
Ideas for Collaborative Ontology Development on the
Upcoming Web 3.0 Era

Matthias Loskyll1 and Dominikus Heckmann2

1 Saarland University, 66123 Saarbrücken, Germany, matthias@xantippe.cs.uni-sb.de
2 DFKI GmbH, 66123 Saarbrücken, Germany, heckmann@dfki.de

Abstract. Ontologies continuously become larger and more complex, and therefore more and
more difficult to maintain, to edit and to develop by one single person or a small group of experts.
The basic principle of Web 2.0, on the other hand, is to use the willingness and knowledge of
a huge community of users to create rich user-generated content. The obvious idea that comes
to mind is to combine the technologies of the Semantic Web with the trend of the Web 2.0. In
this paper we present UbisEditor, an easy-to-use web tool for the creation and manipulation of
structured collective knowledge represented as ontologies. This web ontology editor is realized as
part of the UbisWorld project (http://www.ubisworld.org) and already supports ontology editing
techniques like adding new concepts, renaming and deleting, but also the creation of personalized
ontology views.

1 Introduction

The characterization of Web 3.0 used in this paper is based on [11], in which Wahlster and Dengel define
Web 3.0 as the integration of Semantic Web technologies with the principles of Web 2.0. Our approach
perfectly fits to this definition of Web 3.0 because it combines ontology development, which forms the
backbone of Semantic Web, together with the community approach of Web 2.0.
With the increasing importance of ontologies, several ontology editors have been developed. Two of
the currently most popular ones are Protégé [6] and Swoop [2]. However, there are only few online editors
for ontologies available. Recently, a web-based version of Protégé called WebProtégé [10] was released.
An evaluation of different tools for collaborative ontology development during the CKC challenge [5]
showed that users prefer Web interfaces for editing tools. Our prototype called UbisEditor uses Ajax
technologies to load and send required data on demand such that it provides a lightweight and efficient
way of performing ontology editing on the Web. Other differences of our approach compared with related
work are: our ontology is stored in a database structure, editing can be performed using a context menu,
we already have a role-based rights management, and we provide multilingual renaming of concepts.
Ontology segmentation or the creation of ontology views is an important issue. Since many ontolo-
gies constantly grow in size and are therefore more and more difficult to understand, maintain and edit,
ontology segmentation shall help to extract only those parts of a large ontology that are relevant for a
certain scenario. Seidenberg and Rector compare and evaluate several algorithms for extracting relevant
segments in [8]. The key approach is to let the user select some relevant concepts and to automatically
add superclasses, subclasses and other related concepts (e.g. classes contained in axioms and restrictions)
to the ontology view. We implemented a similar, lightweight online approach as part of the UbisEditor.

2 The Web Ontology Editor

The idea behind UbisEditor is the following (see figure 1 left): Our basic ontology is created and edited
by an ontology expert, who can use Protégé to perform this task. Our ontology community, on the other
hand, extends the basic ontology via UbisEditor with the possible issue of dublicated and conflicting
concepts. Another feature of UbisEditor is to allow an individual ontology user to create a personalized
ontology segment.
The UbisEditor itself is part of the UbisWorld project, which focuses its research on ubiquitous
user modeling [1] and Web 3.0. The latest tool set version UbisWorld 3.0 integrates Web 2.0-like ser-
vices and Semantic Web technologies. The knowledge base of the system is built out of two ontologies:

2 Matthias Loskyll and Dominikus Heckmann

Fig. 1. Left: Collaborative Ontology Engineering in the Web 3.0 era with UbisEditor; Right: Abstract architec-
ture of the UbisEditor and visualization system

GUMO (General User Modeling Ontology) and UbisOntology. These ontologies are represented as fold-
able trees whose nodes consist of classes and instances. In addition, several external ontologies (e.g.
SUMO, DOLCE, OpenCyc) have been parsed and integrated into the UbisWorld. At the moment, fur-
ther OWL ontologies can only be imported by our team, but we plan to provide a functionality to allow
users to import and edit their own ontologies anytime soon.
All the trees can be browsed in a very efficient way by using Ajax technologies [4]. This means that
the data needed to display the layer of a tree is sent to the client not before the user has opened the
corresponding parent node. Using this visualization technique we are basically able to display arbitrary
large trees. Another strength of our visualization technique is the clear structure achieved by displaying
limitation nodes, which subsume large numbers of nodes in ten thousand or hundred packets, respec-
tively.
UbisEditor uses the same graphical user interface as the UbisWorld ontology browser, but with addi-
tional features enabled like check boxes, a context menu, a drag&drop functionality and editable tree
node labels.

