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ABSTRACT

We present a new method for matching a region between an
input and a query image, based on the P-channel representa-
tion of pixel-based image features such as grayscale and color
information, local gradient orientation and local spatial co-
ordinates. We introduce the concept of integral P-channels,
which conciliates the concepts of P-channel and integral im-
ages. Using integral images, the P-channel representation of
a given region is extracted with a few arithmetic operations.
This enables a fast nearest-neighbor search in all possible tar-
get regions. We present extensive experimental results and
show that our approach compares favorably to existing meth-
ods for region matching such as histograms or region covari-
ance.

Index Terms— Region matching, integral images

1. INTRODUCTION

In this paper, we address the region matching problem, which
can be defined as follows: given a reference image and a re-
gion of interest, find this region in new images. This com-
puter vision problem is relevant in many tasks, such as fea-
ture matching, object detection, recognition, texture classi-
fication, 2D and 3D tracking. A central question in region
matching is the choice of the region descriptor. For example,
SIFT descriptors [1] and affine invariant descriptors [2] are
widely used for point matching, but their use for bigger re-
gions with variable shape or size remains cumbersome. In
contrast, non-parametric descriptions using e.g. histograms
or kernel-density estimates are more adapted to regions. Re-
cently, a new density estimation method called P-channel has
been presented [3]. It is a particular type of channel repre-
sentation [4] that combines the advantages of histograms and
local linear models and has been successfully applied in the
context of object recognition in [5], where one P-channel rep-
resentation for the entire image was computed. In this paper,
we use the P-channel representation for region matching. To
this aim, the P-channel representation of a large number of
regions with different scales has to be computed. However,
this computation is not tractable if the P-channels are com-
puted in a straightforward way. We therefore introduce a fast
method for computing P-channel representations using inte-

gral images [6], which has been applied for histograms [7, 8]
and region covariance [9].

In this article, we argue that the concept of integral im-
ages can also be used for the fast computation of descriptors
that include normalized spatial coordinates, like P-channels,
for any region in the image. The extraction of the P-channels
is fast enough to permit an exhaustive search of the best re-
gion in the query image in real time. The main contribution
of this paper is our novel algorithm for the fast computation
of P-channels using integral images, together with a general
method for including normalized spatial coordinates in inte-
gral images techniques. Furthermore, we compare integral P-
channels with integral histograms and region covariance and
show the superiority of the former in a series of experiments.

Section 2 gives a brief overview of the P-channel repre-
sentation. We then present our approach to region match-
ing using P-channels and derive the fast computation of P-
channels using integral images in Section 3. This section also
describes the inclusion of spatial coordinates in the integral
image technique. We report on our experiments in section
4, and demonstrate the superior performance of P-channels
over the standard histogram method and the region covariance
method with detailed comparisons.

2. P-CHANNELS

We start by introducing the concept of P-channel representa-
tion. Further details can be found in the original paper [3].
P-channel representations, and more generally channel rep-
resentations [4], are information representations, which can,
among other things, be used for representing and estimating
distributions of multidimensional feature vectors. In our ap-
plications the features are different pixel-based image statis-
tics, such as color, local gradient orientation and local gra-
dient magnitude. However, the concept of channels is more
general and can be applied to any kind of multivariate distri-
bution.

2.1. Definitions

Let f(x) be a pixel based, D-dimensional feature vector. For
example, f can include color and geometric information as
follows: f = (h, s, |∇f | , θ)T where D = 4, h and s are the



hue and saturation of the pixel, and |∇f | and θ are the gradient
magnitude and orientation. We can reasonably assume that
fixed bounds can be found for the values obtained in each
dimensions. We define the D-dimensional vector of integers
[f ] as the component-wise closest integer. An image region
R is defined as a set of connected pixels. |R| is the size (in
pixels) of the region R. In this work we focus on rectangular
regions, so that R can be defined by an upper-left pixel x0 =
(x0, y0) and a lower-right pixel x1 = (x1, y1), and |R| =
(x1−x0)(y1−y0). A region descriptor is a representation of
the distribution of the vectors {f(x), (x) ∈ R}, in the feature-
space. For example, this distribution can be represented by
the sample mean vector f̄ , the sample covariance matrix, or
through a D-dimensional histogram.

