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News-related content is nowadays among the most popular types of content for users in everyday applications. Although the
generation and distribution of news content has become commonplace, due to the availability of inexpensive media capturing
devices and the development of media sharing services targeting both professional and user-generated news content, the automatic
analysis and annotation that is required for supporting intelligent search and delivery of this content remains an open issue. In this
paper, a complete architecture for knowledge-assisted multimodal analysis of news-related multimedia content is presented, along
with its constituent components. The proposed analysis architecture employs state-of-the-art methods for the analysis of each
individual modality (visual, audio, text) separately and proposes a novel fusion technique based on the particular characteristics
of news-related content for the combination of the individual modality analysis results. Experimental results on news broadcast
video illustrate the usefulness of the proposed techniques in the automatic generation of semantic annotations.

1. Introduction

Access to news-related multimedia content, either amateur
or professional, is nowadays a key element in business
environments as well as everyday practice for individuals.
The proliferation of broadband internet and the devel-
opment of media sharing services over the World Wide
Web have contributed to the shifting of traditional news
content creators, such as news agencies and broadcasters,
towards digital news manipulation and delivery schemes.
At the same time, the availability of inexpensive media
capturing devices has additionally triggered the creation and
distribution of vast amounts of user-generated news audio-
visual content, giving rise to citizen journalism. Several
distribution channels, from generic ones (e.g., YouTube
(http://www.youtube.com/)) to dedicated citizen journalism

services (e.g., YouReporter (http://www.youreporter.it/)),
have been developed in the last few years as part of this
evolution of the news distribution environment. Although
the generation and distribution of news content has become
commonplace, the automatic analysis and annotation that is
required for supporting intelligent search and delivery of this
content remains an open issue. In general, the cornerstone of
the efficient manipulation of any type of multimedia material
is the understanding of the semantics of it [1]; news-related
audio-visual content is no exception to this rule.

In response to the need for understanding the semantics
of multimedia content in general, knowledge-assisted anal-
ysis has recently emerged as a promising category of tech-
niques [2]. Knowledge-assisted analysis refers to the coupling
of traditional analysis techniques such as segmentation and
feature extraction with prior knowledge for the domain of
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interest. The introduction of prior knowledge to the analysis
task is a natural choice for countering the drawbacks of
traditional approaches, which include the inability to extract
sufficient semantic information about the multimedia con-
tent (e.g., semantic objects depicted and events presented,
rather than lower-level audiovisual features) and the ambi-
guity of the extracted information (e.g., visual features may
be very similar for radically different depicted objects and
events). Machine learning techniques are often used as part
of knowledge-assisted analysis architectures, being suitable
for discovering complex relationships and interdependen-
cies between numerical image data and the perceptually
higher-level concepts. Among the most commonly adopted
machine learning techniques are Neural Networks (NNs),
Hidden Markov Models (HMMs), Bayesian Networks (BNs),
Support Vector Machines (SVMs), and Genetic Algorithms
(GAs) [3, 4]. Other analysis approaches make use of prior
knowledge in the form of explicitly defined facts, models,
and rules; that is, they provide a coherent semantic domain
model to support inference [2, 5].

In this work, an architecture for the knowledge-assisted
multimodal analysis of news-related multimedia content is
proposed. This initially employs state-of-the-art methods
for the analysis of each individual modality (visual, audio,
text) separately. Subsequently, a fusion technique that does
not require training with the use of a manually annotated
dataset is introduced for combining the individual modality
analysis results. This technique takes into account knowledge
encoded in an appropriate ontology infrastructure, and its
main novelty lies in that it explicitly takes into account
the potential variability of the different unimodal analysis
techniques in terms of the decomposition of the audio-visual
stream that they adopt, the fuzzy degrees of content-concept
association that they produce, the concepts of the overall
large-scale ontology that they consider, the varying semantic
importance of each modality, and other factors.

The paper is organized as follows: related work on news
multimodal analysis is reviewed in Section 2. In Section 3
the analysis problem that this work attempts to address
is formulated and the overall architecture of the proposed
approach is presented. The knowledge representation and
the different unimodal analysis techniques that are part of
this architecture are outlined in Sections 4 and 5, while the
technique developed for combining the individual modality
analysis results is presented in detail in Section 6. Section 7
reports on the experimental evaluation and comparison of
the developed techniques, and conclusions are drawn in
Section 8.

2. Related Work

Knowledge-assisted semantic multimedia analysis tech-
niques can be classified, on the basis of the information
that they exploit for analysis, to unimodal and multimodal
ones. Unimodal techniques exploit information that comes
from a single modality of the content; for example, they
exploit only visual features for classification [6]. Multimodal
techniques, on the other hand, exploit information from
multiple content modalities in an attempt to overcome the

limitations and drawbacks of unimodal ones. Applications
of multimodal techniques range from semantic multimedia
analysis to audio-visual speech recognition [7], discourse
processing in dialogue systems [8], and video retrieval [9].

In general, the multimodal techniques can be broadly
classified to those jointly processing low-level features that
come from different modalities [10, 11], and those that
combine the results of multiple unimodal analysis techniques
[12, 13]. Rank aggregation and other methods used pri-
marily in retrieval applications to combine ranked lists of
retrieval results [14, 15] can also be classified to the latter
category. While it can be argued that each one of the two
aforementioned classes of multimodal techniques has its
advantages and thus can be more or less suitable than the
other for a given application, it is generally observed that
techniques of the latter class are more suitable when a “deep”
analysis of each modality is required (e.g., speech recognition
and linguistic analysis of the transcripts, rather than mere
classification of audio segments to a limited number of
classes).

Regarding news content analysis in particular, there
has been a number of approaches presented in the last
few years. In some of them, the emphasis is on textual
transcript processing; other modalities such as the visual
one have limited contribution. For example, in [16], news
video is segmented into shots and scenes using visual
and audio analysis techniques; the semantic categorization
of each resulting news segment is performed using only
the results of natural language processing techniques on
OCR-generated transcripts. In [17], the emphasis is again
mostly on textual information processing, and the results
of it together with limited visual analysis results (detected
captions, faces, etc.) are fused for the purpose of visualization
of large-scale news video collections, with the objective of
facilitating browsing the collection and retrieving video clips.
However, recent advances in visual information analysis
and classification have made possible the extraction of rich
semantic information from the visual modality as well; this
should be exploited.

