
Reflowable Document Images for the Web

Thomas M. Breuel1

PARC, Inc., Palo Alto, CA, USA

Abstract The paper describes on-going work on a system

that transforms page-oriented document images into “re-

flowable document images”, representations of the page im-

age in HTML format that allows it to adapt to display de-

vices of different sizes while preserving the original appear-

ance of the image as much as possible and avoiding OCR

errors. The approach to document layout analysis used by

the system is outlined and the strengths and limitations of

HTML for this application are discussed.

1 Introduction

Large numbers of documents are formatted for printing

on letter size or A4 paper. Those documents may be in

PostScript, PDF, or TIFF formats. Sometimes they are gen-

erated electronically, at other times, they are scanned.

A number of techniques for putting these documents on

the Web have been explored. Many of them are made avail-

able simply in their page oriented formats, as TIFF, PDF,

or PostScript files. When displayed on a normal desk-

top screen, however, fonts usually become much too small

when full pages are displayed, and users end up having

to scroll up and down to read multi-column documents.

TIFF, PDF, and PostScript are also not native web for-

mats and require plug-ins or helper applications to view,

which take some time to start up or may not be installed

at all. Additionally, PostScript files from untrusted sources

present a potential security risk. Many users prefer to sim-

ply print these documents for reading and then throw away

the printed copies afterwards.

When the source of the document is available (e.g., a

Microsoft Word or LaTeX file), there are special convert-

ers to turn these documents into HTML. For example, the

popular LaTeX2HTML converter generates a web of linked

HTML pages representing the source document. However,

given the limitations of HTML, the resulting conversions

are not entirely satisfying. First of all, LaTeX2HTML can-

not handle many kinds of macro definitions and other fea-

tures. In addition, most current web browsers cannot render

mathematics; therefore, LaTeX2HTML generates a mixture

1This paper describes joint work with Bill Janssen, Kris Popat, and

Henry Baird.

Figure 1. The layout analysis used in the gen-

eration of reflowable images. See the text for

details.

of running text with bit-mapped images interspersed, which

represent the mathematical formulas occurring in the source

text. This may sometimes work reasonably well, but since

web browser make no guarantees about the fonts or font

sizes used for rendering text, the font sizes and appearances

of the text may not match the size and appearance of the

mathematical formulas at all.

The Google web site (http://www.google.com/)
uses an interesting technique for rendering PDF documents:

the characters in the PDF document are identified, and they

are then placed at absolute locations within an HTML page,

using the style sheet features of HTML. This results in a

document that can be rendered in modern browsers and usu-

ally allows the reader to read most of the page content, but

it may result in text lines overlapping and missing mathe-

matical symbols. The appearance of the original text is not

preserved, and the rendition remains page oriented and of

fixed size.

None of these systems guarantee for a convenient and

natural reading experience. What we would like to have is a

way of turning arbitrary page-oriented documents back into

a structured form that permits reflowing (reflowing is the

adaptation of text to different window or page sizes).

One approach to this is to use an OCR (optical charac-

ter recognition) system. Commercial OCR systems actually

perform two major tasks. First, they recognize each individ-

ual character on the page, together with its font and other

attributes. Second, they analyze the logical structure of the

page (document layout analysis). They then combine the

results from those two analyses to attempt to obtain a struc-

tured source document (e.g., in HTML, SGML, LaTeX, Mi-

crosoft Word, or other formats) that, when processed, will

result in the same page-oriented document that the system

was originally given.

!"



Figure 2. Different encodings that can be de-

rived from the scanned images and reflow an-

notations.

Unfortunately, OCR systems are far from being able to

achieve that goal in general. While they perform quite well

on purely textual documents with simple layouts, they fail

when pages contain many fonts, foreign languages, com-

plex layouts, mathematics, chemical formulas, or many

kinds of diagrams. In fact, the structured document format

into which they output the result of the OCR analysis may

not even be capable of representing all the features of the

source document.

In our work on reflowable document images, we are

taking an approach that falls in between attempting full

OCR and just displaying the original page-oriented rendi-

tion. Our system performs a limited form of document lay-

out analysis to decompose the document image into compo-

nents that can then be reflowed. Usually, these components

are word images and illustrations. This decomposition can

then be transformed into a number of formats (shown in

Figure 2) and viewed in a variety of different ways. Of par-

ticular interest are renditions in standard HTML format, be-

cause they can be viewed on almost any web browser.

Some aspects of the system, and a somewhat different

approach to the layout analysis problem, have been previ-

ously described in [2, 3]. This paper describes on-going

work and covers in more detail some of the experiences we

have had with the system, as well as problems specifically

with representing reflowable images using HTML.

