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ABSTRACT
The recognition of a user’s internal states via physiological sensors
is sometimes seen as a matter of detecting the direct physiologi-
cal correlates of the internal states. This type of detection can be
problematic when a user is moving around, as is often the case with
today’s mobile systems. We present a study which illustrates that
detection of internal states is sometimes actually easier when the
subject is moving: The affective state may be associated with overt
behavior that results in detectable changes in the physiological vari-
ables.

1 INTRODUCTION
One way of assessing a user’s affective state is via physiological
sensors. With unobtrusive sensors, the system can obtain data with-
out disturbing the user, collecting continuous data about her inter-
nal states and reactions to the environment.
In the present study, the variables of interest are time pressure and
movement around the environment. As time pressure has proved to
be one of the most common stressors in the work environment, one
which has an impact on available processing capacity, estimation of
and adaptation to such pressure could be beneficial. The variable
of movement is becoming important as more and more mobile as-
sistance systems support their users in mobile contexts. Detection
of the user’s movements is often straightforward, but the variable is
of interest here as a moderating variable that is likely to affect the
extent to which time pressure is detectable. The combination of the
two variables in a design allowed us to address this question
directly within one particular context (see Figure 1, which will be
explained below).

2 RELATED PREVIOUS WORK
There is a growing interest in the recognition of the internal states
of users through physiological sensors. Research in the field
of emotion recognition is especially relevant to the question of
whether time pressure is identifiable on the basis of sensor data.
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Picard, Vyzas, and Healey (2001) tried to discriminate among 8 dif-
ferent emotions played by an actor over several days using Fisher
Projection as a basic method. They were successful in identifying
especially the emotions of anger, sadness, joy, and adoration. Sen-
sor fusion, the use of a several different sensors simultaneously,
made a correct prediction possible, whereas no sensor alone made
good predictions.
Lisetti, Nasoz, LeRouge, Oyzer, and Alvarez (2003) were success-
ful in discriminating among 6 emotions induced by pictures. Anger
and sadness were among the most recognizable emotions that they
found using the k-nearest-neighbor algorithm. The measures heart
rate, temperature, and galvanic skin response were used to discrim-
inate among the emotions.
Greenwald, Cool, and Lang (1989) used the “international affective
picture system” to provoke emotions, and they measured muscle
tension from different muscles in the face. They compared the self-
attributed feelings of arousal and valence (Lang, 1968, 1978) to
changes in muscle tension and found an increase of the tension of
the corrugator supercilii (muscle over the eyebrow) with pictures of
negative valence. They noticed an increase in heart rate during the
presentation of pictures with positive valence, and electrodermal
activity correlated positively with arousal induced by pictures.
A study involving physiological measures was conducted by Conati
(2002) in the context of frustration recognition during work with
educational games. Electrodermal activity was used as an indicator
of arousal, and an increase in the heart rate and the tension of the
corrugator supercilii served as indicators of frustration and nega-
tive valence. Through a combination of the information from all
sensors in a dynamic Bayesian network, the state of the user could
be estimated.
Research on stress detection through sensors is important because
time pressure has somewhat similar effects on human physiology
as stress. Experiments conducted with pilots (Ylonen, Lyytinen,
Leino, Leppaluoto, & Kuronen, 1997) used especially heart rate as
an indicator of stress. In a complex study by Healey and Picard
(2002), the stress induced by driving a car was examined. The 10
subjects drove the same 90-minute fixed route, while their electro-
cardiogram, electromyogram, electrodermal activity, and respira-
tion were being registered. The route was divided into different
categories of stress. Through sensor fusion, an identification accu-
racy of 88.6% for the stress level was achieved.
The recognition of mental load, which typically increases with time
pressure, is an area of research in which Chen and Vertegaal (2004)
conducted an interesting experiment about interruptibility. Two in-
dicators were used, one to detect whether the person was sitting
or moving and the other to detect whether the person was men-
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Figure 1. Overview of the experimental design.

tally busy or not. For the detection of movement, an electroen-
cephalogram (EEG) sensor was used, which allows a good detec-
tion of motor-related activity. For the measurement of mental load,
the sensor data from the electrocardiogram was transformed via a
power spectrum analysis. The authors found a tendency toward in-
creased heart rate variability in the lower-frequency ranges (
Hz) of the power spectrum.

