the latter property corresponds to the partial expansion
technique applied by T DL and flop. Besides the reduction at runtime, the
size of the type hierarchy including type definitions is reduced as well. On
the expanded level of a TFS object unifications are absorb by line 14, whose
arguments are propagated to a helper procedure unify2.

Similar to the minimal fixed arity in (Callmeier, 2001) when two TFS
objects tfs1 and tfs2 with different feature sets are to be unified, the features
get categorized into features shared between both arguments and features

5.2 AVM related Functions 84

————————————————————————————

PROCEDURE unify2(mlb,tfs2)

1 elements = new Collection<FeatureValuePair>

2 units = new Collection<FeatureValueList>

3 proto_mlb = th.getMGSat(mlb)

4 feat0 = //features that occurred only in the mgsat of mlb

5 feat1 = //features that occurred in this and not in tfs2

6 feat2 = //features that occurred in this and not in tfs2

7 feat1_2 = //features that occurred in this and in arg2

8 FOR all feat in feat0

9 elements.add(proto_mlb.getFvp(feat).copy())

10 ENDFOR

11 FOR all feat in feat1 //...compare to line 13

12 FOR all feat in feat2 //...compare to line 13

13 FOR all feat in feat1_2

14 unifications' = new Collection<TFS>

15 proto_feat_ = proto_mlb.getFeatureValue(feat)

————————————————————————————

occurring only in one of the argument. Before the recursive call on the
arguments of the internal structure, if we unify tfs1 and tfs2 with feature
sets feats1 and feats2 , the iteration basically happens over all positions valid
in tfs1 . The corresponding feature in tfs2 is identified by a table lookup
within the internal structure, the list of Feature Value Pair and Feature
Value List objects. Note that the well-formed unification must also consider
features that occur only in the prototype structure of the resulting type.
The specification of the proceeding with features that does not occur in both
arguments in line 11 and 12 can be inferred from the shared case in line 13.

In the next step we make a distinction of every feature if it points to a
single TFS or to an ambiguous TFS object. Given some shared feature f in
tfs1 and tfs2 , we have to consider the following four options:

1. f points to a single TFS object in tfs1 and tfs2 .

2. f points to a single TFS in tfs1 and ambiguous TFS object in tfs2 .

3. f points to a ambiguous TFS in tfs1 and single TFS object in tfs2 .

4. f points to a ambiguous TFS object in tfs1 and tfs2

The treatment of the cases indicated by option under one and three we
show in the piece of pseudo code above. The proceedings of the other cases

5.2 AVM related Functions 85

————————————————————————————

16 IF this.getFvps().contains(feat) and tfs2.getFvps().contains(feat)

17 this_feat_ = this.getFeatureValue(feat)

18 tfs2_feat_ = tfs2.getFeatureValue(feat)

19 tfs' = this_feat_.unify1(tfs2_feat_)

20 IF tfsList'.isEmpty() THEN

21 return NULL

22 ENDIF

23 FOR all tfs' in tfsList'
24 unifications'.addAll(proto_feat_.unify1(tfs'))
25 ENDFOR

26 IF unifications'.isEmpty() THEN

27 return NULL

28 ENDIF

29 ENDIF //...increment the internal structure

30 IF this.getFvps().contains(feat)

31 and tfs2.getFvls().contains(feat) THEN

32 this_feat_ = this.getFeatureValue(feat)

33 tfs2_feat_ = tfs2.getFeatureValues(feat)

34 FOR all tfs2_feat_' in tfs2_feat_

35 tfsList' = this_feat_.unify1(tfs_feat_')
36 FOR all tfs' in tfsList'
37 unifications'.addAll(proto_feat_.unify1(tfs'))
38 ENDFOR

39 ENDFOR

40 IF unifications'.isEmpty() THEN

41 return NULL

42 ENDIF

43 ENDIF //...increment the internal structure

————————————————————————————

can be analogously inferred. If any of the internal unifications at some feature
yield an empty list, the computation is interrupted in line 20-22 and causes
an empty list of TFS objects to be returned. The same behaviour we have
concerning the unifications with the structure of the MGSat as well in line
26-28. Whereas when dealing with features associated to multiple TFS, we
consider a unification to be still successful even if not all unifications between
the respective arguments have succeeded. We assume that it is sufficient to
meet the condition in line 40 saying that at least one unification did not
fail. When unification at some feature is successful then the outcome will be
assigned to the feature.

Given that unification has not been interrupted, the internal structure

5.2 AVM related Functions 86

————————————————————————————

44 //incrementation of the internal structure

45 IF unifications.size() is 1 THEN

46 elements.add(new FeatureValuePair(feat,

47 unifications'.get()))
48 ELSE units.add(new FeatureValueList(feat, valNew))

49 ENDIF

50 //...after iteration over all features

51 return new TFS(mlb,elements,units,th);

————————————————————————————

for the resulting TFS gets incremented by the successful unification at the
given feature. The unifications are employed to update either the list of
feature value pair implying that unification yield a single TFS object or
the list of feature value list with the appropriate feature pointing to a non-
deterministic unification. Finally after the iteration over all features, the
completed internal structure, the type of mlb and the type hierarchy produces
the new TFS object, that belongs to the collection of TFS object introduced
in unify1.

The Default Unifier

The design of the default unifier implementation resembles in some part the
unifier processing. Though the values of the internal structure during unifi-
cation are solely defined by the mlb processing whereas in the default uni-
fication two components, the assimilation process and the overlay operation
determine the values of the features in the resulting structure. Due to the
assimilation procedure unlike unification the default unification represented
by the function defaultunify1 will never throw an overall failure exception.

————————————————————————————

abt := abstract background type

act := abstract cover type

th = TypeHierarchy

co, bg, defaultunifications, validdeltas

PROCEDURE defaultunify1(tfs2)

1 defaultunifications = new Collection<TFS>

2 bg = this //default information

3 co = tfs2 //strict information

5.2 AVM related Functions 87

4 //...check for shortcuts

5 deltait = new DeltaIterator(co.getType,bg.getType(),th)

6 WHILE deltait.hasNext()

7 delta = deltait.next()

8 IF delta.isMostSpecific() THEN

9 abt = delta.getAbt()

10 act = delta.getAct()

11 IF defaultunify2(abt,act).isNotEmpty() THEN

12 validdeltas.add(delta) //specialization was successful

13 ENDIF

14 ENDIF

15 ENDWHILE

16 return defaultunifications

————————————————————————————

If the check for shortcuts that we present later on has no effect, the type
preprocessing gets initialized in line 5. The calculated Deltas are succesively
examined by their information specificity referring to the given type hierar-
chy. Only in case they are not more general than some already processed
Deltas, the associated abstract background type and abstract cover type will
be send to the helper procedure defaultunify2. In line 12 the processed
Delta will be stored, if it is has yielded a valid result.

————————————————————————————

abs := abstract background structure

acs := abstract cover structures

PROCEDURE defaultunify2(abt,act)

1 //specialization

2 TRY acss = co.unify1(act.getMGSat());

3 CATCH unificationFailureException

4 return defaultunifications

5 //generalization

6 elements = new Collection<FeatureValuePair>

7 proto_abt = th.getMGSat(abt)

8 FOR all feat in proto_abt.getFeatures()

9 elements.add(bg.getFvp(feat).copy())

10 ENDFOR

11 abs = new TFS(abt,elements,th);

————————————————————————————

A Delta that contributes to a further result during default unifying, sticks
to the with the successful specialization of the abstract cover type. If uni-

5.2 AVM related Functions 88

fication fails in line 2, the empty list default unifications will be returned
and the next Delta gets calculated. Otherwise the computation continues to
generalize the abstract background type. At this stage of the computation
the assimilation process is complete.

————————————————————————————

12 FOR all acs in acss

13 elements = new Collection<FeatureValuePair>

14 units = new Collection<FeatureValueList>

15 feat_acs = // features occurring in acs

16 feat_abs_acs = // features occurring in abs and acs

17 //overlay

18 FOR all feat in feat_acs

19 IF acs.getFvps().contains(feat) THEN

20 elements.add(acs.getFvp(feat))

21 ENDIF

22 IF acs.getFvls().contains(feat) THEN

23 units.add(acs.getFvl(feat))

24 ENDIF

25 ENDFOR //...

————————————————————————————

The default unifier before its recursive application sorts the features lo-
cated in the translated target structures as well. However in this case it
is irrelevant to consider the MGSat of the resulting structure, since well-
formedness as we have seen in the analysis is assured by the succeeded spe-
cialization. The lines 18-25 describe the overlay operation for the features
that occur only in the abstract cover structure. The feature value pair asso-
ciated to those features gets added to the internal structure of the resulting
value.

————————————————————————————

26 FOR all feat in feat_abs_acs

27 abs_feat_ = abs.getFeatureValue(feat)

28 IF acs.getFvps().contains(feat) THEN

29 acs_feat_ = acs.getFeatureValue(feat)

30 defaultunifications' =

31 abs_feat_.defaultunify1(acs_feat_)

32 ENDIF

33 IF acs.getFvls().contains(feat) THEN

34 acs_feat_ = acs.getFeatureValues(feat)

5.2 AVM related Functions 89

35 FOR all acs_feat_' in acs_feat_

36 defaultunifications' =

37 abs_feat_.defaultunify1(acs_feat_')
38 ENDFOR

39 ENDIF

————————————————————————————

The overlay concerning shared features differentiate as in the unification
processing between features pointing to single and assigned disjunctive TFS
objects. However latter option may only be embodied by abstract cover
structures. Therefore the computation needs to consider only 2 instead of 4
options. Those are shown respectively in the lines 28-32 and the lines 33-39.

————————————————————————————

40 IF defaultunifications'.size() is 1 THEN

41 elements.add(new FeatureValuePair(feat,

42 defaultunifications'.get()))
43 ELSE units.add(new FeatureValueList(feat,

44 defaultunifications'))
45 ENDIF

46 return defaultunifications.add(

47 new TFS(act,elements,units,th))

48 ENDFOR

49 ENDFOR

————————————————————————————

Finally analogous to the construction of the TFS object during the uni-
fication, the default unifier has to check if the default unification for some
feature resulted in a single TFS object or in a disjunctive TFS object. The
resulting TFS will then be added to the collection of TFS objects that is the
return value of the default unification computation.

In the figure 5.7 the illustration shows the application of the depth-first
method for the construction of the TFS object during the default unification.
The root node of the structure is represented by the top-most node and
the dashed lines pointing the nodes denote the type values that the nodes
can receive. In particular the abstract cover types detected by the Delta
Iterator in some layer in the hierarchy are optionally attached to q ∈ Q,

5.2 AVM related Functions 90

t13

t31

t11 t12 t13

c

DB C

FT27 FT26 FT28

D E C A

Figure 5.7: The incremental construction of the resulting TFS during the
default unification process.

where the left-most will be further processed. The first type provided by
the next Delta is t13, which will be attached to the root node. Given that
the specialization of the cover to the type definition of t13 does not fail the
expansion of the internal structure at the first feature continues. For the
feature B Delta has detected the abstract cover type t31, whereas at the
feature FT27 the Delta iteration would capture three different abstract cover
types in one layer. Again the structure under t31 is processed only if the
specialization was successful. The first atomic FS for the return value is
finally completed, when the assimilation at feature D yields the atomic type
value c. The next recursive call of the default unifier determines the value to
be assigned at the feature E. If the internal structure under t11 is complete,
the processing continues for the already captured Delta in the queue with
the abstract cover type t12. Hence if the next specialization does not fail the
feature FT27 receives a further TFS object with the type t12.

5.2 AVM related Functions 91

Efficiency Issues

For the unification processing there are conventional methods to abbreviate
processings. The following cases can be applied to default unification pro-
cessing as well. The appropriate result of default unification regarding the
single cases below is quiet obvious:� Cover is equivalent with the top.� Background is equivalent with the top.� Cover and background are equivalent.� Cover and background has a subsumption relation.� Cover and background are unifiable.

However default unification offers several more possibilities to save com-
putation. The following pseudo code incorporates in the lines 8-10 the option
to replace the subsumption relation on TFS objects by the more economic
subsumption test on types, given cover and background are equal with their
type definitions. The analogous case is applicable to the unifiability issue
visible in the lines 12-17.

