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ABSTRACT
Most state-of-the-art systems for content-based video un-
derstanding tasks require video content to be represented as
collections of many low-level descriptors, e.g. as histograms
of the color, texture or motion in local image regions.

In order to preserve as much of the information contained
in the original video as possible, these representations are
typically high-dimensional, which conflicts with the aim for
compact descriptors that would allow better efficiency and
lower storage requirements.

In this paper, we address the problem of semantic com-
pression of video, i.e. the reduction of low-level descriptors
to a small number of dimensions while preserving most of
the semantic information. For this, we adapt topic models –
which have previously been used as compact representations
of still images – to take into account the temporal structure
of a video, as well as multi-modal components such as mo-
tion information.

Experiments on a large-scale collection of YouTube videos
show that we can achieve a compression ratio of 20 : 1 com-
pared to ordinary histogram representations and at least
2 : 1 compared to other dimensionality reduction techniques
without significant loss of prediction accuracy. Also, im-
provements are demonstrated for our video-specific exten-
sions modeling temporal structure and multiple modalities.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Retrieval and Indexing
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1. INTRODUCTION
Currently, users world-wide collect more digital video data

than ever before in history. These range from small home
video collections to archives containing decades of TV and
radio broadcast. The web also contains huge amounts of
video: more than 60000 new videos are uploaded to YouTube
per day, and it has been estimated that digital video will
account for 91% of all internet traffic in 2013 [18].

As a manual indexing of such data quantities is infeasible,
we face the question of how to extract semantic informa-
tion directly from within media files. This challenge has
been referred to as the semantic gap [29], i.e. the discrep-
ancy between low-level content in form of raw pixel values
and audio signals on the one hand and a viewer’s high-level
information demand on the other. Bridging this gap has
been the concern of content-based video retrieval (CBVR)
systems [11], which have been demonstrated to be effective
in a variety of application scenarios: automatic concept de-
tectors can be used to find certain locations, objects, and
events [30]. Systems can also learn user preferences and
recommend footage [38], or automatically detect copyright
violations by finding similar or duplicate video scenes [20].
Other applications are automatic video summarization and
categorization.

A typical CBVR processing pipeline is illustrated in Fig-
ure 1: the system extracts descriptive properties from the
video content, so-called low-level features. These representa-
tions are employed by machine learning techniques, like sta-
tistical classifiers (“this clip belongs to the category ‘sports
videos‘”), a clustering of videos into similar groups for later
browsing, or a nearest neighbor search to detect visually
similar (or even copied) material.

One key aspect with video content is that the amount
of data is magnitudes higher than it is for images or text
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Figure 1: A typical content-based video retrieval
(CBVR) processing pipeline: features are extracted
from the raw video content and reduced to a few
descriptive dimensions using semantic compression
(which is the core concern of this paper). The re-
sulting low-dimensional features are fed to machine
learning techniques such as classification or cluster-
ing.

(for example, a 60-second video consists of 1500 images).
This leads to several problems for CBVR methods: training
and model application become inefficient, features do not fit
into storage, and high-dimensional representations lead to
overfitting.

One strategy to resolve these problems is to employ di-
mensionality reduction techniques, which reduce the amount
of data to describe a video. We would like these methods
to adapt to different domains of video content, to scale and
generalize well, and to be reasonably fast while achieving
good compression results. Most importantly, however, the
resulting low-dimensional descriptions should preserve the
semantic information required for tasks such as classification
and clustering. Accordingly, we will refer to dimensionality
reduction in the context of CBVR as semantic compression
in the following.

One solution to achieve such semantic compression are
topic models, which will be the main focus of this paper.
Topic models have originally been developed in the text do-
main, and have already been successfully applied to still
images [1, 9, 26, 28]. Their underlying idea is to decom-
pose a document (or image) collection such that each item
is described by a mixture of latent associated topics. The
mixture coefficients form a feature vector, and as the number
of topics is usually low, a strong dimensionality reduction is
achieved. It should also be kept in mind that topic mod-
els work unsupervised, i.e. they estimate topics from plain
video data without additional information. This is a key re-
quirement, as manually annotated training data is difficult
to acquire at a large scale.