2.1 Architecture of UbisEditor

Figure 1 (right) shows the basic architecture of the UbisEditor and the ontology browser. Both the
developers of our group and our user community can use the UbisEditor to manipulate the different
ontologies. When committing changes, a script stores the appropriate data in the database and a script
for building the ontology trees sends the updated information back to the client. With this technology,
we are able to overcome the performance issues that appeared in the context of web ontology editors so
far.

2.2 Editing Process and Quality Control

The UbisEditor already supports the most important functionalities for editing an ontology: creating new
classes or instances, renaming and deleting objects as well as changing a node’s parent via drag&drop.
By using a context menu, we provide an efficient and easy-to-use way of performing these editor actions.
This context menu is adaptive to the rights of the user, which depend on a role-based rights management.
This means that only users belonging to a certain role can delete objects, for example. In addition, we
define subbranches that are only visible to special groups of users.

Ideas for Collaborative Ontology Development on the Upcoming Web 3.0 Era 3

When the editing process is finished, the user has to push a button to commit the performed changes to
the server. Then a script executes the actions corresponding to the type of the changes. By changing only
those values in the database that really have changed, the updated tree can be reloaded and displayed
immediately to the user.
For each editing process performed with UbisEditor we store the identifier of the registered user who is
responsible for the appropriate changes. By doing so, we are able to find out whether a user constantly
inserts low quality content. In addition, UbisWorld already has a five-star rating system available, with
which our user community can help to ensure the quality and integrity of our content [7]. A possible
extension could be to make it possible to rate the raters, too.

2.3 Multilingual Editing of Labels

UbisLabel is our approach to define multilingual labels in identifiers for semantic web and ubiquitous
computing. We use UbisLabels to denote concepts in our ontologies. The basic idea is to use only
ASCII characters in names, even if selected special characters are allowed. The syntax of the UbisLabel
approach is described below.

[D] UbisLabel ::= SimpleLabel | LanguageLabel | MultiLabel

[D] SimpleLabel ::= UbisToken

[D] LanguageLabel ::= (LanguageCode)+ ".." UbisToken

[D] MultiLabel ::= UbisLabel ("..." UbisLabel)+

[D] LanguageCode ::= ISO_639_1 | "ME"

[D] ISO_639_1 ::= "EN" | "DE" | "IT" | "JP" | "YI" | ...

So this approach not only enables multiple labels for any concept from the knowledge representation
point of view, but also allows the adaptive selection and presentation of a label according to a situation-
aware strategy.
In order to make a multilingual labeling of the concepts of the different ontologies possible, we provide
an additional method to edit the label of an object. When selecting a node of an ontology tree, a
grid appears on the right-hand side of the UbisWorld web page. This grid has two columns (Language
and Label) where the different labels that already exist for this concept are shown together with the
corresponding language. Further translations of the concept’s name can be added by first selecting a
language out of a combo box containing the different iso 639 language codes and entering the appropriate
name into a text editor field afterwards. This feature facilitates a collective generation of multilingual
ontology concepts.

2.4 Aspects of Collaborative Ontology Development

The idea to facilitate a collaborative ontology editing raises several issues. One important task is the
implementation of a transaction management to avoid problems when multiple users edit the ontologies
and commit their changes simultaneously. However, since our system stores the different ontologies in a
database back end, the concurrency control will probably be solved on the database level. In addition,
we think about implementing a locking mechanism on the subtree or ontology module level to avoid
inconsistencies.
When different members of a community collectively extend an ontology, different opinions inevitably
can cause conflicts to occur. Consequently, a conflicts resolution is an essential functionality. We plan
to solve this problem using a combined approach consisting of a community-based and a role-based
conflicts resolution strategy similar to the one proposed by Li et al. in [3].
In order to avoid dublicated concepts, we already implemented a search engine for the UbisWorld
system, which can be used to find classes, instances and properties of the UbisOntology. This is a very
important feature with regard to the editing process using UbisEditor. When a user plans to insert a
new element into the UbisWorld ontology, but is not sure whether an appropriate concept already exists,
the UbisSearch can be used to remove ambiguity.
In the near future we plan to develop a change management system for UbisEditor and to extend the
rating system such that performed ontology editing operations can be rated. By doing so, the change
history and versioning information of each ontology concept can be displayed on the right side of the
website helping the user to understand the evolution of the ontology. Our user community can help
do discuss and decide whether performed changes to the ontology should be kept or reverted. In this

4 Matthias Loskyll and Dominikus Heckmann

context, the availability of tagging and annotation facilities as supported by Collaborative Protégé [9]
becomes essential. The UbisWorld already provides a simple tagging functionality, but more advanced
features for annotating and discussing ontology concepts and changes are needed.