————————————————————————————

t_bg := bg.getType()

t_co := co.getType()

cachedefaultunification = Map<Integer,TFS>

1 proto_bg = th.getMGSat(t_bg)

2 proto_co = th.getMGSat(t_co)

3 IF bg.equals(proto_bg) and co.equals(proto_co)

4 IF th.cachedefaultunification(bg.getType(),co.getType()) THEN

5 return th.getdefaultunification(bg.getType(),co.getType())

6 ENDIF //...

7

8 IF subsumestype(t_co,t_bg)

9 return defaultunifications.add(bg)

10 ENDIF //...

11

12 IF th.hasmlb(t_bg,t_co)

13 FOR mlb in mlb(t_bg,t_co)

14 defaultunifications.add(new TFS(mlb,th)

5.2 AVM related Functions 92

15 ENDFOR

16 return defaultunifications

17 ENDIF //...

18

cacheunification = Map<Integer,Map<TFS,Collection<TFS>>>

19 IF cacheunification.containsKey(co).containsKey(act)

20 IF cacheunification.get(co).get(act).isEmpty()

21 return defaultunifications

22 ELSE return cacheunification.get(co).get(act)

23 ENDIF //...

————————————————————————————

The indexed memoization of calculations that comply with specific prop-
erties allows to reduce one default unification process to a simple look up
in a hash table. In particular if both arguments as well the background
as the cover are of the same structure of their type definitions, the default
unification processing will store the result in a mapping from an array-like
encoding of the types of background and cover to the resulting TFS object.
The administration of the table is conducted on a superior level of the default
unifier, that is in our case the instantiation of the type hierarchy. Recurring
default unifications at some later point with the same arguments can be eas-
ily sorted out in advance, so that further processings are disabled, as can be
taken from the lines 3-6. Similar approach we apply to the specialization,
where the abstract cover structure gets associated to its type and the cover.
The corresponding look up is shown in line 19 to 23.

————————————————————————————

1 IF co.getFeatures().isEmpty()

2 and abs.getFeatures().isEmpty()

3 validdeltas.add(delta)

4 defaultunifications.add(th.getMGSat(act).copy())

5 continue //...

6 ENDIF

————————————————————————————

The above abbreviation is exceptional in so far as it can only be poten-
tially exploited after the assimilation process. Therefore the computation
needs to come across the case when the generalization of the background
results in a TFS object that has no internal structure. If additionally the
cover is of the same property, then the default unification of the cover and
the background matches to the type definition of the abstract cover type.

5.2 AVM related Functions 93

System Architecture

co

?

TFS(bg)

• Default Unifier ()

Query Next Delta

• Specialization

co′ := ⊔(co,MGsat(tco′))

• Generalization

bg′ := G(bg,MGsat (tbg′))

• Overlay

new TFS with

tq := tco′

bg := F(f, bg′)

co := F(f, co′), f ∈ Feat

hierarchy, tbg , tco -

6
co′ =↑

?

co′ =↓

6

initiliaze Delta Iterator

Constraints Definitions -�

〈tbg′ , tco′ , tco〉�

• DeltaIterator

Figure 5.8: Overview of the interactions of the single parts in the implemen-
tation. After the cover is passed to the default unifier, the delta iterator
gets instantiated. The query of the next Delta follows the specialization that
decides if the processing is delayed by the query of the next Delta or if it
continues with the generalization and at last the overlay operation. The lat-
ter component comprises the recursive application of the entire procedure to
the internal structure of the assimilated structures.

5.2 AVM related Functions 94

5.2.3 An Extract of an Example

t1

t2 t3 t4 t5

t5





C : t30

[

FT27 : t2

FT29 : t7

]

D : c





t6 t7 t8 t9

t10 t11 t12 t13

t10

























A : t22

[

FT20 : d

FT21 : d

]

B : t31

[

FT26 : t11

FT27 : t10

FT28 : bool

]

C : t33

[

FT26 : t11

FT27 : t9

]

E : ⊤

























Figure 5.9: This image represents the effect of the first Delta request, en-
tailing the expansion to all supertypes in the first layer atop the background
type. The hierarchy refers to a fragment of the implemented type hierarchy
in the figure B.1. The green lines indicate the navigated route computed by
the Delta iterator. The red lines indicate that the unification between the
TFS of the cover argument and the prototype structure of the abstract cover
type fails, whereas the blue line says that unification succeeds.

5.2 AVM related Functions 95

Given the well-formed background and cover as one can learn from the
type hierarchy in the figure B.1 within the type definitions are explicitely
displayed, the initialized Delta Iterator identifies three different type config-
uration on the first layer atop the type of the background. The following
unifications determine if some Delta is valid.







∆1 := 〈t7, t13〉

Ψ1 := ⊔(co,MGsat(t13))





 : co ⊔ t13











D : f

C : t32

B : t31

[

FT28 : bool

FT27 : t5
FT26 : t7

]











= t13











D : f

C : t34

B : t31

[

FT28 : bool

FT27 : t5
FT26 : t7

]

















∆2 := 〈t7, t12〉

Ψ2 := ⊔(co,MGsat(t12))





 : co ⊔ t12







F : ⊤

C : t29
B : t28

D : d





 = ↑







∆3 := 〈t6, t11〉

Ψ3 := ⊔(co,MGsat(t11))





 : co ⊔ t11







E : ⊤

D : c

C : t31

A : t20
[

FT20 : i
]





 = ↑

Only the path leading to t7 yields on the first layer the type configuration
〈t7, t13〉 that also produces an abstract cover structure, whereas other type
configurations are to be discharged from computation. It follows that the
generalization to the abstract background type propagated by the valid Delta
provides the information from the background to be considered during the
overlay operation.

Θ := G(bg , t7) = t7











B : t31

[

FT26 : t11
FT27 : t10

FT28 : bool

]

C : t33

[

FT26 : t11
FT27 : t9

]











,

overlay(Θ, Ψ1) = t13

















D : f

C : defaultunify
(

t33

[

FT26 : t11
FT27 : t9

]

, t34

)

B : defaultunify

(

t31

[

FT26 : t11
FT27 : t10

FT28 : bool

]

, t31

[

FT28 : bool

FT27 : t5
FT26 : t7

])

















,

...

5.2 AVM related Functions 96

t1

t2 t3 t4 t5

t5





C : t30

[

FT27 : t2

FT29 : t7

]

D : c





t6 t7 t8 t9

t10 t11 t12 t13

t10

























A : t22

[

FT20 : d

FT21 : d

]

B : t31

[

FT26 : t11

FT27 : t10

FT28 : bool

]

C : t33

[

FT26 : t11

FT27 : t9

]

E : ⊤

























Figure 5.10: The second request of a Delta effectuate the expansion to all
supertypes in the second layer atop the background type.

In this exemplification we stick to the examination of TFSs that are cal-
culated in the default unification at the level of the root node. Therefore we
keep on tracking each outgoing arc of the visited background supertype so
far. The next layer consits of the types t2, t3 and t4. Since t3 has no mlb
with t5, the next type configurations to be delivered by the Delta iterator
are 〈t2, t8〉 and 〈t4, t9〉. We have the situation that both type configurations
entail successful specializations. At this stage of the default unification pro-
cess, the assimilation would terminate after reaching the next layer, where

5.2 AVM related Functions 97

all pursuited paths meet at the mub node t1. Lastly the next layer would not
bring any more result, since the unique type configuration in the last layer
〈t1, t5〉 is more general than type configurations, that are computed by now.

•







∆1 := 〈t2, t8〉

Ψ1 := ⊔(co,MGsat(t8))





 : co ⊔ t8





C : t27

D : c

A : t20
[

FT20 : g
]



 = t8





C : t30

D : c

A : t20
[

FT20 : g
]



,

Θ := G(bg , t2) = t2









A : t22

[

FT20 : d

FT21 : d

]

C : t33

[

FT26 : t11
FT27 : t9

]









,

overlay(Θ, Ψ1) = t8









A : defaultunify
(

t22

[

FT20 : d

FT21 : d

]

, t20 [FT20 : g]
)

C : defaultunify
(

t33

[

FT26 : t11
FT27 : t9

]

, t30

)









,

...

•







∆2 := 〈t4, t9〉

Ψ2 := ⊔(co,MGsat(t9))





 : co ⊔ t9

[

F : ⊤

C : t27

D : b

]

= t9

[

F : ⊤

C : t30
D : e

]

,

Θ := G(bg , t3) = t4

[

C : t33

[

FT26 : t11

FT27 : t9

]

]

,

overlay(Θ, Ψ2) = t9











F : ⊤

D : e

C : defaultunify
(

t33

[

FT26 : t11
FT27 : t9

]

, t30

)











,

...

At this point the processing of the default unification, has already pro-
duced at least three TFSs with the types t13, t8 and t9 at their root node.
The recursion of the default unification applied to the inner structure may
produce further results. The complete processing of the default unification
with the given background and cover can be retraced in the appendix C. The
accomplished result of the entire default unification run resolves into thirteen
different TFS objects.

5.2 AVM related Functions 98

Chapter 6

Conclusions and Future Work

6.1 Summary

Multiple inheritance hierarchies emerge in different fields like knowledge rep-
resentation and reasoning, database management and query processing, and
object-oriented programming. The demand to have a compact representation
of the hierarchy with the ability to compute relationships efficiently is shared
between these domains. In this work, an efficient implementation of an oper-
ation concerning the default reasoning in multiple inheritance hierarchies has
been provided. Based on a thorough study of recent research and the pro-
found analysis of the effects including multiple inheritance hierarchies, it has
been accomplished to extend achievements—with regard to both the formal
theory and implementational issues —in the research of default reasoning
that has been performed up to now.

• Sophisticated extension to the algorithm described in (Alexan-
dersson & Becker, 2007)� We motivate to incorporate the notion of well-formedness into

default reasoning. Thus we propose to employ well-formed TFS
along the processing of default unification. Consequently we con-
stitute and implement the well-formed unification operation as
discussed in (Copestake, 1992) which involves that the default
unification operation produces well-formed TFSs only.� One of the main contribution is that we have provided a reformu-
lation of Carpenter’s definition of credulous default unification in

99

6.1 Summary 100

(Carpenter, 1993) and a precise formalized characterization of an
adequate algorithm. In contrast to previous works we have consid-
ered hierarchies as bounded partial orders that are not complete.
In this context an extensive investigation of the exhaustive cover-
ing of all results during the preprocessing on types in multiple in-
heritance hierarchies has been performed. The non-deterministic
behaviour particularly during the lattice operations increases con-
siderably the degree of difficulty to allocate all possible outcomes
of the default unification operation.� Within the implementation we provide a convenient management
of valid type configuration detection. The Delta Iterator allows
the constraint imposed on the supertypes of the background to be
easily exchangeable. This factor facilitates for instance to convert
the default unification in BPO hierarchies to the default unifi-
cation in BCPO hierarchies. Besides, the incremental mode of
the search enables to query the needed information on demand.
In conjunction with a sensitive scoring functionality presented in
(Alexandersson et al., 2004) it might be possible to interrupt the
calculation on the level of the type preprocessing. Further this
enables also to change the constraint during the process of a di-
alog, which is practical in the context of utterance ambiguity of
the user. Those issues need more investigation and we will add
them to the agenda of future works.

• A practical solution to ambiguous TFS

One pivotal issue in the course of research is the usage of the TFS logic
as the formal language providing the basis for implementing and test-
ing the default unifier. We propose and put into effect a compact rep-
resentation of TFS that is capable of expressing ambiguity within the
structures. In computer science literature some authors have motivated
to examine adequate representations of ambiguous TFS as well. A ap-
proach considering ambiguous TFS has been carried out in (Duchier,
2003), though referring to the context of constraint programming appli-
cable to syntactical parsing tasks. In (Romanelli, 2005) it is discussed
how plurality can be embedded into an ontology-based dialog system
like SmartKom. In the outlook of Romanelli’s work it is suggested,
in order to have a more comfortable background to define sets it would

6.2 Future Work 101

be reasonable to introduce a TFS language that accepts the transition
function δ : Feat ×Q→ P (Q) with features pointing to a set of TFS.

• Employment of efficient lattice operations

Furthermore we have built an interlinking of an implementation of mul-
tiple inheritance hierarchies together with the realization of default
unification based on the extended algorithm. Thereby we have comple-
mented the established platform regarding the efficient implementation
of the required lattice operations. The framework enables to experi-
ment with TFSs in multiple inheritance hierarchies featuring efficient
mlb and mub operations based upon the bit-code image of the type
hierarchy.

6.2 Future Work

Basically the analysis of default unification dealing with TFS is adaptable
to appropriate frame-based formalisms. Since TFSs are suited for knowledge
representation, the concept of type definitions can be mapped to the notion
of frame objects.