Obviously, this approach also seems reasonable in the video
domain: for example, a soccer video might generally consist
of topics such as ’game play’, ’interview’, ’audience’ and
so on (c.f. Figure 2). Therefore, we will investigate topic
models for the semantic compression of video data in the
following. Thereby, we will cover three key aspects:

1. We evaluate topic models in a video categorization
scenario, and show that a performance comparable to
high-dimensional standard descriptors can be reached
at a compression rate of 1/20. Also, topic models
outperform other dimensionality reduction techniques
such as Principal Component Analysis (PCA, [7]) or a
direct reduction of visual codebooks.

2. While topic models are usually applied to a single
modality (for example, patch-based features [26]), video
content offers multiple feature modalities, including
frame content but also motion and audio. We show
how topic models for video can benefit from an inte-
gration of multi-modal features.

3. Finally, we employ the fact that video streams come
with a temporal structure, which is composed of
units (or shots) separated by cuts (or other transi-
tions). We argue that shots are not only temporal but
also semantic units, such that switches in the seman-
tics of a video – and correspondingly in the aspects of
the topic model – should coincide with shot transitions.
Based on this observation, we adapt a combination of
topic models with Hidden Markov Models [10] for the
video domain, and show that this leads to more stable
and meaningful topics.

2. RELATED WORK
Topic models like Probabilistic Latent Semantic Analysis

(PLSA) [12] and Latent Dirichlet Allocation (LDA) [3] have
originally been developed in the text domain as strategies
for decomposing document collections into latent aspects.
The concept has been transferred to the image domain suc-
cessfully, where a variety of approaches have employed topic
models for scene classification [21], object recognition [8],
and image retrieval [16]. An overview is given in the follow-
ing.

The standard approach of adapting topic models to the
image domain is to draw an analogy between the well-known
’bag of words’ representation in the textual domain and ’bag
of visual words’ in the image domain [28]. Thereby, an image
is described as a collection of local patches, and topic models
are used to discover latent groups of correlated image parts.
Barnard et al. [1] followed this approach for automatic im-
age annotation using a hierarchical topic model. Similarly,
Quelhas et al. [26] investigated the use of PLSA for scene
classification and compared the dimensionality reduced fea-
tures to the original visual-words representation on a dataset
of 9500 images.

Topic models for dimensionality reduction on larger im-
age data sets have been investigated by Hörster and Lien-
hart [15], who compared PLSA and LDA with alternative
dimensionality reduction techniques like Restricted Boltz-
mann Machines (RBMs). While all three approaches per-
form similarly, PLSA gives slight improvements over both
LDA and RBMs. In this paper, we will confirm similar re-
sults for video data, but beyond this address other video-
specific issues like temporal structure and multiple feature
modalities.

Several extensions to topic models have been proposed to
tailor them more specifically to the image domain. Monay
and Gatica-Perez [24] argued that, in word-image associa-
tions, the semantic information gained by words is much
higher than for images. They proposed an asymmetrical
model, which first trains PLSA on an images’ captions and
then extends topics to its visual features. Hörster et al. [17]
explored an extension to PLSA where they model visual
words as continuous distributions rather than quantized high-
dimensional descriptors. They argue that this is more suited
for the image domain and show a performance gain over the
discretized standard PLSA model.



Figure 2: A web video from the category “soccer”. Each shot of the video can belong to a particular category,
like gameplay (yellow), close-ups and interviews (green), or shots of the crowd (blue). Topic models can
capture these categories by associating visual content with specific latent aspects.