3 CENTRAL ISSUE OF THIS
STUDY

The prior research in this field has promising results for the detec-
tion of emotion, stress, and mental load through sensors, especially
through measures like the heart rate variability of the lower fre-
quency range, electrodermal activity, and the tension of the corru-
gator muscle. But many of the experiments were conducted under
artificial conditions. Emotions were induced by extreme pictures or
played by an actor. The subjects were almost always stationary. In
our experiment, we wanted to use a task with a strong relationship
to everyday work, and we wanted to see how well a moving user
could be dealt with. The project is based on the idea of a mobile
assistance system that is able to detect the user’s state even in a
mobile context. But movement often produces movement artifacts
in sensor data that make the data hard to to interpret. We there-
fore looked for measures that not only are unobtrusive, so that they
don’t bother the moving user, but also provide robust signals for
interpretation. The overall question is whether the recognition of
time pressure during movement is easier (or more difficult) than in
a condition in which the subject is sitting still. Although a single
experiment can investigate this question only in one particular con-
text, we hope that the methods and results will be found stimulating
for further work on this question.

4 PHYSIOLOGICAL SIGNALS
The following sensors and quantitative indices were used in our
study:1

1Further details can be found in the master’s thesis of
von Wilamowitz-Moellendorff (2005).

Electrodermal Activity

We measured the electrical resistance of the skin of the nonactive
hand of the subjects during the entire experiment. The skin conduc-
tance level was monitored in reference to the baseline recording of
the first 15 minutes before the main part of the experiment started.
All data points were z-transformed so as to make the subjects com-
parable, because not only the level of each subject was different but
also the variability in the signals. This signal is relatively free of
movement artifacts.

Electromyogram

We recorded the electrical potential of the muscle cells in two dif-
ferent regions:
First, it was recorded on the arm of the subject, with the goal of reg-
istering the tension of the nonactive arm to detect movement. The
data had to be standardized, because of large differences between
the subjects.
Second, two electrodes were attached on the forehead, over the left
eyebrow. The tension of the corrugator supercilii is known to in-
crease with stress and frustration. The problem with the recorded
data was that not only the tension of the eyebrow muscle (through
frowning) had an impact on the data but also blinks and eye move-
ments. Since the pattern of frowning was virtually undetectable,
this variable ultimately had to be excluded from the analyses.

Electrocardiogram

The electrocardiogram (ECG) signal was measured from the
manumbrium sterni and the lower left costal arch. The most ba-
sic index derived from the ECG signal was the heart rate, defined
as the number of R-spikes per minute. The heart rate is sensitive to
movement and relaxation. It was calculated with an algorithm that
detects the QRS complex.
Heart rate variability concerns the regularity of the interval be-
tween successive heartbeats. It was measured through the mean
square of successive differences, which is defined as the accu-
mulated dissimilarity of the durations in the sequence of inter-
beat intervals. This measure is known typically to decrease during
attention-demanding tasks (Schandry, 1988).
A related measure is based on the power spectrum of the electro-
cardiogram. A tendency toward increased heart rate variability in
the lower frequency ranges ( Hz) was expected to accompany



stress and time pressure (Chen & Vertegaal, 2004).

Recording Device

The recording device used to detect the incoming sensor data was
the Varioport from Becker-Meditec. The recorder is about as tall as
a packet of cigarettes, and it is able to register the incoming signals
from the four sensors. The data was was registered with a rate of
256 Hz for about one hour. The Varioport is so small and light that
it could be fixed to the subjects’ clothes and was carried during the
experiment without problems.

5 METHOD
Design. The main goal was to determine under which circum-
stances a better prediction of time pressure is possible: in a sta-
tionary context or when a person is moving. To make a direct com-
parison, all four combinations of movement (vs. no movement) and
time pressure (vs. no time pressure) were realized for every subject.
The task was divided into four parts. Two parts were designed so
that they had to be dealt with on the computer, and two parts were
designed so that the subjects had to move around an office in order
perform the task. The other distinction was that half of the tasks
were without any time limit and the other half had a time limit of
5 minutes (money was subtracted from the payment when the time
was exceeded, at the rate of 2 euro cents a second).
Figure 1 gives an overview of the 4 conditions. The conditions
were presented to the subjects in 8 different sequences so that order
effects could be avoided.

Material. The task that was used for the experiment is a so-called
inbox task, a test task often used in German assessment centers.
This instrument is close to normal everyday work life in that it sim-
ulates the act of organizing incoming letters (or emails) and making
quick decisions about what to do about them. In all, 16 different
letters were presented to each subject; 1 letter was presented at the
beginning to allow the subject to get familiar with the task.