• Testing with large real-world hierarchies

We suggest that an ontology-based system such as SmartKom is ex-
tendable to feature the multiple inheritance property in the context of
default reasoning as well. In particular SmartKom would represent
a “playground” to test the implementation of the default unification
operation on large-scale hierarchies. Further, such a measure entails to
enable the continuation of other researches based on the dialog back-
bone of the SmartKom system, e. g., the purpose of illuminating the
integration of multiple inheritance in the ontology considering the plu-
rality issue in (Romanelli, 2005).

• Employing alternative bit-encoding methods

Since the efficiency issue of this implementation heavily depends on lat-
tice operation working on a bit-code image of the hierarchy, we suggest
to adopt this technique to adequately encode the ontology in systems
such as SmartKom. However, in this work we have assumed that the
implemented type hierarchy needs to be preprocessed only once and

6.2 Future Work 102

is not a subject for further modifications afterwards. Analogously the
compiling of the bit-code image is done prior to the desired operations
applied to TFSs. Therefore, besides using a more compact bit-encoding
technique that enables to save more memory space, it is reasonable to
install a code-image of the type hierarchy that allows to be incremen-
tally updated as well (Bommel & Beck, 1999). The support of dynamic
ontology development would make the application of type bit-encoding
more attractive in areas of ontology maintenance.

• Account on structure sharing in TFS

The production of multiple results in this work is caused by the employ-
ment of a type hierarchy that heavily performs multiple inheritance. In
contrast, Carpenter’s credulous default unification produces ambiguous
results that he motivates by given reentrant structures in FSs. Hence
the involvement of structure sharing in the TFS language would result
into a superior dimension of ambiguity during the default unification:� Coreferences in the background trigger additional ambiguity if

overlay performs with involved features that stem from the back-
ground only—that is the case if the type of the cover subsumes
the type of the background. As for instance the reentrant values
for some feature f1 and f2 is to be default unified at f1 with a type
value stemming from the cover and at f2 with nothing. A type
clash in the former effects to have a version of the result where
coreference “survives” and overwrites the background-stemming
value for the feature f2, and additionally a result with a discarded
coreference and a kept background-stemming value for the feature
f2.� Structure sharing that occurs in the cover is kept in any case
during the default unification process. Ambiguity arises if overlay
combines between reentrant values from the cover each with some
type value from the background, where the background-stemming
values are more specific than the corresponding cover value and
not consistent among each other. The outcome performs structure
sharing with multiple variants, respecting all the clashing type
values that stem from the background.

6.2 Future Work 103

Along the research of default unification in multiple inheritance hierar-
chies we have gained even more theoretical insights considering coref-
erences. However, most of the implementational issues in this context
we postpone as a goal for future research.

• Incorporating a score-like functionality

A crucial contribution in (Alexandersson & Becker, 2007) is the usage
of a scoring function that computes the best hypothesis among the
multiple outcome of the default unification process. The notion of
informational distance appears to be a reasonable device to restrain
the production of multiple results in the context of this work as well.
An interesting application-oriented concern is to investigate the relation
between feature decrease in the background and the feature increase in
the cover during assimilation. Possibly, a potential tendency to favor
information loss in the background with respect to information gain
in the cover or vice versa can be detected. This issue presumes the
expansion of the precomputation on types to consider also appropriate
features.

6.2 Future Work 104

Appendix A

Import of the Type Hierarchy

A.1 Binary file generated by flop

A specification of the binary file produced by flop is listed in the following
appendix. It is adapted from the definitions given in (Callmeier, 2001).
The listing does not show all possible sections generated by flop from the
T DL input, yet the relevant ones that are useful for the implementation of
the default unifier. The semi-formal specification of the file format splits
up the file into sections. The latter are further recursively decomposed into
smaller elements down to atomic elements. Those are int, short and char that
respectively consists of four bytes, two bytes and one byte. The multi-digit
atomic elements are stored in little endian byte order.

A.1.1 Sections

type description

header Header to identify the file
toc Offsets to sections in file
symbol-tables Symbols in the grammar
hierarchy Type hierarchy
constraints Constraints of types and instances

105

A.1 Binary file generated by flop 106

header (Information identifying the file format and the name of the
grammar contained in the file)

type identifier description

int magic Magic value to identify file format
int version Version of file format
string description Description (name) of the grammar

string

type identifier

short length

length x char text

toc (Offsets to later sections in file, allowing a program to skip over sorted
out sections)

type identifier

int offset-symboltable
int offset-hierarchy
int offset-constraints
int offset-supertypes

A.1 Binary file generated by flop 107

symbol-tables (Names for the objects of the grammar)

type identifier

int npropertypes
int nleaftypes
int nattrs
ntypesa x string type-name
nattrs x int attr-name

antypes = npropertypes + nleaftypes

hierarchy (Information about the type hierarchy underlying the gram-
mar)

type identifier

int nbits
npropertypes x bitcode type-bitcode
nleaftypes x int leaftype-parent

bitcode (The Bitencoding, applied to represent the types and to decode
the type hierarchy)

type description

bitcodepart Parts of bitcode
... repeated until end marker
int = 0 End marker
short = 0 End marker

A.1 Binary file generated by flop 108

bitcodepart

type identifier

int value

value 6= 0 : short 6= 0 repetition

constraints (Feature structure constraints of types)

type identifier

ntypes x constraint Constraints associated to types

constraint

type identifier

int nnodes

int narcs b

nnodes x node node

b

narcs =
∑

0<i<nnodes

nattrsi

nattrs value respective to the node visited

A.1 Binary file generated by flop 109

node

type identifier

int type

short nattrs

nattrs x arc arc

arc

type identifier

short attribute

short value

supertype

type identifier

npropertypes x supertypes supertypes

supertypes

type identifier

short nsupertypes

nsupertypes x int propertype-parent

A.2 Binary file read in by ShuG 110

A.2 Binary file read in by ShuG

ShUG (Shallow Unification Grammars) is a collection of objects and methods
that enables to read in the binary file format of the flop preprocessor. Given
the binary output presented in the previous appendix ShUG pipes the binary
file into a byte array. In order to manage the desired sections in java, all the
methods required to assemble the atomic elements (int , short , char) of the
file format must be implemented. The atomic elements encode the location
of the desired information and the information itself in the binary output. So
the byte array is read out consecutively from the beginning up to the TOC
section that contains the pointer to the sections and allows to navigate in
the binary file by switching to the focused sections.

A.2.1 undump int

This method assembles integers picked out of the byte array. Four bytes
are attached successively, whereas the latter ones are appended at the front
(little endian order).

A.2.2 undump short

This method assembles shorts picked out of the byte array. Two bytes are
attached successively, whereas the latter ones are appended at the front (little
endian order).

A.2.3 undump string

The readout of a string is performed in 2 steps. First a short determines
the length of the string , whereas the last character defined by the binary
representation is a null character and is to be ignored. Then the number of
bytes corresponding to the length is stored in a byte buffer, that is eventually
transformed into a char buffer (one byte maintains one char character).

A.2.4 undump node

This method reads out at first an int that is the type identifier of the feature
structure linked to the node, then a short that stands for the number of arcs

A.2 Binary file read in by ShuG 111

viz. feature value pairs. Finally for each arc the undump arc method is called
(See the constraints section).

A.2.5 undump arc

Two shorts that indicate first the feature identifier then the index of the
array containing the feature structures constructed so far (see constraints
section).

A.2.6 undump bitcode

The bit-encoding of the proper types for the glb computation are stored in
an int array . Based on the length of the codesize that is identified in the
hierarchy section, a sequence of ints are read out and laid down in the array.
Long sequences of zeros are given in a compressed mode. Once an int with
the value zero is read out, a following short informs about the number of
zeros in the queue. A code snippet ends with an int zero or a short zero.

A.2.7 Header section

The header section consists of two integers and one string, that represents
information concerning the file format, only. This information has no further
relevance for the computation.

A.2.8 TOC section

The TOC section stores the offset of the different sections in the byte array
as ints and enables the access to the individual sections. The offset values are
mapped by a so-called section types represented by an int , where each preset
value stands for some specific section. The output of flop makes ten different
sections available. In addition to the header section and the TOC section,
we put the focus on other four sections. Those are the symbol-table section
that has the section type one, the hierarchy section with the section type
three, the constraints section with the section type seven and the supertypes
section with the section type ten. Each section begins with the encoding of
its section type.

A.2 Binary file read in by ShuG 112

A.2.9 Symbol-table section

The symbol-table section contains important knowledge about the hierarchy
that further are also captured in a log file. The number of types, in particular
the number of proper types and leaf types and the number of features are
stored in this section. Types in the system are associated with so-called status
that takes value such as atom,lex-rule etc. The number of status and their
values are also managed in this section, however this part can be ignored
since our implementation has to handle only proper types and leaf types.
The creation of a mapping between the type identifier an int and the type
name a string and the inverse mapping is carried out by the iteration over the
number of types and the readout of type names. The type identifier is equal
with the position of the type in the array and therefore determined by the
order of types given in the binary output. Generally all leaf types are stored
after the proper types. This happens analogously with features. Altogether,
the convenient mappings type2number, feature2number, number2types and
feature2types are established by the readout of this section.

A.2.10 Hierarchy section

The hierarchy section starts with the section type number three, followed by
the information about the number of bits (int) that are needed to encode
all the proper types in the type hierarchy. Then for each proper type the
code represented by vectors of ints is read out by the undump bitcode. A
mapping between proper type identifiers (ints) and codes (int [][]) is estab-
lished, that is called gamma. Analogous to the introduced mappings so far,
an adequate inverse mapping called gammaInverse is installed. Finally, an
association between leaf type identifiers (ints) and their parent type identi-
fiers (ints) is build up, which is necessary for the employed technique of the
glb computation in ShUGA.

A.2.11 Constraints section

This section reads out the constraints of the unfilled feature structures 1,
both for the proper and the leaf types. For a given type identifier, every
feature structure as well as every feature-value pair is assigned to an index

1Unfilled feature structures corresponds to the most general satisfier of the feature
structure

A.2 Binary file read in by ShuG 113

and can be accessed through the global arrays this.featureStructures

and this.featureValuePair. These arrays are build up for every type that
is read in. The procedure is as following; for every type, one iterates over the
number of nodes (undump short) of feature structures which are associated
with the individual type identifier. For each node a new feature structure
with the appropriate type identifier (undump int) is instantiated resulting in
an array of feature structures. Finally for each feature structure there are
numbers of arcs (undump short) associated, each representing a feature value
pair consisting of a feature (undump short) and the array index (undump

short) containing the feature structures. The last index of the array returns
the complete assembling of the structure for one type identifier. For instance,
given the example below we instantiate an array of feature structures with
the size of the number of nodes assigned to the type identifier of t5, that is
three. The feature structures are respectively instantiated with the types t27,
a and t5. We recognize that only the latter structure consists of arcs. Given
two arcs, the feature value pair with the feature C assigned to the value that
is the first position in the array of feature structures and the feature value
pair with the feature D assigned to the value that is the second position in
the array of feature structures array are created. The last and third position
in the array corresponds to the value of the entire structure.















t5
C t27

D a















A.2.12 Supertypes section

The last discussed section deals with information on supertype relations of
the proper types. A short declares the number of supertypes the respective
proper type has and each subsequent int matches the type identifier of one
supertype. The implementation of the readout of the supertypes section
has been entirely added to ShUG, whereas the readout of the other sections
was subject to slight modifications. Further the administration of the data
concerning the type hierarchy in ShUG has been adapted to the design of
the implementation of the default unifier.

A.2 Binary file read in by ShuG 114

Appendix B

Building the Type Hierarchy

The implementation of the type hierarchy is connected with the challenging
task to build a hierarchy, that allows to experiment sufficiently with the in-
troduced scenarios along the analysis. The employed type hierarchy features,
in total 33 proper types and 6 leaf types. Additionally 3 synthetic types have
been generated and embedded into the hierarchy by the processing of flop.
We omit to display explicitely the synthetic types, instead we give the expla-
nation of when and where they get inserted. The entire hierarchy consists of
five substructures that are attached to the top. For the purpose of clarity we
divide the visual image into 3 subparts demonstrating the type hierarchy A,
B and C respectively.