The number of supported classes of news content is
another important factor when examining different news
content analysis approaches. In [18], a two-layer classifica-
tion scheme is introduced, where the second-layer classifier
fuses the output of the individual first-layer classifiers, for
building detectors for just two classes: anchor and commer-
cial. In [11] the problem of fusing the results of different
classifiers to eventually classify each news video segment to
one of 5 classes (politics, society, health, sports, and finance)
is treated as a Bayesian risk minimization problem. In [19],
10 news categories (i.e., Politics, Military, Sport, etc.) are
defined, detectors are designed for processing textual and
audio-visual information separately based on SVMs and
GMMs, and a fusion strategy is used for deciding on the
category membership of each news story. Although such
methods highlight important aspects of news multimodal
analysis, the limited number of classes that they consider
means either that they solve a very constrained problem
(such as anchor or commercial detection) or that they result
in a very broad classification of news content (i.e., to 5–10
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classes). Acknowledging the need to consider a larger number
of classes as well as multiple modalities, in [20] multimodal
fusion is formulated as an optimization problem and generic
methods for optimizing linear and nonlinear combinations
of modalities are discussed; again, however, testing of the
developed techniques is reported on a rather limited number
of classes.

Finally, the type of considered news content and the exact
application that multimodal fusion techniques support may
vary among the relevant literature approaches. In [21], a
generic approach to fusion is also proposed based on the
use of conceptual graphs; however, the focus is on fusing
TV program metadata such as program title and date, rather
than semantic information coming from the analysis of the
audio, visual, and so forth modalities. As a consequence, the
developed formulation cannot handle uncertain input, for
example, the fuzzy degrees of content-concept association
that individual modality analysis techniques such as visual
classifiers typically produce. This technique has been used
as part of a recommendation system for smart television
[12]. In [22], the problem of consolidating information
coming from various textual news sources on the Web is
considered. The developed method can handle uncertain
input (confidence levels for each individual analysis result)
but employs simple majority voting for combining the results
coming from the different news sources, rather than taking
into account that the reliability of each source may differ.
In [14], the problem of multimodal fusion for retrieval is
addressed and methods such as Borda Count and Borda Fuse
for combining ranked lists of retrieval results are discussed;
however, these methods do not consider issues that are spe-
cific to multimodal fusion for analysis, such as the existence
of a different content decomposition for each modality.

3. Proposed Approach

3.1. Problem Formulation. The objective of analysis in this
study is to associate each elementary temporal segment (e.g.,
video shot) of the audiovisual stream with one or more
semantic concepts. Let us start by defining an ontology O
that includes the set of concepts that are of interest to a given
application domain and their hierarchy:

O = {C,≤C}, (1)

where C = {ck}Kk=1 is the set of concepts and ≤C is a
partial order on C called concept hierarchy or taxonomy.
C′ ⊂ C is the set of top-level concepts of the ontology,
that is, the sibling concepts that define the coarsest possible
classification of content according to O. In any practical
application, the employed ontology will normally include
additional elements such as properties and concept relations
in addition to those specifying the hierarchy, as discussed
in the following section. However, the above simplified
ontology definition is sufficient at this point.

Let us assume that I individual modality analysis tools
exist. These tools may include, for example, visual-video clas-
sification, linguistic analysis of speech transcripts, and audio
event detection. Each of these tools defines a decomposition

Di of a multimedia content item (i.e., creates an ordered
set of temporal segments) and, considering all concepts
of C or a subset of them, associates each segment of Di

with one or more concepts by estimating the corresponding
“degrees of confidence”. The values of the latter may be either
binary {0, 1} or (following normalization, if necessary) real
in the range [0, 1]. Thus, application of the I aforementioned
analysis tools to a multimedia content item will result to the
definition of a set of content temporal decompositions:

D = {Di}Ii=1. (2)

In the general case, each decomposition Di is a different
set of temporal segments, since modality-specific criteria
are typically used for determining the latter; for example, a
meaningful elementary visual decomposition of video would
probably be based on the results of visual shot change
detection, while for automatic speech recognition (ASR)
transcripts it would probably be based on audio classification
or speaker diarization results instead. All the decompositions
together define a temporal segment set S:

S =
{
s j
}J
j=1
. (3)

It is useful to observe that S, which contains all segments in
D, is a set of temporal segments with no hierarchy, many of
which may temporally overlap in full or in part (an example
of this can be seen in Figure 7). Each member of set S can be
defined as a vector:

s j =
[
tAj , tBj ,

{
dj(ck)

}K
k=1

]
, (4)

where tAj , tBj are the start- and end-time of the temporal
segment and dj(ck) ∈ [0, 1] is the degree with which the
individual modality analysis tool that defined s j associated
it with concept ck of the ontology after analysis of the
relevant unimodal information. In many cases, s j would be
expected to be a sparse vector (since dj(·) would normally
be zero for the majority of concepts of the ontology) and
therefore in practice may be represented more efficiently as a
variable-length vector that includes only the nonzero values
of dj(·), but the former representation is used in the sequel
for notational simplicity.

The multimodal analysis problem addressed in this work
is, given the above set S of heterogeneous individual modality
analysis results and the ontology O, and using one of
the decompositions of set D as a reference decomposition,
to decide what is the most plausible annotation (or the
ordered list of N most plausible annotations) for each
temporal segment of the reference decomposition. It should
be clarified that the term “reference decomposition” is used
for denoting the decomposition that is used for associating
the final multimodal analysis results with the content; its
selection is made by the user according to the specific
user/application needs. For example, if a retrieval application
requires the content to be indexed at the level of visual
shots, this is the decomposition that should be used as
reference decomposition during analysis, to ensure that
multimodal analysis results are indeed associated with every
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Figure 1: Overview of the proposed approach for multimodal analysis of news audio-visual content.

individual visual shot; if, on the contrary, indexing and
retrieval, for example, at the speaker level (i.e., according to
different speakers) is required, the corresponding decompo-
sition should be used as the reference one during analysis.
Evidently, the multimodal analysis process can be repeated
using each time a different reference decomposition, to allow
for the multimodal annotation of segments belonging to
different decompositions (e.g., both visual shots and speaker
segments), if this is required.

3.2. System Overview. An overview of the approach pro-
posed in this work for addressing the multimodal analysis
problem discussed above is shown in Figure 1. As can be
seen in this figure, starting from the audiovisual content
on the far left, different techniques for analyzing separately
each individual modality (visual, audio, text) are executed in
parallel, resulting in an extended set of unimodal analysis
results. These are represented with the use of a domain
ontology and a multimedia ontology, that account for
the domain knowledge (e.g., concepts) and the low-level
properties of the content (e.g., decompositions), respectively.
The independent processing of each modality allows the use
of modality-specific techniques and criteria for identifying
elementary temporal segments (e.g., visual shots, audio
segments, etc.) and for estimating degrees of confidence
for the association of each such temporal segment with
the different possible concepts. Following the generation
of the unimodal analysis results, different possible associa-
tions between them (such as the overlapping of temporal
segments, the relation of different concept annotations
according to the concept hierarchy, etc.) are evaluated with
the use of specific functions, and all these are combined in a
two-stage process for identifying the most plausible concept
annotations for any given temporal segment. At the first
stage, the overall influence of the various decompositions
and the different concepts on the association of the given
segment s j (of the reference decomposition) with a top-level
domain concept ck ∈ C′ is evaluated. At the second stage, the
above top-level concept annotation decision is propagated

to the more specific (i.e., less abstract) concepts of C, to
result in the selection of the most plausible specific concept
annotation of s j .