2.5 Personalized Ontology Views

Another important feature supported by UbisEditor is the possibility to create ontology views, i.e. to
extract only those parts of the ontology that are relevant for the scenario on hand. In editor-mode, the
ontology trees are displayed with a check box on the left-hand side of each node. So the user can easily
select the needed concepts and create a personalized ontology view by pushing the appropriate button.
Then an OWL-file is provided for download. We always integrate the direct and indirect superclasses
of the selected concepts traversing the hierarchy tree upwards until the top node of the ontology. In
addition, we let the user decide whether only the selected concepts (and the appropriate superclasses)
shall be included in the ontology view or also their subclasses. At the moment, the UbisWorld does not
provide functionalities to define and display ontological restrictions and axioms. Consequently, we do
not consider classes contained in these definitions for the creation of ontology segments so far. However,
we plan to do so in the near future.

3 Conclusions and Future Work

We have presented UbisEditor, a Web tool which provides lightweight functionalities for efficient collab-
orative ontology editing using an Ajax-based visualization technique. The central idea of our approach
is to facilitate the distributed extension of our basic ontologies, that were created by experts, performed
by our ontology community.
UbisEditor is part of the UbisWorld 3.0 tool set that can be tested online at www.ubisworld.org. Our
initial research results are currently transferred to the domain of distributed technology enhanced learn-
ing in the EU project GRAPPLE.
In the near future, we plan to extend the functionality of UbisEditor in order to support the definition of
ontological axioms, the creation of properties and the user-driven merging of ontologies. Concerning the
support of collaborative ontology development, mechanisms for concurrency control, conflicts resolution
and change management are essential. Additionally, we are going to perform an extensive evaluation of
the editor features and of our ontology visualization techniques.

References

1. D. Heckmann. Ubiquitous User Modeling. Berlin: Akademische Verlagsgesellschaft Aka GmbH, 2006.
2. A. Kalyanpur, B. Parsia, E. Sirin, B. C. Grau, and J. Hendler. Swoop: A web ontology editing browser.

Web Semantics: Science, Services and Agents on the World Wide Web, 4(2):144–153, June 2006.
3. M. Li, D. Wang, X. Du, and S. Wang. Ontology construction for semantic web: A role-based collaborative

development method. pages 609–619. 2005.
4. M. Loskyll. Ontological and Ajax-based Extension of UbisWorld. Bachelor thesis, 2007. Chair for Artifical

Intelligence, Prof. Dr. Dr. h.c. mult. Wahlster, Saarland University.
5. N. F. Noy, A. Chugh, and H. Alani. The ckc challenge: Exploring tools for collaborative knowledge con-

struction. Intelligent Systems, 23(1):64–68, 2008.
6. N. F. Noy, M. Crubezy, R. W. Fergerson, H. Knublauch, S. W. Tu, J. Vendetti, and M. A. Musen. Protégé-

2000: an open-source ontology-development and knowledge-acquisition environment. AMIA ... Annual Sym-
posium proceedings / AMIA Symposium. AMIA Symposium, 2003.

7. P. Recktenwald. A Web 2.0 Rating System for UbisWorld. Bachelor thesis, 2007. Chair for Artifical
Intelligence, Prof. Dr. Dr. h.c. mult. Wahlster, Saarland University.

8. J. Seidenberg and A. Rector. Web Ontology Segmentation: Analysis, Classification and Use, 2006.
9. T. Tudorache, N. Noy, S. Tu, and M. Musen. Supporting collaborative ontology development in protégé.

pages 17–32. 2008.
10. T. Tudorache, J. Vendetti, and N. F. Noy. Web-protege: A lightweight owl ontology editor for the web. In

C. Dolbear, A. Ruttenberg, and U. Sattler, editors, OWLED, volume 432 of CEUR Workshop Proceedings.
CEUR-WS.org, 2008.

11. W. Wahlster and A. Dengel. Web 3.0: Convergence of Web 2.0 and the Semantic Web. Telekom Technology
Radar II, Juni, pages 1–23, 2006.

