
Heterogeneous colimits

Mihai Codescu
DFKI Lab Bremen

D-28359 Bremen, Germany
Mihai.Codescu@dfki.de

Till Mossakowski
DFKI Lab Bremen and University of Bremen

D-28359 Bremen, Germany
Till.Mossakowski@dfki.de

Abstract

Colimits are a useful tool for the combination of speci-
fications and logical theories. We generalize the notion of
colimit to a heterogeneous multi-logic setting. For practi-
cally realistic cases, the notion has to be weakened. We
describe an algorithm that approximates the weaker notion
but obtains a colimit whenever possible. This algorithm is
being implemented as part of the Heterogeneous Tool Set
HETS.

1. Introduction

The notion of colimit has been used as a means for com-
bining logical theories and software specifications, see e.g.
[4] for the theory and [21] for a tool computing colimits of
specifications that has been successfully used in industrial
applications.

A major property of colimits of specifications is amalga-
mation. Roughly speaking, this property states that models
of given specifications can be combined to yield a uniquely
determined model of a colimit specification, provided that
the original models coincide on common components. The
amalgamation property (called ‘exactness’ in [6]) is a ma-
jor technical assumption in the study of specification se-
mantics [17] and is important in many respects. To give
a few examples: it is a prerequisite for good behaviour
w.r.t. parametrization and conservative extensions [6], and
the proof system for development graphs with hiding [15],
which allow a management of change for structured speci-
fications, is sound only for logics with amalgamation.

One implicit assumption behind what has been said so
far is that the theories or specifications all live within the
one and the same formalism. However, viewpoint specifi-
cations [3] and heterogeneous ontologies [18], which both
have received attention recently, involve different specifica-
tion formalisms. In such heterogeneous settings (typically
based on a graph of logics), colimits and amalgamation can
be obtained under certain conditions [5], but often, these

conditions are too strong to be met in practice. Hence, we
start from weaker conditions, using both amalgamable col-
imits as well weakly amalgamable cocones.

We then describe an algorithmic method of obtaining
weakly amalgamable cocones of heterogeneous diagrams,
as an approximation of heterogeneous colimits, better suited
for practical situations. We also present the way the graph
of logics and logic translations, which is the base for het-
erogeneous specifications, gets a 2-categorical structure by
adding the concept of modification, relating translations that
are essentially the same. These are currently being inte-
grated into the Heterogeneous Tool Set HETS [16].

2. Institutions and Comorphisms

Institutions [9] are the concept that is the basis of the
theory of structured and heterogeneous specifications. They
formalize in a model-oriented way the notion of logical sys-
tem, abstracting away the details of signatures, sentences
and models by not imposing other restriction on them than
the satisfaction condition, which has the meaning that truth
is invariant under change of notation and enlargement of
context.

Definition 1 An institution I = (Sign,Sen,Mod, |=) con-
sists of:

• a category Sign of signatures,

• a functor Sen : Sign −→ Set, giving for each signa-
ture Σ the set of sentences Sen(Σ) and for each signa-
ture morphism ϕ : Σ−→Σ′ a sentence translation map
Sen(ϕ) : Sen(Σ) −→ Sen(Σ′), where we may write
Sen(ϕ)(e) as ϕ(e),

• a functor Mod : Signop−→Cat giving for each signa-
ture Σ the category of models Mod(Σ) and for each
signature morphism ϕ : Σ −→ Σ′, the reduct functor
Mod(ϕ) : Mod(Σ′)−→Mod(Σ), where we may write
Mod(ϕ)(M ′) as M ′ �ϕ;

• a binary relation |=Σ⊆ |Mod(Σ)| × Sen(Σ), for each
signature Σ, called the satisfaction relation

such that the following satisfaction condition holds:

M ′ �ϕ|=Σ e ⇐⇒ M ′ |=Σ′ ϕ(e)

for each signature morphismϕ : Σ−→Σ′ , each Σ-sentence
e and each Σ′-model M ′.

Institutions have also been characterized [9] as func-
tors into a certain category of ’twisted relations’ or rooms,
denoted Room, whose objects (S,M, |=) consist of a
set of S of sentences, a category M of models and a
satisfaction relation |= ⊆ |M| × S and whose arrows
(α, β) : (S1,M1, |=1)−→ (S2,M2, |=2) consist of a sen-
tence translation function α : S1−→S2 and a model reduc-
tion functor β : M2−→M1, such that

M2 |=2 α(ϕ1)⇔ β(M2) |=1 ϕ1

holds for each M2 ∈ M2 and each ϕ1 ∈ S1 (satisfaction
condition).

Then, an institution can be defined as a functor
I : Sign −→Room. This definition allows us to express
results in a more concise manner.

Example 2 [18] Relational Schemes (for relational
databases). A signature of Rel consists of a set of relation
symbols, where each relation symbol is indexed with a
string of field names. Signature morphisms map relation
symbols and field names. A model consists of a domain
(set), and an n-ary relation for each relation symbol with
n fields. A model reduction just forgets the parts of a
model that are not needed. A sentence is a relationship
between two field names of two relation symbols. Sentence
translation is just renaming. A relationship is satisfied
in a model if for each element occurring in the source
field component of a tuple in the source relation, the same
element also occurs in the target field component of a tuple
in the target relation. 2

Example 3 [9] First-order Logic. In the institution FOL=

of many-sorted first-order logic with equality, signatures
are many-sorted first-order signatures, consisting of sorts
and typed function and predicate symbols. Signature mor-
phisms map symbols such that typing is preserved. Models
are many-sorted first-order structures. Sentences are first-
order formulas. Sentence translation means replacement
of the translated symbols. Model reduct means reassem-
bling the model’s components according to the signature
morphism. Satisfaction is the usual satisfaction of a first-
order sentence in a first-order structure. 2