Other work has been targeted at integrating the spatial
position of patches within images. For example, Tirilly et
al. [35] proposed to capture patch centers by projecting them
to the main axis of patch positions (computed using PCA).
This is supposed to introduce structural order, shaping the
analogy of “visual sentences”. Liu and Chen [22] also used
spatial information by integrating correspondence (shape
and location of patches). They give “rewards” R for cor-
responding patches and learn their distribution depending
on the topics. Fergus et al. [8] learned object categories by
retrieving images from Google Image Search, using PLSA
to filter noise content. To better capture the position of ob-
jects, they introduced a latent variable into the PLSA model
that describes the object bounding box, resulting in invari-
ance to translation and scaling. Hohl et al. [13] enhanced
Latent Semantic Analysis (LSA) to capture spatial informa-
tion by modifying the vocabulary of visual features: instead
of treating features Ci individually, tuples (Ci, Cj) are used
to capture feature co-occurrences.

There are only few prior contributions that utilize topic
models in the video domain. Souvannavong et al. [31, 32,
33] explored LSA with region-based descriptors for tasks like
object retrieval and scene classification. Niebles et al. [25]
used PLSA to model human action categories like walking,
running etc. They replace static image patches with spatio-
temporal visual words, and thus employ a video-specific fea-
ture representation. In contrast to this work, we will follow
a different approach of multi-modal fusion – namely a late
fusion of single-modality topic models.

3. TOPIC MODELS
This section provides a compact review of topic models.

While a variety of variations exist (e.g. LDA [3], Hierarchi-
cal Dirichlet Processes [34]), we will focus on two approaches
here: first, we will introduce Probabilistic Latent Seman-
tic Analysis (PLSA), which is a frequently used approach
(e.g. [26, 28]) and has been shown to perform comparably
to other topic models [15]. After this, we will review Hid-
den Topic Markov Models (HTMMs) [10]. This approach
has been introduced by Gruber et al. [10] and adapts topic
models such that the sentence structure of text documents
is taken into account.

We start with some notation: a document (or video) col-
lection will be denoted with D. Each document Di ∈ D

contains Ni words out of an alphabet W . To capture the
semantic relations between documents and words, interme-
diate latent variables (or topics) Z1, .., ZK are introduced. A
document is described as a mixture of topics, which in turn
are mixtures of words. For example, a news report might
be related to topics like ’financial world crisis’, ’soccer ’ and
’weather ’. In turn, the topic ’soccer ’ would be strongly as-
sociated with words like ’goal ’, ’ball ’, and ’referee’.

3.1 Probabilistic Latent Semantic Analysis
PLSA was originally introduced by Hofmann [12]. It de-

fines a generative model for sampling the words W1, ..,WNi

of a documentDi given a multinomial topic mixture P (Z|Di)
and topics P (W |Z) as follows (c.f. Figure 3):

1. For j = 1, .., Ni:

(a) Sample a topic Zj ∼ P (Z|Di)

(b) Sample a word Wj ∼ P (W |Z = Zj)

Thus, the distribution of words within document Di is
approximated by a mixture of latent aspects:

P (Wj |Di) =

KX
k=1

P (Wj |Zk)P (Zk|Di) (1)

Model Fitting.
The fitting of a PLSA model to a collection of training

documents D is based on the idea that the observed joint
probability of documents and words should be approximated
well by the model. This is done by maximizing the log like-
lihood over all documents:

L =

NX
i=1

NiX
j=1

log P (Di,Wj) (2)

For optimization, the Expectation Maximization (EM) al-
gorithm is used [6], which consists of two alternating steps:
in the E-Step, posteriors for the latent variables (here, the
topics Z from which words are generated) are calculated.
In the M-Step, system parameters (here, the topics P (W |Z)
and mixture coefficients P (Z|D)) are updated. Both steps
are alternated until either the algorithm converges or an al-
ternative termination condition like a maximum number of



Figure 3: Generative model of PLSA: given a topic
mixture of a document Di, repeatedly a topic Zk is
picked and a word Wj is sampled from the corre-
sponding topic distribution.

iterations is met. To increase the chance of escaping local
maxima, EM is sometimes extended with an annealing pro-
cedure (for more details, please refer to Hofmann [12]).

Inference.
A priori, PLSA defines topic mixtures only on the training

documents D. To apply the model to a previously unseen
test document D∗, its topic mixture is computed using a
so-called fold-in heuristic: given P (W |D∗), P (Z|D∗) is esti-
mated using the EM algorithm, whereas the topics P (W |Z)
learned previously in training are kept fixed (for more infor-
mation, please refer to [12]).

