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Abstract— This paper compares different methods for detect-
ing the speaking person when multiple persons are interacting
with a robot. We evaluate the state-of-the-art speaker detection
methods on the iCat robot. These methods use the synchrony
between audio and video to locate the most probable speaker.
We compare them to simple motion-based speaker detection and
present a simple heuristic with low computational requirements,
which performs equally well to the audiovisual methods in a set
of multiperson recordings with a fraction of the computational
cost, thus making real-time interaction possible.

I. INTRODUCTION

Embodied conversational agents, whether physical robots
or screen agents will play an important role in future man-
machine interfacing. Such systems must intelligently inter-
pret the voices they perceive, even in a multi speaker setting.
Furthermore, the embodied agent must react in a ’social’
way to the humans interacting with it. This means that
conventions that play a role in man-to-man conversation must
also be implemented in man-to-robot conversations. The
roles of person detection, gaze control and eye contact have
been extensively studied in man-robot interaction [18], [25]
and the interaction with animated faces [10], [6]. However,
most of this work focuses on the detection of, and interaction
with, humans in a single user situation. In many of the fore-
seen applications such as robots in museum or exhibitions,
robots in care-for-elderly (see figure 1), office robots and
entertainment robots, these systems have to interact with
multiple humans simultaneously.

As a part of this task we address the problem of detecting
the person that is speaking in a situation where multiple
persons interact with the robot. Speaker detection in such
applications is done along two lines. One line is the use of
multiple microphones to detect the location of the speaker
[1],[13]. The second line of research focuses on combining
the audio based localization with detection of the location of
humans by other means such a vision or laser [16].

In this paper we explore how speaker detection methods,
developed for the automatic analysis of multimodal infor-
mation streams such as meeting videos of news broadcasts,
can be applied to a robotics application. These methods use
synchrony between audio and video to find the speaking
person. We compare these methods with a simple, very fast,
ad-hoc method that is based on motion detection only.
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Fig. 1. An example of elderly care where multiple persons interact with
a robot.

We will first present related work in the field of speaker
detection and then briefly present the framework that we
developed for speaker diarization in multimodal streams.
Section VI presents the experimental results using the i-
Cat robot while sections VIII and IX discuss the results and
present the conclusions of this work.

II. RELATED WORK

In robotics research, speaker detection is usually consid-
ered as a sound source localisation and tracking problem
in which audio information from two or more microphones
is used. The aim of speaker localisation is mostly the
enhancement of the speech signal [1]. This can be done
by for example adaptive beamforming as described by Beh
et al. [3]. Nakadai et al. [19] present the active direction-
pass filter to separate sounds originating from the specified
direction with a pair of microphones. Not only do they use a
microphone array to localise audio, but they also vision cues
in the form of face detection and stereo vision. The results
show that the vision cues are more accurate than audio cues
for localising the speaker. Note that, in this case, there is
only a single speaker.

In multispeaker situations the data association problem has
to be solved. Klaassen et al. [13] use a joint probabilistic
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Our current focus is on deictic gestures—such as pointing, 

head orientation, and eye gaze—since they are well 

understood as a means of establishing joint attention, and are 

easily identified and physically grounded in terms of world 

objects. To compute possible target objects of a pointing 

gesture with respect to the user, we can utilize a Bayesian 

approach to combine an error model of human pointing and 

the attentional distribution as a prior. We are investigating 

methods for recognizing attention and action stemming from 

more complex intentions and distinguishing that are task-

oriented actions, such as reaching, from communication-

oriented actions, such as pointing and other social gestures. 

III. USER INTERVENTION 

By monitoring user intentions and anticipating their effect 

on the success of an individual or collaborative task, a robot 

may determine that it is appropriate for it to intervene. Such 

an intervention may be deemed necessary to improve task 

performance or to prevent undesirable actions from being 

taken by the user. Directing user attention and intention must 

be done as clearly as possible to maintain a successful 

interaction between the robot and user. It is therefore crucial 

that potential ambiguity be minimized or resolved. 

A. Intervention 

In this preliminary work, the robot plans and executes an 

intervention strategy over possible proxemic and deictic 

actions. Proxemics here refers to the manipulation of robot 

position and orientation with respect to the human [9]. The 

robot must situate itself in the appropriate “social space” to 

maximize the effectiveness of subsequent communicative 

actions. Once the robot has positioned itself, it utilizes 

deictic gestures—such as pointing, head orientation, and eye 

gaze—to focus the attention of the user to a particular object 

or region, thus attempting to establish joint attention [10]. 

Intent is then communicated by exploiting the theory of 

perceived affordances, which suggests how an object may be 

interacted with [11]. This reliance on affordances constrains 

the interaction to simple tasks; however, in future work, we 

will investigate more complex forms of representation and 

communication of intent [12], and extend our probabilistic 

framework to consider McNeill's four categories of 

discourse gestures (iconic, metaphoric, deictic, and beat) 

[13]. 

B. Ambiguity Resolution 

In the ideal case, the appropriate application of social 

distance and deictic gestures would result in a clear user 

interpretation of the task objective and, thus, a successful 

intervention; however, in the real world, such 

communication is often noisy and potentially ambiguous. To 

resolve such ambiguity, the robot engages in perspective-

taking, considering the viewpoint of the human observer, as 

well as previous user activity. We utilize a naïve Bayes 

approach to estimate the clarity of a human’s interpretation 

of potential robot actions over the attentional space. We then 

select a robot intervention strategy by applying gradient 

decent to find a global minimum with regard to ambiguity. 

IV. IMPLEMENTATION 

We are in the process of collecting human interpretation 

data based on interactions with a physical robot. From this, 

we can produce a probabilistic model of error in human 

perception of robot deictic gestures. This model will then be 

validated in a collaborative task to demonstrate the efficacy 

of robot intervention and ambiguity resolution strategies and 

attention and intention monitoring with a human user. 

A. Robot Platform 

The system is being implemented on the Bandit III robot 

platform available in the Interaction Lab, shown in Fig. 1. 

Bandit is an upper-torso humanoid robot with 17 degrees of 

freedom: 7 in each arm (shoulder forward and backward, 

shoulder in and out, elbow tilt, elbow twist, wrist twist, 

grabber open and close; left and right arms), 2 in the head 

(pan and tilt), 2 in the lips (upper and lower), and 1 in the 

eyebrows. These degrees of freedom allow the robot to be 

highly expressive through individual and combined motions 

of the head, face, and arms. An extensive gesture and facial 

expression library has been developed to enhance the 

interactive experience. The robot is closer to human-scale 

than many other humanoid platforms; mounted atop a 

Pioneer P2 base, the entire robot stands one meter tall, 

making it an adequate choice for robot interaction. An 

overhead camera and on-board laser rangefinder facilitate 

human and robot pose tracking. 

B. Experiment Design 

We are investigating a concrete application of this 

framework within the realm of deictic gesture. The 

experimental design is a two-phased approach aimed at 

producing an empirical error model of both human gesture 

perception accuracy and robot gestural accuracy, and then 

applying these models using our attention, intention, and 

ambiguity resolution framework to allow a robot to engage 

in a simple collaborative task with a human partner. 
1) Building perceptual models: We have begun 

preliminary experiments aimed at building an error model 

for human perception based on different robot pointing 

modalities, including head, arm, and combined head and arm 

gestures. Each gesture’s accuracy is evaluated in 

 
Fig. 1. The Bandit upper-torso humanoid robot platform 
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Fig. 1. Ontology example. Names with first capital letter correspond to
classes; bold names, to properties; and italic names, to instances.
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Fig. 2. Visual perspective taking for each agent in the scenario.

separate cognitive models allows us to store and reason on
different models of the world.

III. GEOMETRICAL REASONING

This section describes different reasoning mechanisms to
provide an abstraction layer to the decisional layer on top of
the geometrical description of the environment.

To model the environment we use the software platform
Move3D [2]. The kinematic structures of the human and the
robot, as well as their positions and objects’ positions are
integrated into this platform to maintain a coherent model of
the real environment. It also allows us to view the visual
perspective of the agents in the world by modeling their
visual sensors (eyes for humans, cameras for robots).

We divide the geometrical reasoning mechanisms in two
groups: perspective taking descriptors and symbolic location
descriptors. The first set corresponds to information obtained
when reasoning from an agent point of view, while the
second one corresponds to global descriptors independent
of the agents in the environment. All this information is
stored in the ontology, which in turn may infer additional
information as we explain next. Moreover, the information
concerning specific agents, i.e. perspective taking descriptors,
is stored in each agent’s cognitive kernel in ORO allowing
the decisional level to reason about each agents’ beliefs about
the world.

A. Perspective Taking Descriptors
1) Visibility: Visual perspective taking refers to the ability

for visually perceiving the environment from other’s point
of view. This ability allows us to identify objects or regions
that are visible/hidden for/from others, which is essential for
referring to things when interacting with others. For example,
if the robot refers to an object, it should try to ensure that
the human is able to see it in order to facilitate interaction.
On the contrary, if the human refers to an object, based on
the context, she could refer to a visible one (e.g. “take this
ball”) or to an invisible one (e.g. “find the ball”).

We are currently able to compute “visibility” from an
agent point of view for objects in the environment [3] and
zones or regions around the agent [4]. An object or a region
is visible for an agent if, while performing a minimum effort
(i.e. only turning the head or standing, if possible), the object
or region are within the agent’s field of view and there are
no occlusions in between.

2) Spatial: Spatial perspective taking refers to the quali-
tative spatial location of objects (or agents) with respect to
a frame of reference (eg. the keys on my left). Based on this
frame, the spatial description of an object varies. Humans
mix perspectives frequently during interaction [5], i.e. they
do not maintain a consistent perspective through a conversa-
tion. Therefore, the robot has to be able to understand and
compute descriptions of objects based on different frames of
reference to follow the interaction with its human partner.

In this work, we use two types of the frames of refer-
ence: egocentric (from the robot perspective) and addressee-
centered (from the human perspective). Thus, given an object
and the referent, we can compute the spatial locations by
dividing the space around the referent into n regions based
on arbitrary angle values relative to the referent orientation.
For example, for n = 4 we would have the space divided
into front, left, right and back. Further subdivisions can be
computed if we would like to represent distinctions among
distances, e.g. near and far.

3) Reachability: An object or a region is reachable if there
is a collision free posture for the agent where the end-effector
is at the center of the object or region with a given tolerance.
A valid posture includes moving the upper-body or standing,
if possible.

This ability allows the robot to estimate the agent’s ca-
pacity to reach an object, which is fundamental for task
planning. For example, if the human asks the robot to give
her an object, the robot must compute a transfer point where
the human will be able to get the object. Figure 3 illustrates
the reasoning results for reaching regions and an object.

B. Symbolic Location Descriptors
Symbolic location descriptors allow the robot to compute

spatial relations between objects in the environment. The
system infers symbolic relations between objects from its
3D geometric world representation. In this work we propose
the use of three basic symbolic relations between each pair
of objects. However, their inverse relations can be automati-
cally computed at the symbolic level, i.e. through inference
22
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Introduction

Making robots articulate what they understand, in-
tend, and do.

Human-robot interaction is becoming more and more complex through the
growing number of abilities, both cognitive and physical, available to today’s
robots and through their resulting flexibility. At the same time, lay persons
should be able to interact with robots in order to pursue the vision of a robot
in every home. Though a lot of progress is apparent in the different fields
in robotics with regard to learning, autonomous behaviours, safe navigation,
and manipulation, the interface with the human user is quite often rather
neglected. Many studies have been conducted unveiling the importance of
properly designed adaptive human-robot interaction strategies and appropri-
ate feedback, in particular. With interaction becoming more complex it is
equally becoming more important to move beyond command style interfaces
and equip robots with abilities to actually express and verbalise what they
are doing, what their current problems might be and how they see the world.
These interactive abilities have been shown to facilitate more effective and
efficient interaction with humans using mostly natural modalities, but also
robot-specific ones, such as visualisation techniques.
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Invited Talks

The Autonomous City Explorer: Experiences from
a recent test trial in the city center of Munich

Kolja Kühnlenz (Technical University Munich)

Abstract Future personal robots in everyday real-world settings will have
to face the challenge that there will always be knowledge gaps. A priori
knowledge may not be available in all situations and learning requires trials,
which also may not be feasible in any case. In order to overcome such
drawbacks, we believe that a crucial capability of tomorrow’s robot assistants
will be to assess their knowledge towards gaps and to be able to fill those by
interaction with humans. In this talk, recent results of the Autonomous City
Explorer (ACE) project will be presented. In this project, an autonomous
robot managed to find its 1,5km way from the main campus of TU Munich
to the city center of Munich by asking pedestrians for directions. ACE
was developed in the context of a pilot project exploring the feasibility of
personal assistance robots in terms of human acceptance, which are capable
of extending their knowledge not only by means of cognition but also by
means of humanlike communication in real-world settings. To fill gaps in its
directional knowledge, ACE is capable of actively approaching humans and
initiating interaction situations, retrieving directions from human pointing
gestures and converting this information into an algorithmic plan, which
finally is executable in terms of conventional means of robot navigation.

About the speaker Kolja Kühnlenz is currently a Senior Lecturer at
the Institute of Automatic Control Engineering (LSR) and Carl von Linde
Junior Fellow at the Institute for Advanced Study, Technische Universität
München, Munich, Germany. He is director of the Dynamic Vision Research
Laboratory at LSR with currently 7 PhD students. His research interests
include Robot Vision, Visual Servoing, High-Speed Vision, Attention, Bio-
inspired Vision, Humanoid Robots, Human-Robot Interaction, Emotions,
and Sociable Systems – with a strong focus on real-world applications of
(social) robots.
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From explicit to implicit communication: is align-
ment the solution?

Britta Wrede (Bielefeld University)

Abstract In recent years the theory of grounding according to which
participants explicitely negotiate what they have understood and thus build
a common ground has been challenged by the idea of a mechanistic view
of understanding, Alignment. The latter idea is based on the observation
that in task-oriented interactions communication partners tend to align their
surface representations (e.g. lexical or syntactic choice) in an implicit way
which apparently helps to align their underlying situation models and thus
facilitates mutual understanding. In this talk, Britta Wrede will present some
experimental analyses of human-robot interaction where misunderstandings
occur that are often caused by implicit signals from the robot which are
interpreted by the human in a communicative way. It will be discussed if
such implicit mechanisms of understanding can be useful in human-robot
interaction.

About the speaker Britta Wrede is head of the research group Hybrid So-
ciety within the Institute for Cognition and Robotics (CoR-Lab) at Bielefeld
University. She received her Masters degree in Computational Linguistics
and the Ph.D. degree (Dr.-Ing.) in computer science from Bielefeld Uni-
versity in 1999 and 2002, respectivley. From 2002 till 2003 she pursued a
PostDoc program of the DAAD at the speech group of the International
Computer Science Institute (ICSI) in Berkeley, USA. In 2003 she rejoined
the Applied Informatics Group at Bielefeld University and was involved in
several EU and national (DFG, BMBF) projects. Since 2008 she is head-
ing her own research group at the CoR-Lab. Her research interests include
speech recognition, prosodic and acoustic speech analysis for propositional
and affective processing, and dialog modeling as well as human-robot in-
teraction. Her current research focuses on the integration of multi-modal
information as a basis to bootstrap speech and action learning in a tutoring
scenario.
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Abstract— This paper compares different methods for detect-
ing the speaking person when multiple persons are interacting
with a robot. We evaluate the state-of-the-art speaker detection
methods on the iCat robot. These methods use the synchrony
between audio and video to locate the most probable speaker.
We compare them to simple motion-based speaker detection and
present a simple heuristic with low computational requirements,
which performs equally well to the audiovisual methods in a set
of multiperson recordings with a fraction of the computational
cost, thus making real-time interaction possible.

