
Towards an Integrated Architecture for Composite Language Services
and Multiple Linguistic Processing Components

Arif Bramantoro1, Ulrich Schäfer2, Toru Ishida1
1Department of Social Informatics, Kyoto University, Japan

Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
2Language Technology Lab, German Research Center for Artificial Intelligence, Germany

Campus D 3 1, Stuhlsatzenhausweg 3, D-66123 Saarbrücken, Germany
E-mail: arif@ai.soc.i.kyoto-u.ac.jp, ulrich.schaefer@dfki.de, ishida@i.kyoto-u.ac.jp

Abstract
Web services are increasingly being used in the natural language processing community as a way to increase the interoperability
amongst language resources. This paper extends our previous work on integrating two different platforms, i.e. Heart of Gold and
Language Grid. The Language Grid is an infrastructure built on top of the Internet to provide distributed language services. Heart of
Gold is known as middleware architecture for integrating deep and shallow natural language processing components. The new feature
of the integrated architecture is the combination of composite language services in the Language Grid and the multiple linguistic
processing components in Heart of Gold to provide a better quality of language resources available on the Web. Thus, language
resources with different characteristics can be combined based on the concept of service oriented computing with different treatment
for each combination. Having Heart of Gold fully integrated in the Language Grid environment would contribute to the heterogeneity
of language services.

1. Introduction
One of the wide implementations of Web Services is
language service (Shimohata, et al., 2001). The number of
language service available on the Web is inevitably
increasing. Computer scientists have been trying to
develop more and more infrastructures to improve the
quality and accuracy of the services. To utilize the
language service more robustly, we need to integrate
multiple infrastructures. Two of the famous ongoing
developments of language infrastructures are the
Language Grid (Ishida, 2006) and HoG (Heart of Gold;
Schäfer, 2006).

The Language Grid is a framework of collective
intelligence built on service oriented architecture which
enables access to various language services and language
resources in the world based on a single powerful protocol,
HTTP. For the Language Grid, the more language
resources it has the better it is for the availability of
composite services. Composite language service means
the ability to create a new service by combining existing
services.

Heart of Gold (HoG) is also a framework that bridges user
application and external natural language processing
(NLP) components regardless the depth of the linguistic
analysis. This framework provides integration between
deep and shallow NLP annotations. Deep NLP applies as
much linguistic knowledge as possible to analyze natural
language sentences (Pollard & Sag, 1994). On the other
hand, shallow NLP neglects the use of the whole range of
linguistic details, but concentrates on specific aspects.

Only few shallow tools such as ChaSen and TreeTagger

are provided by the Language Grid so far. There are
various natural language processing (NLP) functions in
HoG which are not provided by the Language Grid,
especially the efficient deep analyzers for various
languages. Moreover, hybrid and composite workflows
can be defined that consist of combinations of the
language components, the main goals being increased
robustness and computation of formal semantics
representations of natural language utterances.

This paper proposes an enhancement of the integrated
architecture of the Language Grid and HoG that extends
our previous work presented at the 2008 International
Conference on Web Services (Bramantoro et al., 2008).
Previously, the integrated architecture only provides HoG
as an atomic service unable to be combined with other
services in the Language Grid. Now, we utilize the
composite language services in the Language Grid
together with the multiple linguistic processing
components in HoG.

The main contributions of this paper are (i)
interoperability among various language services by
creating new possible composition between multiple
linguistic processing components of HoG and composite
language services of the Language Grid; (ii) a new
functionality of language services available on the Web
by enabling the substitution of language components in
HoG with additional in the Language Grid and vice versa
within integrated composition.