Properties of PLSA.
One interesting property of PLSA should be kept in mind,

namely that its topics help capture synonymy and polysemy
within documents. Synonymy means that different words
imply the same meaning, like the words ’buy ’ and ’purchase’.
These words would have a high probability of being asso-
ciated with the same topic, as they tend to be used in the
same context. Similarly, polysemy implies that a word might
have several meanings, like the word ’football ’ implying ei-
ther American football or European soccer. Polysemious
words have a good chance of being associated with multiple
topics. ’Football ’ could have a high probability for a topic
which also includes words like ’quarterback ’, ’receiver ’ and
’touchdown’ (american football), as well as be made up of
words such as ’goalkeeper ’, ’striker ’ and ’corner kick ’ (soc-
cer).

3.2 Hidden Topic Markov Model
One important drawback of conventional topic models

such as PLSA is that they reduce documents to a “bag-of-
words” representation. This means that syntactical informa-
tion is discarded, and it is merely counted how often a word
occurs within a document. Correspondingly, when applying
topic models to images the spatial arrangement of patches
is typically neglected, and so is the temporal order of frames
in a video sequence.

The Hidden Topic Markov Model (HTMM) [10] described
in the following overcomes this problem by modeling docu-
ments as sequences of sentences. Words within a sentence
are assumed to be derived from the same topic, while topic
transitions occur only between sentences.

Figure 4: Generative model of the HTMM: given
a topic mixture for a document Di (drawn from a
Dirichlet prior α), consider each word in the doc-
ument: if the word does not start a new sentence
(Ψi = 0, depending on the probability ε), the topic
equals the topic of the previous sentence. Other-
wise, a new topic is chosen according to the docu-
ments’ topic mixture.

In the following, we give a quick overview of the HTMM
model (for more information, please refer to [10]): each doc-
ument D ∈ D consists of sentences S1, .., Sm, and each sen-
tence Sj again consists of words W j

1 , ..,W
j
|sj |

. A topic dis-

tribution P (Z|D) is assumed to be given (which is drawn
from a Dirichlet prior with parameter α as in LDA [3]). At
the beginning of each sentence, it is decided whether a topic
transition occurs (which happens with probability ε). Ei-
ther the topic from the previous sentence is used or a new
one is chosen according to P (Z|D). Each word within the
sentence is then sampled from the chosen topic (see Figure
4 for a graphical illustration):

1. Draw P (Z|D) ∼ Dirichlet(α)

2. For j = 1, ..,m: // sample sentences

(a) Sample Ψj ∼ Binom(ε)

(b) If (Ψj == 0) set Zj = Zj−1

else Zj ∼ P (Z|D)

(c) For i = 1, .., |sj |: // sample words in a sentence

i. Draw W j
i ∼ P (W |Zj)

The idea of HTMMs is that words within a sentence are se-
mantically connected, such that enforcing a single topic per
sentence leads to a more stable document structure (which
has been demonstrated by Gruber et al. [10]). The con-
nection of the sentences is modeled using a Hidden Markov
Model. Training of the HTMM is done by Expectation Max-
imization (c.f. Section 3.1) and the forward-backward algo-
rithm [27]. EM is used to estimate two kinds of latent vari-
ables: aside from the topics Zk, the decision Ψj whether a
topic transition occurs at a sentence transition is to be de-
termined. Thus, Expectation Maximization is slightly mod-
ified:

• In the E-step, P (Zm,Ψm|D,W1, . . . ,WM ; θ, ε) is cal-
culated for each sentence using the forward-backward
algorithm.



• In the M-Step, the parameters P (Z|D) and P (W |Z)
are calculated. Additionally, the parameter ε is esti-
mated, which serves as a prior for the probability of
topic transitions.

