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Quotes from the CoSy Science Advisors

While there is still a long way to come close to the objective of the Eu-
ropean Commission Cognitive Systems initiative “to construct physi-
cally instantiated or embodied systems that can perceive, understand,
. . . and interact with their environments and evolve in order to achieve
human-like performance” this book is about one of the funded projects
in this initiative. It gives and excellent insight into the challenges and
benefits of working in an large interdisciplinary team to better under-
stand the human mind and in order to build intelligent machines.

Heinrich Bülthoff, MPIK

One of the great challenges of the 21st century is to build a robot
that can perceive and act within its environment and communicate
with people, while also exhibiting the cognitive capabilities that lead
to performance like that of people. This book reports on the European
Union project on Cognitive Systems. It offers detailed explanations of
the exciting progress made on this challenge and serves as a foundation
for the science of Cognitive Systems in the next part of this century.

Candance Sidner, BAE Systems



Preface

The present volume is a report on the research results generated by the project
“Cognitive Systems for Cognitive Assistants” (CoSy), which was sponsored
by the European Commission during the period 2004-2008.

The CoSy team was assembled to study the problem of embodied cog-
nitive systems for domestic service tasks such as guidance, fetch and carry,
etc. The main aim of the project has been to study the core technologies
needed to build such systems rather than mere application development. The
key competencies needed are: systems architectures, scalable knowledge rep-
resentation, adaptive embodiment,categorical perception, planning and error
recovery, learning, and situated dialog systems. All of these aspects were stud-
ied in the context of CoSy and exemplified using two “demonstrator scenarios”
that were conceived to allow studies / evaluation in an integrated context.

The volume is organized into 4 parts. The introduction outlines the over-
all problem domain and the CoSy approach to the problem. The second part
contains a number of chapters that detail progress on topical problems across
architectures, perception, learning, planning and dialog systems. These com-
petencies were integrated into systems as described in the third part of the
book. The final section provides a perspective on the results obtained and
considers some possible issues for future research.

The project has published extensively throughout its life and links to publi-
cations can be found at the project web facility www.cognitivesystems.org,
where copies of associated project deliverables also can be retrieved. The CoSy
web facility contains also a page with material that supplements the book. The
page has pointers to published material, associated datasets, videos and open
software. The electronic version of the book also has embedded links to the
web facility and published papers. I.e., referenced material published by the
consortium can be accessed through embedded links.

The consortium would like to express our gratitude for the support the Eu-
ropean Commission has provided for this research. In addition we are grateful
for the guidance and feedback we have received from our scientific advisors:
Prof. Heinrich Bülthoff - MPIK, Prof. Benjamin Kuipers - UT Austin, Dr.

www.cognitivesystems.org
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Candy Sidner - BAE Systems. We are also grateful for the support from the
project reviewers: Prof. Igor Alexander - Univ. College London, Prof. Mark
Steedman - Univ. of Edinburgh, Prof. John Tsotsos - York Univ. and Prof.
Oliver Brock, UMASS. Finally, we appreciate the guidance from the associ-
ated EU project officer Cecile Huet.
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Cognitive Systems Introduction

Henrik I. Christensen1, Aaron Sloman2, Geert-Jan Kruijff3, Jeremy L.
Wyatt2

1 Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, Ga.
USA hic@cc.gatech.edu

2 Intelligent Robotics Lab, School of Computer Science, University of
Birmingham, Birmingham, UK, {axs,jlw}@cs.bham.ac.uk

3 DFKI GmbH, Saarbrücken, Germany, gj@dfki.de

1.1 Introduction

The CoSy project was setup under the assumption that the visionary FP6
objective

“To construct physically instantiated ... systems that can perceive, un-
derstand ... and interact with their environment, and evolve in or-
der to achieve human-like performance in activities requiring context-
(situation and task) specific knowledge”

is far beyond the state of the art and will remain so for many years. From
this vision several intermediate targets were defined. Achieving these targets
would provide a launch pad for further work on the long term vision.

In particular it has been an objective to advance the science of cogni-
tive systems through a multi-disciplinary investigation of requirements, de-
sign options and trade-offs for human-like, autonomous, integrated, physical
(e.g. robot) systems, including requirements for architectures, for forms of
representation, for perceptual mechanisms, for learning, planning, reasoning,
motivation, action, and communication.

To validate science progress a succession of increasingly ambitious working
systems are constructed to test and demonstrate the ideas. Devising demand-
ing but achievable test scenarios, including scenarios in which a machine not
only performs some task but shows that it understands what it has done, and
why, is an integral part of the empirical study of cognitive systems.