2.2. Histogram vs. P-channels representation

A histogram is actually the most trivial case of a channel rep-
resentation. Without loss of generality, the bins have unit size
in every dimension, and the bin centers are located at integer
positions of the D-dimensional feature space (this amounts
only to scaling in each dimension). Thus, the location of a
bin is represented by a multi-index i, i.e. a vector of indices
(i1, . . . , iD). If the histogram uses n bins in each dimension,
the feature space is tesselated into nD channels (the bins),
each of them having a projection operator of the following
form:

hi(R) =
1
|R|

∑
x∈R,[f(x)]=i

(
1
)

(1)

Equation (1) is the classical normalized histogram encod-
ing function, where each bin hi stores a count of the fea-
ture vectors falling in that bin (provided by the test function
[f(x)] = i), divided by the total number of feature vectors
|R|. Each bin stores one real number, and the complete his-
togram can be stored using nD values.

The P-channel representation can be seen as an extension
of histograms, where each bin (each channel) stores as addi-
tional information the sum of offsets from the channel center.
Each channel thus stores a (D + 1)-dimensional vector con-
structed as follows:

pi(R) =
1
|R|

∑
x∈R,[f(x)]=i

(
f(x)− [f(x)]

1

)
(2)

The complete P-channel representation can be stored using
nD × (D + 1) values.

2.3. P-channels with spatial features

As mentionned before, the feature vectors f(x) usually in-
clude several pixel statistics such as color, gradient orientation
and magnitude. A specificity of the P-channel representation
is that the feature vector is completed with the explicit nor-
malized spatial coordiates of the pixel (x, y) (normalization

over the considered region). As a result, the feature space is
extended to (D + 2) dimensions. If we use nx, resp. ny bins
in the x, resp. y dimensions, we end up with a P-channel rep-
resentation with nD × nx × ny channels, and each P-channel
contains a (D + 3)-dimensional vector. The complete repre-
sentation can be stored using nD×nx×ny× (D+3) values.
Equation (2) remains valid, if we consider f(x) as a (D+ 2)-
dimensional vector (the two last one being the normalized
spatial coordinates), and i a (D + 2)-dimensional vector of
indices.

In order to compare two P-channel representations, we
use the Euclidean distance. Although P-channel representa-
tions are not vectors, the Euclidean distance is sufficient for
a robust matching and has the advantage of beeing extremely
fast.

3. REGION MATCHING USING INTEGRAL
P-CHANNELS

The task we propose to solve is the following: given a ref-
erence image and an object of interest (e.g. a car, a face, a
building), we define a region surrounding this object. The
problem is to find the same (or an appropriate) region in sub-
sequent images. For this, we have to perform an exhaustive
search for all regions and scales in the query image. However,
computing the P-channels individually for all possible region
centers and a reasonable number of scales is not feasible in
near real time. An exhaustive search on 70000 regions cov-
ering 19 scales takes more than 15 seconds for a 320 by 240
image. However, this time consumption can be significantly
reduced (a few hundred milliseconds for the same image size
and same number of regions) if we use the integral image [6]
representation.

The idea of the integral P-channel formulation is that we
can globally compute an integral P-channel representation for
the entire image in a preprocessing step, and deduce the P-
channel representation of a given region from the integral P-
channel in a few arithmetic operations.

However, the P-channel representation uses normalized
spatial coordinates: the spatial coordinates are scaled and
shifted so that the width and the height of the region always
range from 0 to 1. This step is necessary to allow scale and
translation invariance when comparing the P-channel rep-
resentation of two different regions. Thus it is impossible
to construct directly an integral image for P-channels with
spatial coordinates. We solve this problem by introducing an
intermediate P-channel qi, the encoding of which is defined
as follows:

qi(R) =
∑

x∈R,[f(x)]=i


f(x)− [f(x)]

xabs

yabs
1

 (3)



Note that in equation (3), xabs and yabs are the absolute spa-
tial coordinates in the image, f(x) is a D-dimensional vector,
and i a D-dimensional vector of indices. The complete repre-
sentation q is stored using nD × (D + 3) values.

The integral P-channel representation is defined as the in-
termediate P-channel representation of the region R(0, 0, x, y)
between the origin and the point (x, y):

Iqi(x, y) = qi(R(0, 0, x, y)) (4)

Like other integral image techniques, the integral P-
channel can be computed incrementally for every pixel of the
image in one single pass.

