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Abstract. Using category theoretic notions, in particular diagrams
and their colimits, we provide a common semantic backbone for
various notions of modularity in structured ontologies, and outline
a general approach for representing (heterogeneous) combinations
of ontologies through interfaces of various kinds, based on the the-
ory of institutions. This covers theory interpretations, (definitional)
language extensions, symbol identifications, and conservative exten-
sions. In particular, we study the problem of inheriting conservativity
between sub-theories in a diagram to its colimit ontology, and apply
this to the problem of localisation of reasoning in ‘modular ontology
languages’ such as DDLs or £-connections.

1 Introduction

In this paper, we propose to use the category theoretic notions of di-
agram and colimit in order to provide a common semantic backbone
for various notions of modularity in ontologies.*

At least three commonly used notions of ‘module’ in ontolo-
gies can be distinguished, depending on the kind of relationship be-
tween the ‘module’ and its supertheory (or superontology): (1) a
module can be considered a ‘logically independent’ part within its
superontology—this leads to the definition of module as a part of a
larger ontology which is a conservative extensions of it; (2) a mod-
ule can be a part of a larger ‘integrated ontology’, where the kind
of integration determines the relation between the modules—this is
the approach followed by modular ontology languages (e.g. DDLs,
E-connections etc.); (3) a ‘part’ of a larger theory can be considered
a module for reasons of elegance, re-use, tradition, etc.—in this case,
the relation between a module and its supertheory might be a lan-
guage extension, theory extension/interpretation, etc.

The main contributions of the present paper are the following: (i)
building on the theory of institutions, diagrams, and colimits, we
show how these different notions of module can be considered simul-
taneously using the notion of a module diagram; (ii) we show how
conservativity properties can be traced and inherited to the colimit of
a diagram; (iii) we show how this applies to the composition problem
in modular ontology languages such as DDLs and £-connections.

Section 2 introduces institutions, Section 3 the diagrammatic view
of modules, and Section 4 studies the problem of conservativity in
diagrams. Finally we sketch heterogeneous diagrams and apply this
to modular ontology languages in Section 5.3
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2 Institutions

The study of modularity principles can be carried out to a quite large
extent independently of the details of the underlying logical system
that is used. The notion of institutions was introduced by Goguen
and Burstall in the late 1970s exactly for this purpose (see [15]). They
capture in a very abstract and flexible way the notion of a logical
system by describing how, in any logical system, signatures, models,
sentences (axioms) and satisfaction (of sentences in models) are re-
lated. The importance of the notion of institutions lies in the fact that
a surprisingly large body of logical notions and results can be devel-
oped in a way that is completely independent of the specific nature
of the underlying institution.®

An institution I = (Sign,Sen,Mod, =) consists of (i)
a category Sign of signatures; (ii) a functor Sen: Sign —
Set giving, for each signature X, the set of sentences Sen(X),
and for each signature morphism o: ¥ — X', the sen-
tence translation map Sen(c): Sen(X) — Sen(X'), where
Sen(o)(¢) is abbreviated o (¢); (iii) a functor Mod: Sign’” —
CAT giving, for each signature X, the category of models
Mod(Y), and for each signature morphism o: ¥ — 3,
the reduct functor Mod(o): Mod(X') — Mod(X), where
Mod(o)(M') is abbreviated M’|,; (iv) a satisfaction relation
Es C [Mod(X)| x Sen(X) for each ¥ € |Sign|, such that for
each o: ¥ — ¥’ in Sign the following satisfaction condition holds:

() M s o(e)iff M), x o

for each M’ € [Mod(X')| and ¢ € Sen(X), expressing that truth
is invariant under change of notation and enlargement of context.

The only condition governing the behaviour of institutions is thus
the satisfaction condition (x).”