I. INTRODUCTION

Embodied conversational agents, whether physical robots
or screen agents will play an important role in future man-
machine interfacing. Such systems must intelligently inter-
pret the voices they perceive, even in a multi speaker setting.
Furthermore, the embodied agent must react in a ’social’
way to the humans interacting with it. This means that
conventions that play a role in man-to-man conversation must
also be implemented in man-to-robot conversations. The
roles of person detection, gaze control and eye contact have
been extensively studied in man-robot interaction [18], [25]
and the interaction with animated faces [10], [6]. However,
most of this work focuses on the detection of, and interaction
with, humans in a single user situation. In many of the fore-
seen applications such as robots in museum or exhibitions,
robots in care-for-elderly (see figure 1), office robots and
entertainment robots, these systems have to interact with
multiple humans simultaneously.

As a part of this task we address the problem of detecting
the person that is speaking in a situation where multiple
persons interact with the robot. Speaker detection in such
applications is done along two lines. One line is the use of
multiple microphones to detect the location of the speaker
[1],[13]. The second line of research focuses on combining
the audio based localization with detection of the location of
humans by other means such a vision or laser [16].

In this paper we explore how speaker detection methods,
developed for the automatic analysis of multimodal infor-
mation streams such as meeting videos of news broadcasts,
can be applied to a robotics application. These methods use
synchrony between audio and video to find the speaking
person. We compare these methods with a simple, very fast,
ad-hoc method that is based on motion detection only.

This work was partly supported by MultimediaN

Fig. 1. An example of elderly care where multiple persons interact with
a robot.

We will first present related work in the field of speaker
detection and then briefly present the framework that we
developed for speaker diarization in multimodal streams.
Section VI presents the experimental results using the i-
Cat robot while sections VIII and IX discuss the results and
present the conclusions of this work.

II. RELATED WORK

In robotics research, speaker detection is usually consid-
ered as a sound source localisation and tracking problem
in which audio information from two or more microphones
is used. The aim of speaker localisation is mostly the
enhancement of the speech signal [1]. This can be done
by for example adaptive beamforming as described by Beh
et al. [3]. Nakadai et al. [19] present the active direction-
pass filter to separate sounds originating from the specified
direction with a pair of microphones. Not only do they use a
microphone array to localise audio, but they also vision cues
in the form of face detection and stereo vision. The results
show that the vision cues are more accurate than audio cues
for localising the speaker. Note that, in this case, there is
only a single speaker.

In multispeaker situations the data association problem has
to be solved. Klaassen et al. [13] use a joint probabilistic
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data association filter to localise two speakers using audio
from two microphones. The detected formants are voice spe-
cific features, while Generalised Cross-Correlation derives
the position-specific features from two microphone signals.
Results show that although the localisation from audio is
extremely inaccurate, the voice features allow for effective
tracking. In [16], the audio based localisation is combined
with a localisation of the legs of the speakers from a laser
range finder and the detected head. A set of heuristic rules
was designed to identify the speaker.

Most of the work done in audiovisual speaker detection is
not done in robotics but in application fields like video con-
ferencing or improving human computer interaction (HCI),
in which the approaches focus on using the synchrony
between the audio and video stream. Solutions come in
two categories, namely the approaches based on Mutual
Information (MI) [9], [20] and the approaches based on a
matching algorithm [12], [2].

The approaches based on MI extract low-level features
such as pixel intensities from the video and energy from the
audio. Then, they implicitly assume that the MI between the
audio and video features reflects audiovisual synchrony: the
higher the MI, the more synchronised the original streams
are. The derived MI measurements are used to select the
image region that contains the speaker.

The approaches based on a matching algorithm process
the audio and video signals extensively in order to extract
low-dimensional high-level features such as the detection of
sudden changes in the audio stream, or the acceleration of
distinctive visual features. The synchrony between audio and
video is calculated with some ad hoc distance measure, on
the basis of which the speaker is selected.

The MI-based approaches are considered more suitable
for speaker detection, since they are robust to environmental
noises and do not require any elaborate feature extraction.
Furthermore, MI-based approaches have been evaluated in
multiple subject experiments in [8] and extensive monologue
and speaker detection experiments on publicly available data
sets in [11]. The matching algorithm-based approaches has
only been applied in two speaker scenarios and only reported
qualitative results[2], [12].

However, the matching algorithm results are particularly
interesting for robotics: Barzelay et al. uses the detected
feature to perform to source separation [2], and, in the current
context, this can be applied to clear the voice of the speaker
from background noise.

Both the MI-based and the matching algorithm-based
approaches have been applied on high-quality audiovisual
recordings and static cameras. These recordings were pro-
cessed off-line, and all algorithms involve time consuming
computations. The contrast is therefore sharp with typical
robotics applications, where low quality recordings, moving
cameras and real-time requirements are the norm.

In this work we test different speaker detection methods on
the i-Cat robot. We implement the MI-based, and matching
algorithm-based speaker detection as it was introduced in
[9] and [2] respectively. We evaluate the results of these

methods in recordings made through the i-Cat’s camera and
microphones, containing two to four speakers with a moving
or static robot, and we compare these results to a simple
motion detection-based method.

III. MOTION-BASED SPEAKER DETECTION

Speaker detection based on motion assumes that the
speaker will move in order to speak. This assumption is
inspired not only by the facial actuators required for normal
speech generation, but also because speakers naturally tend
to rely on non-verbal communication methods in conjunction
with verbal communication [5], [15], e.g., nodding, conver-
sational hand gestures, facial expressions, etc.

In a very simple yet surprisingly powerful approach, we
rely on the difference between consecutive frames to detect
the speaker. The algorithm consists of the following steps,
which are executed for each consecutive pair of frames: (1)
Face detection: detect the faces in the current frame, using a
standard algorithm such as the Viola-Jones face detector [24];
(2) Difference: subtract the previous frame from the current
frame within the resulting face regions; (2b) Thresholding:
count the number of pixels for which the difference is above
the threshold. For our experiments, we have chosen to set the
value at 1/5 of the dynamical range of the pixel intensities.
Finally (3) Selection: select the face area which contains the
largest total difference as the speaker.

The main advantage of this algorithm is that it can be
implemented very efficiently using the MIMD instructions
present in contemporary processors, and can hence run much
faster than in real time for the image resolution used in
our experiments. The worst-case performance occurs in the
hypothetical case where the complete frame is selected as a
face. For the image resolution used in our experiment (viz.
320 × 240 intensity pixels) the difference operation then
requires 15 µs, while the thresholding requires 12 µs on a
2.5GHz Core2 processor. On the much slower, low power
900MHz celeron processor of a netbook, these operations
are still performed in less than 80 µs and 45µs, respectively.
At these speeds, the speaker detection is essentially for free.

IV. SYNCHRONY BASED SPEAKER DETECTION

Speaker detection based on synchrony assumes that the
person appearing most synchronised to the audio stream is
the speaker. In practice, this is performed in three steps. In
the first step, a face detection algorithm detects the faces in
the frame. In the second step, the face regions are evaluated
using the synchrony detection methods, which return either
a measure of synchrony or the location of the visual feature
appearing most synchronised to the audio stream. Based on
the output of the synchrony detection method, a face is
selected as the speaker. Synchrony can be detected using
a method based on MI or a matching algorithm.

A. MI-based Methods

MI was first proposed for synchrony detection in the work
of Hershey and Movellan [9], where it is assumed that MI
between the audio and video features reflects synchrony
12



(a) Example frame (b) Pixel values and AAE (c) Video and audio onsets

Fig. 2. On the left, an example frame from a video sequence with 6 pixels selected, coming from the nose, the hair, the eye, the shirt and the lips of
the person. On the middle the grey-scale value variation for the selected pixels over 72 frames, as well as the average acoustic energy of the audio stream
over the same period (dashed line). On the right the onsets for the features corresponding for the pixels depicted in 2(a), and the onsets for the audio.

between the audio and video modalities. Intuitively, MI
between variables X and Y measures the information about
X that is provided by Y. It is denoted as MI(X;Y) and it
is given by:

MI(X;Y) =
∫

X

∫

Y

p(x,y) log
(

p (x,y)
p(x) p(y)

)
dxdy (1)

Hershey and Movellan suggest the estimation of the MI
between the pixel values and the average acoustic energy
of the audio stream. In general, MI can not be computed
explicitly in closed form. However, assuming that variables
X and Y are Normally distributed, there exists a closed-form
solution of their MI:

MI(X;Y) =
1
2

log
( |ΣX||ΣY|

|ΣXY|
)

(2)

where ΣX and ΣY are the covariances of the distributions of
the variables X and Y respectively and ΣXY the covariance
of their joint distribution.

In our experiments, the MI was estimated between the
intensity variation of each pixel in the face regions and the
Average Acoustic Energy (AAE) of the corresponding audio
stream. We use seven frames to compute the MI, which
corresponds to 0.7 seconds of data, a choice similar to that
of the original paper [9]. The AAE of an audio window is
estimated as the sum of the absolute values of its samples.
The size of the audio window is equal to the frame size, i.e.
100 ms.

In order to acquire a measure for the face window in
the frame, the average MI of the pixels of that area is
used. In figure 2(a) an example frame of a speaking person
is presented. To compare with the matching algorithm we
manually selected 6 different pixels from the face region
that are also salient features in the matching algorithm. The
gray-scale values of these pixels as well as the AAE of the
corresponding audio stream are plotted in figure 2(b). The
pixel coming from the edge of the lips (point 6) exhibits
the highest variation while the rest of the pixels exhibit little
variation. Notice that the corresponding audio stream also
exhibits variation at the same time that the pixel coming
from the edge of the mouth does. However, a nearby pixel

(point 3) does not exhibit a similar behaviour, because there
is little image texture around that pixel.

Given one or more windows from the face detector, we
compute the average MI between each window’s pixels and
the AAE. The face window which produces the highest MI
measurement is expected to be the most synchronised to the
audio stream and it is selected as the speaker.

B. Matching algorithm -based methods

Previous research also explored synchrony detection on
high-level features, i.e., features for the extraction of which
extensive processing of the input signals is required. In this
line, Barzelay and Schechner in [2], which extends the earlier
work of Kidron et al. [12], seek correspondence between
significant features in the audio and video streams. This is
a choice motivated by biological neural systems research
concluding that cross-modality association is based on salient
features [7]. In synchrony detection, the characteristics of
significant features are saliency, reliable detection and high
correlation in the audio and video modality. In the work of
Barzelay and Schechner, the features regarded significant are
onsets in the video and audio modality. Onsets in the video
and audio modality are points in the stream where each signal
exhibits strong temporal variation [2].

In the video modality, the first step is to detect features
that can be tracked over multiple frames. In the works
mentioned above, Kanade-Lucas-Tomasi (KLT) features are
used. KLT features are located by examining the minimum
eigenvalue of each two by two gradient matrix, and they
are tracked using a Newton-Raphson method of minimising
the difference between two consecutive windows. Multi-
resolution tracking allows for relatively large displacements
between images. The original idea for such tracking chosen
dates back to 1981 and the work of Lucas and Kanade [17],
and the implementation used in our experiments was further
developed in the works of Tomasi and Kanade [22] and Shi
and Tomasi [21]. In figure 2(c) the onsets for the features
corresponding to the points of figure 2(a) are plotted.

In order to decide when an onset occurs, each feature
i is tracked independently. The magnitude of the feature’s
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(a) Example frame (b) Motion Detection

(c) Motion Detection with threshold (d) Mutual Information Image

Fig. 3. On the left, an example frame from a video sequence from the iCat camera. From left to right we visualise motion detection, motion detection
with threshold and Mutual Information. Brighter values in the visualisation correspond to higher values. Note that in this case the person on the left is
speaking, something only detectable in the MI image.

acceleration at frame t is measured, thresholded and tem-
porally pruned. This results in a binary vector vi for each
feature i,, where element vi(t) is one if feature i has high
acceleration at t and zero otherwise. In figure IV the onset
vectors of six selected features are shown — the selected
features correspond to the points whose gray scale value
variation was shown in figure 2(b).

In the audio modality, onset detection is a well-studied
problem, see for example the tutorial of Bello et al. [4].
In our experiments the detected onsets were based on psy-
choacoustic knowledge as described in the work of Klapuri
[14]. In short, the initial audio signal is divided into 21 non
overlapping frequency bands. Onset detection is performed
in each band independently, by locating the peaks in the first
derivative of the logarithm of the amplitude envelope. In the
final step, detected onsets in all banks are gathered, and the
sum of the onset intensities is estimated. In parallel to the
processing of the video modality, the total intensity for each
candidate onset is thresholded to provide the onset locations
in a vector a(t). The detected onsets for the AAE plotted in
figure 2(b) are shown in figure 2(c).

The matching algorithm performs synchrony detection in
the onset space. The matching criterion is defined as:

L(i) = 2
[
aT vi

]− 1vi (3)

where 1 is a column vector with all elements equal to one.
The feature point with the highest value in the matching

criterion is selected as the source of the corresponding audio

stream. Given one or more windows from the face detector,
the feature in these windows with the highest matching
criterion is selected as the speaker.Note that the matching
algorithm depends to a large extend on the quality of the
audiovisual material.

V. TESTS AND IMPLEMENTATION ON A
CONVERSATIONAL ROBOT

The proposed algorithms for on-line speaker detection
have been tested using videos taken from the i-Cat robot.
The iCat robot is a robotic character developed by Philips
Research for HCI research [23]. It is equipped with a
camera mounted on its head that can pan and tilt. The
camera is a simple webcam with a 320x240 resolution. For
the audio recording a single Buddy DesktopMictm mono
microphone was used. The iCat is controlled using the Open
Platform for Personal Robotics (OPPR) version 2.0.5. From
version 2.0 onward, the so called behaviors allow for relative
head movement fast enough for tracking. The behaviors are
implemented by LUA script and give direct access to the
iCats servos. Figure 3 presents an example frame from an
iCat video 3(a), the corresponding motion detection 3(b),
motion detection with threshold 3(c) and the corresponding
Mutual Information Image 3(d).

We also implemented the motion based speaker detection
and the MI based speaker detection on the iCat. The iCat is
14



controlled by two laptops1. The first laptop has two 2.33Ghz
processors and 2GB of RAM, and analyses of the audio-
visual signal processing. The second laptop has one 3Ghz
processor and 512MB of RAM, and it is responsible for
controlling the iCat. The iCat records records video at 10fps.
Face detection using the Viola Jones face detector can be
performed on the used processors with a speed of 25fps,
which is much faster than the video rate of iCat. The motion
detection, which has negligible cost, will not influence the
video processing. Methods based on MI are more time con-
suming. Under the current implementation, and estimating
the MI only for the face regions, we achieve frame rates
of approximately 15fps. Considering that the iCat camera
records records video at 10fps this is practically real time, but
no generalisation holds for high quality recordings. Finally,
the Matching Algorithm approach can not be performed in
real time on these processors, and it is evaluated off-line on
the recorded video.

