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Abstract. Natural language parsing, as one of the central tasks in nat-
ural language processing, is widely used in many AI fields. In this paper,
we address an issue of parser performance evaluation, particularly its
variation across datasets. We propose three simple statistical measures
to characterize the datasets and also evaluate their correlation to the
parser performance. The results clearly show that different parsers have
different performance variation and sensitivity against these measures.
The method can be used to guide the choice of natural language parsers
for new domain applications, as well as systematic combination for better
parsing accuracy.

1 Introduction

Natural language parsing is not only one of the central tasks in the field of
natural language processing, but also widely used in many other AI areas, e.g.
human-computer interaction, robotics, etc. While many parsing systems achieve
comparably high accuracy from application perspective [1], the robustness of
parser performance remains as one of the major problems which is not only
unresolved, but also less acknowledged and largely overlooked. The capability of
most statistical parsing systems to produce a parse for almost any input does
not entail a consistent and robust parser performance on different inputs.

For example, in robotics, the input of the parsers usually comes from an au-
tomatic speech recognition (ASR) system, which is error-prune and much worse
than the human listeners [2]. More seriously, as one of the earliest components,
in many applications, the unsatisfying outputs of the parsers will be propagated
and the errors will be amplified through the common pipeline architecture. For
example, in a popular task in Bioinformatics, protein-protein interaction extrac-
tion, [1] have shown correlation between the parse accuracy and the extraction
accuracy.
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Through the past decade, there has been development of numerous parsing
systems with different approaches using various representations, many of which
are available as open source softwares and ready for use off-the-shelf. However,
it is a common knowledge now that treebank-trained parsers usually perform
much worse when applied onto texts of different genres from the training set.
Although it is the nature of human languages to be diverse, the variation of
parser performance does not always correspond to the difficulty of the text for
human readers.

More recently, the problem has been studied as the task of parser domain
adaptation. For instance, [3] generalized the previous approaches using a maxi-
mum a posteriori (MAP) framework and proposed both supervised and unsuper-
vised adaptations of statistical parsers. [4] and [5] have shown that out-domain
parser performance can be improved with self-training on a large amount of ex-
tra unlabeled data. The CoNLL shared task 2007 [6] has a dedicated challenge
to adapt parsers trained on the newspaper texts to process chemistry and child
language texts. [7] and [8] port their parsers for biomedical texts, while [9] adapts
her parser for various Wikipedia biographical texts. In all, most of the studies
take a liberal definition of “domain”: the term is used to dub almost any dataset,
either slightly or remotely different from the training set. Also, while substantial
performance improvements have been reported for different parsing systems, it
is not clear whether such methods are equally effective for other parsers (when
intuition usually suggests the opposite).

In this paper, we present a series of experiments which correlate the per-
formance of several state-of-the-art parsing systems (Section 3) to three very
simple statistical measures of the datasets (Section 2). The result clearly shows
that even for a group of datasets of similar genres, parser performance varies
substantially. Furthermore, performances of different parsers are sensitive to dif-
ferent statistical measures (Section 4).

2 Statistical Measures for Datasets

There has been a rich literature in text classification on statistical measures that
can be used to categorize documents. However, here we are not interested in dif-
ferentiating the semantic contents of the texts, but in those basic measures which
can be potentially correlated with the parser performance. As another related
work, [10] focused on annotation differences between datasets and attributed
many errors to that; while in this paper, we concern more about the basic statis-
tical distribution of the texts itself within the datasets, without considering the
syntactic annotations. When the parsers are tested on datasets with compatible
and consistent annotations to the training set, the performance correlation to
these measures on unannotated texts reflect the characteristics of the parsers,
independent from the annotation scheme adopted.

The following three measures are used for the experiments reported in the
this paper.
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Average Sentence Length (ASL) is the most simple measure which can be easily
calculated for any given dataset without consulting extra resources. Common
intuition is that the performance of the parser is relatively worse on longer
sentences than shorter ones.

Unknown Word Ratio (UWR) is calculated by counting instances of the unseen
words in the training set and deviding it by the total number of word instances
in the target dataset.

Unknown Part-of-Speech Trigram Ratio (UPR) is calculated by counting the
instances of unseen POS trigram patterns in the training set and deviding it by
the total number of trigrams in the target dataset. We also add speical sentence
initial and final symbols into the POS patterns, so as to denote the rough position
of the trigram in the sentence.