4. Knowledge Representation

In a knowledge-assisted multimedia analysis system, such
as the proposed one, knowledge representation serves two
main purposes: the representation of prior knowledge for
the domain, and the representation of the analysis results.
To serve these goals, an ontology infrastructure has been
built that comprises two main parts: a domain ontology,
that represents the prior knowledge for the domain, and a
multimedia ontology.

The developed domain ontology is based on an exten-
sion of the IPTC (International Press Telecommunications
Council, http://www.iptc.org/) tree for the news domain
and includes a hierarchy of classes that range from rather
abstract ones, such as “disaster and accident” (i.e., the top-
level concepts belonging to C′), to specific ones, such as
“earthquake” and “flood” (Figure 2). The latter classes are the
least abstract ones with which an elementary news item can
be associated. In terms of visual analysis, these are at the same
time the most abstract classes to which attempting to directly
classify any piece of visual information based on its low-level
visual properties would make sense. Consequently, in order
to support efficient visual analysis, a set of even less abstract
classes, that is, region-level concepts V = {vz}Zz=1 describing
possible spatial regions of an image rather than entire images,
is also defined. Examples of such region-level concepts
include person, building, road, sky, flames, water, foliage, and
mountain. Contextual information X in the form of concept
frequency of appearance is also included in this ontology,
extending the ontology definition of (1) as follows:

O = {C,≤C ,V ,X}. (5)

The multimedia ontology, on the other hand, is a
knowledge structure used for supporting the storage of
information and of analysis results about the content (e.g.,
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Figure 2: Subset of concepts and their hierarchy in the employed ontology for news. Two of the 17 top-level concepts (“Disaster and
accident”, “Unrest, conflict, and war”) and a few of their subconcepts are depicted.
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Figure 3: Overview of the visual classification process.

its different decompositions). Its development represents
a choice concerning the practical implementation of the
proposed system rather than the algorithmic aspects of it
and therefore this ontology does not need to be discussed
here; the interested reader is referred to [23] for a detailed
presentation.

5. Single Modality Analysis Techniques

5.1. Visual Classification. The analysis of the visual informa-
tion involves several processing steps that include basic ones,
such as shot decomposition and visual feature estimation, as
well as knowledge-assisted analysis techniques, such as global
keyframe- and region-level classification and the fusion of
these classification results to a single hypothesis set about the
concept membership of each shot of the examined news item
(Figure 3).

Preprocessing starts with temporal video decomposition
to shots, which are the elementary video streams that can be
associated with one concept of the employed ontology. For
shot segmentation the algorithm of [24] is employed, which
works directly with frame histogram metrics computed
over low-resolution images extracted from the compressed
video stream. Subsequently, a keyframe is identified for each
shot and a rich set of MPEG-7 visual descriptors [25] is
extracted for it, both at the global image level (Scalable Color,
Homogeneous Texture, and Edge Histogram descriptors)
and at the region level (Scalable Color, Homogeneous
Texture, and Region Shape), following spatial segmentation
to homogeneous regions using the method of [26]. As a
final preprocessing stage, face detection is performed using
a variant of the method of [27]; given a keyframe of the shot,
the presence of one or more human faces is detected and their
locations on the image grid are specified, allowing among
others the evaluation of the area of the image that is taken
by the face(s).

Following preprocessing, a set of techniques aiming at
the association of pieces of visual information with classes

of the domain ontology is applied, starting with global
image classification. In order to perform classification of the
examined visual content into one of the concepts defined in
the ontology using global-image descriptions, a compound
visual feature vector is initially formed from the previously
specified MPEG-7 descriptors. Then, a Support Vector
Machine (SVM) [28] structure is utilized to compute the
class to which each piece of visual information belongs. This
comprises L SVMs, one for every selected concept. It must be
noted that the set of concepts for which visual classifiers are
trained is typically a subset of C−C′, due to lack of sufficient
training data for all concepts in C − C′ and also the fact that
many of these concepts have no clear visual manifestation
that would make the training of visual classifiers possible
(e.g., concept “liberation”). Each SVM is trained under the
“one-against-all” approach, using an appropriate training
set of images that were manually classified to concepts. At
the evaluation stage, each SVM returns for every image of
unknown concept membership a numerical value in the
range [0, 1]. This value denotes the degree of confidence with
which the corresponding visual content is assigned to the
concept represented by the particular SVM and is computed
from the signed distance of it from the corresponding SVM’s
separating hyperplane using a sigmoid function [29]. For
each keyframe, the maximum of the L-calculated degrees of
membership indicates its classification based on global-level
features, whereas all degrees of confidence, Hl, l = 1, . . . ,L,
constitute its concept hypothesis set.

Region-level classification follows, using a similar SVM
structure to compute an initial region-concept association
for every spatial region of the keyframe. As in the previous
case, an individual SVM is introduced for every region-
level concept vz of the employed ontology, in order to
detect the corresponding association. For training the SVMs,
an appropriate training set (made of regions generated by
automatic segmentation and manually assigned to region-
level concepts) is employed. As a result, at the evaluation
stage a degree of confidence is returned for each region
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Smoke 0.77; building 0.59;
road 0.56; water 0.55; mud
0.55; person 0.54; flames 0.54

Military vehicle 0.68; protest-
march 0.66; road 0.64; map
0.62; foliage 0.62; building
0.54; smoke 0.53

Fire 0.6; flood 0.45; earthquake
0.44; hurricane 0.44; war 0.4;
civil unrest 0.38; act of terror
0.13

Civil unrest 0.61; war 0.58;
flood 0.45; hurricane 0.43;
earthquake 0.42; fire 0.39;
act of terror 0.13

(a) (b) (c) (d)

Figure 4: Visual classification examples: (a) keyframe, (b) segmentation mask, (c) results of region classification for the spatial region shown
in white in the mask (only a few region-level concepts, in descending order according to the estimated degree of confidence, are shown) and
(d) final keyframe classification results (in descending order according to the estimated degree of confidence), generated by combining the
region-level classification results for all regions and the results of global classifiers. The concepts that are in agreement with the ground
truth annotation are shown in bold. Taking into account all region-level classification results rather than the single highest-ranking region-
level concept for every region, when estimating the final keyframe classification results, is motivated by the known imperfection of region
classifiers (as seen in the second example).

r of unknown concept membership and each region-level
concept vz in the domain ontology. These results for all
regions of the keyframe are subsequently employed for
inferring a new keyframe-concept association hypothesis set
H′
l , as in [6].