The rest of the paper will briefly outline the current lay-

out analysis component of the system, and describe direct

viewing of reflowable image content. Then, it will present a

more detailed discussion about the use (and limitations) of

HTML as a format for displaying reflowable image content.

2 Layout Analysis

The details of the layout analysis method used in the sys-

tem are described in [1]. Let us briefly outline how it works

here.

Layout analysis begins with finding whitespace column

boundaries; [1] describes a method for identifying these us-

ing a simple branch-and-bound algorithm and an evalua-

tion function that is more robust than those used in previous

white-space analysis methods.

Once column boundaries (if any) have been identified,

the system identifies text lines. For that, a globally optimal

constrained text line finder is used; the algorithm finds text

lines that do not cross any of the identified column bound-

aries.

The output of these first two steps is a collection of text

line segments. Each text line segment represents a contin-

uous sequence of characters from the source documents in

reading order. However, the reading order among the text

line segments still needs to be determined. For that, the

system takes advantage of a partial order among text line

segments that can be determined easily and quite reliably

based on certain geometric arrangements of text line seg-

ments. This partial order is then extended into a total order

using a topological sorting algorithm.

The output of layout analysis is then a set of text line seg-

ments in reading order. When these are rendered in reading

order, one line at a time, they can be read and understood.

(In this process, certain “floats” components of the original

page image, such as figures and their captions, are put into a

reading order as well, although, by the nature of such floats,

they can be moved to some other locations without affecting

readability.)

Prior to any layout analysis, parts of the page that likely

represent tables, figures, or images need to be identified.

The current system relies on a classification based on size

and aspect ratio of connected components, but this clearly

can be improved. That step also identifies explicit column

separators, such as long, thin vertical lines between columns

that occur in some layouts.

To generate the reflowable document image, the individ-

ual text lines need to be subdivided further into “words”. It

is not absolutely critical that these subdivisions correspond

exactly to words; failure to break two words apart will just

lead to a slightly more ragged appearance of the reflowable

document, while breaking within a word leads is not visi-

ble unless, by chance, the reflowable image is displayed at

a width that makes breaking at that point convenient.

We refer to the collection of word bounding boxes, text

line segments, and reading order annotations as the “reflow

annotations” for the image. When the reflow annotations

are bundled with the original document image, the resulting

bundle contains all the information necessary for reflowing

the image for display in different window sizes and on dif-

ferent devices.

These bundles can actually be viewed directly using a

suitable custom viewer. Such a representation is nice be-

cause it requires no modification to the original document

image file. This may be important in some applications. It

!!



Figure 3. Multiple renditions of the same

document in Mozilla on a desktop machine.

Mozilla can easily handle reflowing this con-

tent in real-time on this 1GHz PC running

Linux. Different text sizes are available.

also shows us that reflowable document images have a fairly

modest overhead compared with the original document im-

age, since the only additional information required is the

reflow annotations. These amount to a few kilobytes of data

per page.

Bundles can be converted into a variety of other formats

(Figure 2). The PDF format recently has been enhanced by

Adobe to permit the use of reflow information. A direct

conversion of bundles into reflowable PDF may be possi-

ble. Similarly, it may be possible to convert bundles into

structured vector graphics, together with JavaScript code to

handle the reflowing. However, since both of those tech-

nologies are not widely deployed yet, they will not be cov-

ered here.

3 HTML-Based Representations

HTML as an Intermediate Format HTML turns out to

be a fairly natural representation for reflowable document

images. A reflowed document image is shown at two sizes

in a desktop browser in Figure 3. And the same document

can be rendered easily on a PDA (Figure 4)

Reflowable document images represented as HTML con-

sist of a long sequence of image references. These usu-

ally alternate between references to word images and ref-

erences to a single image representing pixel-accurate inter-

word spacing.

Optional Spacing One problem that limits the fidelity of

reflowable document images represented as HTML is the

limited control that HTML gives over spacing. In particu-

lar, a high quality rendition requires the use of inter-word

spacing that disappears when the text line is broken at that

Figure 4. Display of reflowable images on a

Sharp Zaurus at 240 × 320 pixels.

position. If that space is retained at the end of a text line, it is

usually not very noticeable, but if it flows into the next line,

it appears as an indentation (this latter case can be avoided

by using the non-standard NOBR tag or equivalents).
While HTML does perform this kind of handling of

space for space characters, those characters are not of pre-

dictable width and cannot be used for the inter-word spacing

in reflowable document images.

Hyphenation Related to optional spacing is the issue of

optional hyphenation. In Western languages, documents

that have been rendered onto a page will contain hyphens

to indicate words that have been broken across lines. These

hyphenations are easy to detect even without full OCR, but

it is impossible to determine based on appearance alone

whether the hyphen is an essential part of the word (as

in “re-examine”) or whether it is only present because the

word has been broken across lines (some Western lan-

guages, however, use separate symbols for the two cases).

