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Abstract

This paper addresses the problem of senso-
rimotor learning from the perspective of affor-
dances learning of simple objects. We are de-
veloping a scenario where a robotic arm inter-
acts with a polyflap, a simple 3-dimensional
geometrical object. We perform experiments
with a simulated arm using a physics simula-
tor, but we plan to use also a real arm. The
robot interacts with the object by pushing it
in different ways. We use Recurrent Neural
Networks to predict the arm and object poses
during this interaction, given a discrete set of
random actions that the robot can produce.

1. Introduction

Robots should be able to adapt and learn by in-
teracting in dynamic environments, if we want that
they acquire the kind of complex skills performed
by humans and animals in general. In altricial
animals (like humans) the development of com-
plex motor skills is continuously improved after
different stages of development. In these species
(Sloman and Chappell, 2005), the interaction with
the environment plays an important role for the ac-
quisition of sensorimotor abilities, and for the hierar-
chical acquisition of more complex skills based on the
ones previously acquired. This introduces us to the
concept of affordance, which is for instance referred
to learning about and from actions performed by an
agent on an object. In (Gibson, 1977), a theory of
affordances was developed. We can apply this theory
of cognitive development to the field of robotics by
employing, for instance, machine learning techniques
that allow the robot to predict action consequences
on certain objects. The interaction with objects and
in general with different environmental aspects allow
to shape the “mind” of the robot on the basis of its
acquired experience.

Taking into account that the environment and the
physical characteristics (embodiment) of a robot has
a complex structure, we have to think of proper sce-
narios where we can test these techniques and the-
ories. In (Sloman, 2006), simples scenarios using 3-
dimensional objects called polyflaps were proposed.
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The objective is to steadily increase the complexity
of the space of actions and the structure of the envi-
ronment. That would allow us to evaluate algorithms
that can be useful for compositional (hierarchical)
skills development.

It is also important to identify what kind of per-
ceptions can drive learning for an autonomous robot.
Based on the way children acquire learning skills
at early stages of development, the works presented
in (Oudeyer et al., 2007, Roa et al., 2008) describe a
system in which the robot has an intrinsic motiva-
tion for learning, based on the interestingness of the
situations it discovers. For these tasks, a simple in-
trinsic reward mechanism is employed, which is pro-
portional to the increase of the error rate of some
classifier trying to predict the consequences of the
robot actions at a given time. The robot was able
to identify affordances as correlations between its
space and actions and its consequences in the envi-
ronment. In this work, classifiers are used for predic-
tion and the robot is equipped with real-valued sen-
sors and actions comprising its sensorimotor space.
After training, there are different classifiers special-
ized (biased) in some regions of the state space. A
statistical mechanism to split the state space into re-
gions is implemented to support the specialization of
the classifiers.

2. Scenario

As already pointed out, we use a robotic arm which
interacts with a polyflap in a simulated environment
(Figure 1).

Figure 1: Learning scenario with a polyflap

We use a simulator that can track objects and re-
turns an object pose. Objects that we consider are
polyflaps and the arm body parts, which are simple



objects from which we can obtain 3D information.
Thus, the task is to use machines that can predict
spatio-temporal sequences, and this can be seen as a
time-series prediction or regression problem. A sam-
ple s = [c, si]i=1,...,n is then a whole sequence of fea-
ture vectors si = [vi,mi], where v denotes a vector
containing visual data of an object (pose in homo-
geneous coordinates), m denotes motor information
(joints pose, joint velocities) and i a time frame num-
ber up to the limit n = 70, together with a motor
control command vector c. In practice, the actions
considered are pushing actions on a linear trajectory
applying a velocity profile (a 4th degree polynom) to
an online inverse kinematics solver and an horizon-
tal direction angle. The values are normalized with
mean 0 and standard deviation 1.0.

3. Learning Approach

The learning machines described in
(Oudeyer et al., 2007, Roa et al., 2008) can pre-
dict short-term consequences of actions. They
use an active learning mechanism which uses a
measure of learning progress based on the error
prediction to select next actions according to this
interestingness measure. In this case we are facing
a spatio-temporal prediction problem. Recurrent
Neural Networks (RNNs), and more specifically
Long Short-Term Memory (LSTM) machines
(Hochreiter and Schmidhuber, 1997, Graves, 2008)
have been shown to accurately predict sequences
over extended periods of time. Another approach is
the CrySSMEx algorithm(Jacobsson, 2006) which
could either extract a probabilistic finite model (a
substochastic machine) of the experiences learned
by the RNNs (LSTM) or be used itself to analyze
the sensorimotor space (as a dynamic system)
over several periods of time, and finally extract a
model. More importantly, these models should give
us a categorization of different object behaviours
and corresponding affordances, i.e., given similar
objects (similar features) the predictions should
be similar. By using these machines, it is possible
to evaluate the certainty of the machine to pre-
dict action consequences over several periods of
time. This mechanism would afford to simulate
a kind of mastery driven action selection (if the
RNN successfully predicts action consequences)
or curiosity driven action selection (if the RNN is
failing to predict action consequences and there is
learning progress). Other kinds of drives might be
novelty (unpredictable action consequence), surprise
(unexpected outcome) or interactive (based on a
human reward/punishment signal). A feature vector
in a frame i is processed at a time step t. The
RNN should then predict the corresponding feature
vector in the next frame i + 1 at some time t + δ,
till i = n. Initially, we use gradient-based methods

for offline learning and in online experiments this
knowledge might also be used as a kind of knowledge
transfer method. In general, a LSTM is composed
of input units, special units (gate units, memory
cells) or conventional hidden units. The weights w
are learned by using a modified gradient descent
algorithm, that together with the special units
avoid the problem of exponentially decaying error
(Hochreiter and Schmidhuber, 1997).

4. Preliminary experimental results

In order to show the convergence of the LSTM ma-
chines we performed offline experiments. In a prelim-
inary experiment using 10-fold cross-validation sets
and 10 hidden nodes in the network, we obtained
the results shown in the experiment 1 in Table 4.
SSE denotes the averaged sum of squares error for
test sets, which is the objective function minimized
by the LSTM and is a good performance measure
for regression problems. In the experiment 2, we
only used feature vectors si = vi, i.e., only contain-
ing polyflap poses. Because of the non-deterministic
nature of a certain control command, slightly differ-
ent behaviours are produced. We plan to use active
learning techniques driven by e.g. curiosity for the
selection of samples.

Exp. Avg. epochs Avg SSE Samples

1 4700 0.03 500
2 5622 0.007 500

Table 1: Preliminary results
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