Finally, a fusion mechanism in the form of a weighted
summation Gl = λl · Hl + (1 − λl) · H′

l is introduced
for deciding upon the final keyframe—global concept
association. The concept for which Gl is maximized is
the most plausible annotation of the respective video shot
based on visual information, while Gl, l = 1, . . . ,L, is the
final visual classification hypothesis set. For optimizing the
weights λ for each concept, a genetic algorithm is used, to
account for the varying relevant importance of global and
local information for the detection of different concepts
[23]. Indicative examples of intermediate and final visual
classification results are shown in Figure 4.

5.2. Visual Analysis for Text Extraction. Besides the asso-
ciation of video shots with semantic classes (concepts)
on the basis of the visual features of the corresponding
keyframes, visual information, that is, the keyframes, can
also be used for extracting the text that is in some cases
superimposed to them. In news content, this text typically
encompasses in a very compact way semantic information
such as person names or event summaries, some of which
can be useful for analysis. To this end, text transcripts
are generated by application of software developed on top
of a commercial Optical Character Recognition (OCR)
software development kit (ABBYY FineReader Engine 8.1) to
keyframes of the video. All keyframes extracted as discussed
in the previous section are processed; the work flow of
this processing involves (a) text regions detection on the

keyframe and (b) Optical Character Recognition, as depicted
in Figure 5(a). Both these tasks are perfomed using functions
of the employed commercial software development kit. The
resulting text transcripts subsequently undergo linguistic
analysis as discussed in Section 5.4.

5.3. Audio Analysis. The use of speech technology to exploit
the linguistic content that is available as spoken content in
videos has proven to be helpful in bridging the semantic gap
between low-level media features and conceptual informa-
tion needs [30] and its use has been advocated for many
years. In this work, the SHoUT large vocabulary speech
recognition system is used to this end.

The work flow of the system is depicted in Figure 5(b).
Processing of an audio file starts with speech activity
detection (SAD) in order to filter out the audio parts that
do not contain speech [31]. After SAD, speaker diarization is
performed: the speech fragments are split into segments that
only contain speech from one single speaker with constant
audio conditions and each segment is labeled with a speaker
ID following speaker clustering [32]. Subsequently, auto-
matic speech recognition (ASR) is performed in four steps.
First, features are extracted from the segmented audio and
are normalized for speaker and audio variations. Next, a pri-
mary decoding pass is run. The output of this pass is used for
adapting the acoustic model for each speaker cluster. Finally,
the secondary decoding pass uses the adapted models for
producing the final speech transcripts. For ASR decoding, a
time synchronous Viterbi search is used, implemented using
the token passing paradigm [33]. HMMs with three states
and GMMs for its probability density functions are used to
calculate acoustic likelihoods of context dependent phones.
The employed decoder is described in more detail in [34].
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for visual classification)
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Model
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ASR text
transcript

Automatic speech recognition

(b)

Figure 5: Overview of (a) visual analysis for text extraction and (b) audio analysis. Both result in the generation of text transcripts.

As night fell over Baghdad on
Monday coalition warplanes carried
out a new wave of air attacks

War 1.0
Location: Bagdad,
Iraq; Day: Monday

Fires in Portugal Fire 1.0 Location: Portugal

(a) (b) (c)

Figure 6: Linguistic analysis examples: (a) text transcripts (the first
one coming from ASR and the second from OCR), (b) content-
concept associations using the concepts of set C, (c) additional
information in the form of locations, and so forth.

Output of the audio analysis process is a temporal
decomposition of the audio stream to speaker segments and
a textual transcript for each such segment.

5.4. Linguistic Analysis. Textual information analysis of mul-
timedia news-related material may be applicable to textual
information coming from a number of different sources: tex-
tual annotations produced manually by the content creators,
when such information is available; text extracted from the
video frames by means of OCR techniques (Section 5.2); and
ASR transcripts produced by audio analysis, as discussed
above. In all three cases, textual information analysis will
exploit for its application a suitable temporal decomposition,
depending on the source of textual information: (i) for man-
ual annotations, the temporal decomposition that has been
manually defined for them; (ii) for text coming from OCR,
all text extracted from a single keyframe will be analyzed
together; (iii) for ASR transcripts, it will be performed at the
speaker level (i.e., exploiting the results of speaker diarization
performed as part of the audio processing), independently
processing each uninterrupted speech segment of a single
speaker.

In this work, the SProUT platform (Shallow Processing
with Unification and Typed Feature Structures) is used as
core annotation and information extraction engine. SProUT
combines finite state techniques with unification of typed
feature structures (TFSs) [35]. The TFS framework provides
a powerful device for representing and propagating informa-
tion. Rules are expressed by regular expressions over input
TFSs that get instantiated by the analysis. The reader is
referred to [36, 37] for more details on SProUT.

Output of linguistic analysis, regardless of the source
of the input, is a set of content-concept associations using

the concepts of set C of the employed ontology (Section 4)
and additional information in the form of locations, person
names, and other attributes. Linguistic analysis is applied
separately to the information coming from each of the
possible input sources (i.e., ASR, OCR, etc.), not only
because of differences in the content decompositions and in
the way that linguistic analysis needs to process the different
inputs but also because the output of linguistic analysis
for each information source needs to be treated differently
when combining the individual modality analysis results,
as discussed in the following section. Indicative linguistic
analysis results for ASR and OCR transcripts are shown in
Figure 6.

6. Generalized Concept Overlay for
Multimodal Analysis

After having processed the individual modalities separately,
the objective is to combine their results, that is, to remove
ambiguities and contradictory outputs and produce a final
semantic interpretation of the multimedia content. A simple,
yet crude solution to the combination of individual modality
analysis results without using a manually annotated dataset
for training would be to disregard the concept hierarchy ≤C

of the ontology, identify all segments of S that temporally
overlap in full or in part with the examined temporal
segment s j of the reference decomposition Di, aggregate the
corresponding degrees dj(·), and select as most plausible
annotation the concept ck for which dj(ck) is maximized.
This simple approach, however, presents several important
drawbacks. Firstly, ignoring the concept hierarchy means
that we choose not to consider the semantic similarity or
dissimilarity of the different possible annotations; conse-
quently, all possible annotations are treated as contradictory,
although this may not be the case (e.g., one may simply be
a subconcept of the other). Secondly, we treat the temporal
overlapping of the segments of S as a binary variable, whereas
the degree of this overlapping could in fact be useful for
determining the significance of an annotation coming from
segment sm for the analysis of the reference temporal segment
s j . Thirdly, we ignore the fact that the semantic importance
of all modalities is not necessarily equal and may even vary
with respect to the type of content; in news video semantic
analysis, for example, the visual and audio modalities carry
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Decomposition D1

(audio segments)

Decomposition D3

(visual shots)

0 s

0 s

s1

s5

2.2 s

2.4 s

s2

s6

s3
4 s 8 s

11 s

s4

s7

Figure 7: An example illustrating the use of function τ. For the depicted decompositions, τ(s3, s6) = (8−4)/(8−4) = 1; that is, in performing
multimodal annotation of s3, the visual analysis results of s6 would be taken into account with a temporal weight of 1 (since the only visual
shot temporally overlapping with s3 is s6). On the contrary, τ(s6, s3) = (8− 4)/(11− 2.4) = 0.47 < 1, since s3 is not the only audio segment
temporally overlapping with s6. Thus, in performing multimodal annotation of s6, the audio analysis results of s3 would be taken into account
with a temporal weight of 0.47 and using this weight they would be combined (or would compete) with audio analysis results coming from
s2 and s4 that also temporally overlap with s6; the sum of temporal weights for s2, s3, and s4 would be equal to 1.

different weights when examining a studio shot and when
examining an external reporting shot. Finally, we overlook
that values dj(·) generated by different analysis tools are not
directly comparable in the general case.