Example 4 [13] The institution PFOL= of partial first-
order logic with equality. Signatures are many-sorted

first-order signatures enriched by partial function symbols.
Models are many-sorted partial first-order structures. Sen-
tences are first-order formulas involving existential equa-
tions (both sides are defined and equal) and strong equa-
tions (both sides are equally defined, and equal in case of
definedness). 2

Example 5 [2] Higher-order Logic. The institution
HOL= of many-sorted higher-order logic with equality ex-
tends FOL= with higher-order types, which are interpreted
as appropriate subsets of the function types, where appro-
priate means that all λ-terms can be interpreted (Henkin
semantics). Sentences extend first-order sentences by λ-
abstraction and arbitrary application. 2

Example 6 [1] Description Logics. Signatures of the de-
scription logic ALC consist of a set of B of atomic con-
cepts and a set R of roles, while signature morphisms pro-
vide respective mappings. Models are single-sorted first-
order structures that interpret concepts as unary and roles
as binary predicates. Sentences are subsumption relations
C1 v C2 between concepts, where concepts follow the
grammar

C ::= B | > |⊥ |C1 t C2 |C1 u C2 | ¬C | ∀R.C | ∃R.C

Sentence translation and reduct is defined similarly as in
FOL=. Satisfaction is the standard satisfaction of descrip-
tion logics. 2

Example 7 [20] The institution PLNG of a programming
language. It is built over an algebra of built-in data types
and operations of a programming language. Signatures
are given as function (functional procedure) headings; sen-
tences are function bodies; and models are maps that for
each function symbol, assign a computation (either diverg-
ing, or yielding a result) to any sequence of actual param-
eters. A model satisfies a sentence iff it assigns to each se-
quence of parameters the computation of the function body
as given by the sentence. Hence, sentences determine par-
ticular functions in the model uniquely. Finally, signature
morphisms, model reductions and sentence translations are
defined similarly to those in FOL=. 2

Within an arbitrary but fixed institution, we can eas-
ily define the usual notion of logical consequence or se-
mantical entailment. Given a set of Σ-sentences Γ and
a Σ-sentence ϕ, we say that ϕ follows from Γ, written
Γ |=Σ ϕ, iff for all Σ-models M , we have M |=Σ Γ im-
plies M |=Σ ϕ. (Here, M |=Σ Γ means that M |=Σ ψ for
each ψ ∈ Γ.)

A theory is a pair (Σ,Γ) where Γ is a set of Σ-sentences.
A theory morphism (Σ,Γ) −→ (Σ′,Γ′) is a signature mor-
phism σ : Σ −→ Σ such that Γ′ |=Σ′ σ(Γ). Given an
institution I , the institution of theories Ith has as signature

category the category of theories of I . The remaining com-
ponents are inherited from I , but with models of a theory
restricted to those actually satisfying its axioms.

Institution comorphisms [8] typically express that an in-
stitution is included or encoded into another one. Other kind
of mappings between institutions have also been introduced,
but we restrict ourselves here only to comorphisms.

Definition 8 Given institutions I1 : Sign1 −→ Room
and I2 : Sign2 −→ Room, an institution comorphism
(Φ, ρ) : I1−→I2 consists of a functor Φ: Sign1−→Sign2

and a natural transformation ρ : I1−→I2 ◦ Φ.

The natural transformation ρ may be thought of as
a pair of natural transformations (α : Sen1 −→ Sen2 ◦
Φ, β : Mod2 ◦ Φop −→ Mod1). Then, for any signature
Σ ∈ |Sign1|, the satisfaction condition for ρΣ becomes

M |=2 αΣ(e) ⇐⇒ βΣ(M) |=1 e

for any Σ-sentence e and any Φ(Σ)-model M , with the
meaning that truth is invariant under translation along co-
morphisms.

Together with obvious compositions and identities, this
gives us the category CoIns of institutions and institution
comorphisms.

Example 9 The obvious inclusions from FOL to PFOL=

and from FOL to HOL= are an institution comorphisms.

Example 10 The comorphism from the institution of re-
lational schemes to FOL maps signatures and mod-
els in the straightforward way, while each sentence
R(f1, .., fn) → R′(f ′1, ..., f

′
m) linking fields fi and f ′j is

translated to the first-order formula R(x1, ..., xn) =⇒
∃y1...yj−1yj+1...ym R′(y1, ..., yj−1, xi, yj+1, ..., ym).

2

Example 11 The translation of ALC to FOL is straight-
forward; see [1]. 2

Example 12 There is an institution comorphism from
PFOL= to FOLth that codes out partiality via error el-
ements. Details can be found in [13]. By composing with
the inclusion from FOLth to (HOL=)th, we get a comor-
phism from PFOL= to (HOL=)th. 2

Example 13 There is a so-called institution semi-
morphism toPFOL from PLNG to PFOL= [20]. It
extracts an algebraic signature Φ(Σ) with partial opera-
tions out of a PLNG-signature Σ by adding the signature
of built-in data types and operations of the programming
language. For any function declared, any PLNG-model
M determines its computations on given arguments, from
which we can extract a partial function that maps any

sequence of arguments to the result of the computation (if
any). These are used to expand the built-in algebra of data
types and operations of the programming language with an
interpretation for the extra function names in the signature
obtained, thus obtaining a PFOL=-model β(M).

In our setting, this can be modelled as a span of comor-
phisms

PLNG PFOL= ◦ Φ
toPFOL−oo toPFOL+

// PFOL=

SignPLNG idoo SignPLNG Φ // SignPFOL

SenPLNG incloo ∅ incl// SenPFOL ◦ Φ

ModPLNG β // ModPFOL=
◦ Φop

idoo ModPFOL ◦ Φop

Here, the “middle” institution PFOL= ◦ Φ is the insti-
tution with signature category inherited from PLNG, no
sentences, and models inherited from PFOL= via Φ.