Subjects. In this study, 18 subjects took part, 8 of them female
and 10 male students. Each subject invested between 1.5 and 2
hours for the whole experiment. The subjects were paid for their
participation. To make the time limit conditions more effective ,
money was distracted from the reward (the money loss being dis-
played by a watch on the monitor counting backward in money
after the time limit had elapsed).

Procedure. Each subject first performed a small part of the inbox
task so as to get accustomed to the task and to produce a baseline
value. They then performed each of the four parts of the task as was
sketched above. Finally, they filled in a questionnaire that asked
about their subjective responses to various aspects of the experi-
ment, and they were debriefed.

Hypotheses. We expected the electrodermal level to increase dur-
ing the conditions in which time pressure was induced. In previous
research, Wang, Prendinger, and Igarashi (2004) had found a cor-
relation between stress and the electrodermal response of the skin.
Also, an increase in the electrodermal level was expected during the
movement conditions, because of the bodily reaction to movement.
The EMG sensor attached to the forearm was expected to register a
greater standard deviation due to the activity of the arm during the
movement conditions.

It was hypothesized that heart rate is associated with movement and
should increase during the two movement conditions.
Another measure from the electorcardiogram was calculated
through a power spectral analysis. It was expected that under time
pressure there would be a tendency for increased heart rate variabil-
ity in the low frequency ranges of the ECG data (Chen & Vertegaal,
2004).
The muscle tension of the corrugator supercilii was expected to in-
crease while the person was under time pressure and was feeling
stressed. Conati (2002) had found an relationship between frustra-
tion and tension of the muscle over the eyebrow.

Storage and processing of sensor data. Incoming signals from
four sensors with a storage rate of 256 Hz had to be managed. The
enormous amount of data from each one of the 18 subjects required
the use of a special database. This database (developed by the sec-
ond author) was adapted to fit the data from this experiment. About
3,686,400 data points per subject were saved in the LDAAT (Large
Data Amount Analysing Toolkit). LDAAT is based on PHP (a mod-
ern script language for the creation of websites) and MySQL (a
database implementation); it makes it possible to execute analyses
easily through a web interface. The database could perform ana-
lyses fast, because it made use of a cluster of computers. The data
from the Varioport memory card had to be read out and be trans-
formed into ASCII files. Calculations were made via SQL com-
mands. Formal conversions and transformations were also carried
out with the database; for example, the z-transformation (every data
point minus the overall average for the person in question divided
by the standard deviation) of the raw data. A special command ex-
ecuted the segmentation of the raw data into intervals of the desired
length (for example 1 minute), for operations like the calculation of
the heart rate per minute.

6 RESULTS
Two different analyses were performed to study the data. First a
multivariate analysis of variance (MANOVA) was conducted to test
whether the two factors “movement” and “time pressure” had an
effect on the dependent variables. Second, a logistic regression
was conducted to test the possibility of identifying the subject’s
condition on the basis of the recorded data.

6.1 Results of the Multivariate Analysis of
Variance

A multivariate analysis of variance (MANOVA) is used when there
is more than just one dependent variable. This method helps to de-
termine whether changes in the independent variables have effects
on the dependent variables and if there are interactions between
the independent variables. The (two-level) factors are time pres-
sure and movement. The dependent variables are electrodermal
response, electromyogram, heart rate, power of the spectral density
analysis, and heart rate variability.
The main effect for the factor “movement” became significant with

. Neither the main effect for time
pressure nor the interaction became significant. But there are dif-
ferences between the four conditions for every dependent variable,
a fact that encouraged made us take a closer look at the univariate
results. Figure 2 shows the results for each dependent variable.
The results of the electrodermal activity show a tendency toward
an interaction between movement and time pressure. The combi-
nation of time pressure and movement has the highest values, and
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EDA: Electrodermal Activity 
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EMG: Electromyogram 
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HR: Heart Rate 
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MSSD: Mean Square of the 
Successive Differences 
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PSD: Power of the 
Low−Frequency Regions 

Figure 2. Mean standardized values of the various indicator variables under each of the four experimental conditions.