To alleviate the identified drawbacks of the aforemen-
tioned simplistic approach, we propose a method that is
somewhat related to the overlay technique, proposed in
[8] for the fusion of structured information on the basis
of its temporal priority. In our approach however the
decision criterion cannot be the temporal priority of concept
detection, since the multimedia content is decomposed
to segments (elementary temporal units) instead of being
treated as a single item whose annotation may evolve in time.
The order of execution of the different unimodal analysis
techniques is clearly not relevant. Instead, the aforemen-
tioned considerations about the temporal overlapping of
segments, semantic importance of the modalities, and so
forth, have to be taken into account.

Starting with the quantification of the temporal overlap-
ping of the segments of S, we define function τ : S2 → [0, 1]
such that

τ
(
s j , sm

)
=

⎧⎪⎪⎨
⎪⎪⎩

min
(
tBj , tBm

)
−max

(
tAj , tAm

)

tBj − tAj
, if Γ > 0,

0, otherwise,

(6)

where s j is the reference segment and

Γ =
(
tBj − tAm

)(
tBm − tAj

)
. (7)

The meaning of function τ is illustrated with an example in
Figure 7.

In order to take advantage of the concept hierarchy, we
define function φ : C2 → [0, 1] such that

φ(ck, cn) =
⎧⎨
⎩

1, if cn = ck or cn is a subconcept of ck,

0, otherwise.
(8)

Note that ≤C is used for evaluating if one concept is a
subconcept of another and that, by definition, subconcepts
are not limited to immediate children of ck.

In order to take into account the varying semantic
importance of the different modalities with respect to the
type of content, we define a domain-specific partitioning W

of the reference decomposition Di to a set of disjoint types of
segments:

W =
{
Wq

}Q
q=1

. (9)

In the experiments reported in this work, the decomposition
of the visual modality to shots was used as the reference
decomposition, and three content types (W1: Studio shots;
W2: External reporting with a dominant face on the video;
W3: External reporting with no dominant face on the
video) were defined. Partitioning W is used for defining
μ : (W ,D) → [0, 1], a domain-specific function such
that μ(s j , sm), where s j ∈ Wq and sm ∈ Di, indicates the
relevant semantic importance of the modality corresponding
to decomposition Di for the analysis of segments of type Wq.
An example of function μ(s j , sm) defined for News video is
illustrated in Figure 8.

Finally, in order to account for values dj(·) generated
by different analysis tools not being directly comparable, we
define a set of tool- and domain-specific functions ξi, i =
1, . . . , I , one for each modality, that attempt to make values
ξ(dj(·)) comparable across modalities. This can be done by
enforcing them to have common statistics (e.g., the same
mean value, or the same distribution such as a uniform
one) over a reasonably large dataset. It must be noted that
in this process no ground truth annotation is required for
the employed dataset. In the sequel, the index to ξ will be
omitted for notational simplicity; the use of function ξ that
corresponds to the tool which generated its argument value
dj(·) will be implied.

Using the above definitions, a two-stage process can be
defined for combining all the individual modality analysis
results. At the first stage, the overall influence of the various
decompositions and the different concepts cn ∈ C on the
association of a segment s j (of the reference decomposition)
with a top-level domain concept ck ∈ C′ is defined as follows:

ψ
(
s j , ck

)

=
K∑

n=1

⎡
⎣φ(ck, cn) ·

⎛
⎝

J∑

m=1

τ
(
s j , sm

)
· μ
(
s j , sm

)
· ξ(dm(cn))

⎞
⎠
⎤
⎦.

(10)

Then,

k∗ = arg max
k

(
ψ
(
s j , ck

))
(11)
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Partitioning W of reference decomposition

D3

Decomposition D1 (ASR)

Decomposition D2 (OCR)

Decomposition D3 (visual classification)

a3 a1 a3

1 1 1

0 a2 a3

(W1) (W2) (W3)

Figure 8: Example of function μ(s j , sm) defined for News video, where 0 < a2 < a1 < 1 and 0 < a3 < 1, indicating the relevant semantic
importance of the modality corresponding to decomposition Di for the analysis of segments of type Wq. According to this example, when
performing the multimodal analysis of a studio shot (columnW1), visual classification results are not taken into account, while ASR linguistic
analysis results have lower importance than OCR linguistic analysis results; similar knowledge is encoded for shots of types W2 and W3, as
discussed in more detail in the experimental evaluation section.

indicates the single most plausible top-level concept anno-
tation ck∗ of segment s j . In case the application under con-
sideration allows for more than one top-level concept to be
assigned to a single segment, several strategies for retaining
the x most plausible top-level concepts by examining the
values of ψ(s j , ck) for all k can be defined, according to the
specific application needs.

At the second stage, in order to generate a more specific
annotation of segment s j , the above top-level concept
annotation decision has to be propagated to the more specific
(i.e., less abstract) concepts of C. This is performed by
evaluating which subconcept of ck∗ contributed the most
to its selection in the previous processing step (similarly
to (8), not being limited to immediate children of ck∗). In
particular, for every cn that does not belong to C′ and for
which φ(ck∗ , cn) = 1 the following value is calculated:

ρ
(
s j , cn

)
=

J∑

m=1

τ
(
s j , sm

)
· μ
(
s j , sm

)
· ξ(dm(cn)). (12)

Then,

n∗ = arg max
n

(
ρ
(
s j , cn

))
(13)

indicates the single most plausible specific concept annota-
tion cn∗ of segment s j . Again, more than one such concepts
could also be assigned to s j by examining the values of
ρ(s j , cn), if desired.