VI. EXPERIMENTS

Experiments are conducted on videos where multiple per-
sons facing the iCat robot are speaking in turn. Videos were
recorded with 2, 3 and 4 persons. For each number of persons
a video was recorded with both the iCat being static and
dynamic. In dynamic mode the iCats head was moving left
and right as to gaze at persons in front of it. This is done to
simulate the behavior of a social robot looking at the persons
in front of it complicating the speaker detection problem. In
this mode, persons at the sides leave and reenter the field of
view as the camera moves. In static mode all persons remain
in the field of view at all time. The movements consists of
panning the head between the left, center and right position
moving about 25 degrees each step. A step was performed
after a random interval of 2 to 9 seconds. The movement
itself took about 0.5 seconds and causes the frames to be
blurred during that interval. This means that the performance
degrades because the face detection is more difficult.

During recording the persons were seated in a row at a
distance of about 3 meters from the iCat and in turn recited
from a theater play script in which a turn would last between
1 and 40 seconds. The same script was used in all videos.
The shortest video lasts 409 seconds and the longest 496
seconds. All 6 videos were recorded at the same location in
good lighting and noise conditions with a framerate of 10
frames per second and a high audio bitrate.

The ground truth for the experiments was established by
manually going through the videos and annotating who was
speaking at each frame. Hereby the movement of lips was
the most important cue. We had to rely on only audio data
when the speaking person was outside of the field of view.
Some ambiguity is present when a person pauses shortly
while reciting. Non-speaking sounds such as laughing and
coughing are considered speaking when they originate from

1Communication between tracking software and a behavior was done via
sockets as we found the Philips Dynamic Module Library (DML) introduced
additional latencies.
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Fig. 4. Bar diagram of the accuracy for different methods

the speaking persons during or shortly before and after that
person is speaking.

The accuracy of a method corresponds to the number
of frames in which the speaker is correctly detected. We
measured this by measuring the number of false detections
and comparing this to the total number of frames where
someone is speaking:

Accuracy = 1− Error Frames
Total Frames

(4)

note that the frames containing silence are not considered in
the error rate measurement.

VII. RESULTS

Figure 4 plots the accuracies of different methods on
different videos. The performance of the MI method is
slightly better than that of motion detection in most of
the cases. This difference is not statistically significant, it
is however systematic in the videos of the dynamic cam-
era, which are common in the robotics applications. The
matching algorithm method, which produces state-of-the-art
results in high-quality recordings that are processed off-line,
performs significantly worse in these experiments. Note that
for the static camera the face detection was perfect, yielding
a best performance of 100%.

In the experiments performed with a dynamic camera, the
speaker is often not visible, and furthermore face detection
is low during the motion of the camera. Consequently, the
best performance does not correspond to 100% accuracy.
The optimal possible performance, which corresponds to
an accuracy related to the percentage of frames where the
speaker is visible, is 78% for the 2-people, 68% for the 3-
people and 57% for the 4-people situation.

VIII. DISCUSSION

In static camera videos, speaker detection based on MI
performs better than the other methods. When a threshold is
used in motion detection the results improve systematically,
because the noise coming from the recording equipment
is successfully filtered out. This is very insightful: Mutual
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Information is higher for pixels with high variance when
someone is speaking, i.e. the same pixels that will have high
differences and will be therefore kept during thresholding.

In a dynamic camera, speaker detection based on MI
achieves the best overall results. The consequences of thresh-
olding are more systematic in this case. When it is beneficial
to threshold the pixel values, MI and motion detection
with threshold perform better than motion detection without
threshold. When it is not beneficial, they perform worse.
Moreover, Mutual Information performs better because it
applies a complex thresholding that takes into account the
variation in the audio modality, rather than looking at the
video modality alone.

Finally, speaker detection based on the matching algorithm
produces the worse results. This is due to the low quality
of the recording in terms of video analysis, frame rate and
audio quality. The method proposed by Barzelay et al. is not
directly transferable to a conversational robot [2].

IX. CONCLUSIONS

We showed that visual information can successfully be
used for speaker detection by a robot in a multiple speaker
setting. Our results show that there is no need for two
microphones or a microphone array for speaker localization,
as long as the speakers are visible.

Our comparison between the simple method based on
motion and the more involved methods based on audiovisual
synchrony, showed that these latter methods did not perform
significantly better. Using a single microphone improves
marginally over the single video modality approach. Further-
more, the matching algorithm performed substantially worse
than the motion or MI method.

Apparently these results are different from findings in
multimodal speaker diarization. A difference between the
two application areas is that in robotics the quality of the
audiovisual recordings is generally low. For a fair comparison
it is needed to test all three methods on high quality audio-
visual material such as the AMI meeting corpus. However,
for real time operation we have to adhere to fast methods
such as the motion based or MI based methods.

Future work will focus on user studies with the methods.
We are able to run the motion based speaker detection and
the MI based speaker detection on the iCat and acceptance
studies will be carried out. In this way we will be able to
study the actual ’conversational’ skills of the system instead
of just speaker detection.

REFERENCES

[1] F. Asano, M. Goto, K. Itou, and H. Asoh. Real-time sound source
localization and separation system and its application to automatic
speech recognition. In Seventh European Conference on Speech
Communication and Technology, 2001.

[2] Z. Barzelay and YY Schechner. Harmony in motion. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2007. CVPR’07,
pages 1–8, 2007.

[3] Jounghoon Beh, Taekjin Lee, Inho Lee, Hyunsoo Kim, Sungjoo Ahn,
and Hanseok Ko. Combining acoustic echo cancellation and adaptive
beamforming for achieving robust speech interface in mobile robot.
In 2008 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 1693–1698, 2008.

[4] Juan Pablo Bello, Laurent Daudet, Samer Abdallah, Chris Duxbury,
Mike Davis, and Mark B. Sandler. A tutorial on onset detection in
musical signals. IEEE Transactions on speech and signal processing,
13(5):1035–1047, 2005.

[5] Justine Cassell and Kristinn R. Thorisson. The power of a nod and a
glance: Envelope vs. emotional feedback in animated conversational
agents. Applied Artificial Intelligence: An International Journal,
13(4):519, 1999.

[6] A. Colburn, M.F. Cohen, and S. Drucker. The role of eye gaze in
avatar mediated conversational interfaces. Microsoft Research Report,
81:2000, 2000.

[7] Waka Fujisaki and Shin’ya Nishida. Temporal frequency characteris-
tics of synchrony-asynchrony discrimination of audio-visual signals.
Experimental Brain Research, 166(3-4):455–464, October 2005.

[8] Iyengar Giridharan, Nock Harriet J., and Neti Chalapathy. Audio-
visual synchrony for detection of monologues in video archives. In
International Conference on Multimedia and Expo, pages 329–332.
IEEE Computer Society, 2003.

[9] J. Hershey and J. Movellan. Audio-vision: Using audio-visual syn-
chrony to locate sounds. Advances in Neural Information Processing
Systems, 12:813–819, 2000.

[10] D. Heylen, I. van Es, B. van Dijk, and A. Nijholt. Experimenting with
the gaze of a conversational agent. Natural, Intelligent and Effective
Interaction in Multimodal Dialogue Systems, page 93, 2002.

[11] Nock Harriet J., Iyengar Giridharan, and Neti Chalapathy. Multimodal
processing by finding common cause. Communications of the ACM,
47(1):51–56, 2004.

[12] E. Kidron, YY Schechner, and M. Elad. Pixels that sound. In
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2005. CVPR 2005, volume 1, 2005.

[13] G. Klaassen, W. Zajdel, and B.J.A. Kröse. Speech-based localization
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Using Hesitation Gestures for Safe and Ethical Human-Robot

Interaction

AJung Moon, Boyd Panton, H.F.M. Van der Loos and E.A. Croft

Abstract—Safe interaction with non-expert users is increas-
ingly important in the development of robotic assistants. Ethical
“codes” can serve as a guide as to how this interaction should
take place with lay users in non-structured environments. Such
codes suggest that robots should behave in a way that is intuitive
to users. Previous research has demonstrated that the implicit
channel is useful for intuitive human-robot interaction. Our
work described in this position paper investigates how a robot
should behave when it is uncertain of its human partner’s
intentions. In this context, uncertainties arising in human-robot
shared-tasks should be made transparent to a human user. We

posit that hesitant hand motion used by people and animals is
a natural modality for a robot to communicate uncertainty. To
test our hypothesis we propose to characterize and implement
human hesitation gestures onto a robot, and investigate its
ability to communicate uncertainty.

I. INTRODUCTION

EVERY year, increasingly sophisticated robots intended

for personal and service applications are showcased.

A society in which people routinely interact with robots in

home and office environments, while sharing working space,

tasks and objects, is becoming a realizable and anticipated

future. As a result, increases in autonomy, ability, and

complexity of robots are inevitable and gradually requiring

more autonomous decision-making capability with minimal

human intervention. This raises concerns regarding an ex-

pected “code” of conduct that guides robot behavior, namely,

robot ethics. In this position paper we uphold the argument

of others [1] that ethical robot behavior, as it pertains

to interactions with humans, must be considered in order

to successfully integrate domestic robots into our society.

Unlike traditional ethical questions, which are constantly

under debate, robot behavior ethics within a given context

can be framed in terms of human safety and social norm

adherence [2].

Robots for service and domestic applications pose inter-

esting challenges to issues of safety and ethics [3]. These

robots frequently encounter new, uncertain and conflicting

situations where any resulting indecision or inaction can

bring negative consequences to the user. In such cases, it is

important for a robot to clearly communicate its intentions

to the user. Take, for example, the annoyance a user may

experience with a wheelchair robot when attempting to hang
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a picture on a wall. Detection of an imminent collision with

the wall coupled with the user’s command to move forward

may introduce uncertainty to the wheelchair’s controller.

Subsequently, the user may be unable to achieve the desired

goal due to inaction or indecision by the robot, and the

inability to read the robot’s internal state only adds to the

frustration experienced by the user. With the possibility that

unresolved uncertainties can result in dire consequences, Van

der Loos [4] advocates that increase in complexity of robots

should be followed by increase in transparency of robot

intention in order for human-robot interaction (HRI) to be

safe and ethical.

We posit that the appropriate action of a robot, when

faced with uncertainty in an interaction, is to unambiguously

demonstrate its internal state. Thus, we hypothesize that such

transparency of the robot’s inner state can improve user

perception of robots. We also postulate that such interaction

can initiate a human-friendly human-robot mediation process

where the two agents can collaboratively solve the conflict

and clarify the uncertainty.

Inspired by the body of work on implicit interaction [5]-

[9], which collectively validates the use of nonverbal gesture

as an effective communication and interaction mechanism in

HRI, we are interested in studying whether a robot’s state

of uncertainty can be communicated to users via nonverbal

gestures. In our study we take the exemplar case of two

people noticing that they are reaching for the same object

simultaneously. Our pilot studies have shown occurrences

of sudden halts or jerky motions of participants’ hands

before one person yields or persists to resolve the uncertainty

regarding who gets the object. Ultimately, with the proposed

approach outlined in this paper, the outcome of our study

will increase the understanding of how nonverbal gestures

such as hesitations can be effective and appropriate in HRI.

II. BACKGROUND

A. Hesitation and Uncertainty

Existing work in psychology indicates that cognitive or

internal state of uncertainties and conflicts in animals and

humans are often expressed in terms of nonverbal gestures.

Such nonverbal behaviors include shrugs, frowns, palm-

up gestures and self-touch gestures [10]. Some causes of

hesitant nonverbal behaviors are confusion [8], cognitive

conflicts [11], difficulty in cognitive processing [12] and

reluctance to act [13]. These sources of hesitation man-

ifest themselves in multiple forms of resultant gestures.

The previously described jerky motion between two people

reaching for the same object arises from cognitive conflict
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and reluctance to act. We label this kinesthetic gesture a

‘hesitation gesture’, and it is shown in Figure 1. We are

currently investigating hesitation as a potential nonverbal

robot gesture that can convey the robot’s state of uncertainty

to its human collaborator in a human-robot shared-task

(HRST) environment.

(a)

(b)

Fig. 1. Hesitation gesture in a human-human shared-task

B. Nonverbal Gestures in HRI

Nonverbal gestures as interaction mechanisms in HRI have

been studied in various contexts, types of robots, and modal-

ities [5], [14]-[16]. Among the most studied are gestures

used to regulate the flow of conversation between robots and

humans [17], [18], and human-robot proxemics [19], [20].

Several studies have investigated the connection between

non-verbal gestures and a robot’s internal states [15], [21],

[22]. However, these studies focused on the expression of

emotional state. Nonverbal gestures used to communicate or

express the cognitive state of a robot to a person remains

relatively unexplored.

As previously mentioned, there are numerous hesitation

gestures involved in expressing uncertainty. Breazeal’s work

on nonverbal robot gestures focused on expression of uncer-

tainties arising from confusing human commands [8]. This

study involved a teamwork scenario in which the human took

a supervisory rather than collaborative role, instructing the

robot to take specific actions. The robot expressed its internal

state of uncertainty using shrugs. Her work provides strong

evidence that use of nonverbal gestures rather than voice to

render a robot’s internal state transparent can be effective

and helpful in improving task performance with lay users.

However, uncertainty due to cognitive conflict rather than

confusion about a command occurs when a robot is interact-

ing with a human as a near-equal partner. In our exemplar

case, uncertainty arises regarding who should yield, and how

the cognitive conflict between the desire to get the object

and the need to meet social norms in being polite to another

person is resolved. The gesture manifested from this type of

uncertainty is the focus of our study, which we believe will

have an impact in creating a human-friendly HRST for lay

users when the robot is a near-equal partner in a collaborative

task.

III. METHODOLOGY

The first phase of a three-phase study is currently un-

derway to investigate the hesitation gesture as a means of

handling uncertainties in a HRST. In the first phase hesitation

gestures in a human-human shared-task (HHST) are iden-

tified and characterized quantitatively in terms of velocity,

acceleration, and jerk. These characteristic motions are then

implemented onto a robot arm such that the robot will exhibit

hesitation gestures when encountering uncertainty or conflict

in a HRST. In the second phase of this study, we will

empirically determine whether the generated robot motions

are also perceived by humans as representing hesitation. The

third phase of this study will test the robot gestures’ capacity

to communicate its uncertainty to a user in a HRST.

A. Phase 1

Under the assumption that a human’s hesitation gesture

can be characterized in terms of the hand’s linear velocity,

acceleration and jerk, the first phase aims to quantitatively

characterize hesitation gestures frequently observed in HHST

environments. In this study, human subjects (n1
∼
=5) are asked

to engage in a shared-task with another person, with inertial

sensors placed at various locations on one of the participants’

dominant arm to collect linear and angular acceleration data.

The task involves two people sorting a deck of cards together

into appropriate bins according to various sorting rules. A

pilot study showed this task to frequently cause hesitation

gestures in human subjects. Video recordings obtained from

the shared task will be broken down into discrete time-

frame labels (A, B, C, etc.) and presented in an online

survey in which another set of participants (n2
∼
=30) will be

asked to identify the instances where the sensor-equipped

hands hesitated. Z-tests will be used to determine whether

a given timeframe of a video contains a hesitation motion

with statistical significance (p<0.05). The set of timeframes

identified as containing a hesitation gesture will be the same

timeframes of inertial sensor data used to characterize human

hesitation gesture in terms of linear velocity, acceleration,

and jerk. These characteristics will be used to generate robot

hesitation gestures for a CRS robot arm.

B. Phase 2

We hypothesize that a robot motion having the same

characteristics as that of human hesitation gestures will be

perceived as hesitation. The second phase of this study will
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statistically test this hypothesis. A video of the robot engaged

in a shared task —analogous to the sorting task used in Phase

1—with a human will be broken down into discrete time-

frame labels and subsequently shown in an online survey.