It should be noted that these simple measures are given here as examples to
show the performance variation among different parsers. Adding further statis-
tical measures is straightforward, and will be experiment in our future work.

3 Parser Performance Evaluation

Parser evaluation has turned out to be a difficult task on its own, especially in
the case of cross-framework parser comparison. Fortunately, in this study we are
not interested in the absolute scores of the parser performance, and instead, only
the variation of the performance among different datasets. For this reason, we
select representative evaluation metrics for each individual parsing system,

We select the following group of representative parsing systems in our experi-
ment. All these parsers are freely available on-line. For those parsers where train-
ing is required, we use the Wall Street Journal (WSJ) section 2-21 of the Penn
Treebank (PTB) as the training set. This includes both the phrase-structure
trees in the original PTB annotation, and the automatically converted word-
word dependency representation.

Dan Bikel’s Parser (dbp) 3 [11] is an open source multilingual parsing engine.
We use it to emulate Collins parsing model II [12].

Stanford Parser (sp) 4 [13] is used as an unlexicalized probabilistic Context-Free
Grammar (PCFG) parser. It utilizes important features commonly expressed by
closed class words, but no use is made of lexical class words, to provide either
monolexical or bilexical probabilities.

MST Parser (mst) 5 [14] is a graph-based dependency parser where the best
parse tree is acquired by searching for a spanning tree which maximize the score
on an either partially or fully connected dependency graph.
3 http://www.cis.upenn.edu/ dbikel/software.html
4 http://nlp.stanford.edu/software/lex-parser.shtml
5 http://sourceforge.net/projects/mstparser/
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Malt Parser (malt) 6 [15] follows a transition-based approach, where parsing is
done through a series of actions deterministically predicted by an oracle.

ERG+PET (erg) 7 is the combination of a large scale hand-crafted HPSG
grammar for English [16], and a language independent unification-based efficient
parser [17]. The statistical disambiguation model is trained with part of the WSJ
data.

Although these parsers adopt different representations, making cross-framework
parser evaluation difficult, here we are only interested in the relative performance
variation of individual parsers. Hence, different evaluation metrics are used for
different parsers. For constituent-based PCFG parsers (dbp and sp), we evaluate
the labeled bracketing F-score; and for dependency parsers (mst and malt), we
evaluate the labeled attachment score. Since there is no gold HPSG treebank for
our target test set, we map the HPSG parser output into a word dependency
representation, and evaluate the unlabeled attachment score against our gold
dependency representation.

4 Experiment Results

4.1 Datasets

As test datasets, we use the Brown Sections of the Penn Treebank. The dataset
contains in total 24243 sentences with an average sentence length of 18.9 tokens.
The dataset has a mixture of genres, ranging from fictions to biographies and
memoires, arranged into separate sections. We further split these sections into
97 smaller datasets, and each one contains continuous texts from two adjacent
files in the original corpus. The average size of 250 sentences per dataset will
provide reliable parser evaluation results.

4.2 Results

All five parsers were evaluated on the 97 datasets. The performance variation is
very substantial for all these parsers, although it is hard to compare on concrete
numbers due to the different evaluation metrics. Figure 1 shows the correlation
between parser performance and the average sentence length (asl), unknown
word ratio (uwr), and unknown POS trigram ratio (upr) 8. It is not surprising
to observe that all the parsers’ performances have negative correlations to these
three measures, with some of which more significant than the others. We should
note that the correlation reflects the noisiness and direction of the relation be-
tween the statistical measure and the parser performance, but not the slope of
that relationship.

6 http://w3.msi.vxu.se/ jha/maltparser/
7 http://lingo.stanford.edu/erg/
8 All these evaluation results and parser outputs will be available online.
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Fig. 1. Parser performance against three statistical measures, and their correlation
coefficients
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Among all the parsers, erg has the highest correlation with asl. This is
because the longer sentences lead to a sharp drop in parsing coverage of erg.
Between the two PCFG parsers, the unlexicalized sp parser appears to be more
robust against the sentence length. Both dependency parsers appear to be robust
to asl.

With uwr, all parsers shows certain degree of correlation (coefficient from
-0.22 to -0.31), with erg and malt being the most sensitive ones. An interest-
ing observation is that unexpectedly the unlexicalized parser does not show to
be more robust to unknown words than the lexicalized counterpart. sp’s per-
formance not only has higher negative correlation to uwr than dbp does, but
also suffers a sharper performance drop with increasing uwr. Both dependency
parsers also shows clear performance degradation, indicating the parser is miss-
ing critical lexical information. It should be noted that uwr as calculated here
does not directly correspond to the unknown words for erg, which contains a
hand-crafted lexicon built independently from the training set (WSJ). But the
uwr still reflects how often infrequent words are observed in the dataset. And
it is known that most of the erg parsing errors are caused by missing lexical
entries [18].