A couple of examples of the above two-stage process for
assigning concept annotations to a visual shot are shown
in Figure 9. For the first one (top row of the figure), the
shot’s actual subject is “war in Iraq” and the keyframe is
shown on the left side of the figure. The degrees of confidence
with which a concept is associated with this shot on the
basis of visual and audio information (taking into account
all audio segments that temporally overlap in full or in
part with the shot) are shown next to each concept in
parenthesis and in brackets, respectively. The solid arrows
“(a)” indicate the first stage of the Generalized Concept
Overlay: all the evidence (i.e., degrees of confidence) coming

from the analysis of the different modalities independently
are taken into account according to (10) for estimating a
score associating the visual shot with each of the considered
top-level domain concepts. These scores are shown next to
the two such top-level concepts visible in this figure. The
highest of these scores, in this example equal to 0.67 and
corresponding to the “unrest, conflict, and war” concept, is
selected as dictated by (11). Subsequently, at the second stage
of the Generalized Concept Overlay, the decision made on
the top-level concept annotation is propagated to the more
specific concepts that contributed to this decision, that is, the
subconcepts of “unrest, conflict, and war”. This is illustrated
by the dashed arrows “(b)”. As a result of this, a new score
is calculated for each of these subconcepts according to (12)
(these scores are not shown in this figure for readability
purposes), and the largest of these scores indicates the single
most plausible specific concept annotation of the shot, which
in this example is “war”. This result is in agreement with
both visual and audio information analysis as well as with
the actual subject of the shot as identified during its manual
annotation. In the second example of the same figure, the
same process is shown for a “windstorms” shot. In this
case, the visual and audio information analysis results are
not in agreement. ASR linguistic analysis has identified the
correct annotation; visual classification does not support
the “Windstorms” concept (no such visual classifier has
been trained) and identifies “war” as the most plausible
annotation and “hurricane” as the second most plausible
one. Combining these results and particularly taking into
account that both “hurricane” and “windstorms” provide
strong evidence in favor of the “disaster and accident” top-
level concept, the correct annotation is identified.

The motivation behind the Generalized Concept Overlay
is that it is difficult to directly combine the results of different
analysis tools for determining the least abstract concept that
should be used to annotate a temporal segment, considering
that each individual modality analysis tool defines its own
temporal content decomposition, takes into account its own
subset of concepts (as also shown in the second example of
Figure 9), and has its own overall importance for analysis.
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Figure 9: Examples of the two-stage process for combining all the individual modality analysis results that is part of the Generalized Concept
Overlay.

Instead, taking advantage of the concept hierarchy and the
fact that the results of concept detection at any level of this
hierarchy can be directly propagated to the higher levels of
it, we chose to make a decision on the classification of each
temporal segment to the top-level concepts first, where all
analysis results can be taken into account, and then at a
second stage to follow an inverse process in order to make
the final classification decision considering the less abstract
concepts as well. A significant advantage of the proposed
approach over learning-based ones (e.g., based on Bayesian
Networks, Supervised Rank Aggregation approaches [14],
etc.) is that no training is required for combining the
individual modality analysis results. As shown in (10) and
(12), the proposed approach is based on evaluating functions
φ, τ, μ, and ξ, whose parameters are not determined from
annotated training samples. Only classification of the content
to one of the defined segment types (in our experiments, W1

to W3) is needed, which is independent of the concepts in C
and can be realized by one or more generic classifiers (e.g., a
studio/nonstudio visual classifier). In contrast to this, taking
into account all the above peculiarities of content (e.g., differ-
ent decompositions, etc.) and that the number of concepts in
C may be in the order of hundreds of thousands, it is evident
that a learning-based approach would require a very large
amount of training data that is not generally available.

7. Experimental Evaluation

7.1. Dataset and System Setup. The proposed news semantic
multimodal analysis system was experimentally evaluated
on a test dataset of 91 short broadcast news videos from
Deutsche Welle (http://www.dw-world.de/), having a total
duration of approximately 4 hours. These were selected from
a pool of 30 hours of video, on the basis of their relevance
with the two top-level concepts depicted in Figure 2, that
were chosen for experimentation purposes. About 81% of
the videos of the test dataset (74 out of 91) included audio,
while very few videos included some frames with captions or

other text that could be extracted by OCR techniques. Some
of the videos were composed of an anchor shot followed by
several external reporting shots; others included more than
one sequences of anchor plus external reporting shots, while
some others had no anchor shots at all. Shot segmentation
of the test dataset, as discussed in Section 5.1, resulted in
a total of 4576 shots. For enabling objective evaluation
of the automatic analysis results, each shot was manually
annotated with one concept of the ontology. In addition to
the shot-level manual annotations, the annotators were asked
to associate each entire video with a single concept of the
ontology, corresponding to the temporally most dominant
topic of the video. Manual annotation of each piece of visual
information was performed by two annotators separately
and, in case disagreement was observed in their annotations,
these were reviewed by a third one.

Three unimodal analysis methods, discussed in Section 5,
were employed as the basis for multimodal analysis: auto-
matic speech recognition (ASR) and linguistic analysis of the
ASR transcripts, resulting to decomposition D1; linguistic
analysis of optical character recognition (OCR) transcripts
(D2); and visual classification based on a combination
of global and local features (D3). For training the visual
classifiers, a separate training set of Deutsche Welle videos
was employed and visual classifiers were trained for the first
7 of the concepts of Table 1. These concepts were selected
on the basis of their frequency in the training and testing
datasets. For less frequent concepts, such as the remaining
ones of Table 1, no visual classifiers were trained; therefore,
these could be associated with the multimedia content only
by means of linguistic analysis of ASR and OCR transcripts,
which was not restricted to a subset of the concepts in C. The
audio and linguistic analysis modules were developed with
the use of other suitable corpora, not related to the employed
test dataset of Deutsche Welle videos.

The decomposition of the visual modality to shots was
chosen for serving as the reference decomposition, and based
on this three types of content were defined as follows: W1:
Studio shots; W2: External reporting with a dominant face
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Figure 10: Confusion Matrices for the 13 concepts of Table 1—dataset restricted to shots for which more than one single modality analysis
results exist. (a) Visual Classification, (b) ASR linguistic analysis, (c) OCR linguistic analysis, (d) Borda Count method [14], (e) Borda
Fuse method [14], (f) method of [38], (g) Generalized Concept Overlay with μ(s j , sm) = const, and (h) Generalized Concept Overlay with
τ(s j , sm) = const, (i) Generalized Concept Overlay.

Table 1: Examined concepts.

Identifier 1 2 3 4 5 6 7

Concept name Earthquake Fire Flood Hurricane War Act of terror Civil unrest

Identifier 8 9 10 11 12 13

Concept name Windstorms Riots Massacre Demonstration Rebellions Genocide
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Figure 11: Results of visual classification (“-o-”) and of Generalized Concept Overlay (“-∗-”) when the number of visual classifiers (and,
consequently, the performance of visual classification) varies, for the datasets used in (a) Table 2 and (b) Table 3.

Table 2: Multimodal analysis results in the news domain—entire dataset.