4. TOPIC MODELS FOR VIDEO
Previously, topic models have been applied to still pic-

tures using a “bag-of-visual-words” representation: images
are viewed as collections of local patches, which are dis-
cretized into clusters (so-called visual words [26]), and the
number of occurrences of each visual word within the im-
age is counted, resulting in the so-called bag-of-visual-words
histogram. Thereby, the codebook of visual words draws an
analogy to the vocabulary W in the textual domain, and the
latent aspects discovered by the topic model can be viewed
as groups of correlated patches occurring in the training im-
ages (for example, sampled from similar object regions).

In this section, we extend this approach and introduce
a system that employs topic models for the video domain.
Particularly, we take two additional video-specific key as-
pects into account: first, videos come with additional fea-
ture modalities – such as motion and audio – which offer
valuable additional information sources that should be taken
into account by CBVR systems (and correspondingly by a
topic model generating low-level descriptions). We will out-
line this aspect of our system in Section 4.1. Second, video
streams come with a temporal structure, i.e. their frames
are not independent but heavily correlated, forming certain
patterns over time. Accordingly, the semantic aspects given
by a topic model should adapt to this structure, and we will
take this into account in our system (Section 4.2).

4.1 Multi-modal Features
Video offers much richer information than images, as it

comes with additional feature modalities like motion and
audio. This opens the question of how to integrate multi-
modal features with topic models. A straightforward ap-
proach would be an early fusion, in which features are con-
catenated before feeding them to the topic model. However,
the problem with this approach is that the resulting feature
dimensionalities will become larger the more features are
added (this curse of dimensionality is a well-known problem
to machine learning techniques in general). Instead, we will
follow a late fusion approach: given a video Di that is de-
scribed by features from M different modalities, we train a
specific topic model on each feature modality. This results
in M dimensionality-reduced topic vectors Pm(Zk|Di)

Km
k=1

(where m = 1, ..,M). These low-dimensional features are
concatenated to a joint multi-modal topic descriptor of tar-
get dimensionality

PM
m=1Km. Hörster and Lienhart [14]

have reported previously for static images that such a fu-
sion of different features gives improved results. In the case
of multiple modalities, a similar approach of dimensional-
ity reduction followed by concatenation has been pursued
in [23]. Another alternative would be to apply modality-
specific classifiers and fuse their results using classifier com-
bination [37].

4.2 Shot Structure
A key problem with topic models like PLSA and LDA is

that they simplify input documents to a “bag-of-words” rep-
resentation, and syntactical information is widely neglected.
For video content, this means that topic models do not offer

a rigorous way to model the temporal structure of content.
We could represent the video stream as a set of keyframes,
but neglect the fact that content within the same scene is
semantically related. On the other hand, when viewing a
whole video (say, a 10-minute YouTube clip) as a single
global document, temporal structure is lost and no infor-
mation about specific events in the video is maintained.

Finally, we could employ shot boundary information to
some extent and view shots within the video as a PLSA
document. While this approach uses the structure of video
to some extent, it still make only weak use of temporal in-
formation, as the order of shots is neglected, and patches
within shots may be related to very different semantic as-
pects. This is illustrated in Figure 5 (top), which shows a
result of a shot-level PLSA analysis of a sample YouTube
video: from a “good” topic model, we would expect that
patches from the same object share the same topic. In the
PLSA result, however, even patches within the same im-
age region (for example, the grass or the soccer players) are
highlighted in different colors, i.e. linked with different top-
ics. Obviously, PLSA topics are not accurately related to
real-world semantics.

This raises the question whether the temporal structure of
video can be used to infer more stable topics. Therefore, we
propose an alternative that puts stronger emphasis on this
aspect: we understand shots as the semantic units of video.
This is motivated by the assumption that the content within
a shot is usually heavily semantically related, while switches
of semantics occur at shot boundaries (which is true at least
for professionally produced videos).