With upr, the performances of both dependency parsers show strong negative
correlation. malt has stronger correlation than mst because the transition-based
approach is more likely to suffer from unknown sequence of POS than the graph-
based approach. The unlexicalized sp shows much more significant correlation to
the upr than the lexicalized dbp does, for the POS trigrams reflect the syntactic
patterns on which the unlexicalized parser depends most. erg performs very
robustly to the variation of upr. This is because that the syntactic constructions
in erg is carefully hand-crafted, and not biased by the training set.

With all parser performance data points, we further built linear regression
models using all three measures for each parser, and the correlation coefficient of
the models are shown in Table 1. The high levels of correlation indicate that the
performance of a parser is largely predictable for a given dataset with these three
very simple statistical measures. We expect to achieve even higher correlation if
more informative dataset measures is used.

Table 1. Correlation coefficient of the linear regression models using all three measures

dbp sp mst malt erg

Corr. 0.6509 0.5980 0.6124 0.6961 0.8102

5 Conclusion and Future Work

The method we proposed in this paper can be adapted to various other parsers
and datasets, and potentially for different languages. The varying correlation
of the proposed statistical measures with parsers’ performance suggests that
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different parsing models are sensitive to different characteristics of the datasets.
Since all the measures are obtained from the unannotated texts, the method is
not committed to specific linguistic framework or parsing algorithm. In the future
we plan to experiment with more statistical measures and their combinations.

The linear regression model we built suggests one way of predicting the parser
performance on unseen datasets, so that an estimation of the parser performance
can be achieved without any gold-standard annotations on the target datasets.
The result analysis also shows the possibility of parser combination (by either
parse reranking or feature stacking) to achieve more robust performances. Fur-
thermore, the variance of the performance and its correlation to the statistical
measures can be viewed as an alternative parser evaluation metrics revealing
the robustness of the parser performance, in addition to the standard accuracy
measures.
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6. Nivre, J., Hall, J., Kübler, S., McDonald, R., Nilsson, J., Riedel, S., Yuret, D.:
The CoNLL 2007 shared task on dependency parsing. In: Proceedings of EMNLP-
CoNLL 2007, Prague, Czech Republic (2007) 915–932

7. Hara, T., Miyao, Y., Tsujii, J.: Adapting a probabilistic disambiguation model of
an HPSG parser to a new domain. In: Proceedings of IJCNLP 2005, Jeju Island,
Korea (2005) 199–210

8. Rimell, L., Clark, S.: Porting a Lexicalized-Grammar Parser to the Biomedical
Domain. Journal of Biomedical Informatics (2009) in press.

9. Plank, B.: Structural Correspondence Learning for Parse Disambiguation. In:
Proceedings of the Student Research Workshop at EACL 2009, Athens, Greece
(2009) 37–45



8

10. Dredze, M., Blitzer, J., Pratim Talukdar, P., Ganchev, K., Graca, J.a., Pereira, F.:
Frustratingly hard domain adaptation for dependency parsing. In: Proceedings of
the CoNLL Shared Task Session of EMNLP-CoNLL 2007, Prague, Czech Republic,
Association for Computational Linguistics (June 2007) 1051–1055

11. Bikel, D.M.: Intricacies of Collins’ parsing model. Computational Linguistics 30
(2004) 479–511

12. Collins, M.: Three Generative, Lexicalised Models for Statistical Parsing. In: Pro-
ceedings of the 35th annual meeting of the association for computational linguistics,
Madrid, Spain (1997) 16–23

13. Klein, D., Manning, C.D.: Accurate Unlexicalized Parsing. In: Proceedings of the
41st Meeting of the Association for Computational Linguistics, Sapporo, Japan
(2003) 423–430

14. McDonald, R., Pereira, F., Ribarov, K., Hajic, J.: Non-Projective Dependency
Parsing using Spanning Tree Algorithms. In: Proceedings of HLT-EMNLP 2005,
Vancouver, Canada (2005) 523–530

15. Nivre, J., Nilsson, J., Hall, J., Chanev, A., Eryigit, G., Kübler, S., Marinov, S.,
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