The video will contain multiple instances of robot hesitation

gestures. The participants of the survey (n3
∼
=30) will be

asked to identify frames in which the robot hesitated. The

same statistical analysis carried out for Phase 1 will be used

to determine which timeframes of the video were identified

as containing a hesitation gesture. Results of this statistical

analysis will be compared with the programmed occurrence

of robot hesitation gestures. Any false positives and false

negatives found will be tested for statistical significance.

C. Phase 3

Once a visually analogous hesitation motion of a robot is

determined empirically in previous phases, we hypothesize

that this motion can serve the same communicative function

as that of a human’s in conveying the robot’s state of

uncertainty. In Phase 3 of this study, participants (n4
∼
=20)

will be asked to engage in a HRST. Half of the participants

will be engaged in a shared task with a robot that does not use

hesitation gestures when encountering uncertainty or conflict,

and the other half of the participants will be engaged in the

same shared task with a robot that uses hesitation gestures.

A post experiment survey will be conducted in order to study

human perception of a robot in a HRST environment when

the robot uses hesitation gestures. Likert-scale measurements

will be collected to determine whether the HRST with robot

hesitation gestures are perceived as friendlier than that of the

HRST without hesitation motions.

In the future, we hope to implement a gesture recogni-

tion system such that the robot will not only be capable

of exhibiting hesitation gestures, but also of recognizing

a human’s hesitation gesture. This bidirectional hesitation

system can be used to mediate the decision of whether the

robot or the human should yield the shared space or object.

We hypothesize that this bidirectional communication via

hesitation gestures will foster safer and friendlier interaction

in HRST environments. The robot’s actions will be seen as

appropriate according to social norms and considerate of the

user’s internal state.

We believe that this work will aid in developing effective

and appropriate methods of conveying a robot’s state of

uncertainty to a lay user during a collaborative human-robot

task.
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Abstract—A robot interacting with humans and attempting 
to generate effective social interaction and intervention 
behaviors benefits greatly from being able to understand and 
predict the underlying intentions of actions in context. Related 
work on collaborative discourse suggests that intention can be 
described in terms of either goal-directed task completion or 
communicative behavior directed to other collaboration 
partners. This paper describes early work on a generalizable 
framework for estimating the attentional space of a human 
interaction partner, providing context for grounding action in 
terms of intentions, and using this model to perform 
contextualized robotic intervention and ambiguity resolution. 
We describe an experiment aimed at applying and validating 
the framework in a simple collaborative human-robot 
interaction scenario involving deictic gestures. 

I. INTRODUCTION 
NE of the key challenges for the development of 
autonomous robots capable of effective interaction with 

humans is accurately detecting and reacting to human 
activity in a variety of interaction contexts. Our work is 
motivated by, but not limited to, socially assistive robotics 
(SAR) [1], an area of human-robot interaction focusing on 
helping people through social interaction. Preliminary work 
in USC’s Interaction Lab has shown that SAR has the 
potential to benefit a diverse variety of target populations, 
including stroke patients, children with autism, and the 
elderly [2, 3]. 

Most existing systems for modeling human activity in 
interactive settings are closely tied to a specific control 
system, robotic platform, and task model. Adapting these 
systems to new task environments and robot embodiments is 
inherently difficult and often requires re-implementing the 
system from the bottom up. By imbuing robots with some 
form of social intelligence, we aim to unify common 
interaction mechanisms across a wide variety of populations 
and platforms. Toward these ends, we are investigating a 
general framework for monitoring the attentional space of a 
user, contextualizing specific user actions according to 
intent, and using this as a basis for formulating practical 
robot actions for intervening and communicating robot 
intention. 
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II. USER MONITORING 
Human activity in social contexts is extremely complex. 

Determining the intended effect of human action as observed 
from sensor data is difficult; it requires filtering and 
segmenting the input serial data streams, assigning one of a 
number of possible explanations for any given action, and 
contextualizing the intended action in terms of the 
interaction. 

Previous work on collaborative discourse theory and 
discourse coherence in a linguistic setting has emphasized 
constrained inference over salient information [4,5]. 
Drawing from this work, we model the interaction of the 
user and the robot as a simplified collaboration [4], in which 
the robot maintains a model of the user that is then used in 
both human action recognition and robot action planning.  
Breazeal et al. (2004) have used a related approach to 
structure collaborative learning, in which a robot learns a 
task model from guided human examples [6]. While our 
approach uses similar theoretical underpinnings, it is aimed 
at developing a general social communication framework 
that can be applied in many task environments, learned or 
otherwise. 

A. Attention 
User attention is modeled by constructing a probability 

distribution over salient world objects. Our current approach 
takes into account the user’s position and head direction, 
extracted from camera and laser rangefinder sensors, as well 
as the relative saliency of world objects, to assign 
probability mass. For example, objects in the person’s field 
of view are assigned relatively higher weights. The saliency 
map used can be specified a priori if the task domain is 
relatively static and well specified in advance, or it can be 
computed in real time using scene analysis [7]. 

B. Intention 
Predicting human action and mapping it to underlying 

intention is a difficult problem since human activity is 
inherently complex. Neuroscience evidence suggests that 
humans accomplish this feat using mirror neurons to 
recognize actions while recruiting their own intentions for 
the recognized action and ascribing them to others [8]. Using 
a model of the current task and the estimated attentional 
space, we constrain the space of possible future actions and 
provide context to explain why a user might perform a 
particular action at a given time. 
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Our current focus is on deictic gestures—such as pointing, 
head orientation, and eye gaze—since they are well 
understood as a means of establishing joint attention, and are 
easily identified and physically grounded in terms of world 
objects. To compute possible target objects of a pointing 
gesture with respect to the user, we can utilize a Bayesian 
approach to combine an error model of human pointing and 
the attentional distribution as a prior. We are investigating 
methods for recognizing attention and action stemming from 
more complex intentions and distinguishing that are task-
oriented actions, such as reaching, from communication-
oriented actions, such as pointing and other social gestures. 

III. USER INTERVENTION 
By monitoring user intentions and anticipating their effect 

on the success of an individual or collaborative task, a robot 
may determine that it is appropriate for it to intervene. Such 
an intervention may be deemed necessary to improve task 
performance or to prevent undesirable actions from being 
taken by the user. Directing user attention and intention must 
be done as clearly as possible to maintain a successful 
interaction between the robot and user. It is therefore crucial 
that potential ambiguity be minimized or resolved. 

A. Intervention 
In this preliminary work, the robot plans and executes an 

intervention strategy over possible proxemic and deictic 
actions. Proxemics here refers to the manipulation of robot 
position and orientation with respect to the human [9]. The 
robot must situate itself in the appropriate “social space” to 
maximize the effectiveness of subsequent communicative 
actions. Once the robot has positioned itself, it utilizes 
deictic gestures—such as pointing, head orientation, and eye 
gaze—to focus the attention of the user to a particular object 
or region, thus attempting to establish joint attention [10]. 
Intent is then communicated by exploiting the theory of 
perceived affordances, which suggests how an object may be 
interacted with [11]. This reliance on affordances constrains 
the interaction to simple tasks; however, in future work, we 
will investigate more complex forms of representation and 
communication of intent [12], and extend our probabilistic 
framework to consider McNeill's four categories of 
discourse gestures (iconic, metaphoric, deictic, and beat) 
[13]. 

B. Ambiguity Resolution 
In the ideal case, the appropriate application of social 

distance and deictic gestures would result in a clear user 
interpretation of the task objective and, thus, a successful 
intervention; however, in the real world, such 
communication is often noisy and potentially ambiguous. To 
resolve such ambiguity, the robot engages in perspective-
taking, considering the viewpoint of the human observer, as 
well as previous user activity. We utilize a naïve Bayes 
approach to estimate the clarity of a human’s interpretation 
of potential robot actions over the attentional space. We then 
select a robot intervention strategy by applying gradient 
decent to find a global minimum with regard to ambiguity. 

IV. IMPLEMENTATION 
We are in the process of collecting human interpretation 

data based on interactions with a physical robot. From this, 
we can produce a probabilistic model of error in human 
perception of robot deictic gestures. This model will then be 
validated in a collaborative task to demonstrate the efficacy 
of robot intervention and ambiguity resolution strategies and 
attention and intention monitoring with a human user. 

A. Robot Platform 
The system is being implemented on the Bandit III robot 

platform available in the Interaction Lab, shown in Fig. 1. 
Bandit is an upper-torso humanoid robot with 17 degrees of 
freedom: 7 in each arm (shoulder forward and backward, 
shoulder in and out, elbow tilt, elbow twist, wrist twist, 
grabber open and close; left and right arms), 2 in the head 
(pan and tilt), 2 in the lips (upper and lower), and 1 in the 
eyebrows. These degrees of freedom allow the robot to be 
highly expressive through individual and combined motions 
of the head, face, and arms. An extensive gesture and facial 
expression library has been developed to enhance the 
interactive experience. The robot is closer to human-scale 
than many other humanoid platforms; mounted atop a 
Pioneer P2 base, the entire robot stands one meter tall, 
making it an adequate choice for robot interaction. An 
overhead camera and on-board laser rangefinder facilitate 
human and robot pose tracking. 

B. Experiment Design 
We are investigating a concrete application of this 

framework within the realm of deictic gesture. The 
experimental design is a two-phased approach aimed at 
producing an empirical error model of both human gesture 
perception accuracy and robot gestural accuracy, and then 
applying these models using our attention, intention, and 
ambiguity resolution framework to allow a robot to engage 
in a simple collaborative task with a human partner. 

1) Building perceptual models: We have begun 
preliminary experiments aimed at building an error model 
for human perception based on different robot pointing 
modalities, including head, arm, and combined head and arm 
gestures. Each gesture’s accuracy is evaluated in 

 
Fig. 1. The Bandit upper-torso humanoid robot platform 
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experiments with human participants, in which the angle, 
distance and point location are systematically varied. Target 
points are assumed to be on an approximately 2.5 x 3.5 m (8 
x 12 ft) transparent acrylic screen. The participant is seated 
on one side of this screen, opposite the robot, as illustrated in 
Fig. 2. As the robot gestures to each point, the participant 
uses a laser pointer to indicate his perception of the target 
location on the screen. An experimenter then marks these 
points with a fiducial marker, and they are recorded using an 
upward-pointing laser rangefinder, yielding measurements 
accurate to within centimeters. 

In the first iteration of this experiment all users were 
given a random set of points on a regular grid and we aimed 
to use within subject comparison to determine how error 
responds to changes in the state variables. After conducting 
an analysis of variance from data collected from 11 
participants we determined that errors were generally on the 
order of 30-60cm (1-2 feet), but were unable to draw deeper 
conclusions due to high variance in the sampled 
distributions. To address these issues we have redesigned the 
experiment to perform a between subjects comparison, with 
more participants. This will make use of an interspersed 
“calibration point,” within the other randomly distributed 
points presented to each user, to ensure that within-user 
accuracy is consistent. From this output, we construct an 
error model parameterized by human-robot-point locations 
and angles. During this experiment, we are also monitoring 
the head orientation of the participant in order to empirically 
determine if head direction can be used to model attention. 

2) Validating attention, intention and intervention: Using 
this perceptual error model, we will conduct a further 
experiment to validate the estimated attentions and 
intentions within the context of a collaborative game-playing 
scenario. The game involves a robot indicating to the user a 
series of targets within a cluttered office environment; the 
user must then visit these targets in a specified order; this 
task is similar to, but less constrained than, that of our 
previous work [14], and was chosen specifically for 
comparison and analysis. The error model of human 
perception will be used to determine the position and 
orientation from which the robot should point to a target to 
ensure that the gesture is specified in a minimally (or 
maximally, for testing purposes) ambiguous manner. We are 
also investigating the use of a similar intention model to 

determine, at any point in time, the most likely intended 
target of a user, allowing the robot to intervene by 
redirecting the user, if necessary, to correct potential errors. 
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Generating Multi-Modal Robot Behavior Based on a Virtual Agent
Framework

Maha Salem, Stefan Kopp, Ipke Wachsmuth, Frank Joublin

Abstract— One of the crucial steps in the attempt to build
sociable, communicative humanoid robots is to endow them
with expressive non-verbal behaviors along with speech. One
such behavior is gesture, frequently used by human speakers
to emphasize, supplement, or even complement what they
express in speech. The generation of speech-accompanying
robot gesture together with an evaluation of the effects of this
multi-modal behavior is still largely unexplored. We present an
approach to systematically address this issue by enabling the
humanoid Honda robot to flexibly produce synthetic speech
and expressive gesture from conceptual representations at run-
time, while not being limited to a predefined repertoire of
motor actions in this. Since this research challenge has already
been tackled in various ways within the domain of virtual
conversational agents, we build upon experiences gained with
speech-gesture production models for virtual humans.

I. INTRODUCTION
Humanoid robot companions that are intended to en-

gage in natural and fluent human-robot interaction in rich
environmental settings must be able to produce speech-
accompanying, non-verbal behaviors. Forming an integral
part of human communication, hand and arm gestures are
primary candidates for extending the communicative capa-
bilities of social robots. This, however, poses a number of
research challenges, especially with regard to a motor control
for arbitrary, expressive hand-arm movement and its coor-
dination with other interaction modalities such as speech.
The generation of co-verbal gestures for artificial humanoid
bodies demands a high degree of control and flexibility
concerning shape and time properties of the gesture, while
ensuring a natural appearance of the movement. Ideally, if
such non-verbal behaviors are to be realized, they have to be
derived from conceptual, to-be-communicated information.

Since the challenge of multi-modal behavior realization
has already been explored in various ways within the domain
of virtual conversational agents, our approach builds upon
the experiences gained from the development of a speech and
gesture production model used for the virtual human Max [2].
Being one of the most sophisticated multi-modal schedulers,
the Articulated Communicator Engine (ACE) has replaced
the use of lexicons of canned behaviors with an on-the-
spot production of flexibly planned behavior representations.
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Employing it as an underlying action generation architecture
for the Honda humanoid robot, ACE draws upon a tight, bi-
directional coupling of the robots perceptuo-motor system
with multi-modal scheduling via both efferent control signals
and afferent feedback.

II. SPEECH-GESTURE PRODUCTION MODEL FOR A
HUMANOID ROBOT

Within the ACE framework, there are two different ways
to describe gesture representations using the XML-based
Multi-modal Utterance Representation Markup Language
(MURML [3]). Firstly, verbal utterances in combination
with co-verbal gestures can be specified with feature-based
descriptions. In such MURML utterances, the outer form
features of a gesture (i.e., the posture designated for the
gesture stroke) are explicitly described. Their affiliation to
dedicated linguistic elements is determined by matching time
identifiers. Fig. 1 illustrates an example of a feature-based
MURML specification that can be used as input for speech-
gesture production. Secondly, gestures can be specified as
keyframe animations whereby each keyframe specifies a ‘key
posture’, a part of the overall gesture movement pattern
describing the current state of each joint. Speed information
for the interpolation between every two key postures and
the corresponding affiliation to parts of speech is obtained
from assigned time identifiers. Keyframe animations in ACE
can be either defined manually or, alternatively, derived from
motion capturing data from a human demonstrator, allowing
the animation of virtual agents in real-time.