2. Integrated Architecture
We identify three general problems concerning the
integration.
- HoG is a framework based on components, while the

3506

chunkiermrs = (sprout_rmrs_morph + xslt_pos_filter + sprout_rmrs_lex +
 (* xslt_nodeid_cat + sprout_rmrs_phrase) + slt_fs2rmrsxml)

sprout_rmrs_morph = SproutModulesTextDom("rmrs-morph.cfg")
xslt_pos_filter = XsltModulesDomDom("posfilter.xsl", "aid", "Chunkie")
sprout_rmrs_lex = SproutModulesDomDom("rmrs-lex.cfg")
xslt_nodeid_cat = XsltModulesDomDom("nodeinfo.xsl", "aid", "Chunkie")
sprout_rmrs_phrase = SproutModulesDomDom("rmrs-phrase.cfg")
xslt_fs2rmrsxml = XsltModulesDomDom("fs2rmrsxml.xsl")

Language Grid is a service-oriented framework. We
need to survey which architecture is suitable and
reliable to accommodate these frameworks.

- The standard interfaces of these two frameworks are
not the same. HoG provides XML annotations as
output, while in the Language Grid standard interface
there is no such type for output parameter.

- Both frameworks provide a processing strategy for
language resources but in different ways. The
Language Grid provides service workflows for
composite language services, while HoG uses a
compilable description language for composing
multiple components.

To combine the two frameworks, a number of
experiments were designed to combine HoG and the
Language Grid. We found out that the best possible one
for combining HoG and the Language Grid is by
wrapping HoG as a Web service that can be accessed
through the Language Grid. We proposed that the
Language Grid can utilize HoG by adding it to the
language resources layer, a layer where atomic services
are wrapped and registered. Although it is not common in
the Language Grid to have a composite service in this
layer, the standard wrapping technique of the Language
Grid requires doing so. Consequently, we have to treat
HoG differently in this layer since it contains multiple
NLP components that behave as composite services.

We create a new Web service that can connect to HoG and
implement the Language Grid standard interface. From
HoG’s point of view, this Web service acts as an
application, whilst from the Language Grid’s point of
view, this Web service is considered as a wrapped
language resource. The wrapped Web service connects to
the Module Communication Manager via XML RPC.
Therefore, the HoG server can be located at any nodes in
the Language Grid.

3. Processing Flow and Workflow
To get a higher quality of language processing we need to
integrate more than one processing tool. HoG allows the
user to execute more than one language component. In
fact, this multiple component processing is the original
characteristic of HoG since the default strategy is to
execute the shallowest component first, then other
components with increasing depth up to the requested
depth. Unless a user defines smallest depth value, there is
more than one language component executed.

There are three ways to configure the sequence of the
components in HoG, (1) varying the depth value, (2)
varying input and output, (3) using the SDL extension. In
this paper, we focus on using SDL extension for running
multiple components in a HoG service integrated in the
Language Grid. It is impractical to implement the concept
of depth value in service oriented computing. Moreover,
Web services should be autonomous so that it is difficult
to vary the input and output of language services during
the composition.

SDL (System Description Language; Krieger, 2003), is a
specific language initially used for building NLP systems
and may be used in HoG to define sub-architectures of
composite components. SDL uses a declarative
specification language to define a flow of information
(input and output) between linguistic processing
components. The declarative specification consists of
operators, symbolic module names, assignment of these
symbolic module names to Java class names and
constructor arguments. The basic operators currently
available in HoG are + (sequence), | (parallelism), and *
(unrestricted iteration). For example, multiple linguistic
components consist of three SProUT grammar
components and three XSLT transformation components
described in Figure 1 together with its definition in SDL
syntax.

Figure 1: Composing NLP components in Heart of Gold with SDL

RMRS
result

SProUT
rmrs_lex

SProUT
rmrs_phrase

SProUT
rmrs_morph

XSLT
pos_filter

XSLT
nodeid_cat

XSLT
fs2rmrsxml

SProUT-XSLT cascaded language components

input
sentence

3507

Composite services in the Language Grid are formulized
in constraint satisfaction problem specification
(Bramantoro & Ishida, 2009). Constraint satisfaction
problem adopted from artificial intelligence theory is
characterized with triplet entities (X, D, C) as follows:
- X={X1,…,Xn} is a set of abstract Web services, with

Xi.IN is a set of required input types, Xi.OUT is a set of
required output types, Xi.QOS is a set of required QoS
types. These requirements are defined as abstract
service specifications..