A theory in an institution is a pair 7' = (X, T") consisting of a sig-
nature Sig(7") = X and a set of X-sentences Ax(T") = T, the axioms
of the theory. The models of a theory 7 are those Sig(7")-models that
satisfy all axioms in Ax(7"). Logical consequence is defined as usual:
T = @ if all T-models satisfy . Theory morphisms, also called in-
terpretations of theories, are signature morphisms that map axioms
to logical consequences.

Examples of institutions include first- and higher-order classical
logic, description logics, and various (quantified) modal logics [19].

3 Modules as Diagrams

Several approaches to modularity in ontologies have been discussed
in recent years, including the introduction of various so-called ‘mod-
ular ontology languages’. The module system of the Web Ontology

6 For an extensive treatment of the model theory in this setting, see [10].
7 Note, however, that non-monotonic formalisms can only indirectly be cov-
ered this way, but compare, e.g., [16].



Language OWL itself is as simple as inadequate [9]: it allows for
importing other ontologies, including cyclic imports. The language
CASL, originally designed as a first-order algebraic specification lan-
guage, is used for ontologies in [21]. Beyond imports, it allows for
renaming, hiding and parameterisation. Other languages envisaging
more involved integration and modularisation mechanisms than plain
imports include DDLs [6], £-connections [17], and P-DLs [4].

We will use the formalism of colimits of diagrams as a common
semantic backbone for these languages.® The intuition behind colim-
its is explained as follows:

“Given a species of structure, say widgets, then the result
of interconnecting a system of widgets to form a super-widget
corresponds to taking the colimit of the diagram of widgets in
which the morphisms show how they are interconnected.” [14]

The notion of diagram is formalised in category theory. Diagrams
map an index category (via a functor) to a given category of interest.
They can be thought of as graphs in the category. A cocone over a
diagram is a kind of “tent”: it consists of a tip, together with a mor-
phism from each object involved in the diagram into the tip, such that
the triangles arising from the morphisms in the diagram commute. A
colimit is a universal, or minimal cocone. For details, see [1].

In the sequel, we will assume that the signature category has all
finite colimits, which is a rather mild assumption; in particular, it is
true for all the examples of institutions mentioned above. Moreover,
we will rely on the fact that colimits of theories exist in this case
as well; the colimit theory is defined as the union of all component
theories in the diagram, translated along the signature morphisms of
the colimiting cocone.

Definition 1 A module diagram of ontologies is a diagram of the-
ories such that the nodes are subdivided into ontology nodes and
interface nodes.

Composition of module diagrams is simply their union.

Example 1 Consider the union of the diagrams

T2 T3

T1 T2
21 22

where the ¥; are interfaces and the T; are ontologies. Think of e.g.
Ti2 as being an ontology that imports T and T, where 31 contains
all the symbols shared between T and T. Then Ti2 (and Ta3) can be
obtained as pushouts, and so can the overall union Th23 (which typ-
ically is then further extended with new concepts etc.). A “c” means
“conservative”; this will be explained in Sect. 4.

T123
¢ .V Y-_ e

Tl;\gl/TQ;\E2/T3

Notice that Example 1 is closely related to the composition (or
combination) of ontology alignments, as introduced in [26], and fur-
ther studied in [20]. In general, it is clear that theories with an import

8 However, note that hiding is not covered by this approach.

structure are just tree-shaped diagrams, while both shared parts and
cyclic imports lead to arbitrary graph-shaped diagrams. The transla-
tion of CASL (without hiding) to so-called development graphs de-
tailed in [7] naturally leads to diagrams as well. Finally, the diagrams
corresponding to modular languages like DDLs and £-connections
will be studied in Sect. 5. Thus, diagrams can be seen as a uniform
mathematical formalism where properties of all of these module con-
cepts can be studied. An important such property is conservativity.

4 Conservative Diagrams and Composition

Conservative diagrams are important because they imply that the
combined ontology does not add new facts to the individual ontolo-
gies. Indeed, the notion of an ontology module of an ontology 7" has
been defined as any “subontology 7" such that T" is a conservative
extension of T"” [12]—this perfectly matches our notion of conser-
vative diagram below.