The first part of the hierarchy consists of only proper types, where two
supplemental synthetic types have to be additionally considered during the
default unification process. The mlb between t4 and t5 equals {t9, t13}, that
implicates the bridging of the subsumption relations between the pairs by a
synthetic type syn1 . Since the mlb between t5 and t7 in the original version
of the hierarchy produces a set of results with more than one element as well,
there is still one more synthetic type involved. In the now modified hierarchy
the non-determinism is forwarded to the mlb of syn1 and t7. Hence by flop

a further synthetic type syn2 is introduced as the new glb between the types
t5 and t7. The background in the concrete example of default unification in
the next appendix C is a well-formed TFS of the type t10 and the cover is a
well-formed TFS of the type t5.

115

116

⊤

t1 [C : ⊤]

t2

[

C : ⊤

A : t19

]

t3

[

C : ⊤

B : t27

]

t4 [C : t27] t5

[

C : t27
D : a

]

t6

[

C : ⊤

E : ⊤

A : t20
[

FT20 : g
]

]

t7

[

C : t29
B : t28

]

t8

[

C : t27
D : c

A : t20
[

FT20 : g
]

]

t9

[

F : ⊤

C : t27
D : b

]

t10





A : t20
[

FT20 : g
]

E : ⊤

B : t28
C : t29



 t11





E : ⊤

D : c
C : t31
A : t20

[

FT20 : i
]



 t12

[

F : ⊤

C : t29
B : t28
D : d

]

t13





D : f
C : t32

B : t31

[

FT28 : bool
FT27 : t5
FT26 : t7

]





Figure B.1: Type Hierarchy A

Notice that most non-expanded TFSs within the internal structure of the
type definitions in the type hierarchy A are specified one level further in the
type hierarchy B. Moreover the values of features in the type definitions of
the latter hierarchy refers back again to the type definitions in A. This is
solely motivated for the purpose to obtain the demonstrative effect of the
default unification example, as we can create complex scenarios without the
usage of an oversized hierarchy.

117

⊤

t26

[

FT26 : ⊤
]

t27





FT26 :⊤

FT27 : t1





t28





FT26 : t1

FT27 : t1



 t30





FT26 : t2

FT27 : t7



 t29





FT26 : t1

FT27 : t5





t31









FT26 : t1

FT27 : t1

FT28 : bool









t32





FT26 : t9

FT27 : t8



 t33





FT26 : t11

FT27 : t9





t34





FT26 : t12

FT27 : t8





Figure B.2: Type Hierarchy B

As we have mentioned concerning the illustration of well-formed type
feature structures in the analysis of chapter 3, we must consider that type
definitions would allow cyclicity if the subsumption ordering is not preserved
for the types situated along the path of a TFS . Though the application
of the partial expansion technique prevents the construction of TFS objects
from suffering infinite progression. In particular the implementation of the
default unifier is still valid when operating in a hierarchy with type definitions
maintaining the compatability condition. The type hierarchy B includes 2
leaf types t31 and t32. Even if it seems to be the case, B does not perform
multiple joins or meets.

118

⊤

a t19

b c t20

[

FT20 : a

]

t21

[

FT21 : a

]

g d e f t22





FT20 : d

FT21 : b





h i

bool

false true

Figure B.3: Type Hierarchy C

In turn the type hierarchy C has one synthetic type under the structure
consisting of only atomic values. The synthetic type is inserted evidently as
the glb between the types g and d. Furthermore in C, the five types f , bool ,
true and false are among the leaf types.

Appendix C

Commented Output of a
Concrete Default Unification

background

t10 & [A t22 & [FT20 d

FT21 d]

B t31 & [FT26 t11 & []

FT27 t10 & []

FT28 bool]

C t33 & [FT26 t11 & []

FT27 t9 & []]

E *top*]

cover

t5 & [C t30 & [FT27 t2 & []

FT26 t7 & []]

D c]

**

**

START NEW DEFAULT UNIFICATION PROCESS

**

119

120

STARTING DELTAITERATOR FOR BG, CO : t10, t5

LUB(s) [t1]

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :true

assimilation deltas.next : t5 t6 t11

**

SPECIALIZATION

unify between following arguments:

t5 & [C t30 & [FT27 t2 & []

FT26 t7 & []]

D c]

t11 & [E *top*

D c

C t31 & []

A t20 & [FT20 i]]

Warning : unification between cover and the prototype structure

of the GLB(cover,bg') has FAILED!

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :true

assimilation deltas.next : t5 t7 t12

**

SPECIALIZATION

unify between following arguments:

t5 & [C t30 & [FT27 t2 & []

FT26 t7 & []]

D c]

t12 & [F *top*

C t29 & []

B t28 & []

D d]

121

Warning : unification between cover and the prototype structure

of the GLB(cover,bg') has FAILED!

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :true

assimilation deltas.next : t5 t7 t13

**

SPECIALIZATION

unify between following arguments:

t5 & [C t30 & [FT27 t2 & []

FT26 t7 & []]

D c]

t13 & [D f

C t32 & []

B t31 & [FT28 bool

FT27 t5 & []

FT26 t7 & []]]

GENERALIZATION

raise the first TFS to the second TFS:

t10 & [A t22 & [FT20 d

FT21 d]

B t31 & [FT26 t11 & []

FT27 t10 & []

FT28 bool]

C t33 & [FT26 t11 & []

FT27 t9 & []]

E *top*]

t7 & [C t29 & []

B t28 & []]

generalized bg :

t7 & [C t33 & [FT26 t11 & []

FT27 t9 & []]

B t31 & [FT26 t11 & []

122

FT27 t10 & []

FT28 bool]]

specialized co :

t13 & [B t31 & [FT28 bool

FT27 t5 & []

FT26 t7 & []]

C t34 & []

D f]

**

FOR feat D in set of features only in the specialized co :

new FeatureValuePair (D,f)

**

FOR feat B in set of shared features DO

default unify between following arguments:

new bg argument :

t31 & [FT26 t11 & []

FT27 t10 & []

FT28 bool]

new co argument :

t31 & [FT28 bool

FT27 t5 & []

FT26 t7 & []]

**

**

START NEW DEFAULT UNIFICATION PROCESS

**

STARTING DELTAITERATOR FOR BG, CO : t31, t31

LUB(s) [t31]

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :true

assimilation deltas.next : t31 t31 t31

123

**

SPECIALIZATION

unify between following arguments:

t31 & [FT28 bool

FT27 t5 & []

FT26 t7 & []]

t31 & [FT26 t1 & []

FT27 t1 & []

FT28 bool]

GENERALIZATION

raise the first TFS to the second TFS:

t31 & [FT26 t11 & []

FT27 t10 & []

FT28 bool]

t31 & [FT26 t1 & [C *top*]

FT27 t1 & [C *top*]

FT28 bool]

generalized bg :

t31 & [FT26 t11 & []

FT27 t10 & []

FT28 bool]

specialized co :

t31 & [FT28 bool

FT27 t5 & []

FT26 t7 & []]

**

FOR feat FT28 in set of shared features DO

default unify between following arguments:

new bg argument : bool

new co argument : bool

**

124

**

START NEW DEFAULT UNIFICATION PROCESS

cover.equivalentTFS(background)

SHORTCUT OF DEFAULT UNIFICATION SUCCEED

new FeatureValuePair(FT28,[bool])

**

FOR feat FT27 in set of shared features DO

default unify between following arguments:

new bg argument : t10 & []

new co argument : t5 & []

**

**

START NEW DEFAULT UNIFICATION PROCESS

**

STARTING DELTAITERATOR FOR BG, CO : t10, t5

LUB(s) [t1]

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :true

assimilation deltas.next : t5 t6 t11

**

SPECIALIZATION

unify between following arguments:

t5 & [C t27 & []

D a]

t11 & [E *top*

D c

C t31 & []

A t20 & [FT20 i]]

125

GENERALIZATION

raise the first TFS to the second TFS:

t10 & [E *top*

B t28 & []

C t29 & []

A t20 & [FT20 d]]

t6 & [C *top*

E *top*

A t20 & [FT20 b]]

generalized bg :

t6 & [C t29 & []

E *top*

A t20 & [FT20 d]]

specialized co :

t11 & [E *top*

D c

C t31 & []

A t20 & [FT20 i]]

**

FOR feat D in set of features only in the specialized co :

new FeatureValuePair (D,c)

**

FOR feat E in set of shared features DO

default unify between following arguments:

new bg argument : *top*

new co argument : *top*

**

**

START NEW DEFAULT UNIFICATION PROCESS

typeBg == typeHierarchy.TOP_TYPE

SHORTCUT OF DEFAULT UNIFICATION SUCCEED

126

new FeatureValuePair(E,[*top*])

**

FOR feat C in set of shared features DO

default unify between following arguments:

new bg argument : t29 & []

new co argument : t31 & []

**

**

START NEW DEFAULT UNIFICATION PROCESS

**

STARTING DELTAITERATOR FOR BG, CO : t29, t31

LUB(s) [t27]

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :true

assimilation deltas.next : t31 t27 t31

**

SPECIALIZATION

unify between following arguments:

t31 & [FT26 t1 & [C *top*]

FT27 t1 & [C *top*]

FT28 bool]

t31 & [FT26 t1 & [C *top*]

FT27 t1 & [C *top*]

FT28 bool]

GENERALIZATION

raise the first TFS to the second TFS:

t29 & [FT27 t5 & []

FT26 t1 & []]

127

t27 & [FT26 *top*

FT27 t1 & []]

generalized bg :

t27 & [FT26 t1 & []

FT27 t5 & []]

specialized co :

t31 & [FT26 t1 & [C *top*]

FT27 t1 & [C *top*]

FT28 bool]

**

FOR feat FT28 in set of features only in the specialized co :

new FeatureValuePair (FT28,bool)

**

FOR feat FT26 in set of shared features DO

default unify between following arguments:

new bg argument : t1 & []

new co argument : t1 & [C *top*]

**

**

START NEW DEFAULT UNIFICATION PROCESS

cover.equivalentTFS(background)

SHORTCUT OF DEFAULT UNIFICATION SUCCEED

new FeatureValuePair(FT26,[t1 & [C *top*]])

**

FOR feat FT27 in set of shared features DO

default unify between following arguments:

new bg argument : t5 & []

new co argument : t1 & [C *top*]

128

**

**

START NEW DEFAULT UNIFICATION PROCESS

cover.equivalentTFS(prototypeCo) &&

background.equivalentTFS(prototypeBg) &&

typeHierarchy.subsumesType(typeCo,typeBg)

SHORTCUT OF DEFAULT UNIFICATION SUCCEED

new FeatureValuePair(FT27,

t5 & [C t27 & []

D a])

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :false

END DEFAULT UNIFICATION between following arguments :

t29 & [FT27 t5 & []

FT26 t1 & []]

t31 & [FT26 t1 & [C *top*]

FT27 t1 & [C *top*]

FT28 bool]

WITH FOLLOWING RESULT :

{t31 & [FT28 bool

FT26 t1 & [C *top*]

FT27 t5 & [C t27 & []

D a]]}

**

**

new FeatureValuePair(C,

t31 & [FT28 bool

FT26 t1 & [C *top*]

FT27 t5 & [C t27 & []

D a]])

**

FOR feat A in set of shared features DO

129

default unify between following arguments:

new bg argument : t20 & [FT20 d]

new co argument : t20 & [FT20 i]

**

**

START NEW DEFAULT UNIFICATION PROCESS

**

STARTING DELTAITERATOR FOR BG, CO : t20, t20

LUB(s) [t20]

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :true

assimilation deltas.next : t20 t20 t20

**

SPECIALIZATION

unify between following arguments:

t20 & [FT20 i]

t20 & [FT20 a]

GENERALIZATION

raise the first TFS to the second TFS:

t20 & [FT20 d]

t20 & [FT20 a]

generalized bg : t20 & [FT20 d]

specialized co : t20 & [FT20 i]

**

FOR feat FT20 in set of shared features DO

default unify between following arguments:

130

new bg argument : d

new co argument : i

**

**

START NEW DEFAULT UNIFICATION PROCESS

cover.equivalentTFS(prototypeCo) &&

background.equivalentTFS(prototypeBg) &&

typeHierarchy.hasGLB(typeBg, typeCo)

SHORTCUT OF DEFAULT UNIFICATION SUCCEED

new FeatureValuePair(FT20,[i])

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :false

END DEFAULT UNIFICATION between following arguments :

t20 & [FT20 d]

t20 & [FT20 i]

WITH FOLLOWING RESULT :

{t20 & [FT20 i]}

**

**

new FeatureValuePair(A,[t20 & [FT20 i]])

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :true

assimilation deltas.next : t5 t7 t12

**

SPECIALIZATION

unify between following arguments:

t5 & [C t27 & []

D a]

t12 & [F *top*

131

C t29 & [FT27 t5 & []