Process
cn∗ cn∗ cn∗ ck∗ ck∗ ck∗

correct incorrect no result correct incorrect no result

Visual classification 43.4% 56.6% 0% 81.6% 18.4% 0%

ASR linguistic analysis 8.5% 3.2% 88.3% 11.6% 2.9% 85.5%

OCR linguistic analysis 0.4% 0% 99.6% 0.6% 0.2% 99.2%

Generalized concept overlay with μ(s j , sm) = const 46.5% 53.5% 0% 82.8% 17.2% 0%

Generalized concept overlay with τ(s j , sm) = const 46.2% 53.8% 0% 82.9% 17.1% 0%

Generalized concept overlay 47.1% 52.9% 0% 82.9% 17.1% 0%

Multimodal analysis method of [38] 45.1% 54.9% 0% 82.6% 17.4% 0%

Borda count method [14] 45.2% 54.8% 0% 82.8% 17.2% 0%

Borda fuse method [14] 46.9% 53.1% 0% 82.9% 17.1% 0%

on the video; and W3: External reporting with no dominant
face on the video. A reliable studio/nonstudio visual classifier
and a face detector [39] were employed for automatically
assigning each shot to one of these three types. Based on
partitioning W , function μ was heuristically defined as

μ
(
s j , sm

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if sm ∈ D2,

a1, if
(
sm ∈ D1, s j ∈W2

)
,

a2, if
(
sm ∈ D3, s j ∈W2

)
,

0, if
(
sm ∈ D3, s j ∈W1

)
,

a3, otherwise,

(14)

where 0 < a2 < a1 < 1 and 0 < a3 < 1. Function μ (also
illustrated in Figure 8) essentially encodes commonsense
knowledge about news analysis, such that audio information
is more important than visual information when considering
studio shots, and so forth. For experimentation, values a1 =
0.7 and a2 = a3 = 0.5 were chosen.

Functions ξi were defined as ξi(dj(·)) = dj(·) for i =
1, 2 (i.e., for the ASR and OCR linguistic analysis results),
whereas for the visual classification results, ξ3 was defined
such that values ξ3(dj(·)) had a uniform distribution in [0, 1]
over a validation dataset.

7.2. Experimental Results. In Table 2, results on the entire
test dataset are presented for each of the employed unimodal
analysis techniques as well as for the Generalized Concept
Overlay of Section 6 and two variants of it, illustrating
the effect of modeling functions μ(s j , sm) and τ(s j , sm) as
constants. Comparison with our earlier work on multimodal
analysis of news content [38] and with the unsupervised
Borda Count and Borda Fuse methods [14] is also presented
in this table. In [38], a multimodal analysis approach
that neither exploited the concept hierarchy nor took into
account the variability of concept subsets considered by the
individual modality analysis tools was proposed; only the
concepts belonging to the intersection of the latter subsets
were considered for combining the individual modality
analysis results. The unsupervised Borda Count and Borda
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Table 3: Multimodal analysis results in the news domain—dataset restricted to shots for which more than one single modality analysis
results exist.

Process
cn∗ cn∗ cn∗ ck∗ ck∗ ck∗

correct incorrect no result correct incorrect no result

Visual classification 35.4% 64.6% 0% 73.1% 26.9% 0%

ASR linguistic analysis 56.5% 39.6% 3.9% 76.9% 19.2% 3.9%

OCR linguistic analysis 2.3% 0% 97.7% 3.8% 0% 96.2%

Generalized concept overlay with μ(s j , sm) = const 56.4% 43.6% 0% 80.8% 19.2% 0%

Generalized concept overlay with τ(s j , sm) = const 54.2% 45.8% 0% 81.8% 18.2% 0%

Generalized concept overlay 60.1% 39.9% 0% 81.2% 18.8% 0%

Multimodal analysis method of [38] 47% 53% 0% 79.8% 20.2% 0%

Borda Count method [14] 47.5% 52.5% 0% 80.9% 19.1% 0%

Borda Fuse method [14] 58.8% 41.2% 0% 81.6% 18.4% 0%

Fuse methods [14, 40] on the other hand consider all
concepts of the employed ontology. They both treat the
results of each unimodal analysis technique as a ranked list,
thus taking into account the rank of every concept in the
list (i.e., first, second, etc.) rather than the actual values
dj(·). This can be perceived as imposing a normalization of
the unimodal analysis results that is different than that of
functions ξi used in (10) and (12). They then fuse the ranked
lists produced by the different unimodal analysis tools. The
rank of each result serves as the sole criterion in Borda
Count, which averages the ranks of a given concept over all
ranked lists. In Borda Fuse, the rank and the weight of each
modality according to the type of the examined segment
(i.e., the values of function μ used in (10) and (12)) are
employed. Using the latter, Borda Fuse calculates a weighted
average of the ranks of a given concept over all ranked
lists. In both methods, the concept for which the estimated
average rank indicates that this concept appears higher than
all other concepts in the fused list is selected as the final
outcome of fusion. It can be seen in Table 2 that the proposed
Generalized Concept Overlay approach outperforms the
former approaches, achieving a higher correct annotation
rate for the specific concepts cn∗ extracted by multimodal
analysis, and a higher or equal correct annotation rate for the
top-level concepts ck∗ . The complete Generalized Concept
Overlay also outperforms simpler variants of it that model
certain functions as constants (i.e., they consider μ(s j , sm) =
const and τ(s j , sm) = const, resp.). It should be noted that the
proposed approach does not require training with the use of
a manually annotated dataset for combining the individual
modality analysis results; thus, it may be particularly suitable
to the large-scale semantic classification problem where
training is difficult.

In Table 3, similar results on a subset of the test dataset
are presented; this subset comprises the 692 shots (out
of the 4576 in total) for which at least two of the single
modality analysis tools have returned an analysis result (e.g.,
shots for which at least one partially overlapping, in terms
of time, audio segment exists and has been assigned to a
semantic class by means of ASR and linguistic analysis). The
motivation behind presenting results for this subset of the
dataset is to illustrate more clearly the effect of different

approaches in the way the different unimodal analysis results
are combined. It can be seen in Table 3 that, for this subset of
the dataset, the majority of the results have been produced
by visual classification and by linguistic analysis of ASR
transcripts; due to the nature of the employed dataset (it
is not rich in text that could be extracted by means of
OCR), OCR linguistic analysis results are scarce. Concerning
the multimodal analysis techniques, it can be seen that the
proposed approach significantly outperforms, in terms of the
specific concepts cn∗ extracted by multimodal analysis, our
earlier work [38] (Chi Square = 24.05, df = 1, P < .05)
and the Borda Count method (Chi Square = 22.0, df = 1,
P < .05). The impact of function τ(s j , sm), in comparison to
defining τ(s j , sm) = const, is also shown to be significant (Chi
Square = 4.96, df = 1, P < .05). Less pronounced differences
(thus also of lower statistical significance) in favor of the
proposed approach are observed when comparing with the
Borda Fuse method and when considering the annotation
rates for the top-level concepts ck∗ . In evaluating the
statistical significance of annotation performance differences
in the above pairwise comparisons of approaches, the null
hypothesis was defined as the annotation performance being
the same for both approaches in each pair.