Definition 2 A theory morphism o: Ty — 1> is proof-
theoretically conservative, if T> does not entail anything new w.r.t.
T\, formally, T> = o(p) implies T = . Moreover, o: T\ —
T5 is model-theoretically conservative, if any Ti-model M has a
o-expansion to T, i.e. a To-model My with Ma|s = M;.

It is easy to show that conservative theory morphisms compose.
Moreover, model-theoretic implies proof-theoretic conservativity.
However, the converse is not true in general, compare [22] for an
example.

Definition 3 A (proof-theoretic, model-theoretic) conservative
module diagram of ontologies is a diagram of theories such that the
theory morphism of any ontology node into the colimit of the diagram
is (proof-theoretically resp. model-theoretically) conservative.

By conservativity, the definition immediately yields:

Proposition 1 The colimit ontology of a proof-theoretic (model-
theoretic) conservative module diagram is consistent (satisfiable)’
if any of the component ontologies is.

Thus, in particular, in a conservative module diagram, an ontology
node O; can only be consistent (satisfiable) if all other ontology
nodes Oj, j # i, are consistent (satisfiable) as well.

The main question is how to ensure these conservativity proper-
ties in the united diagram. To study this, we introduce some no-
tions from model theory, namely various notions of interpolation
(for proof-theoretic conservativity) and amalgamation (for model-
theoretic conservativity).

Craig interpolation plays a crucial role in connection with proof
systems in structured theories. The most common formulation, i.e.
Craig (or Arrow) interpolation, however, relies on a connective —
being present in the institution. A slightly more general formulation,
often called turnstile interpolation is as follows: if ¢ |= 1, then there
exists some  that only uses symbols occurring in both ¢ and v, with
© = x and x |= 1. This, of course, follows from Craig interpolation
in the presence of a deduction theorem.

For the general study of module systems, we need to generalise
such definitions in at least two important ways. The first concerns the

9 Contrary to the terminology used in DL, we distinguish here proof-theoretic
(syntactic) consistency of a theory T' (which means T' }~= ¢ for some
sentence ¢) from model-theoretic (semantic) satisfiability (which means
M = T for some model M).



rather implicit use of signatures in the standard definitions. Making
signatures explicit means to assume that ¢ lives in a signature 1, ¢
lives in a signature Y2, the entailment ¢ = 1) lives in X1 U 32, and
the interpolant in 3; N 5. Since we do not want to go into the tech-
nicalities for equipping an institution with unions and intersections
(see [11] for details), we replace 31 N o with a signature 3., and
Y33 UX, with ¥/ such that ' is obtained as a pushout from the other
signatures via suitable signature morphisms (cf. the diagram below).
Secondly, we move from single sentences to sets of sentences. This
is useful since we want to support DLs and TBox reasoning, and DLs
like (sub-Boolean) £L do not allow to rewrite ‘conjunctions of sub-
sumptions’, i.e., we cannot collapse a TBox into a single sentence.
(In case of compact logics, the use of sets is equivalent to the use of
finite sets.)

This leads to the following definition. In the sequel, fix an arbitrary
institution I = (Sign, Sen, Mod, =):

Definition 4 The institution I has the Craig-Robinson interpolation
property (CRI for short), if for any pushout
El
% g v A R %

21 22
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any set I'1 of X1-sentences and any sets I'2, Ao of Yo-sentences with
01(I'1) U 62(A2) = 62(T2),
there exists a set of Y-sentences I' (called the interpolant) such that
' Eoi1(I") and Ay Uoa(T) ETs.

CRI, in general, is strictly stronger than Craig interpolation. How-
ever, for almost all logics typically used in knowledge representation,
they are indeed equivalent. We give a criterion that applies to institu-
tions generally, taken from [10]:

Proposition 2 A compact institution with implication has CRI iff it
has Craig interpolation.