2

Example 14 There is an institution comorphism from
PLNG to (HOL=)th that codes the semantics of PLNG
within higher-order logic. 2

Definition 15 An institution comorphism is model-
expansive, if each model translation βΣ is surjective on
objects.

All of the above comorphisms, except the second one from
Example 13, are model expansive. Model-expansive co-
morphisms allow for transportation of logical entailment
questions and hence re-use hence proof systems:

Proposition 16 Given a model-expansive comorphism
(Φ, α, β) : I−→J ,

Γ |=I ϕ iff αΣ(Γ) |=J α(ϕ)

3. Colimits and Amalgamation

We briefly recall the categorical notion of colimit. Col-
imits are a mean of combining interconnected objects con-
sistently to this interconnection (see motivations in [9]). A
diagram in a category C is a functor D : G −→ C, where
G can be thought of as the graph of interconnections be-
tween the objects the functor D selects. A cocone of a
diagram D : G −→ C consists of an object c of C and a
family of morphisms αi : D(i) −→ c, for each object i of
G, such that for each edge of the diagram, e : i −→ i′ we
have that D(e);αi′ = αi. A colimiting cocone (or col-
imit) (c, {αi}i∈|G|) can be intuitively understood as a min-
imal cocone, i.e. has the property that for any other cocone
(d, {βi}i∈|G|) there exists a unique morphism γ : c −→ d

such that αi; γ = βi. By dropping the uniqueness condi-
tion and requiring only that a morphism γ should exist, we
obtain a weak colimit.

When G is the category • •oo // • with 3 ob-
jects and 2 non-identity arrows, the G-colimits are called
pushouts.

Since specifications are actually theories over some in-
stitution (i.e. pairs (Σ, E) with Σ a signature and E a set of
Σ-sentences) we are actually interested in computing colim-
its of theories rather than just signatures. To obtain a colimit
of theories, it suffices to compute the colimit of signatures
and then the set of sentences of the colimit theory is de-
fined as the union of all component theories in the diagram,
translated along the signature morphisms of the colimiting
cocone.

In the sequel, fix an arbitrary institution I =
(Sign,Sen,Mod, |=).

Definition 17 Given a diagram D : J −→ SignI , a family
of models (Mj)j∈|J| is called D-compatible if Mk �D(δ)=
Mj for each δ : j−→k ∈ J . A cocone (Σ, (µj)j∈|J|) over
the diagram in D : J−→SignI is called weakly amalgam-
able if for each D-compatible family of models (Mj)j∈|J|,
there is a Σ-model M with M �µj

= Mj (j ∈ |J |) 1. If this
model is unique, the cocone is called amalgamable. I (or
Mod) admits (finite) (weak) amalgamation if (finite) colimit
cocones are (weakly) amalgamable. An important special
case is the one of pushouts: I is called (weakly) semi-
exact, if it has pushouts and admits (weak) amalgamation
for these. 2

Amalgamation resp. exactness can be lifted to comor-
phisms as follows:

Definition 18 Let ρ = (Φ, α, β) : I−→J be an institution
comorphism and let D be a class of signature morphisms
in I . Then ρ is said to have the (weak) D-amalgamation
property, if for each signature morphism σ : Σ1 −→ Σ2 ∈
D, the diagram

ModI(Σ2)

ModI(σ)

��

ModJ(Φ(Σ2))

ModJ (Φ(σ))

��

βΣ2oo

ModI(Σ1) ModJ(Φ(Σ1))
βΣ1oo

admits (weak) amalgamation, i.e. any for any two models
M2 ∈ModI(Σ2) andM ′1 ∈ModJ(Φ(Σ1)) withM2 � σ =
βΣ1(M ′1), there is a unique (not necessarily unique) M ′2 ∈
ModJ(Φ(Σ2)) with βΣ2(M ′2) = M2 and M ′2 � Φ(σ) =
M ′1. In case that D consists of all signature morphisms,
the (weak) D-amalgamation property is also called (weak)
exactness. 2

1Recall that we use M �µ for Mod(µ)(M) (see Definition 1).

4. Grothendieck Institutions

The Grothendieck construction for indexed institutions
(based on institution morphisms) has been defined in [5];
we here describe the dual, comorphism-based variant [12].
The idea is to begin with a graph of logics and logics
translations and then to flatten this graph, using a so-called
Grothendieck construction.

Definition 19 Given an index category Ind, an indexed
coinstitution is a functor I : Indop−→CoIns into the cat-
egory of institutions and institution comorphisms.

In an indexed coinstitution I, we use the notation Ii =
(Signi,Seni,Modi, |=i) for I(i), (Φd, ρd) for the comor-
phism I(d).

Definition 20 Given an indexed coinstitution
I : Indop −→ CoIns, define the Grothendieck insti-
tution I# as follows:

• signatures in I# are pairs (i,Σ), where i ∈ |Ind| and
Σ a signature in Ii,

• signature morphisms (d, σ) : (i,Σ1) −→ (j,Σ2) con-
sist of a morphism d : j −→ i ∈ Ind and a signature
morphism σ : Φd(Σ1)−→Σ2 in Ij ,

• composition is given by (d2, σ2) ◦ (d1, σ1) = (d1 ◦
d2, σ2 ◦ Φd2(σ1)),

• I#(i,Σ) = Ii(Σ), and I#(d, σ) =

Ii(Σ1)
ρd

// Ij(Φd(Σ1))
Ij(σ) // Ij(Σ2) .

That is, sentences, models and satisfaction for a
Grothendieck signature (i,Σ) are defined component
wise, while the sentence and model translations for a
Grothendieck signature morphism are obtained by com-
posing the translation given by the inter-institution comor-
phism with that given by the intra-institution signature mor-
phism. We also denote the Grothendieck institution by
(Sign#,Sen#,Mod#, |=#).