Once the integral P-channel Iq has been generated, it is
possible to compute the P-channels qi(R(x0, y0, x1, y1)) for
any target region with a few arithmetic operations:

qi(R(x0, y0, x1, y1)) = Iqi(x1, y1)− Iqi(x1, y0)
−Iqi(x0, y1) + Iqi(x0, y0)

(5)
We now show how to construct the P-channels pi(R)

(with normalized spatial coordinates) from qi(R). The re-
gion R is first tesselated into nx × ny cells Cj,k, (j, k) ∈
[1 . . . nx] × [1 . . . ny]. For each cell, an intermediate P-
channel qi,Cj,k

is extracted from the integral P-channel. The
P-channels p(i,j,k) are then normalized from the P-channels
qi,Cj,k

, as follows:

pd
(i,j,k) = 1

|R|q
d
i,Cj,k

if d ∈ [1, D] ∪ {D + 3}

pD+1
(i,j,k) = 1

|R|(u1−u0)
(qD+1

i,Cj,k
− u0+u1

2 qD+3
i,Cj,k

)

pD+2
(i,j,k) = 1

|R|(v1−v0)
(qD+1

i,Cj,k
− v0+v1

2 qD+3
i,Cj,k

)

(6)

where (u0, v0) and (u1, v1) are the coordinates of upper-left
and lower-right corners of the cell Cj,k.

4. EXPERIMENTS

We compare the performance of our P-channel region match-
ing with integral histograms [7] and region covariance match-
ing [9]. For the integral P-channel method and the integral
histogram method, we used color images, and the features are
the pixel’s hue, saturation and the local orientation of the gra-
dient (computed on a grayscale image). For the P-channels,
the number of bins is n = 3, and spatial dimensions are split
into nx = ny = 2 bins, resulting in the computation of 162
integral images. For the histograms, the number of bins is
n = 5, resulting in the computation of 125 integral images.
For both methods, we used the Euclidean distance between
representations. For the region covariance method, we used
the 9-dimensional feature vector: pixel location (x, y), color
values (RGB), and the norm of the first and second order

Fig. 1. Comparison of three methods for region matching.
Left: reference image and region. Middle and right: output of
the three methods for different images (see text for details).

derivatives of the intensities, resulting in the computation of
54 integral images. The distance between covariance matrices
is the Förstner distance [10]. For the three methods, we apply
the matching refinement method of [9]. For a number of video
sequences, we take one image as reference image and manu-
ally define a reference region. We then perform an exhaustive
search in the remaining images for a number of query regions.
The size of the images is 320 by 240 pixels. We search for 19
different scales ( 15% scaling between consecutive scales) at
location centers every 6th pixel. For a reference region of 100
by 100 pixels, this results in approximatively 70.000 search
regions for a single frame, which are tested in a fraction of a
second when using integral images.

4.1. Sequences

We tested the three methods with 4 different sequences. Fig-
ure 1 shows some frames of the video sequences with the ref-
erence image and region in the first columns and the bounding
boxes found by the three methods in the remaining columns
(red: integral P-channels, blue: integral histograms, green:
region covariance). The first row shows the application of our
method to a semi-planar patch with partial pose change. Our
method finds the right region even with large scale variations
and motion blur. The second row shows the results with vari-
ations of the incident light on the object’s surface. The third
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Fig. 2. Error w. r. t. manually marked ground truth

and fourth row show the performance of our region match-
ing algorithm with a 3D object. Note the robustness to scale
changes and camera position.

Figure 2 shows the average error on the corner positions
with respect to a manually marked ground truth for another
sequence. Our P-channel method shows a strong robustness
to motion blur (around frame 10 to 20, 120, 140 and 160) in
comparison with region covariance. In all the sequences, our
method shows slightly better results than the region covari-
ance method, and much better results than the integral his-
tograms method. This can be explained by the fact that the
integral histograms do not use the spatial information, as our
method and the region covariance do.

4.2. Time consumption

We compared the time consumption of the three methods for
varying number of candidate regions (see Figure 3). The re-
sults show that while our approach is slower than the integral
histograms, it is faster than the region covariance and yields
slightly better results. In comparison with region covariance,
the P-channel method is 1.5 times faster for a usual set of
13.000 regions, and is even more attractive when the number
of regions increases.

5. CONCLUSION

In this paper, we introduced a novel method for the fast com-
putation of the P-channel representation of a large number of
regions in an image using the approach of the integral im-
ages. Moreover, we added our contribution to the integral
image technique by showing how to compute integral images
for descriptors including normalized spatial coordinates. The
comparison with other region matching techniques showed
slightly better results than region covariance while being 1, 5
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Fig. 3. Time consumption of three methods.

times faster. This novel technique opens new possibilites for
the P-channel desciptor, which could be used as a generaliza-
tion of histograms in many image processing methods. For
our future work, we will consider using the P-channel rep-
resentation and local integral images for fast region tracking
between successive frames.
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