Here, an institution / has implication if for any two X-sentences
©, 1, there exists a X-sentence  such that, for any ¥-model M,

M [ x iff (M | o implies M = 1)

Moreover, I is compact if T = ¢ implies 7’ |= ¢ for a finite
subtheory T” of T'. Since for modal logics, the deduction theorem
(for the global consequence relation |=) generally fails, these logics
do not have implication in the above sense, and we cannot apply
Prop. 2. However, various more specialised criteria can be given, see
[19]. Some results are summarised in Fig. 1.

The amalgamation property (called ‘exactness’ in [11]) is a major
technical assumption in the study of specification semantics, see [23].

Definition 5 An institution I is (weakly) exact if, for any diagram
of signatures, any compatible family of models (i.e. compatible with
the reducts induced by the involved signature morphisms) can can
be amalgamated fo a unique (or weakly amalgamated to a not nec-
essarily unique) model of the colimit. For pushouts, this amounts to
the following (we use notation as in Def. 4): any pair (M, M) €
Mod(X1) x Mod(X2) that is compatible (in the sense that M, and
M reduce to the same X-model) can be amalgamated to a (unique)
Y'-model M (i.e., there exists a (unique) M € Mod(X') that re-
duces to My and Ma, respectively).

Institution | weakly exact
EL + -
ALC™s
ALC
ALCO
ALCQO
SHOIN
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Figure 1. (Weak) exactness and Craig-Robinson interpolation

Weak exactness for these institutions follows with standard meth-
ods, see [10]. The same holds for exactness for the many-sorted vari-
ants. Exactness, however, obviously fails for the single-sorted logics
as well as for QS5, because in these logics, the implicit universe
resp. the implicit set of worlds leads to the phenomenon that the
empty signature has many different models. The following propo-
sitions are folklore in institutional model theory, see [10].

Theorem 1 /. In an institution with CRI proof-theoretic conserva-
tivity is preserved along pushouts.

2. In an institution that is weakly exact, model-theoretic conservativ-
ity is preserved along pushouts.

We now give necessary conditions for the preservation of conserva-
tivity when taking the colimit of the union of conservative diagrams.

Firstly, a diagram is thin, or a preorder, if its index category is
thin (i.e., there is at most one arrow between two given objects).
Consider the following non-thin union diagram (assuming that the
two arrows in the union are inherited from two different ontologies),
where {P C T} C Ty and {Cy = —~C>} C Tb:

Pi—>Cl
T —

P'—>CQ

Although the individual ontologies are conservative, the union is not
because in the colimit C; and Cs are identified.

Next, a preorder is finitely bounded inf-complete if any two el-
ements with a common lower bound have an infimum. Consider the
following, not finitely bounded inf-complete union diagram (assume
that it is obtained as the union of its upper and its lower half):

PEQ

QCP

Again, the individual ontologies are conservative, but the colimit of
the union is not. Hence, call a diagram tame if it does not show
these sources of inconsistency/non-conservativity, i.e. if it is thin and
finitely bounded inf-complete.

Theorem 2 1. Assume institution I has an initial signature’® and
has CRI (is weakly exact). If the involved ontologies are consistent
(satisfiable), then composition of module diagrams via union pre-
serves proof-theoretic (model-theoretic) conservativity if the dia-
gram resulting from the union of the individual diagrams and their
colimits is tame.

2. If the union is a disjoint union, the tameness assumption can be
dropped.

10 Usually, the empty signature is initial.



Note that consistency of the involved ontologies can be replaced
with connectedness of the united diagram.
The above examples and example 2 below show that the conditions
from the theorem are essentially optimal. See Example 1 for a con-
servative union of conservative diagrams.

5 Heterogeneity and Modular Languages

As [24] argue convincingly, relating or integrating ontologies may
happen across different institutions as ontologies are written in many
different formalisms, like relation schemata, description logics, first-
order logic, and modal logics.