Corresponding confusion matrices for the the 692 shots
and the 13 most frequent concepts of the dataset (in the
order they are listed in Table 1) are shown in Figure 10.
For visualization purposes, only the shots that were actually
annotated with a concept are taken into account in each
of these confusion matrices (thus, the “no result” outcomes
of each analysis method were ignored when calculating the
corresponding percentages, ranging from 0% to 100%). This
was necessary for effectively visualizing, for example, the
OCR linguistic analysis results that are scarce; consequently,
the colors in Figure 10 are not comparable between Figures
10(b) and 10(c) and between any of these two and any of the
remaining confusion matrices of the same figure. It can be
seen in Figure 10 that visual classification is most susceptible
to annotation errors; ASR linguistic analysis is considerably
more reliable overall but still consistently confuses between
certain pairs of concepts (e.g., 3: Flood and 4: Hurricane;
5: War and 7: Civil Unrest); OCR linguistic analysis is
very reliable. The Borda Count method and the method of
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[38] are shown to be moderately successful in combing the
different unimodal analysis results, since they are strongly
affected by errors coming primarily from visual analysis. The
Borda Fuse method and the proposed one are shown to be
more successful, with the Borda Fuse method being affected
a bit more by errors coming from ASR linguistic analysis
(e.g., consistently confusing between concepts 5: War and
7: Civil Unrest), while the proposed approach is shown to
handle better some of the errors coming from ASR linguistic
analysis at the expense of being somewhat more sensitive to
erroneous visual analysis results.

In order to examine how visual classification accuracy,
which can clearly vary significantly depending on the choice
of visual classifiers, the available training data, and so forth,
affects the overall multimodal analysis, an experiment was
carried out where only subsets of the previously trained
classifiers rather than all of them were considered. In
particular, the 7 visual classifiers were ordered according
to the prevalence of their corresponding concepts in the
test set, in ascending order, and experiments were carried
out by excluding the first of them, the first two, the first
three, and so forth. In the last experiment of this series,
only one visual classifier that corresponds to the single most
prevalent concept in our test set was considered. The results
are presented in Figure 11, indicating that when the number
of visual classifiers is reduced and consequently lower correct
annotation rates are achieved by visual classification, the pro-
posed multimodal analysis approach succeeds to compensate
this loss to a significant extent by exploiting the results of the
other modalities, providing that such results exist. Still, it is
evident from the same figure that visual classification does
contribute to the final outcome of multimodal analysis; this
contribution is small, in the portion of the dataset for which
other modality analysis results exist, and far more significant
when considering the entire dataset.

Another experiment was subsequently carried out, mak-
ing the assumption that each entire video (rather than
each individual shot) is about a single subject; thus all
shots of it can and should be associated with a single
concept of the employed ontology. The motivation behind
this experiment was to test the influence of the selected
content decomposition to the performance of multimodal
analysis and in particular the possible improvement of
analysis results when considering larger story-telling units
(scenes) rather than visual shots as the elementary pieces
of video information; taking the whole video as a scene is
clearly the extreme case. In this experiment, the manually
generated video-level annotations discussed at the beginning
of this section were used as ground truth annotation for
evaluation purposes, in place of the shot-level ones. The
Generalized Concept Overlay technique was adapted to this
scenario by being applied at the shot level, as in all previous
experiments, and its results being subsequently evaluated by
a simple voting mechanism which selected the single most
dominant concept across all shots as the final annotation for
the entire video. As a result, the correct classification rates of
the Generalized Concept Overlay rose to 75.3% and 93.1%
for cn∗ and ck∗ , respectively, on the entire dataset, showing a
significant increase compared to the results of Table 2.

Finally, it should be noted that besides the annotation of
each shot or other temporal segment with one concept of
the ontology expressing the thematic categorization of the
news item, the result of multimodal analysis can also include
additional semantic information such as location names and
person names. These are extracted as part of the linguistic
analysis of ASR and OCR transcripts. Although elaborate
techniques for combining such additional information can
be envisaged (e.g., similar to the one presented in this work
for the thematic categorization results), in practice a simple
unification approach was adopted in our experiments; more
specifically, the additional information coming from ASR
and OCR analysis was accumulated, and in case of contra-
dictory information, the OCR results prevailed. As a result,
over one third of the shots in our dataset was automatically
annotated with information that is in addition to cn∗ , ck∗ ;
out of this, approximately 55% concerned location names,
22% person names, and 6% dates. The evaluation of the
correctness of these results is beyond the scope of this work,
since the focus is on the thematic categorization results
discussed above, but these clearly indicate the added value of
using multiple specialized individual modality analysis tools
in a multimodal analysis scheme, rather than attempting to
jointly process at a single stage all low-level features that
come from the different modalities.

8. Conclusions

The detailed analysis of the results in the previous section,
where the corresponding confusion matrices were presented,
revealed that multimodal analysis using the proposed Gen-
eralized Concept Overlay approach succeeds in improving
the results of any of the employed unimodal analysis
methods. Nevertheless, it is evident that the breadth of
this improvement is greatly dependent upon the individual
modality analysis results that serve as input to multimodal
analysis. These, in turn, depend not only on the performance
of the employed single-modality analysis methods but also
(and maybe even to a greater degree) on the specifics of
the content itself, that is, whether it contains audio or not,
whether news-related legends are typically projected or not
on the screen by the news agency producing the content or
by the broadcaster, and so forth. In the case of the employed
Deutsche Welle dataset, it was shown that although ASR
and OCR linguistic analysis can provide valuable and very
accurate information about the semantics of the content,
treating the video at the shot level results in relatively few
shots being annotated by these components with anything
other than “no result”. This is consistent with the nature of
broadcast news, where one of the prevailing journalistic rules
in preparing the presentation of news can be summarized as
“let the images tell their own story”. Consequently, the exact
type of the incident in question (e.g., a “fire”) is not verbally
repeated in every visual shot; it is more often announced by
an anchorperson during a “studio” shot, followed by several
shots where the visual modality prevails and few, if any,
semantics are conveyed by speech or legends on the screen.
This is the reason why, when larger story-telling units are
considered as the elementary pieces of news information
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(e.g., as in our last experiment, where the entire video was
treated as a single story-telling unit), considerable increase
in the correct semantic annotation rates can be achieved. On
the other hand, though, linguistic analysis of ASR and OCR
transcripts is invaluable in extracting additional semantic
metadata such as location names and person names, which
are beyond the reach of any visual analysis technique
unless considering very restricted application scenarios (e.g.,
involving a limited number of people that appear on the
video and for which appropriate face recognition models can
be trained, etc.). These conclusions provide the guidelines
for the use of the analysis techniques presented in this work
as well as of other similar techniques in real-life multimedia
news management applications.
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