The following results regarding cocompleteness and ex-
actness of Grothendieck institutions have been proved in
[12].

Theorem 21 Let I : Indop−→CoIns be an indexed coin-
stitution and K be some small category such that

1. Ind is K-complete (that is, has limits of all diagrams
over K),

2. Φd is K-cocontinuous for each d : i −→ j ∈ Ind
(meaning that it preserves colimits), and

3. the indexed category of signatures of I is locally
K-cocomplete (the latter meaning that Signi is K-
cocomplete for each i ∈ |Ind|).

Then the signature category Sign# of the Grothendieck in-
stitution has K-colimits. 2

An indexed coinstitution I : Indop −→ CoIns is
called (weakly) locally semi-exact, if each institution Ii is
(weakly) semi-exact (i ∈ |Ind|).
I is called (weakly) semi-exact if for each pullback in

Ind

i j1
d1oo

j2

d2

OO

k
e2oo

e1

OO

the square

Modi(Σ) Modj1(Φd1(Σ))
β

d1
Σoo

Modj2(Φd2(Σ))

β
d2
Σ

OO

Modk(Φe1(Φd1(Σ)))
β

e2
Σoo

β
e1
Σ

OO

is a (weak) pullback for each signature Σ in Signi.

Theorem 22 Assume that the indexed coinstitution
I : Indop −→ CoIns fulfills the assumptions of Theo-
rem 21. Then the Grothendieck institution I# is (weakly)
semi-exact if and only if

1. I is (weakly) locally semi-exact,

2. I is (weakly) semi-exact, and

3. for all d : i−→j ∈ Ind, Id is (weakly) exact.

The importance of this theorem show up in connection
with Prop. 16:

Corollary 23 The proof system for development graphs
with hiding [15] can be re-used for Grothendieck institu-
tions satisfying the assumptions of Theorem 22, provided
that each of the involved institutions can be mapped (via a
model-expansive comorphism) into a proof-supported insti-
tution.

5. The Heterogeneous Tool Set (HETS)

The heterogeneous tool set (Hets) is a parsing, static
analysis and proof management tool combining various
such tools for individual specification languages, thus pro-
viding a tool for heterogeneous multi-logic specification.
The heterogeneous tool set is a both flexible, multi-lateral

and formal (i.e. based on a mathematical semantics) in-
tegration tool. Unlike other tools, it treats logic transla-
tions (formalised as institution comorphisms) as first-class
citizens. The architecture of the heterogeneous tool set is
shown in Fig. 1 (see [16] for detailed discussion).

Figure 1. Architecture of the heterogeneous
tool set

Heterogeneous colimits are needed for several purposes
in Hets:

• The proof calculus for development graphs [15] has
been generalised to Grothendieck institutions [12]. In
order to handle hiding (of parts of specifications) cor-
rectly, during a proof, the hidden parts have to be re-
vealed. This is done using colimits, and in the case
of the Grothendieck institutions, these colimits are of
course heterogeneous.

• In order to prove correctness of a heterogeneous the-
ory morphism (refinement) σ : N1 −→ N2, we have
to translate N1 and N2 into the same logic so we can
make the proof. The logical framework approach as-
sumes that the theories of N1 and N2 are encoded into
some logic that is fixed once and forall. By contrast,
in HETS we can rather flexibly find a logic that is a
“common upper bound” (=some weak form of colimit)
of the logics of both N1 and N2 and that moreover has
best possible tool support.

• Colimits also appear in the semantics of instantiation
of parameterised specifications.

• Colimits play a role for alignments of ontologies [22],
and recently, also heterogeneous ontologies have been
studied [18]. Therefore, we have added a menu for
directly computing heterogeneous colimits with Hets.

6. Example: Heterogeneous Ontologies

Example 24 Let us consider the following formalisation
of bibliographical data from [18]: we have a description
logic T-Box formalized as anALC signature Σ1 with atomic
concepts B = {Researcher,Article, Journal} and roles
R = {name, author, title, hasArticle, impactFactor}.
The axioms AxDLbib are

Researcher v ∃name.>
Article v ∃author.> u ∃title.>
Journalv∃name.>

u∃hasArticle.>u∃impactFactor.>
This is assumed to be a fragment of a larger ALC ontol-

ogy with signature Σ2.
On the other hand, there is a similar formalisation us-

ing the relational schema with signature Σ3 and axioms
AxRelBib presented in Figure 2 as a fragment of a larger
relational schema Σ4 of some relational database.

Relational schema of information system A:

person(id, name) author_of(person, paper) paper(id, title, published_in) journal(id, name, impact_factor)

DL T-Box of information system B:

Researcher v ∃name.>
Article v ∃author.> u ∃title.>

Journal v ∃name.> u ∃hasArticle.> u ∃impactFactor.>

Reference theory (or ontology) T of the scientific publications domain (using a fragment of the
AKT Reference Ontology available at http://www.aktors.org/publications/ontology/)):

∀x (Working Person(x) → (Tangible Thing(x) ∧ ∃y (String(y) ∧ Name(x, y))))

∀x (Researcher(x) → Working Person(x))

∀x (Composite Publication(x) → (Tangible Thing(x) ∧ ∃y (String(y) ∧ Name(x, y))

∧ ∃z (Publication(z) ∧ Has Publication(x, z))))

∀x (Journal(x) → (Composite Publication(x) ∧ ∃y (Article(y) ∧ Has Article(x, y))

∧ ∃z (Real(z) ∧ Impact Factor(x, z))))

∀x ∀y (Has Article(x, y) → Has Publication(x, y))

∀x (Proceedings(x) → (Composite Publication(x) ∧ ∃y (Paper(y) ∧ Has Paper(x, y))))