- D={D1,…,Dn} where Di a set of concrete Web services
Xi that can perform the task of the corresponding
abstract Web services.
Di={si1,...,sik} where sij is a concrete Web service of the
corresponding Xi with sij.IN is a set of provided input
types, and sij.OUT is a set of provided output types,
sij.QOS is a set of provided QoS types. In semantic
matching of web service (Paolucci et al., 2002), every
element of the input set in concrete service specification
should be also an element of the input set in abstract
service specification and every element of the output set
in abstract service specification should be also an
element of the output set in concrete service
specification. We argue that in QoS based matching
every element of the QoS set in abstract service
specification should be also an element of the output set
in concrete service specification. Therefore, we define
semantically matched service specification as follows.

 Di={sij | sij.IN ⊆ Xi.IN ∧ Xi.OUT ⊆ sij.OUT ∧
 Xi.QOS ⊆ sij.QOS}

- C={C1,…,Cp} is a set of constraints which consists of
workflow control, QoS-related, provider-defined and
user-defined constraints.

In the Web service composition, there are four possible
controls of workflow, i.e. sequence, split, choice and loop
that can be specified in a constraint satisfaction problem.
For example, in order to increase the quality of translation,
we can compose a translation service with the community
dictionary service in the Language Grid as described in
Figure 2.

Figure 2: A workflow of specialized translation service

between Japanese and Indonesian

The formulization for this workflow is as follows:

• X={X1, X2, X3, X4, X5}, where:
– X1: Morphological analyzer service;
– X2: ja-en translation service;
– X3: en-id translation service;
– X4: Community dictionary service;
– X5: Term replacement service;

• D={D1, D2, D3, D4, D5}, where (for the sake of
simplicity, we omit the input and output parameters of
Di)
– D1: {mecab at NTT, ICTCLAS, KLT at Kookmin

University, treetagger at IMS Stuttgart};
– D2: {JServer at Kyoto-U, JServer at NICT,

WEB-Transer at Kyoto-U, WEB-Transer at NICT};
– D3 : {ToggleText at Kyoto-U, ToggleText at NICT};
– D4: {Science Dictionary, Natural Disasters Dictionary,

Tourism Dictionary at NICT, Academic Terms
Dictionary at NII};

– D5: {TermRepl service};
• C including (due to page limitation, only example

constraints are shown)
– C1: For multi hop translation, X2.OUT=X3.IN;
– C2: For composite service which involves X2 and X4

(translation service and multilingual dictionary),
serverLocation(X2)=serverLocation(X4);

– C3: For morphological analysis used together with
community dictionary services,
partialAnalyzedResult(X1.OUT) ∈ X4.IN.

4. Combination of Two Flows
There are two urgent combinations between the multiple
linguistic processing components of HoG service and
composite language services in the Language Grid. These
combinations involve the processing flow of HoG service
and the workflow of the Language Grid.

Firstly, we need to incorporate composite components of
HoG into the Language Grid’s workflow. For example,
there is a specialized Japanese-English translation service
in the Language Grid that includes a Japanese
morphological analyzer, an English morphological
analyzer and some community dictionary services. The
concrete Web service for English morphological analyzer
available in the Language Gird is TreeTagger.

Multiple linguistic processing components (TreeTagger
and RMRS) in HoG provide not only morphological
analysis but also named entity recognition. This new
functionality in the Language Grid’s workflow enables
users to dynamically select the right community
dictionary service during workflow execution. Therefore,
we can substitute the English morphological analyzer
service in the workflow with the ones from HoG. To
realize this combination, we have to instrument a new
Web service in the workflow, i.e. an XML decoding
service to detach the XML code in the HoG service
output.