A. On-line Scheduling of Multi-Modal Utterances

In a given multi-modal utterance, each intonation phrase
together with a co-expressive gesture phrase represents a

Fig. 1. Example of a feature-based MURML specification for multi-modal
utterances.
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single idea unit which is referred to as a chunk of speech-
gesture production [2]. Incremental production of successive
coherent chunks is realized by processing each chunk on a
separate ‘blackboard’ running through a sequence of states
(Fig. 2). Speech-gesture synchronization within a chunk is

Fig. 2. Blackboards running through a sequence of processing states for
incremental production of multi-modal chunks [2].

achieved on-line by the ACE engine by adapting the gesture
to structure and timing of speech. To do this, the ACE
scheduler retrieves timing information about the synthetic
speech at the millisecond level and defines the start and
the end of the gesture stroke accordingly. These temporal
constraints are automatically propagated down to each single
gesture component. A more detailed overview of the internal
planning process within ACE can be found in [2].

B. Speech Synthesis
Spoken utterances are generated using the open source

text-to-speech synthesis system MARY (Modular Architec-
ture for Research on speech sYnthesis) [4]. Its main features
are a modular design and an XML-based internal data
representation. Several languages are supported including
English and German. For further details on MARY see [4].

C. Robot Control Architecture
In order to enable the humanoid robot to flexibly produce

speech and co-verbal gesture at run-time, a robot control
architecture is required which combines conceptual repre-
sentation and planning provided by ACE with motor control
primitives for speech and arm movements for the robot. This
endeavor poses a number of interesting challenges including
a failure to adequately account for certain physical proper-
ties – motor states, maximum velocity, strict self collision
avoidance, variation in DOFs, etc. This is in light of ACE
being originally designed for a virtual rather than physical
platform. Hence, when transferring the ACE framework to
the physical robot these challenged must be met.

Since gesture generation with ACE is based on external
form features as annotated in the MURML specification,
our robot control architecture suggests that arm movement
trajectories are described directly in task space. The in-
formation obtained at the task space level including wrist
orientation and designated hand shape is forwarded to the
robot motion control module which instantiates the actual
robot movement. Inverse kinematics (IK) of the arm is then
solved on the velocity level using the whole body motion

(WBM) controller framework [1]. The WBM framework
allows to control all DOFs of the Honda humanoid robot
based on given end-effector targets, providing a flexible
method to control upper body movement by only specifying
relevant task dimensions selectively in real-time, yet, while
generating smooth and natural movement. Redundancies are
optimized with regard to joint limit avoidance and self-
collision avoidance. For more details on WBM control for
the Honda humanoid research robot see [1].

After IK has been solved for the internal body model
provided for WBM control, the joint space description of
the designated trajectory is applied to the physical robot. A
bi-directional interface using both efferent actuator control
signals and afferent sensory feedback monitors possible
deviations of actual robot motor states from the kinematic
body model provided by ACE. It is realized by a feedback
loop that updates the internal model of the robot in the WBM
controller as well as the kinematic body model coupled to
ACE at a sample rate r. Fig. 3 illustrates our robot control
architecture embedding the ACE framework.

Fig. 3. Robot control architecture for the generation of gesture behavior.

III. RESULTS AND DISCUSSION

Results were produced in a feed-forward manner whereby
commands indicating the wrist position and hand orientation
of the ACE body model were constantly transmitted to the
robot at a sample rate of 20 frames per second. IK was
solved using the provided whole body motion controller.
24



Fig. 4. Example of a multi-modal utterance realized in the current framework, allowing comparison of the physical robot, the internal robot body model
and the ACE kinematic body model (left to right, top-down, sampled every four frames (0.16sec)).

Speech output was synthesized using the MARY text-to-
speech system based on the multi-modal utterance scheduler
in ACE. Fig. 4 illustrates the multi-modal output generated
in our current framework using the MURML utterance
presented in Fig. 1. The robot is shown next to a panel which
displays the current state of the internal robot body model
and ACE kinematic body model, respectively, at each time
step. In addition, speech output is transcribed to illustrate the
words spanning different segments of the gesture movement
sequence, indicating temporal synchrony achieved between
the two modalities. It is revealed that the physical robot is
able to perform a generated gesture fairly accurately but
with some inertial delay compared to the internal ACE
model. Despite the general limitation in motion speed, these
findings substantiate the feasibility of the proposed approach.
Arbitrary MURML-based speech-gesture representations can
be realized using the current framework. Synchronization of
speech and gesture, however, does not appear to be optimal
yet. Although Fig. 4 suggests acceptable temporal synchrony
between both output modalities, tests using long sentences
in speech revealed that movement generation tends to lag
behind spoken language output. Consequently, we need to
explore ways to handle the difference in time required by
the robot’s physically constrained body in comparison to the
kinematic body model in ACE. Our idea is to tackle this chal-
lenge by extending the cross-modal adaptation mechanisms
provided by ACE with a more flexible multi-modal utterance
scheduler which will allow for a finer mutual adaptation
between robot gesture and speech.

IV. CONCLUSION AND FUTURE WORK

We presented a robot control architecture which enables
the Honda humanoid research robot to generate gestures

and synchronized speech at run-time. Meeting strict tem-
poral synchrony constraints will present a main challenge
to our framework in the future. Evidently, the generation
of finely synchronized multi-modal utterances proves to be
more demanding when realized on a robot with a physically
constrained body than for an animated virtual agent. To
tackle this new dimension of requirements, however, the
cross-modal adaptation mechanisms applied in ACE have to
be extended to allow for a finer mutual adaptation between
robot gesture and speech.

Our results help to shed light on conceptual motorics in
robotic agents. Essentially, they substantiate the feasibility
of our approach while pointing out the direction for our
future research. Once our robot control architecture has been
extended to account for a finer synchronization of gesture
and speech, it will be assessed in human-robot interaction
studies, providing new insights into human perception and
understanding of gestural machine behaviors and how these
can be used to design more natural communication in robots.
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Raquel Ros, E. Akin Sisbot, Séverin Lemaignan, Amit Pandey and Rachid Alami
CNRS - LAAS, 7 avenue du Colonel Roche, F-31077 Toulouse, France
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Abstract— Explicitly showing the robot’s knowledge about
the states of the world and the agents’ capabilities in such states
is essential in human robot interaction. This way, the human
partner can better understand the robot’s intentions and beliefs
in order to provide missing information that may eventually
improve the interaction. We present our current approach for
modeling the robot’s knowledge from a symbolic point of view
based on an ontology. This knowledge is fed by two sources:
direct interaction with the human, and geometric reasoning.
We present an interactive task scenario where we exploit the
robot’s knowledge to interact with the human while showing
its internal geometric reasoning when possible.

I. INTRODUCTION

“Why is this robot doing this now?!” This is the typical
question that at some point a user asks herself when interact-
ing with a robot. And most probably, not only naive users,
but also robot designers when working with their robots.
Understanding and knowing the robot’s internal knowledge
and reasoning states is fundamental to improve any type of
interaction. Feedback is specially crucial when a problem
occurs, or when the robot makes an unexpected decision. Ide-
ally, this feedback should be given through a natural dialogue
where the robot explains its decisions and actions. In order
to have robots capable of reasoning on their own internal
states to naturally communicate with their human partners,
several supportive mechanisms should be considered.

In this work we introduce several mechanisms and their
connection applied to a face-to-face interactive task. In this
task the human asks the robot about its knowledge on
objects in the environment and about its reasoning on the
agents’ abilities in the world. Thus, we present an approach
for modeling the robot’s knowledge based on an ontology
(Sec. II) and a geometric reasoner that transforms geometric
world information into symbolic descriptions (Sec. III). A
decisional reasoner interprets the human query (entered
through keyboard) in order to identify the referred object
(Sec. IV) and then queries the robot’s knowledge about it
to answer the human. Human queries are limited to a fix
vocabulary and a specific format (interpretation of natural
language is out of the scope of this work). The reply is at
least given by spoken language (and written on the screen),
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and if possible, by visual feedback from the robot’s internal
3D environment model.

II. KNOWLEDGE REPRESENTATION

We believe that the knowledge model of a robot should
include a comprehensive model of the roles, relationships and
context of objects in the environment, as well as beliefs and
intentions of other agents. Moreover, this understanding must
rely on a formal encoding that requires high expressivity
while remaining well suited for machine processing in order
to be used by the robot.

We thus propose the use of ORO (the “OpenRobot
Ontology” server), a central knowledge repository that
stores, manages, processes and exposes knowledge for
the robot from a symbolic point of view. It inter-
nally relies on RDF-derivate OWL Description Logics
to formally represent statements on the world as triples
<subject> <predicate> <object>. It uses two
open-source libraries: Jena for storage and manipulation of
statements and Pellet first-order logic reasoner to classify, ap-
ply rules and compute inferences on the knowledge base [1].

ORO defines an initial upper ontology for human-aware
robotics called OpenRobots Commonsense Ontology. This
initial ontology contains a set of concepts, relationships
between concepts and rules and defines the “cultural back-
ground” of the robot, i.e. the a priori known concepts.
Currently, this commonsense knowledge is focused on the
requirement of human-robot interactions in everyday envi-
ronments, but contains as well generic concepts like thing,
object, location and relationships between those. The
common-sense ontology design relies heavily on the standard
OPENCYC upper ontology for the concepts naming, thus
ensuring a good compatibility with other knowledge bases.
Figure 1 illustrates a simple example with some concepts.

Besides simply storing and reasoning about knowledge,
ORO offers several useful features for human-robot inter-
action. One advantage offered by the ORO architecture is
that independent cognitive models for each agent can be
maintained. When the robot interacts with a new agent, a
separate RDF triple storage is created to store the robot’s
knowledge about the agent’s perception. For instance, in the
case of perspective taking, we compute the visibility and
spatial information about the world from each agent point
of view, and store it in their own cognitive models. Having
26



Thing

Plant Animal

plant1 animal1 animal2 animal3

green banana grass whiteyellow

hasColor eats eats hasColor hasColor

Fig. 1. Ontology example. Names with first capital letter correspond to
classes; bold names, to properties; and italic names, to instances.

(a) (b)

(c) (d)

Fig. 2. Visual perspective taking for each agent in the scenario.

separate cognitive models allows us to store and reason on
different models of the world.

III. GEOMETRICAL REASONING

This section describes different reasoning mechanisms to
provide an abstraction layer to the decisional layer on top of
the geometrical description of the environment.

To model the environment we use the software platform
Move3D [2]. The kinematic structures of the human and the
robot, as well as their positions and objects’ positions are
integrated into this platform to maintain a coherent model of
the real environment. It also allows us to view the visual
perspective of the agents in the world by modeling their
visual sensors (eyes for humans, cameras for robots).

We divide the geometrical reasoning mechanisms in two
groups: perspective taking descriptors and symbolic location
descriptors. The first set corresponds to information obtained
when reasoning from an agent point of view, while the
second one corresponds to global descriptors independent
of the agents in the environment. All this information is
stored in the ontology, which in turn may infer additional
information as we explain next. Moreover, the information
concerning specific agents, i.e. perspective taking descriptors,
is stored in each agent’s cognitive kernel in ORO allowing
the decisional level to reason about each agents’ beliefs about
the world.

A. Perspective Taking Descriptors

1) Visibility: Visual perspective taking refers to the ability
for visually perceiving the environment from other’s point
of view. This ability allows us to identify objects or regions
that are visible/hidden for/from others, which is essential for
referring to things when interacting with others. For example,
if the robot refers to an object, it should try to ensure that
the human is able to see it in order to facilitate interaction.
On the contrary, if the human refers to an object, based on
the context, she could refer to a visible one (e.g. “take this
ball”) or to an invisible one (e.g. “find the ball”).

We are currently able to compute “visibility” from an
agent point of view for objects in the environment [3] and
zones or regions around the agent [4]. An object or a region
is visible for an agent if, while performing a minimum effort
(i.e. only turning the head or standing, if possible), the object
or region are within the agent’s field of view and there are
no occlusions in between.

2) Spatial: Spatial perspective taking refers to the quali-
tative spatial location of objects (or agents) with respect to
a frame of reference (eg. the keys on my left). Based on this
frame, the spatial description of an object varies. Humans
mix perspectives frequently during interaction [5], i.e. they
do not maintain a consistent perspective through a conversa-
tion. Therefore, the robot has to be able to understand and
compute descriptions of objects based on different frames of
reference to follow the interaction with its human partner.

In this work, we use two types of the frames of refer-
ence: egocentric (from the robot perspective) and addressee-
centered (from the human perspective). Thus, given an object
and the referent, we can compute the spatial locations by
dividing the space around the referent into n regions based
on arbitrary angle values relative to the referent orientation.
For example, for n = 4 we would have the space divided
into front, left, right and back. Further subdivisions can be
computed if we would like to represent distinctions among
distances, e.g. near and far.

3) Reachability: An object or a region is reachable if there
is a collision free posture for the agent where the end-effector
is at the center of the object or region with a given tolerance.
A valid posture includes moving the upper-body or standing,
if possible.

This ability allows the robot to estimate the agent’s ca-
pacity to reach an object, which is fundamental for task
planning. For example, if the human asks the robot to give
her an object, the robot must compute a transfer point where
the human will be able to get the object. Figure 3 illustrates
the reasoning results for reaching regions and an object.

B. Symbolic Location Descriptors

Symbolic location descriptors allow the robot to compute
spatial relations between objects in the environment. The
system infers symbolic relations between objects from its
3D geometric world representation. In this work we propose
the use of three basic symbolic relations between each pair
of objects. However, their inverse relations can be automati-
cally computed at the symbolic level, i.e. through inference
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(a) (b)

Fig. 3. (a) Reachable points from the human perspective when bending:
yellow, blue and green points correspond to left hand, right hand and both
hands respectively. (b) Human and robot posture for reaching the cup.

based on OpenRobots Commonsense Ontology, enlarging the
symbolic descriptions knowledge easily.

• IsIn: indicates if an object (or an agent) is inside
of another object. Its inverse relation corresponds to
Contains.

• IsOn: indicates if an object (or an agent) is placed on
top of another object. Its inverse relation is IsUnder1.

• IsNextTo: tests if an object (or an agent) is next to
another object. It has no inverse relation, but symmetric.

IV. FINDING THE REFERENT

Given partial (or complete) description of an object (list
of attribute-value pairs), the robot is able to identify the
referred object the following way. First it obtains all objects
that fulfill the initial description. Based on the result it either
succeeds (obtains one single object), fails (no object with that
description could be found) or obtains several objects. In this
latter case, a new descriptor is added to the initial description
and the process starts over again. Failure occurs when the
description does not match any object from the robot’s
knowledge. This could be because the robot’s knowledge is
incomplete (the human refers to an unknown descriptor or
descriptor value) or due to inconsistent information (human’s
and robot’s beliefs are different).

In order to automatically add a new descriptor (attribute-
value pair), the reasoning engine must find the best discrim-
inant for the current list of objects being evaluated. If found,
the robot asks the human for its value. Discriminants are
descriptors that allow a maximum discrimination among a set
of individuals (eg. color, type, location, etc.). We distinguish
two types of discriminants. Complete discriminants are those
attributes (or properties) whose values can uniquely identify
those individuals. However, they are not always available.
First, because two or more individuals may share the same
value, and second, because not all individuals may share
the same properties. Thus, partial discriminants are those
properties that “better” split the set of individuals in different
subsets based on some criteria. In the task we propose in this
work we only make use of complete discriminants, although
partial discriminants may be useful for other tasks, as the
Spy Game introduced in [6].

1We consider that there is a physical contact between both objects,
although the English definition of under does not necessarily imply it.