But even if it were possible to detect these cases, unlike

other type setting languages, it is not possible to indicate

optional hyphens in current versions of HTML. Fortunately,

these cases are rare and do not appear to affect readability.

Ultimately, both hyphenation and word breaks might be

identified by attempting OCR and outputting word breaks

and optional hyphens where the OCR reliably identified

words, with graceful degradation to the current appearance-

based mechanisms. However, until the facilities to actually

perform high-quality rendering of these subtle features in

HTML, there is little point to computing them, at least for

web-based display.

Network Performance One of the most serious limita-

tions of HTML based representations of reflowable docu-

ment images is the impact on network performance. The

running example used in this paper is composed of about

500 word images per page. These currently result in 500

separate requests from the web server. Features like HTTP

!#



keep-alive connections, pipelining, compression, and par-

allel requests help make loading reflowable document im-

ages even over remote web connections feasible, but per-

formance improvements are desirable.

Ideal would be if a web page archive became standard

that allowed the HTML and all associated images to be

downloaded in a single transaction. Such a format actu-

ally already exists and is used, for example, in HTML-based

help systems and for web page archiving. However, it is not

(yet?) widely supported as an Internet file format.

Another approach to keeping the amount of data down

would be to download the original source image (e.g., in

PNG format), together with an HTML file that references

sub-rectangles of that image for rendering. This would re-

duce the number of transactions to two and require little

more overhead than the display of the original document

image.

In principle, a combination of style sheets and JavaScript

is capable of achieving this. However, the currently avail-

able implementations of dynamic HTML in major web

browsers (Microsoft Internet Explorer and Mozilla) do not

implement this feature consistently and reliably1.

Web sites increasingly use large numbers of small image

components, and this places a strain on web servers. There-

fore, it is likely that these issues will be addressed soon,

making HTML a fairly efficient and ubiquitous representa-

tion of reflowable document images.

Java and Flash Java and Flash are two systems that could

be programmed to interpret and render bundles of reflow

annotations and document images, getting around the limi-

tations of HTML for these purposes. Furthermore, Java and

Flash are widely available on desktop machines. However,

their integration with the web browser is still too limited to

be able to achieve a natural user experience. For example,

embedded Java or Flash applets do not easily resize along

with the containing page.

HTML Chunking and Proxying Some devices (e.g., the

Danger Hiptop phone, Figure 5) claim to be able to handle

general HTML, but their display engines are overtaxed by

pages containing large numbers of images.

A solution to both this problem and the problem of large

numbers of small HTTP transactions is to perform some of

the reflow computations on the server. This is feasible be-

cause screen sizes, in particular for handheld devices, gen-

erally only occur in a fixed number of widths. For example,

for the Danger Hiptop, we can precompute, on the server,

a set of reflowed document images for its specific display

1However, absolute positioning works well in current implementations,

so it is easy to present a reflowable document image represented as a large

collection of separate word images pixel-accurately in its original form by

positioning the individual words at their exact locations.

Figure 5. Display of reflowable images on the

Danger Hiptop, a cell phonewith a screen res-

olution of 240 × 160.
width (240 pixels). Then, instead of sending individual

word images, we can send blocks of multiple text lines, re-

flowed to the device width, as images.

Alternatively, this kind of chunking can be performed

dynamically by a proxy server that transforms the bundles

(original page images together with reflow annotations) into

correctly sized image chunks on the fly.

4 Discussion

This paper has described on-going work in developing

systems for creating reflowable document images. These

are formats that are intermediate between structured text

and pure image-based formats. They retain the appearance

of the original text but can contain content that cannot be

captured reliably by OCR or even represented in non-image

formats for many browsers. The layout analysis techniques

developed as part of this work are also applicable to the cre-

ation of other electronic book formats (either image based

or OCR-based). But conversion to HTML in particular

promises to make scanned documents available universally

in a format that is non-proprietary, easy to implement, and

convenient for end users. As discussed above, HTML still

has some minor limitations for this application, but these

will likely get addressed as HTML and browser implemen-

tations mature further.

References

[1] T. M. Breuel. Two algorithms for geometric layout analysis.

In Proceedings of the Workshop on Document Analysis Sys-

tems, Princeton, NJ, USA, 2002.
[2] T. M. Breuel, W. C. Janssen, K. Popat, and H. S. Baird.

Paper-to-pda. In Proceedings of the International Confer-

ence on Pattern Recognition (ICPR’02), Quebec City, Que-

bec, Canada, 2002.
[3] T. M. Breuel, W. C. Janssen, K. Popat, and H. S. Baird. Web

Document Analysis: Challenges and Opportunities, A. An-

tonacopoulos and Jianying Hu, editors, chapter Reflowable

Document Images. 2002.

!$