Japanese
Morphological
Analysis Service

Community
Dictionary
Service

ja->en
Translation
Service

Term Replacement
Service

en->id
Translation
Service

3508

Figure 3: HoG composite components in the Language Grid’s workflow

Figure 3 shows the scenario of combining HoG service in
the Language Grid’s workflow. In this scenario, a location
term in the sentence could be detected and tagged by
named entity recognition component (SProUT). When the
location term is tagged by SProUT, the workflow
execution engine automatically chooses Tourism
Dictionary Service instead of Science Dictionary Service.
The final result is the same as the existing workflow
before combination, but the workflow execution by using
HoG service should be more efficient since it runs one
dictionary service in one time, not all dictionaries in
parallel.

The scenario of using HoG service in the Language Grid
workflow is also applicable to other dictionary services in
the Language Grid. This could be realized by using the
current tag set in the named entity recognition component
related to the dictionary service or training a new tag set
according to dictionary service entries. The integration
will deliver efficiency since most of the community
dictionary services are not free. Currently, there are more
than 15 dictionary services available in the language grid.
It should be costly to run all community dictionary
services in each workflow without utilizing HoG service.

Secondly, we need to incorporate language service(s) of
the Language Grid inside the processing flow of HoG. To
do this, it is necessary to realize a mechanism of Service
as a Software (SaaS) by wrapping language service(s) in
the Language Grid as a HoG component that has
additional parameters of XML output and, therefore,
needs a special tool to convert the service output into
XML format.

This integration is useful when we want to try the NLP
components of HoG in different languages. For example,

ChunkieRMRS in HoG is only available in German and
English. Hence, deep NLP for Japanese could also be
realized by utilizing Japanese-English translation service
from the Language Grid (it is important to note that
composite language service such as multi-hop translation
service can be also wrapped as a language component) as
described in Figure 4.

Figure 4: Language service inside HoG’s processing flow

To realize the combinations, we propose a service and its
architecture to integrate the processing flow and workflow.
This service consists of processing flow analyzer,
workflow analyzer and SDL writer. Three repositories are
utilized by this service, i.e. language component
information, language service information and extended
workflow repository represented in constraint satisfaction
problem.

An alternative workflow is automatically created and
stored in the workflow repository together with its
generated SDL description of incorporated HoG’s
components. When a user requests a particular task to be

ja-en
translation

service

Chunkie
RMRS

en-ja
translation

service

XML
Converter

XML
Converter

input sentence
in Japanese

output RMRS
in Japanese

HoG service

ChaSen

J-Server
en -> ja
Translation
Service

Term
Replacement

TreeTagger HoG (SProUT)

ChaSen

Science
Dictionary
Service

J-Server
en -> ja
Translation
Service

Term
Replacement

b) After Combination
(Language Grid + HoG)

a) Before Combination
(Language Grid)

if

Tourism
Dictionary
Service

I visited the Temple of the
Golden Pavilion at Kyoto

Watashi ha Kyoto de Kinkakuji
wo houmonshita

I visited the Temple of the
Golden Pavilion at Kyoto

<FS type="ne-location">
the Temple of the Golden
Pavilion at Kyoto </FS>

Science
Dictionary
Service

Tourism
Dictionary
Service

the Temple of the
Golden Pavilion = −

the Temple of the
Golden Pavilion =

Kinkakuji

the Temple of the
Golden Pavilion =

Kinkakuji

Watashi ha Kyoto de Kinkakuji
wo houmonshita

XML
Decoding
Service

3509

performed by composite language services, the
processing flow & workflow integrator service analyzes
an alternative workflow, enriches it with deeper
composite language components provided by the HoG
service, and calls SDL Writer to generate a new SDL
description based on a new workflow combination to be
delivered to the user. In addition, this integrator service
can run offline so that the processing time of a user
request is not affected since the new workflow has already
been stored in the repository before runtime. The overall
service architecture is illustrated in Figure 5.