The algorithm to find discriminants has the following steps
(to better follow it we show an example corresponding to
the ontology shown in Fig. 1). We search a discriminant
for the following individuals: plant1, animal2 and animal3.
First we obtain the direct properties for all the individuals,
i.e. we do not consider all the hierarchy of properties. In
the example, we only take the most direct class for plant1,
i.e. the class plant (and not the class thing). Next, we
compute the number of individuals per property and the
number of different values for that property. If there is more
than one different value for the property (in other words, if
not all individuals have the same value), then we consider
that property as a potential discriminant. Finally, we sort the
list of potential properties following two criteria: number of
individual occurrences (i.e. the most individuals are covered
by that property, the better) and values occurrences (i.e.
the more distinct values, the better). The best discriminant
corresponds to the first element of the sorted list. If several
properties are equal, return all of them. In our example, the
algorithm would return the property hasColor.

V. APPLICATION

We have designed an interactive task that exploits the
robot’s knowledge while using the different mechanisms
presented in this work. The scenario for the task consists
in a face-to-face interaction around a table with objects. The
human may ask the robot the following questions:

1) Where is the object description?: The robot indicates
the location of the object based on spatial perspective taking
and symbolic location descriptors.

2) Is the object description visible?: The robot com-
putes the visibility of the object from both agents’ perspec-
tives (robot and human) and indicates whether the object is
visible or not. If it is, it also indicates if it is directly visible
(within the agent’s current FOV) or if the object is visible
by turning the head (out of FOV). The view of the agents is
displayed in the screen at the same time (Figures 2c and 2d).

3) Is the object description reachable?: The robot com-
putes the object’s reachability from both agents’ perspectives
(robot and human) and indicates whether the object is
reachable or not. The screen displays the movement of the
agent for reaching the computed posture (Figure 3b).

From the human query, the decisional reasoner extracts
the description of the referred object. The description can be
either the id (eg. YELLOW BOTTLE) or a set of attributes
about the object (eg. yellow bottle). In the first case, if the id
corresponds to a known object, the robot can directly answer
the question. On the contrary, if the object is unknown, then
a learning phase takes place, where the human describes
recursively the type of the object until a known type is
reached. Figure 4 shows an example of the learning process
where the robot asks for the type of object until recognizing
a known type. In the second case, where attributes describing
the object are given, the reasoning engine has to figure out
the id of the object. However, the information provided by
the human may be incomplete or ambiguous. Therefore,
the robot must ask the human additional information until
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human (Shows an object to the robot).
robot (Identifies an unknown object.)

What’s the name of the object?
human mist

robot What kind of object is mist?
human laptop

robot What is a laptop?
human computer

robot What is a computer?
human object

robot Now I know what mist is.
Fig. 4. Learning process example where the robot learns that mist is a
computer.

human Where is the bottle?
robot (Available object ids: BLUE BOTTLE, YEL-

LOW BOTTLE and ORANGE BOTTLE.)
(Complete discriminants: hasColor)
Which color is the object?

human Yellow.
robot The YELLOW BOTTLE is located:

- from my perspective: FRONT
- from your perspective: LEFT
- on HRP2TABLE.

human Is the orange bottle visible?
robot (Available object ids: ORANGE BOTTLE)

The ORANGE BOTTLE is visible for me (out
of FOV) and not visible for you.

human Is the white box on my left reachable?
robot (Available object ids: SPACENAVBOX)

The SPACENAVBOX is reachable for me and
reachable for you.

Fig. 5. Interactive task example.

identifying the object [7], [6]. Figure 5 illustrates different
interaction scripts where the robot finds out the referred
object and answers the human query.

VI. RELATED WORK

Few work has been developed within the robotics field
regarding perspective taking reasoning, which is fundamental
for enhancing social interaction ([8],[9],[10]). Trafton et al.
use both visual and spatial perspective taking for finding
out the referent indicated by a human partner [10]. In [11],
they also design a robot that is able to play hide and
seek a child does. The strategy they model in the robot
is to find those places that are not visible for the human
partner. Berlin et al. [12] present their work focused on using
visual perspective taking skills for learning from a human
teacher. A teacher classifies objects in a given way. The robot
then learns the classification function based on the teacher’s
visual perception of the world. Johnson and Demiris [13]
apply visual perspective taking for action recognition. In
their work, a robot who has complete visual access of
the environment observes another robot with partial access

performing a task. The first robot can recognize the task
performed by the second robot because it is able to reason
about its partial perception. The most significant work for
computing reachability has been introduced by Zacharias et
al. [14], but only from the robot point of view and not the
human, as we do in our work.

The novelty of our work is that we combine (1) different
geometric reasoning mechanisms from both, human and
robot perspective, which allows us to reason about the agent’s
capacities with (2) a symbolic knowledge representation,
which allows us to reason about the agents’ knowledge about
the state of the world.

VII. CONCLUSIONS

We have presented a set of mechanisms to ease interaction
between humans and robots while communicating the robot’s
internal knowledge about the world. More precisely, we have
introduced a model for knowledge representation along with
a geometric reasoning engine that provides symbolic descrip-
tions of geometric relations, as well as agent’s abilities. The
overall system is completely platform independent and has
been integrated in two different platforms.
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A basic cognitive system for interactive continuous learning
of visual concepts

Danijel Skočaj, Miroslav Janı́ček, Matej Kristan, Geert-Jan M. Kruijff,
Aleš Leonardis, Pierre Lison, Alen Vrečko, and Michael Zillich

Abstract— Interactive continuous learning is an important
characteristic of a cognitive agent that is supposed to operate
and evolve in an everchanging environment. In this paper we
present representations and mechanisms that are necessary for
continuous learning of visual concepts in dialogue with a tutor.
We present an approach for modelling beliefs stemming from
multiple modalities and we show how these beliefs are created
by processing visual and linguistic information and how they
are used for learning. We also present a system that exploits
these representations and mechanisms, and demonstrate these
principles in the case of learning about object colours and basic
shapes in dialogue with the tutor.

I. INTRODUCTION

An important characteristic of a cognitive system is the
ability to continuously acquire new knowledge. Communi-
cation with a human tutor should significantly facilitate such
incremental learning processes. In this paper we focus on
representations and mechanisms that enable such interactive
learning and present a system that was designed to acquire
visual concepts through interaction with a human.

Such systems typically have several sources of informa-
tion, vision and language being the most prominent ones.
Based on the processed modal information corresponding
beliefs are created that represent the robot’s interpretation of
the perceived environment. These beliefs rely on the partic-
ular representations of the perceived information in multiple
modalities. These representations along with the cross-modal
learning enable the robot to, based on interaction with
the environment and people, extend its current knowledge
by learning about the relationships between symbols and
features that arise from the interpretation of different modal-
ities. One modality may exploit information from another
to update its current representations, or several modalities
may be used together to form representations of a certain
concept. We focus here on the former type of interaction
between modalities and present the representations that are
used for continuous learning of basic visual concepts in a
dialogue with a human.

We demonstrate this approach on the robot George, which
is engaged in a dialogue with the human tutor. Fig. 1 depicts
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a typical setup and the scene observed by the robot1. The
main goal is to teach the robot about object properties
(colours and two basic shapes). George has built-in abilities
for visual processing and communication with a human, as
well as learning abilities, however it does not have any model
of object properties given in advance and therefore has to
continuously build them. The tutor can teach the robot about
object properties (e.g., ’H: This is a red thing.’), or the robot
can try to learn autonomously or ask the tutor for help when
necessary (e.g., ’G: Is the elongated thing red?’). Our aim
is that the learning process is efficient in terms of learning
progress, is not overly taxing with respect to tutor supervision
and is performed in a natural, user friendly way.

In this paper we present the methodologies that enable
such learning. First we present an approach for modelling
beliefs stemming from multiple modalities in §II. We then
show how these beliefs are used in dialogue processing in
§III, followed by the description of representations and the
learning process in vision in §IV. In §V we describe the
system we have developed and in §VI we present an example
of the scenario and the processing flow. We conclude the
paper with a discussion and some concluding remarks.

(a) Scenario setup. (b) Observed scene.

Fig. 1. Continuous interactive learning of visual properties.

II. MODELLING BELIEFS

High-level cognitive capabilities like dialogue operate on
high level (i.e. abstract) representations that collect informa-
tion from multiple modalities. Here we present an approach
that addresses (1) how these high-level representations can
be reliably generated from low-level sensory data, and (2)
how information arising from different modalities can be
efficiently fused into unified multi-modal structures.

The approach is based on a Bayesian framework, using
insights from multi-modal information fusion [1], [2]. We

1The robot can be seen in action in the video accessible at
http://cogx.eu/results/george.
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Sensory modalities Communication 
system

Proxy p2 Proxy p3 Proxy p4

Belief b2

Proxy p1

Belief b3Belief b1

Linguistic 
reference

Asserted content

Union u2 Union u3Union u1

(a) Construction of beliefs.

Proxy p2 Proxy p3Proxy p1

Belief b2 Belief b3Belief b1

Reference r1

?

P=0.92
P=0.02

“the yellow object” 

P=0.01

(b) Reference resolution for the expression “the yellow object”.

Fig. 2. Multi-modal information binding: belief construction (left) and application in a reference resolution task (right).

have implemented it as a specific subsystem called the binder
[3]. The binder is linked to all other subsystems. It serves as a
central hub for gathering information about entities currently
perceived in the environment. The information on the binder
is inherently probabilistic, so we can deal with varying levels
of noise and uncertainty.

Based on the available information, the binder seeks to
fuse the perceptual inputs arising from the various subsys-
tems, by checking whether their respective features correlate
with each other. The probability of these correlations are
encoded in a Bayesian network. This Bayesian network can,
for example, express a high compatibility between the haptic
feature “shape: cylindrical” and the visual feature “object:
mug” (since most mugs are cylindrical), but a very low
compatibility between “shape: cylindrical” and “object: ball”.

We call the resulting (amodal) information structure a
belief. The task of the binder is to decide which perceptual
inputs belong to the same real-world entity, and should
therefore be unified into a belief. The outcome of this process
is a joint probability distribution over possible beliefs. These
beliefs integrate the information included in the perceptual
inputs in a compact representation. They can therefore be
directly used by the deliberative processes for planning,
reasoning and learning.

In addition to the beliefs, there are two other central data
structures manipulated by the binder, proxies and unions
(see also Fig. 2(a)). A proxy is a uni-modal representation
of a given entity in the environment. Proxies are inserted
onto the binder by the various subarchitectures. They are
defined as a multivariate probabilistic distribution over a set
of features (discrete or continuous). A union is multi-modal
representation of an entity, constructed by merging one or
more proxies. Like proxies, unions are represented as a
multivariate probabilistic distribution over possible features.
They are essentially a transitional layer between proxies and
beliefs.

A belief is an amodal representation of an entity in the
environment. They are typically an abstraction over unions,
expressed in an amodal format. A belief encodes additional
information related to the specific situation and perspective
in which the belief was formed. This includes its spatio-

temporal frame (when and where and how an observation
was made), its epistemic status (for which agents the belief
holds, or is attributed), and a saliency value (a real-valued
measure of the prominency of the entity [4]). Beliefs are
indexed via a unique identifier, which allows us to keep
track of the whole development history of a particular belief.
Beliefs can also be connected with each other using relational
structures of arbitrary complexity.

To create beliefs, the binder decides for each pair of prox-
ies arising from distinct subsystems, whether they should be
bound into a single union, or fork into two separate unions.
The decision algorithm uses a technique from probabilistic
data fusion, called the Independent Likelihood Pool (ILP)
[5]. Using the ILP, we compute the likelihood of every
possible binding of proxies, and use this estimate as a basis
for constructing the beliefs. The multivariate probability
distribution contained in the belief is a linear function of
the feature distributions included in the proxies and the
correlations between these. A Bayesian network encodes
all possible feature correlations as conditional dependencies.
The (normalised) product of these correlations over the com-
plete feature set provides a useful estimate of the “internal
consistency” of the constructed belief.

The beliefs, being high-level symbolic representations
available for the whole cognitive architecture, provide a
unified model of the environment which can be efficiently
used when interacting with the human user.

III. SITUATED DIALOGUE

Situated dialogue provides one means for a robot to gain
more information about the environment. A robot can discuss
what it sees, and understands, with a human. Or it can ask
about what it is unclear about, or would like to know more
about.

That makes this kind of dialogue part of a larger activity.
The human and the robot are working together. They interact
to instruct, and to learn more. For that, they need to build
up a common ground in understanding each other and the
world.

Here we briefly discuss an approach that models dialogue
as a collaborative activity. It models what is being said, and
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why. It enables the robot to understand why it was told
something, and what it needs to do with the information.

The approach is based on previous work by Stone &
Thomason [6] (S&T). In their model, an agent uses abductive
inference to construct an explanation of the possible intention
behind a communicative act. This intention directs how an
agent’s belief models need to be updated, and what needs to
be paid attention to next. This kind of inference is performed
both for comprehension, and for production.

The problem with S&T is that they rely on a symmetry
in communication: “What I say is how you understand it.”
This is untenable in human-robot interaction, particularly in a
setting where a robot is learning about the world. Therefore,
we have adapted and extended their approach to deal with
(a) the asymmetry between what has been observed fact, and
what has been asserted, and (b) clarification mechanisms, to
overcome breakdowns in understanding.

Algorithm 1 Continual collaborative acting

Σπ = ∅
loop {
Perception

e ← SENSE()
〈c′, i, Π〉 ← UNDERSTAND(r, Z(c)⊕ Σπ, e)
c ← VERIFIABLE-UPDATE(c′, i, Π)

Determination and Deliberation
c′ ← ACT-TACITLY(p, c)
m ← SELECT(p, c′)
〈i, Π〉 ← GENERATE(r, c′, m, Z(c)⊕ Σπ)

Action
ACT-PUBLICLY(a(i))
c ← VERIFIABLE-UPDATE(c′, i, Π)

}

Algorithm 1 presents the core of the resulting model, based
on S&T. In perception, the agent senses an event e. It tries
to understand it in terms of an intention i that results in
an update of the belief model from context c to c′, given
the communicative resources r, possible results Z(c) to use
them in context c, and whatever issues are still open to be
resolved Σπ . Given the inferred intention i and potential
update c′ the agent then tries to carry out this update, as a
verifiable update. To model this, we use a logical framework
of multi-agent beliefs (cf. §II) that includes a notion of
assertion [7]. An assertion is a proposition that still needs
to be verified. This verification can take various forms. In
George, we check whether a new piece of information can be
used to consistently update a belief model (consistency), or
to extend a modal model (learning) or weaken it (unlearning).
Any assertion still in need of verification ends up on Σπ .

In deliberation, a tacit action based on some private
information p is performed by the agent. In order to make the
effects c′ public, a public action m is selected and performed
as a realisation a(i) of the generated intention to act i.

An important aspect of linking dialogue with grounded
beliefs is reference resolution: how to connect linguistic
expressions such as “this box” or “the ball on the floor” to
the corresponding beliefs about entities in the environment.

The binder performs reference resolution using the same
core mechanisms as used for binding. A Bayesian network
specifies the correlations between the linguistic constraints of
the referring expressions and the belief features (particularly,
the entity saliency and associated categorical knowledge).
Resolution yields a probability distribution over alternative
referents (see Fig. 2(b) for an example). Abductive inference
then determines which resolution hypothesis to use, in the
context of establishing the best explanation. This is folded
together with any new information an utterance might pro-
vide, to yield an update of the robot’s current beliefs.

For example, consider an utterance like “This is yellow.”
First, the expression “this” must be resolved to a particular,
proximal entity in the environment. Resolution is performed
on the basis of the saliency measures. Second, the utterance
also provides new information about the entity, namely that
it is yellow. The robot’s beliefs get updated with this asserted
information. Dialogue processing does this by selecting the
belief about the referred-to entity, then incorporating the new
information. Indirectly, this acts as a trigger for learning.