∀x ∀y (Has Paper(x, y) → Has Publication(x, y))

∀x (Publication(x) → (Tangible Thing(x) ∧ ∃y (Researcher(y) ∧ Author(x, y))

∧ ∃z (String(z) ∧ Title(x, z))))

∀x (Article(x) → Publication(x))

∀x (Paper(x) → Publication(x))

Maps αA and αB of sentences, defined over the recursive structure of sentences of the
first-order languages of the relational schema and the DL T-Box as follows:

αA(person(p, n)) = Researcher(p) ∧ String(n) ∧Name(p, n)

αA(author of (p, a)) = Researcher(p) ∧Article(a) ∧Author(a, p)

∧∃j (Journal(j) ∧Has Article(j, a))

αA(paper(a, t, j)) = Article(a) ∧ String(t) ∧ Journal(j)

∧Has Article(j, a) ∧ Title(a, t)

αA(journal(j, n, f)) = Journal(j) ∧ String(n) ∧ Real(f)

∧Name(j, n) ∧ Impact Factor(j, f)

αB(Article(x)) = Publication(x)

Map αB is the identity on the remaining parameters of B’s language. It is easy to proof that αA
and αB are indeed theory interpretations.

Figure 1: Example of a semantic integration of system A based on a relational schema

and system B based on a DL T-Box with respect to reference theory T .

7

Figure 2. Relational schema of an information
system

[18] link these two ontologies by mapping both into a
given reference ontology T living in first-order logic. How-
ever, with this approach, the question whether the axioma-
tizations AxDLbib and AxRelBib have comparable strength
cannot be studied at all.

Hence, we here follow a different approach. Instead of
using a common reference theory, we specify an interface
theory Interface in FOL that relates the two ontologies as
follows here:
∀ p, j, n, f, a, t : s
. journal(j, n, f)⇔
Journal(j) ∧ name(j, n) ∧ impactFactor(j, f)
. paper(a, t, j)⇔
Article(a) ∧ Journal(j) ∧ hasArticle(j, a) ∧ title(a, t)
. author of(p, a)⇔
Researcher(p) ∧Article(a) ∧ author(p, a)
. person(p, n)⇔ Researcher(p) ∧ name(p, n)

The signature Σ of this interface theory is the union of
the translations (as given by the comorphisms from Exam-
ples 10 and 11) of Σ1 and Σ3 to first-order logic.

Assume we want to check whether all models of the the-
ory AxDLbib in Σ2 are models of a theory AxRelBib in Σ4.
Both theories would have to be translated into a common
language. We construct the diagram in figure 3 (notice
that we marked distinctively the inclusions) and we com-
pute its colimit, then we try to prove that θ1(AxDLbib) |=
θ2(AxRelBib), where we denote θ1 = γ1; δ1. 2

(FOL,Σ′′)

(FOL,Σ′)

(idFOL,δ1)

<<

(ALC,Σ2)

(ALC2FOL,γ1)
<<

(FOL,Σ)

(idFOL,γ2)
bb

(Rel,Σ4)

(Rel2FOL,θ2)

aa

(ALC,Σ1)
1 Q

(idALC ,φ1)
bbEEEEEEEE -

(ALC2FOL,σ1)

<<yyyyyyyy
(Rel,Σ3)

0 P

(Rel2FOL,σ2)
bbDDDDDDDD . �

(idRel,φ2)

=={{{{{{{{

Figure 3.

Using the Heterogeneous Tool Set HETS, we found out
that only two of the axioms in AxRelBib are provable in
this way; the second relationship pointing from the paper
field of the author of relation to the id field of the paper
relation cannot be deduced from the description logic ax-
iomatization AxDLbib. The reason for this is that AxDLbib
does not state that an Article must appear in Journal. In
order to extendAxDLbib accordingly, the inverse of the role
hasArticle would be needed.

7. Relaxing Colimits and Amalgamation

The example of the last section shows that theorems 21
and 22 have too strong premises to be applied in all practi-
cal situations. Given a diagram J → Ind, its limit must be
the index of some institution that can serve to encode, via
comorphisms, all the institutions indexed by the diagram.
The existence of such an institution may not be a problem,
but the uniqueness condition imposed by the limit property
is more problematic. This means that any two such “uni-
versal” institutions must have isomorphic indices and hence
be isomorphic themselves. This might work well in some
circumstances, but may not desirable in others: after all, a
number of non-isomorphic logics, such as classical higher-
order logic, the calculus of constructions and rewriting logic
have been proposed as such a “universal” logic. Also, the
assumptions of Theorem 22 may not hold in all the cases
- e.g. institutions with subsorts [19] are not weakly semi-
exact.

Therefore, we drop the uniqueness restriction by replac-
ing weak exactness with quasi-exactness, i.e. amalgam-
able colimits with weakly amalgamable cocones. Also, the
new framework will allow non-exact institutions and co-
morphisms to be included in the indexed coinstitution serv-
ing as basis of the Grothendieck construction.

A problem occurs when using this approach, namely a
great number of comorphisms with the same behaviour are
introduced via compositions. Therefore, we use the insti-

tution comorphism modifications to identify comorphisms
with the same sentence and model translation maps.

Hence, we strengthen the original notion from [5] to dis-
crete modifications:

Definition 25 Given institution comorphisms
(Φ, ρ) : I1 −→ I2 and (Φ′, ρ′) : I1 −→ I2, a discrete
institution comorphism modification θ : (Φ, ρ)−→ (Φ′, ρ′)
is a natural transformation θ : Φ −→ Φ′ such that
(I2 · θ) ◦ ρ = ρ′.

Together with obvious identities and compositions, dis-
crete modifications can serve as 2-cells, and thus CoIns is
turned into a 2-category.