Based on this observation, we adopt the HTMM model
(Section 3.2) for the video domain by drawing an analogy
between sentences in a text and shots in a video, which
both form semantic units in a sense that a sentence (shot)
should be related to a single topic only. Previous to the topic
model, shot boundary detection is applied, and patches from
within the same shot are viewed as words sampled from a
single coherent topic. This is illustrated in Figure 5: while
PLSA leads to unstable results, HTMM topics (bottom) are
enforced to be consistent within shots and change only at
shot boundaries. This way, more stable (and – as will be
demonstrated later – meaningful) topics are obtained.

5. EXPERIMENTS
In a series of quantitative experiment on a large-scale

dataset of real-world web video content, we demonstrate
that the proposed approach leads to a highly efficient seman-
tics-preserving compression of video material. We show that
topic models for video achieve a performance comparable to
high-dimensional standard descriptors and outperform other
dimensionality reduction techniques. Also, we demonstrate
that the proposed video-specific extensions – namely, the
integration of multi-modal features and the use of tempo-
ral shot structure – lead to more meaningful topics and to
improvements of CBVR systems.

We start with an outline of the experimental setup (Sec-
tion 5.1). After this, three key issues are addressed: first,
we compare topic models with other dimensionality reduc-
tion techniques (Section 5.2). Second, we evaluate the inte-
gration of multimodal features (here: patch-based features
and motion information, Section 5.3). Finally, we test the
Hidden Topic Markov Model for making better use of shot
structure (Section 5.4).



Figure 5: Three shots from a soccer video, which was analyzed using PLSA (top) and an HTMM (bottom).
Patches are colored according to the topic that generated them. The topic mixtures resulting from PLSA are
unstable: even patches from the same object region are assigned to different latent aspects, i.e. PLSA topics
are not accurately related to real-world semantics. In contrast, the HTMM enforces changes of semantics to
coincide with shot transitions and leads to topics that are well-associated with semantic categories (“crowd
shots”, “gameplay”).

5.1 Experimental Setup
We evaluate the proposed approach for the semantic com-

pression of video content in a CBVR application on web
video clips. Standard bag-of-visual words features [28] are
extracted, reduced using topic models, and finally fed to
machine learning techniques like video categorization and
clustering.

For evaluation purposes, we use a dataset of 195 hours of
web video content. Ten categories were chosen, related to
scene types, object categories, and sports (basketball, cats,
desert, eiffeltower, helicopter, riot, sailing, soccer, swim-
ming, tank). For each category, clips were downloaded from
YouTube by searching for the respective category and sim-
ilar terms. For example, soccer videos were obtained by
querying YouTube with words like ’soccer ’ or ’soccer world
championship’. To increase the diversity of the dataset, only
one video per YouTube user was retrieved. The resulting
content shows enormous intra-class variation: for example,
clips within the category hiking range from outdoor trips to
presentations about hiking boots. In total, the dataset is
comprised of 3618 videos. 250 videos of each category are
in the training set (amounting to a total of 2500 clips) and
the rest in the test set (1118). Note that the amount of test
samples for each category varies: for example, there are only
57 videos in the eiffeltower category, whereas the categories
riot and sailing have more than twice as many.

Since a core concern of our experiments is the use of shot
information, we extracted shot boundaries using a standard
method that comes with a publicly available reference imple-
mentation by Lienhart1). Keyframes were extracted using
the method by Borth et al. [4].

To evaluate the use of shot information, we also collected
shot-level ground truth annotations with respect to the 10
target concepts: for each keyframe, a human annotator de-
cided whether or not the associated concept was actually
present in the video. Shots were only accepted as contain-
ing a concept if all keyframes within that shot were marked

1http://www.informatik.uni-mannheim.de/pi4/projects/
MoCA/downloads.html

accordingly. All shots that did not show any of the 10 test
concepts were discarded, obtaining a refined dataset of 12900
manually annotated shots (out of a total of 90854 shots) and
a test set size of 5830 shots. This dataset was used in all
following experiments.

For feature representation, a standard bag-of-visual-words
approach was used: from each video, SURF features with
128 dimensions were extracted on each 10th frame [2]. These
features were then aggregated into a frame-level bag-of-visual-
words histogram with 2000 entries. The visual codebook was
trained previously on a bigger, generic dataset of Youtube
videos using a K-Means clustering. Thus, each video was

described by |Frames|
10

∗ 2000 values. These frame-wise his-
tograms were aggregated to shot-level.