In George, the dynamics of assertions on Σπ provide
the main drive for how learning and dialogue interact. The
vision subarchitecture can pose clarification requests to the
dialogue system. These requests are interpreted as tacit
actions (Algorithm 1), pushing an assertion onto Σπ . This
assertion may be a polar or an open statement. Then similarly
to resolving any breakdown in understanding the user, the
robot can decide to generate a clarification subdialogue. This
dialogue continues until the (original) assertion has been
verified, i.e. a proper answer has been found [8].

IV. LEARNING VISUAL CONCEPTS

In the two previous sections we discussed how the modal
information gathered from individual modalities is fused into
unified multi-modal structures and how they are used in
situated dialogue. In this section we will describe how the
modal information is captured and modelled in the visual
subarchitecture; how these models are initiated and how
they are being continuously updated and how they can be
queried to provide the abstracted information for higher-level
cognitive processing.

To efficiently store and generalise the observed infor-
mation, the visual concepts are represented as generative
models. These generative models take the form of probability
density functions (pdf) over the feature space, and are
constructed in an online fashion from new observations.
The continuous learning proceeds by extracting the visual
data in the form of highdimensional features (e.g., multiple
1D features relating to shape, texture, colour and intensity
of the observed object) and the online Kernel Density
Estimator (oKDE) [9] is used to estimate the pdf in this
high-dimensional feature space. The oKDE estimates the
probability density functions by a mixture of Gaussians,
is able to adapt using only a single data-point at a time,
automatically adjusts its complexity and does not assume
specific requirements on the target distribution. A particularly
important feature of the oKDE is that it allows adaptation
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from the positive examples (learning) as well as negative
examples (unlearning) [10].

However, concepts such as colour red reside only within
a lower dimensional subspace spanned only by features that
relate to colour (and not texture or shape). Therefore, during
the learning, this subspace has to be identified to provide
the best performance. This is achieved by determining the
optimal subspace for a set of mutually exclusive concepts
(e.g., all colours, or all shapes). We assume that this cor-
responds to the subspace which minimises the overlap of
the corresponding distributions. The overlap between the
distributions is measured using the multivariate Hellinger
distance [9]. An example of the learnt models is shown in
Fig. 3.

Fig. 3. Example of the models estimated using the oKDE and the
feature selection algorithm. Note that some concepts are modelled by 3D
distributions (e.g., ”blue” which is denoted by ”Bl”), while others (e.g.,
”compact” which is denoted by ”Co”) is modelled by 1D distributions.

Therefore, during online operation, a multivariate genera-
tive model is continually maintained for each of the visual
concepts and for mutually exclusive sets of concepts the fea-
ture subspace is continually being determined. This feature
subspace is then used to construct a Bayesian classifier for
a set of mutually exclusive concepts, which can be used for
recognition of individual object properties.

However, since the system is operating in an online man-
ner, the closed-world assumption cannot be assumed; at every
step the system should also take into account the probability
that it has encountered a concept that has not been observed
before. Therefore, when constructing the Bayesian classifier,
an ”unknown model” has also to be considered besides the
learned models. It should account for a poor classification
when none of the learnt models supports the current obser-
vation strongly enough. We assume that the probability of
this event is uniformly distributed over the feature space. The
a priori probability of the ”unknown model” is assumed to
be non-stationary and decreases with increasing numbers of
observations; the more training samples the system observes,
the smaller is the probability that it will encounter something
novel.

Having built such a knowledge model and Bayesian clas-
sifier, the recognition is done by inspecting a posteriori
probability (AP) of individual concepts and unknown model;
in fact the AP distribution over the individual concepts is
packed in a vision proxy, which is sent to the binder and

serves as a basis for forming a belief about the observed
object as described in §II (see also Fig. 2(b)).

Furthermore, such a knowledge model is also appropriate
for detecting incompleteness in knowledge. It can be discov-
ered through inspection of the AP distribution. In particular,
we can distinguish two general cases. (1) In the first case the
observation can be best explained by the unknown model,
which indicates a gap in the knowledge; the observation
should most probably be modeled with a model that has not
yet been learned. A clarification request is issued that results
in an open question (e.g., ’Which colour is this?’). (2) In
the second case the AP of the model that best explains the
observation is low, which indicates that the classification is
very uncertain and that the current model cannot provide a
reliable result. A clarification request is issued that results
in a polar question (e.g., ’Is this red?’). In both cases,
after the tutor provides the answer, the system gets the
additional information, which allows it to improve the model
by learning or unlearning.

V. SYSTEM ARCHITECTURE

We have implemented the representations and mechanisms
described in the previous sections in the robot George. In
this section we describe the system architecture and the
individual components that are involved.

For implementation of the robot we employ a specific
architecture schema, which we call CAS (CoSy Architec-
ture Schema) [11]. The schema is essentially a distributed
working memory model, where representations are linked
within and across the working memories, and are updated
asynchronously and in parallel. The system is therefore
composed of several subarchitectures implementing different
functionalities and communicating through their working
memories. The George system is composed of three such
subarchitectures: the Binder SA, the Communications SA and
the Visual SA, as depicted in Fig. 4. Here, the components
of the visual subsystem could be further divided into three
distinct layers: the quantitative layer, the qualitative layer and
the mediative layer.

In the previous subsections we assumed that the modal
information is adequately captured and processed. Here we
briefly describe how the relevant visual information is de-
tected, extracted and converted in the form that is suitable for
processing in the higher level processes. This is the task of
the quantitative layer in the Visual SA. The quantitative layer
processes the visual scene as a whole and implements one or
more bottom-up visual attention mechanisms. A bottom-up
attention mechanism tries to identify regions in the scene that
might be interesting for further visual processing. George
currently has one such mechanism, which uses the stereo
3D point cloud provided by stereo reconstruction component
to extract the dominant planes and the things sticking out
from those planes. Those sticking-out parts form spherical
3D spaces of interest (SOIs). The SOI Analyzer component
validates the SOIs and, if deemed interesting (considering
SOI persistence, stability, size, etc.), upgrades them to proto-
objects adding information that is needed for the qualitative
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Fig. 4. Architecture of the George system.

processing, e. g. the object segmentation mask (the proto-
object is segmented by the Graph cut algorithm [12] using
the 3D and colour information provided by the stereo recon-
struction).

The qualitative layer implements the main functionalities
for recognition and learning of visual concepts that were
described in §IV. This layer processes each interesting scene
part (object) individually, focusing on qualitative properties.
After the extraction of the visual attributes (in the Visual
Learner-recognizer), like color and shape, the Object An-
alyzer upgrades the proto-objects to visual objects. Visual
objects encapsulate all the information available within the
Visual SA and are the final modal representations of the
perceived entities in the scene. Also, the learning of visual
attributes is performed in this layer.

The main purpose of the mediative layer is to exchange
information about the perceived entities with other modal-
ities. This is not done directly, but via the specialised a-
modal subarchitecture Binder SA, that actually creates and
maintains beliefs as described in §II. The Visual Mediator
component adapts and forwards the modal information about
objects to the binder (each visual object is represented by a
dedicated proxy in the binder). The component also monitors
beliefs for possible learning opportunities, which result in
modal learning actions. Another important functionality of
the mediator is to formulate and forward clarification motiva-
tions in the case of missing or ambiguous modal information.
Currently, these motivations are directly intercepted by the
Communication SA.

Given a clarification request, the Communication SA for-
mulates a dialogue goal given the information the system
needs to know and how that can be related to the current
dialogue and belief-context. Dialogue planning turns this
goal into a meaning representation that expresses the request

in context. This is then subsequently synthesised, typically as
a question about a certain object property. When it comes to
understanding, the Communication SA analyses an incoming
audio signal and creates a set of possible word sequences for
it. This is represented as a word lattice, with probabilities
indicating the likelihood that a certain word was heard, in
a particular sequence. The word lattice is then subsequently
parsed, and from the space of possible linguistic meaning
representations for the utterance, the contextually most ap-
propriate one is chosen [13]. Finally, dialogue interpretation
takes the selected linguistic meaning. This meaning is then
interpreted against a belief model, to understand the intention
behind the utterance. We model this is an operation on how
the system’s belief model is intended to be updated with the
information provided. In §VI below we provide more detail,
given an example.

VI. EXAMPLE SCENARIO

A. Scenario setup

The robot operates in a table-top scenario, which involves
a robot and a human tutor (see Fig. 1(a)). The robot is asked
to recognise and describe the objects in the scene (in terms
of their properties like colour and shape). The scene contains
a single object or several objects, with limited occlusion. The
human positions new objects on the table and removes the
objects from the table while being involved in a dialogue
with the robot. In the beginning the robot does not have
any representation of object properties, therefore it fails to
recognise the objects and has to learn. To begin with, the
tutor guides the learning process and teaches the robot about
the objects. After a while, the robot takes the initiative and
tries to detect its own ignorance and to learn autonomously,
or asks the tutor for assistance when necessary. The tutor can
supervise the learning process and correct the robot when
necessary; the robot is able to correct erroneously learned
representations. The robot establishes transparency and ver-
balises its knowledge and knowledge gaps. In a dialogue
with the tutor, the robot keeps extending and improving
the knowledge. The tutor can also ask questions about the
scene, and the robot is able to answer (and keeps giving
better and better answers). At the end, the representations
are rich enough for the robot to accomplish the task, that is,
to correctly describe the initial scene.

B. Example script

Two main types of learning are present in the George
scenario, which differ on where the motivation for a learning
update comes from. In tutor driven learning the learning
process is initiated by the human teacher, while in tutor
assisted learning, the learning step is triggered by the robot.

Tutor driven learning is suitable during the initial stages,
when the robot has to be given information, which is used
to reliably initiate (and extend) visual concepts. Consider a
scene with a single object present:

H: Do you know what this is?
G: No.
H: This is a red object.
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G: Let me see. OK.
Since in the beginning, George doesn’t have any repre-
sentation of visual concepts, he can’t answer the question.
After he gets the information, he can first initiate and later
sequentially update the corresponding information.

After a number of such learning steps, the acquired models
become more reliable and can be used to reference the
objects. Therefore, there can be several objects in the scene,
as in Fig. 1, and George can talk about them:

H: What colour is the elongated object?
G: It is yellow.

When the models are reliable enough, George can take
the initiative and try to learn without being told to. In this
curiosity-driven learning George can pose a question to the
tutor, when he is able to detect the object in the scene,
but he is not certain about his recognition. As described
in §IV in such tutor-assisted learning there are two general
cases of detection of uncertainty and knowledge gaps. If the
robot cannot associate the detected object with any of the
previously learned models, it considers this as a gap in its
knowledge and asks the tutor to provide information:

R: Which colour is this object?
H: It is yellow.
R. OK.

The robot is now able to initialise the model for yellow
and, after the robot observes a few additional yellow objects,
which make the model of yellow reliable enough, it will be
able to recognise the yellow colour.

In the second case, the robot is able to associate the object
with a particular model, however the recognition is not very
reliable. Therefore, the robot asks the tutor for clarification:

R: Is this red?
H: No. This is orange.
R. OK.

After the robot receives the answer from the tutor, it corrects
(unlearns) the representation of the concept of red and
updates the representation of orange and makes these two
representations more reliable.

In such mixed initiative dialogue, George continuously
improves the representations and learns reliable models of
basic visual concepts. After a while George can success-
fully recognise the acquired concepts and provide reliable
answers:

H: Do you know what this is?
G: It is a blue object.
H: What shape is the green object?
G: It is elongated.

C. Processing flow

Here we describe the processing flow for one illustrative
example. We describe in more detail what happens after the
human places several objects in the scene (see Fig. 1) and
refers to the only elongated object in the scene (the yellow
tea box) by asserting ”H: The elongated object is yellow.”.

In the Visual SA the tea box is represented by a SOI on
the quantitative layer, a proto-object on the qualitative layer
and a visual object on the mediative layer. Let us assume

that the Visual Learner-recognizer has recognised the object
as being of elongated shape, but has completely failed to
recognise the colour. In the binder this results in a one-proxy
union with the binding features giving the highest probability
to the elongated shape, while the colour is considered to
be unknown. This union is referenced by the single robot’s
private belief in the belief model (Fig. 5, step 1).

The tutor’s utterance ’The elongated object is yellow’ is
processed by the Communication SA. Speech recognition
turns the audio signal into a set of possible sequences of
words, represented as a word lattice. The Communication
SA parses this word lattice incrementally, constructing a
representation of the utterance’s most likely linguistic mean-
ing in context [13]. We represent this meaning as a logical
form, an ontologically richly sorted relational structure.
Given this structure, the Communication SA establishes
which meaningful parts might be referring to objects in the
visual context. For each such part, the binder then computes
possible matches with unions present in the binding memory,
using phantom proxies (Fig. 5, step 2). These matches form a
set of reference hypotheses. The actual reference resolution
then takes place when we perform dialogue interpretation.
In this process, we use weighted abductive inference to
establish the intention behind the utterance – why something
was said, and how the provided information is to be used.
The proof with the lowest cost is chosen as the most likely
intention. Reference resolution is done in this larger context
of establishing the “best explanation.” Abduction opts for
that referential hypothesis which leads to the overall best
proof. The resulting proof provides us with an intention,
and a belief attributed to the tutor is constructed from the
meaning of the utterance. In our example, this attributed
belief restricts the shape to elongated, asserts the colour to
be yellow and references the union that includes the visual
proxy representing the yellow tea box.

In the Visual SA, the mediator intercepts the event of
adding the attributed belief. The colour assertion and the
absence of the colour restriction in the robot’s belief is
deemed as a learning opportunity (the mediator knows that
both beliefs reference the same binding union, hence the
same object). The mediator translates the asserted colour
information to an equivalent modal colour label and compiles
a learning task. The learner-recognizer uses the label and
the lower level visual features of the tea box to update its
yellow colour model. After the learning task is complete,
the mediator verifies the attributed belief, which changes its
epistemic status to shared (Fig. 5, step 3). The learning action
re-triggers the recognition. If the updated yellow colour
model is good enough, the colour information in the binder
and belief model is updated (Fig. 5, step 4).

A similar process also takes place in tutor assisted learning
when the robot initiates the learning process, based on an
unreliable recognition, e.g., by asking ”R: Is this red?”. In
this case, the need for assistance reflects in a robot’s private
belief that contains the assertion about the red colour and
references the union representing the object. Based on this
belief, the Communication SA synthesises the above ques-
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Fig. 5. Example of processing flow in the binder. The green colour
represents restrictive information, while the violet colour denotes assertive
information. Only the beliefs and other data structures pertaining to the
yellow tea box are shown.

tion. When the robot receives a positive answer, it updates
the representation of red, using a very similar mechanism as
in the case of tutor driven learning.

VII. CONCLUSION

In this paper we presented representations and mechanisms
that are necessary for continuous learning of visual concepts
in dialogue with a tutor. An approach for modelling beliefs
stemming from multiple modalities was presented and it was
shown how these beliefs are created by processing visual and
linguistic information and how they are used for learning. We
also presented a system that exploits these representations
and mechanisms and demonstrated these principles in the
case of learning about object colours and basic shapes in a
dialogue with the tutor.

We have made several contributions at the level of indi-
vidual components (modelling beliefs, dialogue processing,
incremental learning), as well as at the system level (by
integrating the individual components in a coherent multi-
modal distributed asynchronous system). Such an integrated
robotic implementation enables system-wide research with
all its benefits (information provided by other components),
as well its problems and challenges (that do not occur
in simulated or isolated environments). We are, therefore,
now able to directly investigate the relations between the
individual components and analyse the performance of the

robot at the sub-system and system level. This will allow us
to set new requirements for individual components and to
adapt the components, which will result in a more advanced
and robust system.