Figure 5: Integrator service architecture for composite

language services and components

5. Related Work
We realize that there have been some breakthroughs in
NLP researches that try to transform language software
components into more loosely coupled components by
using standard internet technology so called Web services.
However, it is hard to find a good reference that provides
a real solution for a complex integration task between a
huge web service framework (the Language Grid) and a
dynamic, highly customizable software system such as
HoG.

Today’s era is service oriented computing that creates
everything as a service. There are many considerations to
be examined before transforming software into a service.
We can accommodate all language resources as a service
but converting individual resources takes a lot of efforts as
in the Language Grid. It is much easier to convert an
existing platform that contains multiple language
resources. Then, one would still be able to intervene
inside the platform to choreograph individual resources.

A hybrid approach proposed by Jang et al. (2004)
provides a workflow architecture based on Web services
and object-oriented techniques. The authors argue that
this architecture supports workflow systems with multiple

process languages and standardized resource management.
An interesting idea of this paper is the ability to support
different web service-supporting process definition
languages, such as BPML, XPDL, BPEL, and WSCI.
This idea has been inspiring us to have different
description languages in a single architecture. However,
this paper only provides a few explanations on the
implemented prototype.

A similar effort has been proposed in W3C to deal with
different types of web services. Kavantzas et al. (2005)
propose WS-CDL (Web Service Choreography
Description Language) that is mainly used to integrate
several web services from different providers,
implementing different Web service technologies, such
WS-BPEL and .Net C#. More specifically, WS-CDL
supports the interoperability and interactions between
web services in various programming languages and
platforms within one business function by optimizing
messaging between web services. This situation is
different from what we face in the language domain. The
Language Grid uses constraint satisfaction for its
composite services. The HoG service is integrated into the
Language Grid at a language resource layer (considered
as atomic service), but contains composite components
within its processing flow in SDL. Problems faced during
the integration are not related to messaging between web
services but mostly lie in transforming existing multiple
linguistic processing components into machine-readable
composite web services.

There is another candidate recommendation by W3C to
define a new language, XProc (XML Processing
Language; Walsh et al., 2009), to compose XML
processes and deal with operations to be performed on
XML documents. One of the advantages of this language
is that it supports HTTP requests. By using this feature,
this specification might be useful to integrate language
services defined in WSDL and SOAP (both use XML over
HTTP) and language components with XML output and
called by XML-RPC. A specific pipeline can be created to
process composite language services and multiple
linguistic processing components at the same time. The
concept of XProc is suitable to integrate two XML-based
architectures, but currently there is no guarantee that
XProc can fully support language services, especially for
language services which are not merely an XML
document.

Another open platform for natural language processing,
Unstructured Information Management Architecture
(UIMA) developed by IBM researchers (Ferrucci & Lally,
2004), enables association of each element of an
unstructured document with semantic results of analysis.
This paradigm can be adapted to the Language Grid. Any
word in the source text translated by the Language Grid
can be initially assigned a semantic value from UIMA. To
give a simple example, the word “car” in a text document
can be associated with multiple analysis engines, e.g. a

Workflow Repository in
Constraint Satisfaction

Language Service
Repository (WSDL,

QoS Profile)

Language Component
Repository (Class,

Depth, Input-Output)

Processing Flow & Workflow Integrator Service

SDL WriterWorkflow
Analyzer

Processing
Flow Analyzer

Component
Information

Service Profile

Set of
Workflows

New
Workflows

+
SDL

3510

morphological analysis and a translation engine. The
result would be the word “car” with associated semantic
values “noun:en” and “kuruma: en ja”. These
associations could be further processed by more advanced
language-aware applications. Having two frameworks,
HoG and UIMA, in the Language Grid could be another
research topic, taking into account considerations on HoG
and UIMA integration discussed in Schäfer (2008).

6. Conclusion
In this paper, we showed that language resources with
different characteristic can be combined based on the
concept of service oriented computing with different
combinations. Multiple linguistic processing components
in HoG can be combined with the existing workflow of
composite services in the Language Grid environment.
On the other hand, the composite language services in the
Language Grid can be utilized in the processing flow of
HoG components.