5.2 Comparing Semantic Compression
Techniques

In a first experiment, we compare topic models with other
dimensionality reduction techniques. We reduced the orig-
inal 2000-dimensional bag-of-visual-words histograms using
PLSA and Principal Component Analysis (PCA), and also
tested a reduction of the number of visual words itself (the
latter was only performed for 2 data points for efficiency
reasons). Finally, the MPEG-7 Color Layout Descriptor
(CLD) [19] – a manually designed 12-dimensional feature
based on the distribution of color in a frame – was included
in the evaluation.

Feature vectors were reduced to 10, 20, ..., 200 dimensions.
The resulting video descriptors were then used as input for
an SVM classifier (the libsvm standard implementation [5]
was used with an RBF kernel), which performed concept
detection on the shot test set after learning on the training
set of 12900 shots. As a performance measure, mean average
precision (MAP) was used.

Results are illustrated in Figure 6, where system perfor-
mance is plotted against the feature dimensionality. It can
be seen that PLSA comes close to the performance of the
full descriptor (58.9% for 170 topics as opposed to 62.1% for
the full 2000-dimensional feature). Even for as few as 100
topics, performance is comparable to the full bag-of-visual-
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Figure 6: The mean average precision (MAP) plot-
ted against the feature dimensionality when us-
ing PLSA, PCA, a reduction of the codebook size
(BOVW), and the MPEG-7 color layout descriptor
(CLD).

words representation (a relative performance loss of 10.3%
occurs at a compression rate of 1/20). With this, PLSA
outperforms PCA by up to 10.0%, which means that we can
achieve the same performance at a much higher compression
rate – for example, PLSA with 40 topics is on par with PCA
when using 200 topics, i.e. a compression of 5 : 1 is achieved.
While PLSA performs similarly to a codebook with only 10
entries, it seems to scale better, i.e. the performance of a
codebook with 100 entries is reached given only 50 topics.

Finally, PLSA for 12 topics performs comparably to the
manually designed MPEG-7 color layout descriptor of equal
size. This result is encouraging, as PLSA can be adapted
by varying the number of topics if a higher precision is re-
quired. Also, our current approach could be improved by
using color-based patch descriptors (for which strong im-
provements have been reported by van de Sande et al. [36]).
Overall, this experiment confirms that topic models are in-
deed a promising approach to effectively compress semantic
information of videos. This confirms earlier results for the
image domain reported by Hörster and Lienhart [15].

5.3 Multiple Modalities
This experiment investigates the combination of several

feature descriptors in the context of topic models. Using
more and different features and combining them is known
to be beneficial in many CBVR applications. In this exper-
iment, we demonstrate that topic models can be improved
by a combination of multimodal features as well: we follow
a late fusion approach, i.e. specific topic models are trained
for each modality, and the resulting topic scores are concate-
nated afterwards.

Aside from bag-of-visual-word features, we use motion as
a second video-specific modality. For this purpose, motion
window histograms (MWHs) over MPEG-4 motion vectors2

are extracted: each frame is split into 4 × 3 rectangular
subregions, and for each subregion all block motion vectors
within are quantized into one of seven bins in both X- and

2motion vectors were extracted using the XViD codec:
www.xvid.org
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Figure 7: The mean average precision plotted
against the number of topics used for fusing bag-of-
visual-words (BOVW) and motion (MHW) features.
The feature axes indicate the number of topics used
for a single feature.

Y-direction (i.e., each motion block is assigned to one of
49 bins). This information is aggregated into a histogram
describing the motion in each subregion. To describe the
whole video, all subregion histograms are then concatenated,
obtaining a descriptor of 588 dimensions. Both visual word
histograms and MWHs are reduced to 10, .., 200 topics using
PLSA. The resulting descriptors are concatenated and fed
to an SVM classifier, which performed a categorization on
video level.