Heterogeneous specification is based on some graph of logics and
logic translations, formalised as institutions and so-called institution
comorphisms, see [13]. The latter are again governed by the satisfac-
tion condition, this time expressing that truth is invariant also under
change of notation across different logical formalisms:

M Egs) axlp) & (M) E5 o

Here, ®(X) is the translation of signature 3 from institution I to
institution J, s (¢) is the translation of the X-sentence ¢ to a ®(X)-
sentence, and (s (M’) is the translation (or perhaps: reduction) of
the ®(X)-model M’ to a ¥-model. The definitions and results of
the previous sections also apply to the heterogeneous case. However,
special care is needed in obtaining CRI or (weak) exactness [10].

Heterogeneous knowledge representation was also a major mo-
tivation for the definition of modular languages, £-connections in
particular [17]. We here show how the integration of ontologies via
‘modular languages’ can be re-formulated in module diagrams. In
the following, we will assume basic acquaintance with the syntax
and semantics of both, DDLs and £-connections, which we reformu-
late as many-sorted theories. Details have to remain sketchy for lack
of space.

It should be clear that DDLs or £-connections can essentially be
considered as many-sorted heterogeneous theories: component on-
tologies can be formulated in different logics, but have to be built
from many-sorted vocabulary, and link relations are interpreted as
relations connecting the sorts of the component logics (compare [3]
who note that this is an instance of a more general co-comma con-
struction). To be more precise, assume a DDL ® = (Si, S2) is given.
Knowledge bases for ® can contain bridge rules of the form:

Ci = C; (into rule) Ci = C; (onto rule)
where C; and C; are concepts from S; and S; (i # j), respectively
(we consider here only DDL in its most basic form without individual
correspondences etc.).

An interpretation J for a DDL knowledge base is a pair
({Z:}i<n, R), where each Z; is a model for the corresponding S;,
and R is a function associating with every pair (4, 7), ¢ # j, a binary
relation 7;; C W; x W; between the domains W; and W; of Z; and
7;, respectively.

In the many-sorted re-formulation of DDLs, the relation 7;; is now
interpreted as a relation between the T-sort of S; and the T-sort of
S,. Bridge rules are expressed as existential restrictions of the form

(ﬁ) Eln-j.Ci E Cj and 37’2']'.07; Q C]'
The fact that bridge rules are atomic statements in a DDL knowledge
base now translates to a restriction on the grammar governing the us-
age of the link relation 7;; in the multi-sorted formalism (see [5] for

CE(TPs, T DDL(T{™, T5)

ey Ty
v AAS

T{ns - ¢ c S T2ms
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Figure 2. &-connections and DDLs many-sorted

a discussion of related issues). In fact, the main difference between
DDLs and various £-connections now lies in the expressivity of this
‘link language’ £ connecting the different sorts of the ontologies. In
basic DDL as defined above, the only expressions allowed are those
given in (), so the link language of basic DDL is a certain, very
weak sub-Boolean fragment of many sorted ALC, namely the one
given through (). In £-connections, expressions of the form 3r;;.C;
are again concepts of S;, to which Booleans (or other operators) of
S, as well as restrictions using relations 7;; can be applied. Thus, the
basic link language of £-connections is sorted ALCZ™(relative to
the now richer languages of S;).!!

Such many-sorted theories can easily be represented in a diagram
as shown in Figure 2. Here, we first (conservatively) obtain a dis-
joint union 77" W T5™ as a pushout, where the component ontolo-
gies have been turned into sorted variants (using an institution co-
morphism from the single-sorted to the many-sorted logic), and the
empty interface guarantees that no symbols are shared at this point.
An &-connection KB in language C* (77, T9"*) or a DDL KB in
language DDL (77", T5") is then obtained as a (typically not conser-
vative) theory extension.

When connecting ontologies via bridges, or interfaces, this typ-
ically is not conservative everywhere, but only for some of the in-
volved ontologies. We give a criterion for a single ontology to be
conservative in the combination. While the theorem can be applied
to arbitrary interface nodes, when applied to £-connections or DDLs,
we assume that bridge nodes contain DDL bridge rules or £-connec-
tion assertions.