The next step that can be done on the basis of this
prototype is to build more applications for visualizing
computed annotation results. Currently, the return value
of HoG service is an XML document, which is
complicated for layman to understand and use. By
providing client applications that process and visualize
the XML result, the users of the Language Grid, not only
linguists, could hopefully benefit better from natural
language processing results returned by HoG.

7. Acknowledgements
This research was partially supported by Strategic
Information and Communications R&D Promotion
Programme from Ministry of Internal Affairs and
Communications, and also from Global COE Program on
Informatics Education and Research Center for
Knowledge-Circulating Society.

The work described in this paper was partially supported
by the German Federal Ministry of Education and
Research under contract 01IW08003 (project TAKE:
Technologies for Advanced Knowledge Extraction).

8. References
Bramantoro, A. & Ishida, T. (2009). User-Centered QoS

in Combining Web Services for Interactive Domain, In
Proceedings of the International Conference on
Semantics, Knowledge and Grid, Zhuhai, China,
October 2009, pp. 41-48.

Bramantoro, A., Tanaka, M., Murakami, Y., Schäfer, U.,
& Ishida, T. (2008). A Hybrid Integrated Architecture
for Language Service Composition, In Proceedings of
the IEEE International Conference on Web Services,
Beijing, China, September 2008, pp. 345-352.

Ferrucci, D. & Lally, A. (2004). Building an Example
Application with the Unstructured Information
Management Architecture, IBM Systems Journal, 43(3),
pp. 455–475.

Ishida, T. (2006). Language Grid: An Infrastructure for

Intercultural Collaboration, In Proceedings of the
IEEE/IPSJ Symposium on Applications and the
Internet, Arizona, USA, January 2006, pp. 96-100.

Jang, J., Choi, Y., Zhao, J.L. (2004). An Extensible
Workflow Architecture through Web Services,
International Journal of Web Services Research, 1(2),
pp. 1-15.

Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T.,
Lafon, Y., & Barreto, C. (2005). Web Service
Choreography Description Language (WS-CDL)
Version 1.0, W3C Candidate Recommendation, World
Wide Web Consortium. Retrieved November 9, 2009,
from http://www.w3.org/TR/ws-cdl-10.

Krieger, H.-U. (2003). SDL—A Description Language for
Building NLP Systems, In Proceedings of the
HLT-NAACL Workshop on the Software Engineering
and Architecture of Language Technology Systems,
Edmonton, Canada, May 2003, pp. 84–91.

Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.
(2002). Semantic Matching of Web Services
Capabilities, In Proceedings of the International
Semantic Web Conference, Sardinia, Italy, pp. 333-347.

Pollard, C. J. & Sag, I. A. (1994). Head-Driven Phrase
Structure Grammar, University of Chicago Press.

Schäfer, U. (2006). Middleware for Creating and
Combining Multi-dimensional NLP Markup. In
Proceedings of the EACL-2006 Workshop on
Multi-Dimensional Markup in Natural Language
Processing. Trento, Italy, April 2006, pp. 81–84.

Schäfer, U. (2008). Shallow, Deep and Hybrid Processing
with UIMA and Heart of Gold, In Proceedings of the
LREC-2008 Workshop Towards Enhanced
Interoperability for Large HLT Systems: UIMA for
NLP, Marrakesh, Morocco, May 2008, pp. 43-50.

Shimohata, S., Kitamura, M., Sukehiro, T., & Murata, T.
(2001). Collaborative Translation Environment on the
Web, In Proceedings of the Machine Translation
Summit VIII, Santiago de Compostela, Spain,
September 2001, pp. 331-334.

Walsh, N., Milowski, A., & Ritzinger, S. T. (2009).
XProc: An XML Pipeline Language, W3C Candidate
Recommendation, World Wide Web Consortium.
Retrieved December 7, 2009, from
http://www.w3.org/TR/xproc/.

3511