Results of the different fusions can be found in Figure
7, where the categorization accuracy on video level is plot-
ted against the number of topics used for each modality. It
can be seen that pure PLSA-MWH (using only motion in-
formation) performs poorly. However, when fusing motion
information with patch information, the resulting models
outperform the pure PLSA on visual words (albeit only by
a small margin). For example, using 15 motion topics and 30
patch topics gives an improvement of 3.3% (from 88.3% to
91.6%) over the single-modality case (45 patch topics), and
using 15 motion and 75 patch topics results in an improve-
ment of 2.7% (from 89.7% to 92.4%). This is particularly
remarkable considering that the motion-based PLSA is not
a very strong feature on its own. These results indicate that
assigning different topic sizes to different features can reach
a certain target dimensionality and achieve an improved per-
formance (though it seems preferable to use more topics for
better feature modalities).

5.4 Temporal Structure
While the previous experiments have been conducted with

PLSA as a representative topic model, we have also pro-
posed HTMMs as an alternative for making better use of
the temporal structure of video (Section 3.2). We have ar-
gued that by enforcing changes of semantics to coincide with
shot boundaries, we can obtain more stable and meaningful
topics.

This last experiment compares the topics obtained by
PLSA and by the proposed HTMM approach. Both PLSA
and HTMM were applied to the training set of 12900 shots,
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and the reduced topic features were used to assign shots to
clusters: each topic corresponds to one cluster, and each
shot D is assigned to the topic with maximum posterior.

C(D) = arg max
k=1,..,K

P (Zk|D)

From a good topic model, we would expect that shots from
the same semantic category are assigned to the same topic.
Therefore, we measure the correlation of clusters and ground
truth categories using purity [39] as a simple evaluation cri-
terion. Purity counts the number of samples per category
k in each topic Ci. The category Ci,k with the maximum
samples is divided by the total number of samples in a topic
and (with adjusted weights) summed up over all topics Ci:

purity(Ci) =
1

|Ci|
max

k
(|Ci,k|)

purity(C) =
X

j

|Cj |
|D| purity(Cj)

Note that purity increases monotonically with the number
of clusters, and ultimately peaks at 100% in case every shot
is assigned to its own singleton cluster. Yet, purity is a
fair approach for comparing different methods on the same
number of clusters.

The performance of both HTMM and PLSA is plotted
against the number of topics in Figure 8. It can be seen
that the HTMM gives a higher purity than PLSA, which in-
dicates that the temporal structure enforced by the HTMM
indeed leads to a better correspondence of topics and seman-
tic categories.

6. CONCLUSIONS
In this paper, we have adapted topic models – which have

previously been applied successfully for still images – for the
domain of video. Our key contributions are extensions of
topic models such that two video-specific aspects are taken
into account: first, we make use of additional information
such as audio and motion by combining multi-modal topics.
Second, we draw an analogy between sentences in a text
and shots in a video, and thus take the temporal structure
of video content into account.

In quantitative experiments, we have shown that the pro-
posed approach leads to a highly effective semantic compres-
sion of video content:

• Topic models were demonstrated to preserve most dis-
criminative information at a compression rate at 20 : 1
compared to full bag-of-visual-word descriptors.

• The late fusion of visual and motion-related features
was found to be beneficial, giving improvements over
single-modality image-based descriptions.

• It was found that the proposed approach for modeling
the temporal structure of video content leads to more
meaningful topics that are much stronger related with
semantic categories.

Several interesting aspects might be pursued further. For
instance, the Hidden Topic Markov Model could be adapted
to model each sentence as a topic mixture instead of a single
topic, as this would further enhance its usability for tasks
like classification or similarity search. Another extension
might be to learn statistics of specific topic transitions (for
example, capturing the fact that “weather reports” never di-
rectly follow an“interview”, but frequently an“anchorman”).

Finally, online learning in the scope of topic models is a
task which seems worth investigating: services like YouTube
with roughly 60000 new videos per day are not capable of
training completely new topic models with an ever increas-
ing amount of data. Thus, adaption of existing models to
incorporate new data is definitely an interesting research di-
rection.
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