FT26 t1 & []]

B t28 & []

D d]

GENERALIZATION

raise the first TFS to the second TFS:

t10 & [E *top*

B t28 & []

C t29 & []

A t20 & [FT20 d]]

t7 & [C t29 & []

B t28 & []]

generalized bg :

t7 & [C t29 & []

B t28 & []]

specialized co :

t12 & [F *top*

C t29 & [FT27 t5 & []

FT26 t1 & []]

B t28 & []

D d]

**

FOR feat F in set of features only in the specialized co :

new FeatureValuePair (F,*top*)

**

FOR feat D in set of features only in the specialized co :

new FeatureValuePair (D,d)

**

FOR feat C in set of shared features DO

default unify between following arguments:

new bg argument : t29 & []

132

new co argument :

t29 & [FT27 t5 & []

FT26 t1 & []]

**

**

START NEW DEFAULT UNIFICATION PROCESS

cover.equivalentTFS(background)

SHORTCUT OF DEFAULT UNIFICATION SUCCEED

new FeatureValuePair(C,

t29 & [FT27 t5 & []

FT26 t1 & []])

**

FOR feat B in set of shared features DO

default unify between following arguments:

new bg argument : t28 & []

new co argument : t28 & []

**

**

START NEW DEFAULT UNIFICATION PROCESS

cover.equivalentTFS(background)

SHORTCUT OF DEFAULT UNIFICATION SUCCEED

new FeatureValuePair(B,[t28 & []])

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :true

assimilation deltas.next : t5 t7 t13

**

SPECIALIZATION

133

unify between following arguments:

t5 & [C t27 & []

D a]

t13 & [D f

C t32 & [FT27 t8 & []

FT26 t9 & []]

B t31 & [FT28 bool

FT27 t5 & []

FT26 t7 & []]]

GENERALIZATION

raise the first TFS to the second TFS:

t10 & [E *top*

B t28 & []

C t29 & []

A t20 & [FT20 d]]

t7 & [C t29 & []

B t28 & []]

generalized bg :

t7 & [C t29 & []

B t28 & []]

specialized co :

t13 & [D f

C t32 & [FT27 t8 & []

FT26 t9 & []]

B t31 & [FT28 bool

FT27 t5 & []

FT26 t7 & []]]

**

FOR feat D in set of features only in the specialized co :

new FeatureValuePair (D,f)

**

FOR feat C in set of shared features DO

default unify between following arguments:

134

new bg argument : t29 & []

new co argument :

t32 & [FT27 t8 & []

FT26 t9 & []]

**

**

START NEW DEFAULT UNIFICATION PROCESS

cover.equivalentTFS(prototypeCo) &&

background.equivalentTFS(prototypeBg) &&

typeHierarchy.hasGLB(typeBg, typeCo)

SHORTCUT OF DEFAULT UNIFICATION SUCCEED

new FeatureValuePair(C,[t32 & []])

**

FOR feat B in set of shared features DO

default unify between following arguments:

new bg argument : t28 & []

new co argument :

t31 & [FT28 bool

FT27 t5 & []

FT26 t7 & []]

**

**

START NEW DEFAULT UNIFICATION PROCESS

background.equivalentTFS(prototypeBg) &&

typeHierarchy.subsumesType(typeBg, typeCo)

SHORTCUT OF DEFAULT UNIFICATION SUCCEED

new FeatureValuePair(B,

t31 & [FT28 bool

FT27 t5 & []

135

FT26 t7 & []])

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :true

assimilation deltas.next : t5 t3 t12

this delta is more general than some already computed one

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :true

assimilation deltas.next : t5 t3 t13

this delta is more general than some already computed one

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :true

assimilation deltas.next : t5 t4 t9

this delta is more general than some already computed one

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :true

assimilation deltas.next : t5 t4 t13

this delta is more general than some already computed one

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :true

assimilation deltas.next : t5 t2 t8

this delta is more general than some already computed one

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :true

assimilation deltas.next : t5 t1 t5

this delta is more general than some already computed one

136

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :false

END DEFAULT UNIFICATION between following arguments :

t10 & [E *top*

B t28 & []

C t29 & []

A t20 & [FT20 d]]

t5 & [C t27 & []

D a]

WITH FOLLOWING RESULT :

{t11 & [D c

E *top*

C t31 & [FT28 bool

FT26 t1 & [C *top*]

FT27 t5 & [C t27 & []

D a]]

A t20 & [FT20 i]],

t12 & [F *top*

D d

C t29 & [FT27 t5 & []

FT26 t1 & []]

B t28 & []],

t13 & [D f

C t32 & []

B t31 & [FT28 bool

FT27 t5 & []

FT26 t7 & []]]

}

**

**

new FeatureValueList(FT27,{t11 & [D c

E *top*

C t31 & [FT28 bool

FT26 t1 & [C *top*]

FT27 t5 & [C t27 & []

D a]]

137

A t20 & [FT20 i]],

t12 & [F *top*

D d

C t29 & [FT27 t5 & []

FT26 t1 & []]

B t28 & []],

t13 & [D f

C t32 & []

B t31 & [FT28 bool

FT27 t5 & []

FT26 t7 & []]]

})

**

FOR feat FT26 in set of shared features DO

default unify between following arguments:

new bg argument : t11 & []

new co argument : t7 & []

**

**

START NEW DEFAULT UNIFICATION PROCESS

**

STARTING DELTAITERATOR FOR BG, CO : t11, t7

LUB(s) [t1]

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :true

assimilation deltas.next : t7 t6 t10

**

SPECIALIZATION

unify between following arguments:

t7 & [C t29 & []

B t28 & []]

138

t10 & [E *top*

B t28 & []

C t29 & []

A t20 & [FT20 d]]

GENERALIZATION

raise the first TFS to the second TFS:

t11 & [E *top*

D c

C t31 & [FT26 t1 & [C *top*]

FT27 t1 & [C *top*]

FT28 bool]

A t20 & [FT20 i]]

t6 & [C *top*

E *top*

A t20 & [FT20 b]]

generalized bg :

t6 & [C t31 & [FT26 t1 & [C *top*]

FT27 t1 & [C *top*]

FT28 bool]

E *top*

A t20 & [FT20 i]]

specialized co :

t10 & [E *top*

B t28 & []

C t29 & []

A t20 & [FT20 d]]

**

FOR feat B in set of features only in the specialized co :

new FeatureValuePair (B,t28 & [])

**

FOR feat E in set of shared features DO

default unify between following arguments:

139

new bg argument : *top*

new co argument : *top*

**

**

START NEW DEFAULT UNIFICATION PROCESS

typeBg == typeHierarchy.TOP_TYPE

SHORTCUT OF DEFAULT UNIFICATION SUCCEED

new FeatureValuePair(E,[*top*])

**

FOR feat C in set of shared features DO

default unify between following arguments:

new bg argument :

t31 & [FT26 t1 & [C *top*]

FT27 t1 & [C *top*]

FT28 bool]

new co argument : t29 & []

**

**

START NEW DEFAULT UNIFICATION PROCESS

**

STARTING DELTAITERATOR FOR BG, CO : t31, t29

LUB(s) [t27]

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :true

assimilation deltas.next : t29 t28 t32

**

SPECIALIZATION

unify between following arguments:

140

t29 & [FT27 t5 & []

FT26 t1 & []]

t32 & [FT27 t8 & []

FT26 t9 & []]

GENERALIZATION

raise the first TFS to the second TFS:

t31 & [FT26 t1 & [C *top*]

FT27 t1 & [C *top*]

FT28 bool]

t28 & [FT27 t1 & []

FT26 t1 & []]

generalized bg :

t28 & [FT27 t1 & [C *top*]

FT26 t1 & [C *top*]]

specialized co :

t32 & [FT27 t8 & []

FT26 t9 & []]

**

FOR feat FT27 in set of shared features DO

default unify between following arguments:

new bg argument : t1 & [C *top*]

new co argument : t8 & []

**

**

START NEW DEFAULT UNIFICATION PROCESS

cover.equivalentTFS(prototypeCo) &&

background.equivalentTFS(prototypeBg) &&

typeHierarchy.hasGLB(typeBg, typeCo)

SHORTCUT OF DEFAULT UNIFICATION SUCCEED

new FeatureValuePair(FT27,[t8 & []])

141

**

FOR feat FT26 in set of shared features DO

default unify between following arguments:

new bg argument : t1 & [C *top*]

new co argument : t9 & []

**

**

START NEW DEFAULT UNIFICATION PROCESS

cover.equivalentTFS(prototypeCo) &&

background.equivalentTFS(prototypeBg) &&

typeHierarchy.hasGLB(typeBg, typeCo)

SHORTCUT OF DEFAULT UNIFICATION SUCCEED

new FeatureValuePair(FT26,[t9 & []])

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :true

assimilation deltas.next : t29 t27 t29

this delta is more general than some already computed one

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :false

END DEFAULT UNIFICATION between following arguments :

t31 & [FT26 t1 & [C *top*]

FT27 t1 & [C *top*]

FT28 bool]

t29 & [FT27 t5 & []

FT26 t1 & []]

WITH FOLLOWING RESULT :

{t32 & [FT27 t8 & []

FT26 t9 & []]}

142

**

**

new FeatureValuePair(C,

t32 & [FT27 t8 & []

FT26 t9 & []])

**

FOR feat A in set of shared features DO

default unify between following arguments:

new bg argument : t20 & [FT20 i]

new co argument : t20 & [FT20 d]

**

**

START NEW DEFAULT UNIFICATION PROCESS

**

STARTING DELTAITERATOR FOR BG, CO : t20, t20

LUB(s) [t20]

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :true

assimilation deltas.next : t20 t20 t20

**

SPECIALIZATION

unify between following arguments:

t20 & [FT20 d]

t20 & [FT20 a]

GENERALIZATION

raise the first TFS to the second TFS:

t20 & [FT20 i]

t20 & [FT20 a]

143

generalized bg : t20 & [FT20 i]

specialized co : t20 & [FT20 d]

**

FOR feat FT20 in set of shared features DO

default unify between following arguments:

new bg argument : i

new co argument : d

**

**

START NEW DEFAULT UNIFICATION PROCESS

cover.equivalentTFS(prototypeCo) &&

background.equivalentTFS(prototypeBg) &&

typeHierarchy.subsumesType(typeCo,typeBg)

SHORTCUT OF DEFAULT UNIFICATION SUCCEED

new FeatureValuePair(FT20,[i])

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :false

END DEFAULT UNIFICATION between following arguments :

t20 & [FT20 i]

t20 & [FT20 d]

WITH FOLLOWING RESULT :

{t20 & [FT20 i]}

**

**

new FeatureValuePair(A,[t20 & [FT20 i]])

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :true

144

assimilation deltas.next : t7 t5 t12

**

SPECIALIZATION

unify between following arguments:

t7 & [C t29 & []

B t28 & []]

t12 & [F *top*

C t29 & [FT27 t5 & []

FT26 t1 & []]

B t28 & []

D d]

GENERALIZATION

raise the first TFS to the second TFS:

t11 & [E *top*

D c

C t31 & [FT26 t1 & [C *top*]

FT27 t1 & [C *top*]

FT28 bool]

A t20 & [FT20 i]]

t5 & [C t27 & []

D a]

generalized bg :

t5 & [C t31 & [FT26 t1 & [C *top*]

FT27 t1 & [C *top*]

FT28 bool]

D c]

specialized co :

t12 & [F *top*

C t29 & [FT27 t5 & []

FT26 t1 & []]

B t28 & []

D d]

**

145

FOR feat F in set of features only in the specialized co :

new FeatureValuePair (F,*top*)

**

FOR feat B in set of features only in the specialized co :

new FeatureValuePair (B,t28 & [])

**

FOR feat C in set of shared features DO

default unify between following arguments:

new bg argument :

t31 & [FT26 t1 & [C *top*]

FT27 t1 & [C *top*]

FT28 bool]

new co argument :

t29 & [FT27 t5 & []

FT26 t1 & []]

**

**

START NEW DEFAULT UNIFICATION PROCESS

result is in cache (computation with arguments occured before)

SHORTCUT OF DEFAULT UNIFICATION SUCCEED

new FeatureValuePair(C,

t32 & [FT27 t8 & []

FT26 t9 & []])

**

FOR feat D in set of shared features DO

default unify between following arguments:

new bg argument : c

new co argument : d

**

**

146

START NEW DEFAULT UNIFICATION PROCESS

**

STARTING DELTAITERATOR FOR BG, CO : c, d

LUB(s) [a]