The main goal was to set up a framework that would allow
the system to process, to fuse, and to use the information
from different modalities in a consistent and scalable way
on different levels of abstraction involving different kinds
of representations. This framework has been implemented in
the robot George, which is still limited in several respects;
it operates in a constrained environment, the set of visual
concepts that are being learned is relatively small, and
the mixed initiative dialogue is not yet matured. We have
been addressing these issues and the robot will gradually
become more and more competent. Furthermore, we also
plan to integrate other functionalities that have been under
development, like motivation and manipulation.

The presented system already exhibits several properties
that we would expect from a cognitive robot that is supposed
to learn in interaction with a human. As such, it forms a firm
basis for further development. Building on this system, our
final goal is to produce an autonomous robot that will be
able to efficiently learn and adapt to an everchanging world
by capturing and processing cross-modal information in an
interaction with the environment and other cognitive agents.
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Identifying and Resolving Ambiguities within Joint Movement
Scenarios in HRI

Maryamossadat N. Mahani and Elin Anna Topp

Abstract— In this work we report on enhancing interactions
of users with a service robot by making the robot’s interface
account for its operational requirement and also by making
its interface provide a more clear indication of the robot’s
internal perceptions to the users. The work was initiated
by observation of several cases of a specific human-robot
interaction problem in an exploratory user study with a “robot
follows user” scenario. In this paper we present our research
on analysis of the observed problem situations, the respective
suggestions for improvements of the used system, and evaluation
of the subsequent modifications of the system. The results show
significant improvements in interaction of users with the robot.

I. INTRODUCTION

Important to the successful application of robots by arbi-
trary users who are not designers of the system, is their “ease
of use”. Two primary factors affecting the ease of use of
robots are effective communication and intuitive interaction
with them. An intuitive interaction in this case refers to an
interaction which can be related to interaction with other
already adopted machines, or to the interaction with humans.

In an exploratory user study [8], referred to as “pilot
study”, in which a group of persons with different experience
with robots were supposed to guide a robot around in an
indoor environment, we identified a pattern of interaction
problem. We termed the problem a “deadlock”, since it is
similar to a synchronization problem occurring with two
program threads blocking each other. In such a deadlock
situation the interaction flow was interrupted due to a mis-
match of the mental model the users had of the robot with
the actual state of the system. This happened despite the facts
that the robot gave verbal feedback to the issued command
and that the users had been informed about how to fulfill
certain requirements to proceed. It was thus obvious that the
system did not fulfill any ”ease of use” requirements, since
it was not at all intuitive to interact with, although it could
be spoken to and gave spoken feedback.

A significant amount of research to date has been focused
on enabling robots to recognize human gestural cues. Equally
important is equipping robots with gestures that are under-
standable and intuitive to the users. A strong factor in human-
human communication is spoken language, but this is usually
supported and enhanced by non-verbal communication, i.e.,
”body language”. In a study with a robot penguin, Sidner
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et al. [7] could show that this applies also to human-robot
communication in the sense that users get more engaged in a
conversation with a robot when this robot stresses its verbal
utterances with adequate movements, e.g., nods.

In addition to the influence of body language in communi-
cation, it is important to cover the “gulf of evaluation” [6] for
the users so they do not face difficulty in evaluating whether
the response of a machine meets the desired goal. Humans
are quite used to the fact that ”pressing a button” will result
in the respective device starting to ”do something”, otherwise
they will assume that something is wrong. Hence, giving a
command to a robot should result in the robot starting to
perform the task related to this command or give appropriate
feedback that helps the user understand why the task is not
performed – as long as the system is working properly.

The need for greater intelligence of robots and command
interfaces that adapt to situations is deemed necessary for
successful application of robots [2]. Goodfellow et al. [3]
show the results of case studies in situations where a robot
requires further information for performing a certain task and
its interface is designed to let the robot and user communicate
about it. In this work, we focus on communicating an
operational requirement of a robot to its users by making
its interface account for the non-satisfied requirement.

Assuming that we could apply the idea of the body
language and some more sophisticated verbal feedback –
a ”spatial prompt” [4], that would explain and resolve the
situation, we designed and evaluated a system improvement
to handle the deadlock situations we had identified.

II. THE RESEARCH PROBLEM

The platform of this study is a Performance PeopleBot 1.
In the context of this work, it is introduced as a service robot
that is supposed to provide services in personal contexts,
such as houses or office environments. Table 1. represents
a list of some of the possible commands 2 to the robot
and the robot’s response to them. The robot interacts with
the surroundings using its sensors. Fig. 1 shows the robot’s
sensory detection range. The robot can detect and track a
user as long as the user is in front of the robot’s baseline
and within its navigation range. Inside the robot’s control
software, a parameter defines a minimal distance threshold
to the user that the robot should not move beyond. This
“safety distance” parameter is set to one meter in this work
and is meant to avoid the robot from bumping into the users

1http://www.mobilerobots.com/ResearchRobots/
2The complete list can be found at:

http://people.ku.edu/∼mahani/commandsList.pdf
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TABLE I
COMMANDS AND FEEDBACK OF THE ROBOT.

Robot’s sensory
detection

User
com-
mand

Robot’s verbal
feedback

Robot’s action

A person is de-
tected in proxim-
ity of the robot

——– Hello, my name
is Minnie, show
me around please

——–

Keeping track of
the user

Follow
me

I will follow you If user is far
enough, follows
the user else
stays at its cur-
rent place

Keeping track of
the user

Stop Stopped follow-
ing

Stops moving

Lost track of the
user

——- I think I lost you No action

Regained track of
the user

——- I found you again ——-

or making them feel unsafe. In all the studies reported in this
work, the subjects were given instructions about the robot’s
operation specifications, including its detection range and the
safety distance.

Fig. 1. The robot’s sensory detection range

III. IDENTIFYING INTERACTION AMBIGUITIES

The pilot study experiments were video taped. A video
analysis of this data was used to identify cases of interaction
problem, based on the uneven turn takings and situations of
trouble and repair that they caused.

A. The deadlock situation

A common pattern of interaction problem was identified
as part of a “user-following” scenario, during which the user
gives a command to the robot, the robot responds that it
will perform the user’s request but it does not carry out any
actions towards fulfillment of the command. As a result, the
user waits for a while, repeats the same command, gets the
same response back, ..., until the situation is resolved by
“meta-communication” between experiment leader and user.
This problem happened to 4 out of the 5 subjects of the study
at the initiation of a “follow me” command.

1) Under the scene: What is happening inside the robot’s
control software during a deadlock situation, explains the
above problem. The robot has received the command, but the
user is standing closer than the safety distance to the robot,

the robot is waiting for the user to start moving further, and
the user has forgot about the safety distance requirement.

2) Lack of clear indication of the robot’s perception:
Occurrence of the deadlock situation could also be affected
by one of the robot’s interaction specifications, that is the
robot will not try to orient towards a user when having a
conversation. The focus in the initial version of the robot’s
software was mostly on being able to autonomously follow a
user, so it was only when running the system with arbitrary
users that such interaction issues became apparent. Fig. 2
shows a sample relative position of a user and the robot
having a conversation. The possible effect of this behavior of
the robot on user’s perception of the robot’s status is further
supported by the observed behavior of a few subjects who
tried to fix the deadlock situation by going to the front of
the robot and repeating the command.

Fig. 2. Sample relative orientation of robot and user during a conversation

IV. RESOLVING INTERACTION AMBIGUITIES

A. Explicit presentation of the robot’s internal processing

The only explicit feedback of the robot in response to the
“follow me” command has been verbal output. At the same
time, the robot does not have any means of showing the
user that it is still tracking him even though it might not be
directly facing the user. We propose that a more believable
and intuitive behavior of the robot can be achieved by making
the robot show the users that it is attending them not only
verbally but also physically.

As a solution to the deadlock situation, we equipped the
robot with a turning motion that would orient the robot
towards the user until a maximum angular difference of 6
degrees is reached. We assumed that this will convey the
robot’s attention to the users and as a result it will make the
robot’s behavior more intuitive. The orientation motion is
performed before uttering the “I will follow you” feedback.

B. Robot’s Interface accounting for its operational require-
ments

When a deadlock situation happens, the robot does not
provide any feedback to the user about its non-satisfied
requirement. It should be noted again that the subjects
were given instructions about the safety distance requirement
before start of trials. We propose that making the robot’s
interface stand for its non-satisfied requirement will assist in
keeping a smooth flow of interaction and help the users take a
corrective action. As a solution, the robot is made to provide
a verbal “spatial prompt” about its non-satisfied requirement
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in a deadlock situation. An instructive verbal feedback is
used which includes directives about the corrective action
that should be taken and the reason behind it. The verbal
feedback is: “You are too close to me, you have to move a
bit further and I will follow you.”

V. EVALUATION AND RESULTS

A laboratory study with several users was conducted to
evaluate the solutions for the deadlock situation. The results
from the laboratory study were used in forming a strategy
based on small robot orientation movements and “spatial
prompting”. The solution strategy was further applied to a
prototypical user study tool and tested with users in domestic
contexts.

A. Laboratory user study

One of our main evaluation goals was getting to know
the subjects’ perception of the robot’s behavior, that is
what they think the robot is doing or is trying to do.
“A much more reliable and possibly objective method for
measuring the users’ perception and cognition is to observe
their behavior” [1]. At the same time to reach our evaluation
goals, it was necessary to employ a qualitative evaluation
method rather than any quantitative cross-validation. A total
of 20 cooperative user trials were performed. Since we were
interested in identifying occurrence of specific, known error
situations, the observations were noted using pen and paper.
Each trial run was followed by a combination of a post-task
walkthrough and interview to reflect actions of the subjects
to them and gain a correct interpretation of their behavior.

1) Results of the laboratory study: The deadlock situation
happened in 4 out of 20 studies, but in all cases the users took
the right corrective action to fix the situation upon hearing the
verbal feedback. The subjects described their interpretation
of the orientation motion either as a sign of attention of the
robot or its state of being ready to move.

B. Study in users’ homes

The laboratory study results proved that the improvements
of the “user-following” behavior enhanced the interactions.
The suggested improvements were also implemented in an
extended study tool version of the framework for Human
Augmented Mapping (interactive robotic mapping), which
was used for a further, exploratory study in users’ homes [5],
with 8 trials in 7 homes. In particular, the robot was turning
towards the assumed interaction partner before stating that
it would follow. Also the utterance ”Please move on, you
are too close to me!” was given when the situation required.
The utterance was in this implementation controlled by the
experiment leader which allowed to use the spatial prompt
not only when the “follow-me” command had been issued,
but also in any cases of “arising deadlocks”, that is whenever
user and robot were about to get stuck in their joint move-
ment. The experiment leader decided in most cases based on
the distance of the user to the robot, i.e., when the user was
in fact too close to the robot for any movement considering
the assumed safety distance. Another type of case was when

a tracking failure was obviously repairable by having the
user move a little to be visible as ”moving person” again.

1) Results of the home study: From the observations made
in the study in users’ homes it is obvious that those can
only be seen as anecdotic evidence of the success of our
subtile changes to the “user-following” behavior. However,
we can state a clear improvement in comparison to the initial
pilot study, in the sense that no actual deadlocks having to
be resolved by “meta-communication” between experiment
leader and user were observed. Further, the utterance “Please
move on, you are too close to me!” caused the respective
subject in 9 cases of arising deadlocks to move further
away from the robot. In most of the cases the problem was
solved with the first prompt, i.e., the robot was able to move
afterwards, and after two prompts at most the intended joint
movement was possible in all cases.

VI. CONCLUSIONS

The results of both user studies show a considerable
decrease in occurrences of deadlocks. These results indicate
that the orientation motion improved the interactions by
making the robot’s behavior more intuitive. Also, the “spatial
prompt” helped in keeping a smooth interaction flow by
making the users take a corrective action when necessary.
Overall, these results put emphasis on the need for the robot
to communicate its internal processing clearly to the users
so that the users keep a correct mental model of the robot’s
status. The results also emphasize the positive effects of the
robot’s interface accounting for its operational requirements
in enhancing human robot interactions.
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The “Curious Robot” learns grasping in multi-modal interaction

Ingo Lütkebohle, Julia Peltason, Robert Haschke, Britta Wrede and Sven Wachsmuth

I. INTRODUCTION

Practical robots have come a long way, from being con-
fined to strong cages in industrial manufacturing halls to
open environments shared with humans. One consequence
if robots are to share spaces with humans is that they must
be able to learn from them – that much is well accepted.
The reverse – that the robot becomes the “teacher” and the
human the “student” – is less commonly seen, however. This
is despite the fact that many applications tacitly assume that
humans learns about the robot, e.g. from a manual or through
instruction by an expert.

We surmise that there is a great deal of potential in an
explicit reversal of the roles. Therefore, we have investigated
how this reversal of the traditional roles can improve HRI.
Concretely: How could a robot structure the dialog such
that a naive human partner is aware of her/his possible
dialog actions? The goal is to make humans able to act with
confidence despite having absolutely no prior knowledge of
either the robot’s goals or its capabilities.

To achieve this ambitious goal, several hard problems
must be adressed. One important issue is the vocabulary
problem [1], that describes the fact that humans do not know
what the system understands, in particular at the beginning of
an interaction [2]. Another well known problem is that user’s
expectations about a system are strongly shaped by appear-
ance [3], [4], which may lead to erroneous assumptions [5].
Last, but not least, it is not clear how to provide guidance
in an easy to understand way and this requires an iterative,
study-based approach towards system development [6].

To investigate how robot guidance can improve upon this,
we have introduced the “Curious Robot” interactive scenario
for learning about real-world objects [5]. In it, we have used
a mixed-initiative [7] approach, that has the robot query
the human for information at appropriate points during the
interaction. For example, the robot queries a human about
object labels and how to grasp an object. Initiative is guided
by visual saliency information [8].

In this scenario, our results indicate that closed questions
provide excellent guidance to the human, resulting in con-
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fident and very consistent (across subjects) answers. The
reverse has also been found, with partially open questions
leading to considerable more confusion and inconsistency.

II. MULTI-MODAL INTERACTION

A particular problem during speech based interaction is
that many activities are hard to describe verbally. Instead,
we found that participants prefer a mixture of demonstration
and description [5]. Therefore, we have now added hand-
posture sensing as an input device to describe grasping using
a CyberGlove.

An issue with posture sensing through a glove is to
determine when to use it, particularly when motions are only
mimicked for demonstration. In the video, we demonstrate
how verbal and haptic information are combined to overcome
this issue.

III. PROGRESS INQUIRIES

Not surprisingly, we found subjects in the learning sce-
nario to be interested in knowing what the robot has learned.
This led them they to interrupt the current activity through
questions about the system’s knowledge and the current state.

We can accomodate this through our grounding-based
dialog [9], which allows nesting of individual exchanges
and demonstrate this capability in the video. To encourage
subjects to ask questions, the system has also been equipped
with voice activity detection, to slow down upon sensing
speech. This provides users with feedback that their question
is currently possible and the system is attending. The latter
aspect is also supported through gaze feedback.

IV. CONCLUSION

We describe how to extend a scenario based on the idea of
robot guidance with posture sensing for multi-modal descrip-
tions and improved learning feedback. We also summarize
user studies on a previous iteration of the scenario to motivate
the chosen approach.

The video is available at http://aiweb.techfak.
uni-bielefeld.de/cr-icair-2010.
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