Theorem 3 Assume that we work in an institution that has CRI (is
weakly exact). Let ontologies Th, ..., T, be connected via bridges
Bij, © < j. If T; is proof-theoretically (model-theoretically) con-
servative in B;; for j > i, then T1 is proof-theoretically (model-
theoretically) conservative in the resulting colimit ontology T'.

The diagram in Fig. 3 illustrates Theorem 3 for the case n = 3.

As concerns the applicability of the theorem, we have given an
overview of logics being (weakly) exact or having CRI in Fig. 1. Of
course, the conservativity assumptions have to be shown additionally.

We next give an example of the failure of the claim of the theorem
in case we work in a logic that lacks Craig-Robinson interpolation.

Example 2 The presence of nominals in description or modal logics
generally destroys (standardly formulated) Craig interpolation [2].
Here is a counterexample for the logic ALCO. Let

I =
A =

{T C35.CN3S.~C} and
{VS.(Dus) C 3S.D}

11 But can be weakened to ALC™S or the link language of DDLs, or strength-
ened to more expressive many-sorted DLs such as ALCQZ™S.



Figure 3. Colimit integration along bridges forn = 3

where i is a nominal. Clearly, T' = A, for in every model M =T,
every point has at least two S-successors. But i can only be true in
at most one of those successors, which entails M |: A. Now, (using
bisimulations) it can be shown that in ALCO there is no A built
from shared concept names alone (there are none) such that T = A’
and A" = A

Assume now ontologies T1,T>, T35 are formulated in the DL
ALCO with signatures Sig(Ty) C {S,B,D,i}, Sig(T>) C
{C1,C>}, and Sig(Ts) C {Bu, Ba}. Also, assume {3S.D} C T1.

Consider now the situation depicted in Fig. 3 with

Biz 2 {TC3S.3R:.Ci, T C3S.3R;.~Ca},
Biz 2 {Bi=3R;'.B,By =3R;"'.B},
Bz3 2 {Cl = ElRQ.Bl, Cg = EIRQ.BQ}.

Here, the roles R1, Ra2, R3 can be seen as link relations, and since
we apply existential restrictions 35 to AR2.C1 etc., the example can
be understood as a composition of (binary) E-connections.

The reader can check that T} is conservative in B;j for j > 1.
However, in the colimit (union) of this diagram, ¥S.D Ui C 35.D
follows, while this does not follow in T, and thus T} is not conser-
vative in the colimit ontology.

Thus, if the assumptions of the theorem are satisfied, reasoning over
the signature of 77 can be performed within T, i.e. without consid-
ering the overall integration 7". This, however, can not be guaranteed
for logics lacking CRI. In the light of this example, it should now
come as no surprise that attempts to localise reasoning in DDLs in a
peer-to-peer like fashion whilst remaining sound and complete have
been restricted to logics lacking nominals [25].

6 Discussion and Outlook

Diagrams and their colimits offer the right level of abstraction to
study conservativity issues in different languages for modular ontolo-
gies. We have singled out conditions that allow for lifting conserva-
tivity properties from individual diagrams to their combinations.

An interesting point is the question whether proof-theoretic or
model-theoretic conservativity should be used. The model-theoretic
notion ensures ‘modularity’ in more logics than the proof-theoretic
one since the lifting theorem for the former only depends on mild
amalgamation properties. By contrast, for the latter one needs Craig-
Robinson interpolation which fails, e.g., for some description logics
with nominals, and also for QS5—but these logics are used in prac-
tice for ontology design.

Moreover, when relating ontologies across different institutions,
the model-theoretic notion is more feasible. Finally, it has the ad-

vantage of being independent of the particular language, which im-
plies avoidance of examples like the one presented in [22], where a
given ontology extension is proof-theoretically conservative in ££
but not in ALC. Of course, model-theoretic conservativity generally
is harder to decide, but it can be ensured by syntactic criteria, and the
work related to this is promising [8].
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