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :true

assimilation deltas.next : d a d

!cover.hasFeatures() &&

!(TypeFeatureStructure)typeHierarchy.getPhi(bgfnuttType)).hasFeatures()

continue

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :false

END DEFAULT UNIFICATION between following arguments :

c

d

WITH FOLLOWING RESULT :

{d }

**

**

new FeatureValuePair(D,[d])

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :true

assimilation deltas.next : t7 t5 t13

**

SPECIALIZATION

unify between following arguments:

t7 & [C t29 & []

B t28 & []]

147

t13 & [D f

C t32 & [FT27 t8 & [C t27 & []

D c

A t20 & [FT20 g]]

FT26 t9 & [C t27 & []

F *top*

D b]]

B t31 & [FT28 bool

FT27 t5 & []

FT26 t7 & []]]

GENERALIZATION

raise the first TFS to the second TFS:

t11 & [E *top*

D c

C t31 & [FT26 t1 & [C *top*]

FT27 t1 & [C *top*]

FT28 bool]

A t20 & [FT20 i]]

t5 & [C t27 & []

D a]

generalized bg :

t5 & [C t31 & [FT26 t1 & [C *top*]

FT27 t1 & [C *top*]

FT28 bool]

D c]

specialized co :

t13 & [D f

C t32 & [FT27 t8 & [C t27 & []

D c

A t20 & [FT20 g]]

FT26 t9 & [C t27 & []

F *top*

D b]]

B t31 & [FT28 bool

FT27 t5 & []

148

FT26 t7 & []]]

**

FOR feat B in set of features only in the specialized co :

new FeatureValuePair (B,t31 & [FT28 bool

FT27 t5 & []

FT26 t7 & []])

**

FOR feat D in set of shared features DO

default unify between following arguments:

new bg argument : c

new co argument : f

**

**

START NEW DEFAULT UNIFICATION PROCESS

cover.equivalentTFS(prototypeCo) &&

background.equivalentTFS(prototypeBg) &&

typeHierarchy.hasGLB(typeBg, typeCo)

SHORTCUT OF DEFAULT UNIFICATION SUCCEED

new FeatureValuePair(D,[f])

**

FOR feat C in set of shared features DO

default unify between following arguments:

new bg argument :

t31 & [FT26 t1 & [C *top*]

FT27 t1 & [C *top*]

FT28 bool]

new co argument :

t32 & [FT27 t8 & [C t27 & []

D c

A t20 & [FT20 g]]

149

FT26 t9 & [C t27 & []

F *top*

D b]]

**

**

START NEW DEFAULT UNIFICATION PROCESS

**

STARTING DELTAITERATOR FOR BG, CO : t31, t32

LUB(s) [t28]

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :true

assimilation deltas.next : t32 t28 t32

**

SPECIALIZATION

unify between following arguments:

t32 & [FT27 t8 & [C t27 & []

D c

A t20 & [FT20 g]]

FT26 t9 & [C t27 & []

F *top*

D b]]

t32 & [FT27 t8 & [C t27 & []

D c

A t20 & [FT20 g]]

FT26 t9 & [C t27 & []

F *top*

D b]]

GENERALIZATION

raise the first TFS to the second TFS:

t31 & [FT26 t1 & [C *top*]

FT27 t1 & [C *top*]

150

FT28 bool]

t28 & [FT27 t1 & []

FT26 t1 & []]

generalized bg :

t28 & [FT27 t1 & [C *top*]

FT26 t1 & [C *top*]]

specialized co :

t32 & [FT27 t8 & [C t27 & []

D c

A t20 & [FT20 g]]

FT26 t9 & [C t27 & []

F *top*

D b]]

**

FOR feat FT27 in set of shared features DO

default unify between following arguments:

new bg argument : t1 & [C *top*]

new co argument :

t8 & [C t27 & []

D c

A t20 & [FT20 g]]

**

**

START NEW DEFAULT UNIFICATION PROCESS

result is in cache (computation with arguments occured before)

SHORTCUT OF DEFAULT UNIFICATION SUCCEED

new FeatureValuePair(FT27,[t8 & []])

**

FOR feat FT26 in set of shared features DO

default unify between following arguments:

new bg argument : t1 & [C *top*]

151

new co argument :

t9 & [C t27 & []

F *top*

D b]

**

**

START NEW DEFAULT UNIFICATION PROCESS

result is in cache (computation with arguments occured before)

SHORTCUT OF DEFAULT UNIFICATION SUCCEED

new FeatureValuePair(FT26,[t9 & []])

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :false

END DEFAULT UNIFICATION between following arguments :

t31 & [FT26 t1 & [C *top*]

FT27 t1 & [C *top*]

FT28 bool]

t32 & [FT27 t8 & [C t27 & []

D c

A t20 & [FT20 g]]

FT26 t9 & [C t27 & []

F *top*

D b]]

WITH FOLLOWING RESULT :

{t32 & [FT27 t8 & []

FT26 t9 & []]}

**

**

new FeatureValuePair(C,

t32 & [FT27 t8 & []

FT26 t9 & []])

>>

NEXT QUERY TO THE DELTA ITERATOR

152

hasNext? :true

assimilation deltas.next : t7 t2 t10

this delta is more general than some already computed one

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :true

assimilation deltas.next : t7 t1 t7

this delta is more general than some already computed one

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :false

END DEFAULT UNIFICATION between following arguments :

t11 & [E *top*

D c

C t31 & [FT26 t1 & [C *top*]

FT27 t1 & [C *top*]

FT28 bool]

A t20 & [FT20 i]]

t7 & [C t29 & []

B t28 & []]

WITH FOLLOWING RESULT :

{t10 & [B t28 & []

E *top*

C t32 & [FT27 t8 & []

FT26 t9 & []]

A t20 & [FT20 i]],

t12 & [F *top*

B t28 & []

C t32 & [FT27 t8 & []

FT26 t9 & []]

D d],

t13 & [B t31 & [FT28 bool

FT27 t5 & []

FT26 t7 & []]

D f

153

C t32 & [FT27 t8 & []

FT26 t9 & []]]

}

**

**

new FeatureValueList(FT26,{t10 & [B t28 & []

E *top*

C t32 & [FT27 t8 & []

FT26 t9 & []]

A t20 & [FT20 i]],

t12 & [F *top*

B t28 & []

C t32 & [FT27 t8 & []

FT26 t9 & []]

D d],

t13 & [B t31 & [FT28 bool

FT27 t5 & []

FT26 t7 & []]

D f

C t32 & [FT27 t8 & []

FT26 t9 & []]]

})

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :false

END DEFAULT UNIFICATION between following arguments :

t31 & [FT26 t11 & []

FT27 t10 & []

FT28 bool]

t31 & [FT28 bool

FT27 t5 & [C t27 & []

D a]

FT26 t7 & [C t29 & []

B t28 & []]]

WITH FOLLOWING RESULT :

{t31 & [FT28 bool

154

FT27 { t11 & [D c

E *top*

C t31 & [FT28 bool

FT26 t1 & [C *top*]

FT27 t5 & [C t27 & []

D a]]

A t20 & [FT20 i]],

t12 & [F *top*

D d

C t29 & [FT27 t5 & []

FT26 t1 & []]

B t28 & []],

t13 & [D f

C t32 & []

B t31 & [FT28 bool

FT27 t5 & []

FT26 t7 & []]] }

FT26 { t10 & [B t28 & []

E *top*

C t32 & [FT27 t8 & []

FT26 t9 & []]

A t20 & [FT20 i]],

t12 & [F *top*

B t28 & []

C t32 & [FT27 t8 & []

FT26 t9 & []]

D d],

t13 & [B t31 & [FT28 bool

FT27 t5 & []

FT26 t7 & []]

D f

C t32 & [FT27 t8 & []

FT26 t9 & []]] }]}

**

**

new FeatureValuePair(B,

t31 & [FT28 bool

FT27 { t11 & [D c

155

E *top*

C t31 & [FT28 bool

FT26 t1 & [C *top*]

FT27 t5 & [C t27 & []

D a]]

A t20 & [FT20 i]],

t12 & [F *top*

D d

C t29 & [FT27 t5 & []

FT26 t1 & []]

B t28 & []],

t13 & [D f

C t32 & []

B t31 & [FT28 bool

FT27 t5 & []

FT26 t7 & []]] }

FT26 { t10 & [B t28 & []

E *top*

C t32 & [FT27 t8 & []

FT26 t9 & []]

A t20 & [FT20 i]],

t12 & [F *top*

B t28 & []

C t32 & [FT27 t8 & []

FT26 t9 & []]

D d],

t13 & [B t31 & [FT28 bool

FT27 t5 & []

FT26 t7 & []]

D f

C t32 & [FT27 t8 & []

FT26 t9 & []]] }])

**

FOR feat C in set of shared features DO

default unify between following arguments:

new bg argument :

156

t33 & [FT26 t11 & []

FT27 t9 & []]

new co argument : t34 & []

**

**

START NEW DEFAULT UNIFICATION PROCESS

**

STARTING DELTAITERATOR FOR BG, CO : t33, t34

LUB(s) [t29]

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :true

assimilation deltas.next : t34 t29 t34

**

SPECIALIZATION

unify between following arguments:

t34 & [FT27 t8 & []

FT26 t12 & []]

t34 & [FT27 t8 & []

FT26 t12 & []]

GENERALIZATION

raise the first TFS to the second TFS:

t33 & [FT26 t11 & []

FT27 t9 & []]

t29 & [FT27 t5 & []

FT26 t1 & []]

generalized bg :

t29 & [FT27 t9 & []

FT26 t11 & []]

specialized co :

t34 & [FT27 t8 & []

157

FT26 t12 & []]

**

FOR feat FT27 in set of shared features DO

default unify between following arguments:

new bg argument : t9 & []

new co argument : t8 & []

**

**

START NEW DEFAULT UNIFICATION PROCESS

**

STARTING DELTAITERATOR FOR BG, CO : t9, t8

LUB(s) [t5]

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :true

assimilation deltas.next : t8 t5 t8

**

SPECIALIZATION

unify between following arguments:

t8 & [C t27 & []

D c

A t20 & [FT20 g]]

t8 & [C t27 & []

D c

A t20 & [FT20 g]]

GENERALIZATION

raise the first TFS to the second TFS:

t9 & [C t27 & []

F *top*

D b]

158

t5 & [C t27 & []

D a]

generalized bg :

t5 & [C t27 & []

D b]

specialized co :

t8 & [C t27 & []

D c

A t20 & [FT20 g]]

**

FOR feat A in set of features only in the specialized co :

new FeatureValuePair (A,t20 & [FT20 g])

**

FOR feat C in set of shared features DO

default unify between following arguments:

new bg argument : t27 & []

new co argument : t27 & []

**

**

START NEW DEFAULT UNIFICATION PROCESS

cover.equivalentTFS(background)

SHORTCUT OF DEFAULT UNIFICATION SUCCEED

new FeatureValuePair(C,[t27 & []])

**

FOR feat D in set of shared features DO

default unify between following arguments:

new bg argument : b

new co argument : c

159

**

**

START NEW DEFAULT UNIFICATION PROCESS

cover.equivalentTFS(prototypeCo) &&

background.equivalentTFS(prototypeBg) &&

typeHierarchy.hasGLB(typeBg, typeCo)

SHORTCUT OF DEFAULT UNIFICATION SUCCEED

new FeatureValuePair(D,[e])

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :false

END DEFAULT UNIFICATION between following arguments :

t9 & [C t27 & []

F *top*

D b]

t8 & [C t27 & []

D c

A t20 & [FT20 g]]

WITH FOLLOWING RESULT :

{t8 & [A t20 & [FT20 g]

C t27 & []

D e]}

**

**

new FeatureValuePair(FT27,

t8 & [A t20 & [FT20 g]

C t27 & []

D e])

**

FOR feat FT26 in set of shared features DO

default unify between following arguments:

new bg argument : t11 & []

160

new co argument : t12 & []

**

**

START NEW DEFAULT UNIFICATION PROCESS

**

STARTING DELTAITERATOR FOR BG, CO : t11, t12

LUB(s) [t5]

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :true

assimilation deltas.next : t12 t5 t12

**

SPECIALIZATION

unify between following arguments:

t12 & [F *top*

C t29 & [FT27 t5 & []

FT26 t1 & []]

B t28 & []

D d]

t12 & [F *top*

C t29 & [FT27 t5 & []

FT26 t1 & []]

B t28 & []

D d]

GENERALIZATION

raise the first TFS to the second TFS:

t11 & [E *top*

D c

C t31 & [FT26 t1 & [C *top*]