the combination of no time pressure and movement the lowest av-
erage. This pattern is not consistent with our original hypotheses,
but it is consistent with the ratings of the subjects in the question-
naire, in which they reported that the situation with movement and
no time pressure induced the least cognitive load.
The standard deviation used as indicator with the electromyogram
signal shows the expected tendency, an increase during movement
( ). It is possible that with a higher
number of subjects this effect would become significant in the
MANOVA.
The effect for heart rate went in the expected direction, too, show-
ing an increase during movement. Even a small increase with time
pressure is observable in the data.
The heart rate variability (MSSD) did not show the expected de-
crease with time pressure. The slight increase with time pressure
might be ascribed to the movement artifacts, which make more dif-
ficult the correct identification of the QRS complex.
The results of the Power Spectral Density Analysis show no signif-
icant tendency of the power in the low-frequency range to increase.
But in the graph, a small tendency in the direction of the hypothe-
sis is visible, which might become significant with a larger group

of subjects.

6.2 Detecting the User’s State
The results just discussed give us some idea of the diagnostic value
of the indices used. But the real question of interest is whether it
is possible to detect a user’s time pressure (and movement) on the
basis of the sensor data.
There are a variety of possible approaches to this user modeling
problem. For example, various machine learning techniques could
be applied to the learning of classifiers, and the data could be pre-
processed in various ways. A model could be learned for each user
individually or for users in general. We are currently exploring
various possibilities (e.g., pattern classification based on Bayesian
decision theory, cf. Duda, Hart, & Stork, 2000); but for now we
present a relatively simple analysis based on the technique of logis-
tic regression.
In general, a logistic regression produces a model for predicting the
value of a dichotomous variable (e.g., presence vs. absence of time
pressure) on the basis of a set of continuous predictor variables.
We used as predictors simply the mean values, for each subject and
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condition, of the standardized variables shown in Figure 2. The
question then becomes: Given the mean values for a given subject
in a given condition, how accurately can you predict whether this
subject was under time pressure (or in motion)?
The results of the MANOVA already suggest that a detection of
movement through sensors should be easy. The first histogram in
Figure 3 confirms this expectation. Overall, a correct prediction
was made in 89.1% of the cases.
The structure of the histograms in this figure can be explained eas-
ily for this simple case. With excellent predictability, we would see
only one tall, lighter-colored bar in the right-hand interval and one
darker bar on the left. This situation is closely approximated for
the prediction of movement.
With the similar logistic regression for the prediction of time pres-
sure, the five indices predict time pressure with only 56.3% accu-
racy overall, just a little better than the chance level of 50%. In the
histogram, the poor predictability is reflected in the clustering of
the bars in the middle two intervals.
But perhaps time pressure can be more accurately predicted if we
restrict ourselves to cases where it is known that the user is mov-
ing (or not moving). Figure 4 shows the results of the two relevant
logistic regression analyses. As is reflected in the lower histogram,
the accuracy of predictions when the subject is not moving is still
very poor, only 56.3%.2 On the other hand, in the conditions with
movement, time pressure but was easier to distinguish, with an av-
erage accuracy of 71.9%.
One way of checking whether this difference might be due to
chance is to count the cases in which the system made a correct
prediction with high confidence. (These are the cases in which it
would be reasonable for a system to act on the basis of a predic-
tion.) There are 10 such cases (out of 36 possible cases) in the
conditions with movement and only 3 such cases (out of 36) in the
conditions without movement. The difference between these two
frequencies is significant according to a two-tailed test ( =
5.57, ).

7 DISCUSSION
A likely explanation of the somewhat better detection of time pres-
sure during movement is as follows: The direct physiological ef-
fects of time pressure are in themselves rather subtle, too small to
be picked up reliably by physiological sensors. When the user is
moving, these subtle direct effects are even more difficult to detect;
but on the other hand, there are indirect effects that result from the
way in which time pressure influences the subjects’ movements.
The subject tends to move faster in order to finish the task quickly
enough, and this difference is in turn reflected in the physiological
indices.
Further work will be required to reveal the extent to which simi-
lar patterns appear in other contexts and with other psychological
states. The main result of the current study is a straightforward
illustration of the fact that internal states can sometimes be rec-
ognized better via physiological sensors on the basis of their ex-
pression in behavior than on the basis of their direct physiological
effects. This general point can be taken into account whenever we
think about the use of physiological sensors for the estimation of
internal states in real-world situations.

2The three cases on the right in which the system was able to make
a correct prediction of time pressure with high confidence suggest
that some users may exhibit unusually strong symptoms of time
pressure even when they are sitting still; but this possibility would
have to be explored with a larger number of subjects.
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