We obtain a congruence on Grothendieck signature mor-
phisms: the congruence is generated by

(d′, IuΣ : Φd
′
(Σ)−→Φd(Σ)) ≡ (d, id : Φd(Σ)−→Φd(Σ))

for Σ ∈ Signi, d, d′ : j−→ i ∈ Ind, and u : d⇒ d′ ∈ Ind.
This congruence has the following crucial property:

Proposition 26 ≡ is contained in the kernel of I# (consid-
ered as a functor).

Let qI : Sign# −→ Sign#/ ≡ be the quotient functor
induced by ≡definition of quotient category). Note that it
is the identity on objects. We easily obtain that the functor
I# factors through the quotient category Sign#/≡.

Corollary 27 I# : Sign# −→Room leads to a quotient
Grothendieck institution I#/≡ : Sign#/≡−→Room.

By abuse of notation, we denote I#/ ≡ by (Sign#/ ≡
,Sen#,Mod#, |=#).

Consider the span of comorphisms

PLNG PFOL=◦ΦtoPFOL−oo toPFOL+
// PFOL= for which

we want to obtain a weakly amalgamable cocone. But
this can e.g. be given by coding of both PFOL= and
PLNG into a common logic such as higher order logic
(see Examples 12 and 14) . However, the resulting square
does not commute, since on the way from PFOL= ◦ Φ
to HOL= via PFOL=, the operational semantics of the
programming language is expressed in HOL=. But there
is a diagram of two-cells:

HOL=

PLNG

PLNG2HOL

77ooooooooooo id +3 θks PFOL=

PFOL2HOL

ggOOOOOOOOOOO

PFOL= ◦ Φ
toPFOL−

ggOOOOOOOOOOO toPFOL+

77ooooooooooo

OO

which is weakly amalgamable in the following sense:

Definition 28 Given a 2-indexed coinstitution
I : Indop −→ CoIns, a square consisting of two lax
triangles of index morphisms

i

j2

d2

??��������
u2 +3 u1ks j1

d1

__????????

k

e2

__??????? e1

??�������
d

OO

is called (weakly) amalgamable, if each pair consisting
of a Φd2(Σ)- and a Φd1(Σ)-model with the same Σ-
reduct is (weakly) amalgamable to a pair consisting of a
Φe2(Φd2(Σ))- and a Φe1(Φd1(Σ))-model having the same
Φd(Σ)-reduct.
I is called lax-quasi-exact, if each for pair of arrows

j1
d1 // i j2

d2oo in Ind, there is some weakly amal-
gamable square of lax triangles as above, such that addi-
tionally Ik is quasi-semi-exact.

Theorem 29 For a 2-indexed coinstitution I : Ind∗ −→
CoIns, assume that

• I is lax-quasi-exact, and

• all institution comorphisms in I are weakly exact.

Then I#/≡ is quasi-semi-exact.

8. Algorithms for the Relaxed Setting

Call a diagram connected if the graph underlying its
index category is connected when the identity arrows are
deleted. A diagram is thin, or a preorder, if its index cat-
egory is thin, i.e. there is at most one arrow between two
objects. A preorder is finitely bounded inf-complete if any
two elements with a common lower bound have an infimum.

Corollary 30 Let I satisfy the assumptions of Theorem 29.
Then I#/≡ admits weak amalgamation of connected
finitely bounded inf-complete diagrams.

Proof. Let D : J −→ Sign# be a connected diagram and
let Max be the set of maximal nodes in J . We successively
construct new diagrams out of J . Take two nodes in Max
that have a common lower bound (if two such nodes do
not exist, the diagram is not connected). By Theorem 29,
there is a weak amalgamating cocone for the sub-diagram
consisting of the two maximal nodes and their infimum (to-
gether with the arrows from it into the maximal nodes). Ex-
tend the diagram with the cocone. The diagram thus ob-
tained now has a set of maximal nodes whose size is de-
creased by one. By iterating this construction, we get a di-
agram with one maximal node. The maximal node then is

just the tip of a weakly amalgamating cocone for the origi-
nal diagram.

Analogous to Cor. 23, we have:

Corollary 31 The proof system for development graphs
with hiding [15] can be re-used for Grothendieck institu-
tions satisfying the assumptions of Cor. 30, provided that
each of the involved institutions can be mapped (via a
model-expansive comorphism) into a proof-supported insti-
tution.

This result leads to a weakly amalgamable square in the
Grothendieck institution as follows:

(PFOL= ◦ Φ,Σp)

(toPFOL−,id)

vvmmmmmmmmmmmmm
(toPFOL+,id)

((RRRRRRRRRRRRR

(PLNG,ΣP)

(PLNG2HOL,id) ((QQQQQQQQQQQQQ
(PFOL=,ΣS)

(PFOL2HOL,θΣS
)vvlllllllllllll

(HOL=, PLNG2HOL(ΣP))

The algorithm implemented in HETS for obtaining
weakly amalgamable cocones of heterogeneous diagrams
has some differences with the construction presented in the
Corollary 30. From the practical point of view, it is more
convenient not to check whether the entire I is lax-quasi-
exact or if all comorphisms existing in the logic graph are
weakly exact, but to test this each time a pair of maximal
nodes is chosen. Since the tests may fail to hold for a par-
ticular situation, we use backtracking on pairs of maximal
nodes and weakly amalgamable squares of lax triangles to
explore all possible choices. Also, for homogeneous dia-
grams, weakly amalgamable cocones are computed within
the institution, without further assumptions on the shape of
diagram.