FT27 t1 & [C *top*]

FT28 bool]

A t20 & [FT20 i]]

161

t5 & [C t27 & []

D a]

generalized bg :

t5 & [C t31 & [FT26 t1 & [C *top*]

FT27 t1 & [C *top*]

FT28 bool]

D c]

specialized co :

t12 & [F *top*

C t29 & [FT27 t5 & []

FT26 t1 & []]

B t28 & []

D d]

**

FOR feat F in set of features only in the specialized co :

new FeatureValuePair (F,*top*)

**

FOR feat B in set of features only in the specialized co :

new FeatureValuePair (B,t28 & [])

**

FOR feat C in set of shared features DO

default unify between following arguments:

new bg argument :

t31 & [FT26 t1 & [C *top*]

FT27 t1 & [C *top*]

FT28 bool]

new co argument :

t29 & [FT27 t5 & []

FT26 t1 & []]

**

**

START NEW DEFAULT UNIFICATION PROCESS

162

result is in cache (computation with arguments occured before)

SHORTCUT OF DEFAULT UNIFICATION SUCCEED

new FeatureValuePair(C,

t32 & [FT27 t8 & []

FT26 t9 & []])

**

FOR feat D in set of shared features DO

default unify between following arguments:

new bg argument : c

new co argument : d

**

**

START NEW DEFAULT UNIFICATION PROCESS

result is in cache (computation with arguments occured before)

SHORTCUT OF DEFAULT UNIFICATION SUCCEED

new FeatureValuePair(D,[d])

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :false

END DEFAULT UNIFICATION between following arguments :

t11 & [E *top*

D c

C t31 & [FT26 t1 & [C *top*]

FT27 t1 & [C *top*]

FT28 bool]

A t20 & [FT20 i]]

t12 & [F *top*

C t29 & [FT27 t5 & []

FT26 t1 & []]

B t28 & []

D d]

163

WITH FOLLOWING RESULT :

{t12 & [F *top*

B t28 & []

C t32 & [FT27 t8 & []

FT26 t9 & []]

D d]}

**

**

new FeatureValuePair(FT26,

t12 & [F *top*

B t28 & []

C t32 & [FT27 t8 & []

FT26 t9 & []]

D d])

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :false

END DEFAULT UNIFICATION between following arguments :

t33 & [FT26 t11 & []

FT27 t9 & []]

t34 & [FT27 t8 & []

FT26 t12 & []]

WITH FOLLOWING RESULT :

{t34 & [FT27 t8 & [A t20 & [FT20 g]

C t27 & []

D e]

FT26 t12 & [F *top*

B t28 & []

C t32 & [FT27 t8 & []

FT26 t9 & []]

D d]]}

**

**

new FeatureValuePair(C,

t34 & [FT27 t8 & [A t20 & [FT20 g]

C t27 & []

164

D e]

FT26 t12 & [F *top*

B t28 & []

C t32 & [FT27 t8 & []

FT26 t9 & []]

D d]])

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :true

assimilation deltas.next : t5 t3 t12

Warning : the unification between cover and the prototype structure

of the GLB(cover,bg') already failed before

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :true

assimilation deltas.next : t5 t3 t13

this delta is more general than some already computed one

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :true

assimilation deltas.next : t5 t4 t9

**

SPECIALIZATION

unify between following arguments:

t5 & [C t30 & [FT27 t2 & []

FT26 t7 & []]

D c]

t9 & [C t27 & []

F *top*

D b]

GENERALIZATION

raise the first TFS to the second TFS:

165

t10 & [A t22 & [FT20 d

FT21 d]

B t31 & [FT26 t11 & []

FT27 t10 & []

FT28 bool]

C t33 & [FT26 t11 & []

FT27 t9 & []]

E *top*]

t4 & [C t27 & []]

generalized bg : t4 & [C t33 & [FT26 t11 & []

FT27 t9 & []]]

specialized co :

t9 & [F *top*

C t30 & []

D e]

**

FOR feat F in set of features only in the specialized co :

new FeatureValuePair (F,*top*)

**

FOR feat D in set of features only in the specialized co :

new FeatureValuePair (D,e)

**

FOR feat C in set of shared features DO

default unify between following arguments:

new bg argument :

t33 & [FT26 t11 & []

FT27 t9 & []]

new co argument : t30 & []

**

**

START NEW DEFAULT UNIFICATION PROCESS

166

**

STARTING DELTAITERATOR FOR BG, CO : t33, t30

LUB(s) [t27]

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :true

assimilation deltas.next : t30 t29 t34

**

SPECIALIZATION

unify between following arguments:

t30 & [FT27 t2 & []

FT26 t7 & []]

t34 & [FT27 t8 & []

FT26 t12 & []]

GENERALIZATION

raise the first TFS to the second TFS:

t33 & [FT26 t11 & []

FT27 t9 & []]

t29 & [FT27 t5 & []

FT26 t1 & []]

generalized bg :

t29 & [FT27 t9 & []

FT26 t11 & []]

specialized co :

t34 & [FT27 t8 & []

FT26 t12 & []]

**

FOR feat FT27 in set of shared features DO

default unify between following arguments:

new bg argument : t9 & []

167

new co argument : t8 & []

**

**

START NEW DEFAULT UNIFICATION PROCESS

result is in cache (computation with arguments occured before)

SHORTCUT OF DEFAULT UNIFICATION SUCCEED

new FeatureValuePair(FT27,

t8 & [A t20 & [FT20 g]

C t27 & []

D e])

**

FOR feat FT26 in set of shared features DO

default unify between following arguments:

new bg argument : t11 & []

new co argument : t12 & []

**

**

START NEW DEFAULT UNIFICATION PROCESS

result is in cache (computation with arguments occured before)

SHORTCUT OF DEFAULT UNIFICATION SUCCEED

new FeatureValuePair(FT26,

t12 & [F *top*

B t28 & []

C t32 & [FT27 t8 & []

FT26 t9 & []]

D d])

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :true

assimilation deltas.next : t30 t27 t30

this delta is more general than some already computed one

168

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :false

END DEFAULT UNIFICATION between following arguments :

t33 & [FT26 t11 & []

FT27 t9 & []]

t30 & [FT27 t2 & []

FT26 t7 & []]

WITH FOLLOWING RESULT :

{t34 & [FT27 t8 & [A t20 & [FT20 g]

C t27 & []

D e]

FT26 t12 & [F *top*

B t28 & []

C t32 & [FT27 t8 & []

FT26 t9 & []]

D d]]}

**

**

new FeatureValuePair(C,

t34 & [FT27 t8 & [A t20 & [FT20 g]

C t27 & []

D e]

FT26 t12 & [F *top*

B t28 & []

C t32 & [FT27 t8 & []

FT26 t9 & []]

D d]])

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :true

assimilation deltas.next : t5 t4 t13

this delta is more general than some already computed one

>>

169

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :true

assimilation deltas.next : t5 t2 t8

**

SPECIALIZATION

unify between following arguments:

t5 & [C t30 & [FT27 t2 & []

FT26 t7 & []]

D c]

t8 & [C t27 & []

D c

A t20 & [FT20 g]]

GENERALIZATION

raise the first TFS to the second TFS:

t10 & [A t22 & [FT20 d

FT21 d]

B t31 & [FT26 t11 & []

FT27 t10 & []

FT28 bool]

C t33 & [FT26 t11 & []

FT27 t9 & []]

E *top*]

t2 & [C *top*

A t19]

generalized bg :

t2 & [C t33 & [FT26 t11 & []

FT27 t9 & []]

A t22 & [FT20 d

FT21 d]]

specialized co :

t8 & [A t20 & [FT20 g]

C t30 & []

D c]

170

**

FOR feat D in set of features only in the specialized co :

new FeatureValuePair (D,c)

**

FOR feat A in set of shared features DO

default unify between following arguments:

new bg argument :

t22 & [FT20 d

FT21 d]

new co argument : t20 & [FT20 g]

**

**

START NEW DEFAULT UNIFICATION PROCESS

**

STARTING DELTAITERATOR FOR BG, CO : t22, t20

LUB(s) [t20]

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :true

assimilation deltas.next : t20 t22 t22

**

SPECIALIZATION

unify between following arguments:

t20 & [FT20 g]

t22 & [FT21 b

FT20 d]

GENERALIZATION

raise the first TFS to the second TFS:

t22 & [FT20 d

FT21 d]

171

t22 & [FT21 b

FT20 d]

generalized bg :

t22 & [FT21 d

FT20 d]

specialized co :

t22 & [FT21 b

FT20 { h ,

i }]

**

FOR feat FT21 in set of shared features DO

default unify between following arguments:

new bg argument : d

new co argument : b

**

**

START NEW DEFAULT UNIFICATION PROCESS

cover.equivalentTFS(prototypeCo) &&

background.equivalentTFS(prototypeBg) &&

typeHierarchy.subsumesType(typeCo,typeBg)

SHORTCUT OF DEFAULT UNIFICATION SUCCEED

new FeatureValuePair(FT21,[d])

**

FOR feat FT20 in set of shared features DO

default unify between following arguments:

new bg argument: d

new co argument: [h , i]

**

**

172

START NEW DEFAULT UNIFICATION PROCESS

cover.equivalentTFS(prototypeCo) &&

background.equivalentTFS(prototypeBg) &&

typeHierarchy.hasGLB(typeBg, typeCo)

SHORTCUT OF DEFAULT UNIFICATION SUCCEED

**

**

START NEW DEFAULT UNIFICATION PROCESS

result is in cache (computation with arguments occured before)

SHORTCUT OF DEFAULT UNIFICATION SUCCEED

new FeatureValueList(FT20,[h , i])

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :true

assimilation deltas.next : t20 t21 t22

this delta is more general than some already computed one

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :true

assimilation deltas.next : t20 t20 t20

this delta is more general than some already computed one

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :false

END DEFAULT UNIFICATION between following arguments :

t22 & [FT20 d

FT21 d]

t20 & [FT20 g]

WITH FOLLOWING RESULT :

{t22 & [FT21 d

FT20 { h ,

173

i }]}

**

**

new FeatureValuePair(A,

t22 & [FT21 d

FT20 { h ,

i }])

**

FOR feat C in set of shared features DO

default unify between following arguments:

new bg argument :

t33 & [FT26 t11 & []

FT27 t9 & []]

new co argument : t30 & []

**

**

START NEW DEFAULT UNIFICATION PROCESS

result is in cache (computation with arguments occured before)

SHORTCUT OF DEFAULT UNIFICATION SUCCEED

new FeatureValuePair(C,

t34 & [FT27 t8 & [A t20 & [FT20 g]

C t27 & []

D e]

FT26 t12 & [F *top*

B t28 & []

C t32 & [FT27 t8 & []

FT26 t9 & []]

D d]])

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :true

assimilation deltas.next : t5 t1 t5

this delta is more general than some already computed one

174

>>

NEXT QUERY TO THE DELTA ITERATOR

hasNext? :false

END DEFAULT UNIFICATION between following arguments :

t10 & [A t22 & [FT20 d

FT21 d]

B t31 & [FT26 t11 & []

FT27 t10 & []

FT28 bool]

C t33 & [FT26 t11 & []

FT27 t9 & []]

E *top*]

t5 & [C t30 & [FT27 t2 & []

FT26 t7 & []]

D c]

WITH FOLLOWING RESULT :

{t13 & [D f

B t31 & [FT28 bool

FT27 { t11 & [D c

E *top*

C t31 & [FT28 bool

FT26 t1 & [C *top*]

FT27 t5 & [C t27 & []

D a]]

A t20 & [FT20 i]],

t12 & [F *top*

D d

C t29 & [FT27 t5 & []

FT26 t1 & []]

B t28 & []],

t13 & [D f

C t32 & []

B t31 & [FT28 bool

FT27 t5 & []

FT26 t7 & []]] }

FT26 { t10 & [B t28 & []

175

E *top*

C t32 & [FT27 t8 & []

FT26 t9 & []]

A t20 & [FT20 i]],

t12 & [F *top*

B t28 & []

C t32 & [FT27 t8 & []

FT26 t9 & []]

D d],

t13 & [B t31 & [FT28 bool

FT27 t5 & []

FT26 t7 & []]

D f

C t32 & [FT27 t8 & []

FT26 t9 & []]] }]

C t34 & [FT27 t8 & [A t20 & [FT20 g]

C t27 & []

D e]

FT26 t12 & [F *top*

B t28 & []

C t32 & [FT27 t8 & []

FT26 t9 & []]

D d]]],

t9 & [F *top*

D e

C t34 & [FT27 t8 & [A t20 & [FT20 g]

C t27 & []

D e]

FT26 t12 & [F *top*

B t28 & []

C t32 & [FT27 t8 & []

FT26 t9 & []]

D d]]],

t8 & [D c

A t22 & [FT21 d

FT20 { h ,

i }]

C t34 & [FT27 t8 & [A t20 & [FT20 g]

176

C t27 & []

D e]

FT26 t12 & [F *top*

B t28 & []

C t32 & [FT27 t8 & []

FT26 t9 & []]

D d]]]

}

**

**

Processing time :0.089 sec

References 177

References

Krieger, H.-U., & Schäfer, U. Efficient parameterizable type expansion for
typed feature formalisms (Tech. Rep. No. RR-95-18).