Another difference is that the situation when the preorder
is not finitely bounded inf-complete is also considered, i.e.
the two maximal nodes do not have an infimum, but several
maximal common lower bounds. For simplicity, we may
assume that only two such maximal common lower bounds
exist, see following diagram:

(i1,Σ1) (i2,Σ2)

(i3,Σ3)

(d1,ϕ1)

OO

(d2,ϕ2)

44jjjjjjjjjjjjjjjjjj
(i4,Σ4)(d3,ϕ3)

jjUUUUUUUUUUUUUUUUUU
(d4,ϕ4)

OO

Then, one of these common lower bounds, in our case
say (i3,Σ3) is selected for building the span for which we
compute the weak amalgamating cocone, as in Theorem

29. Assume this is (i1,Σ1)
(e1,ρ1) // (j,Σ) (i2,Σ2)

(e2,ρ2)oo .
If the equality d3; e1 = d4; e2 holds and Signj has coequal-
izers, we consider the following double arrow

Φd3;e1(Σ4)
Φe1 (ϕ3);ρ1

++

Φe2 (ϕ4);ρ2

33 Σ γ
// Σ′

for which we compute the coequalizer
(γ,Σ′). Then the diagram is extended with

(i1,Σ1)
(e1,ρ1;γ)// (j,Σ′) (i2,Σ2)

(e2,ρ2:γ)oo . If for a par-
ticular choice of maximal bound, one of the assumptions
fails to hold, a new common lower bound is selected until
all have been considered.

Definition 32 A weakly amalgamable square of lax trian-
gles

i

j2

d2

??��������
u2 +3 u1ks j1

d1

__????????

k

e2

__??????? e1

??�������
d

OO

is sufficiently large for a set of spans in Ind of shape

j1 ka
f1aoo f2a // j2 if Ik has coequalizers and for each

of the spans in the set, f1a; d1 = f2a; d2.

A diagram is compatible with squares if for any two
maximal nodes of indexes j1 and j2 there exists a choice
of a maximal common lower bound with the index i and a
weakly amalgamable square of lax triangles which is suf-
ficiently large for the set of spans obtained from the other
maximal common bounds.

Corollary 33 Let I satisfy the assumptions of Theorem 29.
Then I#/≡ admits weak amalgamation of connected
finitely thin diagrams if when extending the diagram with
new maximal nodes the compatibility with squares is pre-
served.

To conclude, the algorithm’s steps are the following:

1. Check whether the diagram is homogeneous. If it is,
compute a weakly amalgamable cocone in the under-
lying institution.

2. If the diagram is not connected or not thin, the algo-
rithm fails.

3. Let Max be the set of maximal nodes of the diagram.
If Max has only one element, then this is a weakly
amalgamable cocone of the original diagram.

4. Pick two maximal nodes that have a common lower
bound (the diagram is connected, so we know they ex-
ist).

5. Check whether the maximal nodes have an infimum.
If they do, compute a weakly amalgamable cocone of
the span obtained from the arrows from this infimum
to the maximal nodes and extend the diagram with it.
Then return to step 3. If we fail to compute the weakly
amalgamable cocone (i.e. we do not have the square of
lax triangles), return to step 4 to make a new choice.

6. If the two maximal nodes do not have an infimum,
compute the list of all maximal common lower bounds
of the two nodes.

7. Pick a maximal lower bound and compute a weakly
amalgamable cocone of the span obtained from it and
the two maximal nodes.

8. For all the others maximal lower bounds, check
whether the coequalizers can be computed (as ex-
plained above). If this succeeds, extend the diagram
with the new node and the arrows to it and go back
to step 3. If it fails, return to step 7 to pick another
bound. If all the options have failed, return to step 4 to
pick new maximal nodes.

Notice that the algorithm could find several weakly
amalgamable cocones, if there are more squares of lax tri-
angles available for two maximal nodes and a bound. We
prefer to display all possible answers and let the user select
a cocone, since a certain logic may have better problem-
specific tool support. This is also the main advantage over
an algorithm that translates the entire diagram to some “uni-
versal” logic and computes its colimit.

During the implementation of the algorithm, we also
needed to test whether two arbitrary compositions of in-
stitution comorphism modifications (as natural transforma-
tion, therefore both horizontal and vertical compositions2)
are equal. These two kinds of compositions are related by
the so-called “Interchange Law” stating that for any natural
transformations γ, µ, η, ε

(γ ∗ η) ◦ (µ ∗ ε) = (γ ◦ µ) ∗ (η ◦ ε)

when the compositions on the left side are defined. Using
this law and rules for cancelling identities, we develop a
term rewrite system (see figure 4) which we prove terminat-
ing and confluent. Then, two arbitrary terms denoting valid
compositions are equal if they rewrite to the same normal
form.

While termination of the term rewrite system is easy to
notice (since for all the rules, on the right side either the

2We denote ∗ the horizontal composition and ◦ the vertical one.

(γ ∗ η) ◦ (µ ∗ ε)→ (γ ◦ µ) ∗ (η ◦ ε)
1F ◦ γ → γ
γ ◦ 1G → γ
1F ∗ 1G → 1F ;G

Figure 4. Rewrite rules for deciding equality
of comorphism modifications

depth of term or the number of horizontal compositions de-
creases), proving confluence is a little more difficult. We
used the Church-Rosser checker [7] written in Maude to ob-
tain the critical pairs of the term rewriting system and then
noticed that all of them are eliminated in the case of type-
correct terms (i.e. modifications that actually compose).