Äıt-Kaci, H. (1993). An introduction to life-programming with logic, inheri-
tance, functions, and equations. In Ilps ’93: Proceedings of the 1993 in-
ternational symposium on logic programming (pp. 52–68). Cambridge,
MA, USA: MIT Press.

Äıt-Kaci, H., Boyer, R., Lincoln, P., & Nasr, R. (1989). Efficient implemen-
tation of lattice operations. ACM Trans. Program. Lang. Syst., 11 (1),
115–146.

Äıt-Kaci, H., & Nasr, R. (1986). Login: A logic programming language with
built-in inheritance. J. Log. Program., 3 (3), 185–215.

Alexandersson, J., & Becker, T. (2003, February). The formal foundations
underlying overlay. In Proceedings of the 5th international workshop on
computational semantics (iwcs-5). Tilburg, The Netherlands.

Alexandersson, J., & Becker, T. (2004). Default Unification for Discourse
Modelling. In H. Bunt & R. Muskens (Eds.), Computing meaning
(Vol. 3). Dordrecht: Kluwer Academic Publishers. (Forthcoming)

Alexandersson, J., & Becker, T. (2007). Efficient computation of overlay for
multiple inheritance hierarchies in discourse modeling. In H. Bunt &
R. Muskens (Eds.), (Vol. 3, pp. pp.423–455). Dordrecht:Kluwer.

Alexandersson, J., Becker, T., & Pfleger, N. (2004, September). Scoring
for overlay based on informational distance. In Konvens-04 (pp. 1–4).
Vienna, Austria.

B. Davey, A. H. P. (1990). Introduction to lattices and order. Cambridge
University Press.

Bommel, M. F. van, & Beck, T. J. (1999). Incremental encoding of multiple
inheritance hierarchies. In Cikm ’99: Proceedings of the eighth inter-
national conference on information and knowledge management (pp.
507–513). New York, NY, USA: ACM Press.

Bouma, G. (1990). Defaults in unification grammar. In Proceedings of
the 28th annual meeting on association for computational linguistics
(pp. 165–172). Morristown, NJ, USA: Association for Computational
Linguistics.

Bouma, G. (1992). Feature structures and nonmonotonicity. Computational
Linguistics, 18 (2), 183–203.

References 178

Callmeier, U. (2001). Efficient parsing with large-scale unification grammars.
Unpublished master’s thesis, Saarland University.

Carpenter, B. (1992). The logic of typed feature structures. Cambridge,
England: Cambridge University Press.

Carpenter, B. (1993). Skeptical and Credulous Default Unification with
Application to Templates and Inheritance. In A. C. E. J. Briscoe &
V. de Paiva (Eds.), Inheritance, Defaults and the Lexicon (pp. 13–37).
Cambridge, England: Cambridge University Press.

Carpenter, B., & Penn, G. (1998). Ale - the attribute logic engine - user’s
guide version 3.2.1.

Copestake, A. (1992). The Representation of Lexical Semantic Information.
Doctoral dissertation, University of Sussex.

Copestake, A. (1996). Inheritance in lexical representation.

Copestake, A. (2002). Implementing Typed Feature Structure Grammars
(No. 110). CSLI Publications.

Daelemans, W., Smedt, K. D., & Gazdar, G. (1992). Inheritance in natural
language processing. Comput. Linguist., 18 (2), 205–218.

Duchier, D. (2003, September). Configuration of labeled trees under lexical-
ized constraints and principles.

Emele, M. C., & Zajac, R. (1990). Typed unification grammars. In Proceed-
ings of the 13th conference on computational linguistics (pp. 293–298).
Morristown, NJ, USA: Association for Computational Linguistics.

Fraser, N. M., & Hudson, R. A. (1992). Inheritance in word grammar.
Computational Linguistics, 18 (2), 133–158.

Gazdar, G. (1987). Linguistic applications of default inheritance mecha-
nisms. In P. Whitelock, M. M. Wood, H. L. Somers, R. Johnson, &
P. Bennett (Eds.), Linguistic theory and computer applications (pp.
37–67). London: Academic Press.

Gerdemann, D. (1995a). Open and closed world types in NLP systems.
In Proceedings of 5. fachtagung der sektion computerlinguistik der dgfs
(pp. 25–30). Duesseldorf.

Gerdemann, D. (1995b). Term encoding of typed feature structures.

Gerdemann, D., & King, P. J. (1994). The correct and efficient implemen-
tation of appropriateness specifications for typed feature structures. In
Proceedings of the 15th conference on computational linguistics (pp.
956–960). Morristown, NJ, USA: Association for Computational Lin-
guistics.

References 179

Götz, T. (1993). A normal form for typed feature structures. Unpublished
master’s thesis, Universität Tb̈ingen, Germany.

Grover, C., Brew, C., Manandhar, S., & Moens, M. (1994). Priority union
and generalization in discourse grammars. In 32nd. annual meeting of
the association for computational linguistics (pp. 17 – 24). Las Cruces,
NM: Association for Computational Linguistics.

Halliday, M. A., & Matthiessen, C. M. (2004). An introduction to functional
grammar. Arnold Publishers.

Kaplan, R. M. (1987). Three seductions of computational psycholinguistics.
In D. et al. (Ed.), (chap. Linguistic Theory and Computer Applica-
tions). London Academic Press.

Krieger, H.-U. (1994a). TDL—a type description language for HPSG part i
(Tech. Rep.). DFKI.

Krieger, H.-U. (1994b). TDL—a type description language for HPSG part ii
(Tech. Rep.). DFKI.

Krieger, H.-U. (1995). TDL—a type description language for constraint-
based grammars. foundations, implementation, and applications. (Doc-
toral dissertation, Universität des Saarlandes, Department of Computer
Science). Saarbrücken Dissertations in Computational Linguistics and
Language Technology.

Lascarides, A., & Copestake, A. A. (1999). Default representation in
constraint-based frameworks. Computational Linguistics, 25 (1), 55-
105.

Michie, D. (1968). Memo functions and machine learning. In Nature, 218,
19–22.

Moore, R. C. (1995). Logic and representation (No. 39). Stanford, CA: CSLI
Publications.

Moshier, M. (1988). Extensions to unification grammar for the description of
programming languages. Unpublished doctoral dissertation, Ann Arbor,
MI, USA.

Ninomiya, T., Miyao, Y., & Tsujii, J. (2002). Lenient default unification
for robust processing within unification based grammar formalisms.
In Proceedings of the 19th international conference on computational
linguistics, coling 2002 (pp. 744–750). Taipei, Taiwan.

Plotkin, G. D. (1976). A powerdomain construction. SIAM J. Comput.,
5 (3), 452–487.

Pollard, C., & Sag, I. A. (1994). Head-driven phrase structure grammar.
Chicago, Illinois: University of Chicago Press and CSLI Publications.

References 180

Pollard, C. J., & Moshier, M. D. (1990). Unifying partial descriptions of
sets. In P. P. Hanson (Ed.), Logic programming and nonmonotonic
reasoning: 4th international conference. University of British Columbia
Press.

Prüst, H., Scha, R., & Berg, M. van den. (1994). Linguistics and philosophy
17. Springer.

Romanelli, M. (2005). Ontology-based representation and processing of plurals
for human-machine dialogue systems with unification-based operations.
Unpublished master’s thesis, Universität des Saarlandes.

Russell, G., Ballim, A., Carroll, J., & Warwick-Armstrong, S. (1992). A
practical approach to multiple default inheritance for unification-based
lexicons. Comput. Linguist., 18 (3), 311–337.

Russell, G., Carroll, J., & Warwick, S. (1991). Multiple default inheritance in
a unification-based lexicon. In D. Appelt (Ed.), Proceedings of the 29th
meeting of the association for computational linguistics (pp. 215–211).
Morristown, New Jersey: Association for Computational Linguistics.

Shieber, S. M. (1986). A simple reconstruction of gpsg. In Proc. of the 11th
coling (pp. 211–215). Bonn, Germany.

Siekmann, J. H. (1984). Universal unification. In Proceedings of the 7th
international conference on automated deduction (pp. 1–42). London,
UK: Springer-Verlag.

Smolka, G. (1988). A feature logic with subsorts (Tech. Rep.). Stuttgart:
IBM Germany. (LILOG report)

Smolka, G. (1992). Feature-constraint logics for unification grammars. Jour-
nal of Logic Programming, 12 (1&2), 51–87.

Vickers, S. (1989). Topology via logic. New York, NY, USA: Cambridge
University Press.

Wahllöf, N. (1996). A Default Extension to Description Logics and its Ap-
plications. (Linköping University, Licentiate Thesis)

Wahlster, W. (2003, September). Towards symmetric multimodality: Fusion
and fission of speech, gesture, and facial expression. In B. N. A. Günther
R. Kruse (Ed.), Ki 2003: Advances in artificial intelligence. proceed-
ings of the 26th german conference on artificial intelligence (pp. 1–18).
Berlin, Heidelberg: Springer.

Wahlster, W., & Wahlster, H. W. (2006, 0). Dialogue systems go multimodal:
The smartkom experience. In Smartkom - foundations of multimodal
dialogue systems (p. 3-27). Springer.

Young, M. A., & Rounds, W. C. (1993). A logical semantics for nonmonotonic

References 181

sorts. In Meeting of the association for computational linguistics (pp.
209–215).

	1 Introduction
	1.1 Outline

	2 Prerequisites---Theory
	2.1 Type Hierarchy
	2.2 TFS
	2.3 Well-Formed Unification
	2.4 Credulous Default Unification

	3 A Prescription of Well-formed Default Unification
	3.1 The Assimilation Process
	3.1.1 Specialization
	3.1.2 Generalization

	3.2 Type Preprocessing
	3.2.1 Account for Multiple Results during Type Preprocessing
	3.2.2 Termination of the Search for valid Type Configurations
	3.2.3 Reformulation of Carpenter's Definition for BPO Hierarchies

	3.3 The Algorithm
	3.3.1 Algorithm of the Default Unification

	4 Prerequisites---Practice
	4.1 Type Description Language---TDL
	4.1.1 The Structure of TDL Grammars
	4.1.2 Open World vs. Closed World

	4.2 The flop Preprocessor
	4.2.1 The Functions of flop
	4.2.2 ShUG

	4.3 Implementing the Lattice Operations
	4.3.1 Proper Types
	4.3.2 Synthetic Types
	4.3.3 Leaf Types
	4.3.4 mlb Calculation between Proper Types
	4.3.5 mlb Calculation between Proper Types and Leaf Types
	4.3.6 mlb Calculation between Leaf Types
	4.3.7 mub Calculation
	4.3.8 mlb Calculation between Leaf Types Revised
	4.3.9 Grouping the Hierarchy

	5 An Implementation of Well-formed Default Unification
	5.1 Precomputation on Types
	5.1.1 Delta Iterator
	5.1.2 Detection of Deltas due to Non-Determinism

	5.2 AVM related Functions
	5.2.1 The Design of TFS
	5.2.2 The Unifier Procedures
	5.2.3 An Extract of an Example

	6 Conclusions and Future Work
	6.1 Summary
	6.2 Future Work

	A Import of the Type Hierarchy
	A.1 Binary file generated by flop
	A.1.1 Sections

	A.2 Binary file read in by ShuG
	A.2.1 undump int
	A.2.2 undump short
	A.2.3 undump string
	A.2.4 undump node
	A.2.5 undump arc
	A.2.6 undump bitcode
	A.2.7 Header section
	A.2.8 TOC section
	A.2.9 Symbol-table section
	A.2.10 Hierarchy section
	A.2.11 Constraints section
	A.2.12 Supertypes section

	B Building the Type Hierarchy
	C Commented Output of a Concrete Default Unification
	References