9. Conclusion

We have presented an algorithm that generalises the
computation of colimits of specifications to a heterogeneous
setting. It has turned out that the notion of (amalgam-
able) colimit has to be replaced by that of weakly amal-
gamable cocone in order to obtain a framework that is gen-
eral enough to cover practically interesting cases. More-
over, the algorithm provides a true colimit whenever this
is possible. We have illustrated the approach with two ex-
amples: one involving the relation between specification
and programming. For this example, the 2-categorical ma-
chinery is needed in order to construct a weakly amalgam-
able cocone (which in turn is essential for proving refine-
ments in the proof calculus for development graphs with
hiding [15]). The other example concerns ontologies for
bibliographical information, and links the schema of a re-
lational database with an ontology specified in description
logic. Here, the heterogeneous situation is simpler, because
the involved formalisms can be mapped to first-order logic,
where also an interface theory lives. However, the logi-
cal structure is a bit more complex: in a sense, a refine-
ment between two weakly amalgamable cocones needs to
be proved. This approach has the advantage (compared with
the integration into a common reference ontology pursued
in [18]) that the involved axiomatisations can be directly
compared w.r.t. their strength. We have pointed out where
the strength differs, and how this can be changed if wanted.
The integration into a common reference ontology in [18] is
of much weaker nature: it just states that the two axiomati-
zations have a common upper bound. It should be stressed
that the cocone computed for this example falls outside the
scope of the standard theorems from the literature [5], be-
cause FOL generally is not the colimit institution for this
diagram.

Concerning related work, [10] tackle the same problem

as the present paper, but involving the invention of new in-
stitutions, without making clear how these will be equipped
with proof systems. Moreover, amalgamation is not studied
at all.

The algorithm is being implemented as part of the Het-
erogeneous Tool Set HETS. Future work should provide
more applications to specific examples of heterogeneous
specifications and ontologies.

Acknowledgments Thanks for Oliver Kutz for discus-
sions about the ontology example. This work has been sup-
ported by the German Federal Ministry of Education and
Research (Project 01 IW 07002 FormalSafe).

References

[1] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi,
and P. F. Patel-Schneider, editors. The Description
Logic Handbook: Theory, Implementation, and Appli-
cations. Cambridge University Press, 2003.

[2] T. Borzyszkowski. Moving specification structures be-
tween logical systems. In J. L. Fiadeiro, editor, WADT
1998, LNCS 1589, p. 16–30. Springer, 1999.

[3] B. Braatz, M. Klein, and G. Schröter. Semantical
integration of object-oriented viewpoint specification
techniques. In SoftSpez Final Report, LNCS 3147, p.
602–626, 2004.

[4] R. M. Burstall and J. A. Goguen. Putting theories to-
gether to make specifications. In IJCAI, p. 1045–1058,
1977.

[5] R. Diaconescu. Grothendieck institutions. Applied
categorical structures, 10:383–402, 2002.

[6] R. Diaconescu, J. Goguen, and P. Stefaneas. Logical
support for modularisation. In Logical Environments,
p. 83–130. Cambridge, 1993.

[7] F. Durán and J. Meseguer. A Church-Rosser checker
tool for Maude equational specifications. Technical
report, Universidad de Málaga and SRI International,
July 2000.

[8] J. Goguen and G. Roşu. Institution morphisms. For-
mal Aspects of Computing, 13:274–307, 2002.

[9] J. A. Goguen and R. M. Burstall. Institutions: Ab-
stract Model Theory for Specification and Program-
ming. Journal of the ACM, 39:95–146, 1992.

[10] E. H. Haeusler, A. Martini, and U. Wolter. Some
models of heterogeneous and distributed specifica-
tions based on universal constructions. In J.-Y. Béziau

and A. Costa-Leite, editors, Perspectives on Universal
Logic, p. 297–318. Italy, 2007.

[11] N. Martı́-Oliet, J. Meseguer, and M. Palomino. The-
oroidal maps as algebraic simulations. In J. L. Fi-
adeiro, P. D. Mosses, and F. Orejas, editors, WADT
2004, LNCS 3423, p. 126–143. Springer, 2004.

[12] T. Mossakowski. Comorphism-based Grothendieck
logics. In K. Diks and W. Rytter, editors, MFCS 2002,
LNCS 2420, p. 593–604. Springer, 2002.

[13] T. Mossakowski. Relating CASL with other specifica-
tion languages: the institution level. Theoret. Comp.
Sci., 286:367–475, 2002.

[14] T. Mossakowski. Institutional 2-cells and
grothendieck institutions. In K. Futatsugi, J.-P.
Jouannaud, and J. Meseguer, editors, Algebra,
Meaning and Computation, LNCS 4060, p. 124–149.
Springer, 2006.

[15] T. Mossakowski, S. Autexier, and D. Hutter. Develop-
ment graphs – proof management for structured spec-
ifications. JLAP, 67(1-2):114–145, 2006.

[16] T. Mossakowski, C. Maeder, and K. Lüttich. The
Heterogeneous Tool Set. In O. Grumberg and
M. Huth, editors, TACAS 2007, LNCS 4424, p. 519–
522. Springer-Verlag, 2007.

[17] D. Sannella and A. Tarlecki. Specifications in an ar-
bitrary institution. Inform. and Comput., 76:165–210,
1988.

[18] W. M. Schorlemmer and Y. Kalfoglou. Institutionalis-
ing Ontology-Based Semantic Integration. Journal of
Applied Ontology, 2007. To appear.

[19] L. Schröder, T. Mossakowski, A. Tarlecki, P. Hoff-
man, and B. Klin. Amalgamation in the semantics of
CASL. Theoret. Comp. Sci., 331(1):215–247, 2005.

[20] A. Tarlecki. Moving between logical systems. In
M. Haveraaen, O. Owe, and O.-J. Dahl, editors, WADT
1995, LNCS 1130, p. 478–502. Springer Verlag, 1996.

[21] K. E. Williamson, M. Healy, and R. A. Barker. Indus-
trial applications of software synthesis via category
theory-case studies using specware. Autom. Softw.
Eng, 8(1):7–30, 2001.

[22] A. Zimmermann, M. Krötzsch, J. Euzenat, and P. Hit-
zler. Formalizing Ontology Alignment and its Opera-
tions with Category Theory. In B. Bennett and C. Fell-
baum, editors, FOIS 2006, volume 150 of Frontiers in
Artificial Intelligence and Applications, p. 277–288.
IOS Press, NOV 2006.