In this chapter the basic objectives, expected results and organization of
the project will be presented, whereas the remainder of the book present
results that have been obtained during the CoSy project. The final chapters
of the book will provide reflections on progress in terms of new insight and
major lessons.
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1.2 Objective of project

1.2.1 The problem

Despite impressive progress in many specific sub-topics in AI and Cognitive
Science, the field as a whole moves slowly. Most systems able to perform
complex tasks that humans and other animals can perform easily, for instance
robot manipulators, or intelligent advisers, have to be carefully crafted. What-
ever intelligence they have could be described as ‘insect-like’ insofar as they
have capabilities that they do not understand, they do not know why they do
things one way rather than another, they cannot explain what they are doing,
they cannot improve their performance by taking advice from a human, and
they cannot give advice or help to someone else doing similar tasks. Part of
the reason for this is that over the last few decades research has become frag-
mented: with many individuals and research teams focusing their efforts on
narrowly defined problems in vision, or learning, or language understanding,
or problem solving, or mobile robotics, for instance.

1.2.2 The way forward

A key part of the CoSy effort has been to try to overcome some of these
limitations by using ideas from relevant disciplines to investigate an ambitious
vision of a highly competent robot, combining many different capabilities in a
coherent manner, for instance a subset of the capabilities of a typical human
4-5 year old child. The scientific importance of this objective is that such
a robot requires generic capabilities providing a platform for many different
sorts of subsequent development, since a child of that age can develop in any
human culture and benefit from many forms of education. However, we do
not underestimate the profound difficulties of this challenge.

The research makes use of and feeds results into the various component
disciplines of AI and cognitive science, for instance, new results on percep-
tion, learning, reasoning, language processing, memory, plan execution, and
studies of motivation and emotion. Perhaps more importantly: the project
not only benefits from other disciplines but has also tried to provide new
substantive contributions to those disciplines in the form of new theories and
working models. The detailed tasks of developing working systems generate
new research questions for the contributing disciplines.

1.2.3 Steps to success

The goal of producing a robot with many of the capabilities of a human child
is unrealistic for a five year research project: it is an significant long term
challenge. However, by analysing the many requirements for moving in that
direction, one can derive sets of successively less challenging sub-goals that
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provide steps towards the distant goal. Some of these sub-goals are achievable
in the time-frame of the project and form the main deliverables of the project.

An important part of the effort has been to consider two main kinds of
deliverables: theory and implementation.

1. Theory deliverables:
A body of theory, at different levels of abstraction, regarding require-
ments, architectures, forms of representation, kinds of ontologies, types
of reasoning, kinds of knowledge, and varieties of mechanisms relevant
to embodied, integrated, multi-functional intelligent systems. The results
are expected to be useful both for enhancing scientific understanding of
naturally occurring intelligent systems (e.g. humans and other animals)
and for the design of artificial intelligent systems.
The theory results are built around the core idea of a self-modifying archi-
tecture comprising different sorts of capabilities which develop over time.
The results cover both analysis of requirements for such an architecture
and also design options with their trade-offs.
Key ideas for the architecture are informed by biological considerations,
e.g. the notion of an architecture combining components which developed
at different evolutionary epochs, and which in humans operate concur-
rently, performing different categories of tasks, for instance:
• reactive components controlling the details of execution of skilled be-

haviours (these are evolutionarily old and use mechanisms shared with
many species)

• deliberative components supporting thought and reasoning about what
might happen next or what should be done at some later stage (these
are found in fewer species and require highly specialised mechanisms
and forms of representation – including human language in some cases)

• self-reflective, meta-management components that monitor, evaluate,
and (partially) control and redirect the reactive and deliberative pro-
cesses (these are probably rare in animals because they require the abil-
ity to represent, compare and evaluate information-processing tasks
and strategies, as opposed to merely implementing them).

The requirements for perceptual and motor systems that operate concur-
rently with, and in close coordination with, processes in all the different
architectural layers are analysed and architectures are proposed for both
perception (e.g. [134]) and action mechanisms.
Learning processes are different within and between different parts of the
architecture and current theories of learning have to be substantially ex-
tended to explain how, for instance (a) kinds of learning that extend the
individual’s ontology for perceiving and thinking about the environment,
and (b) kinds of learning that develop fluency and speed in motor per-
formance, e.g. because the reactive layer is trained by processes in the
deliberative layer.
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Different varieties of communication and social interaction are related to
the different architectural layers: for instance, (a) dancing, fighting and
moving heavy objects require coupled reactive systems; (b) linked col-
laborative actions spanning spatial and temporal gaps, e.g. in building
houses and bridges, require deliberative capabilities; (c) the ability to em-
pathise, exhort, persuade, may require extensions of self-understanding
in the meta-management system to support other-understanding. (All of
these influences can go both ways: e.g. meeting requirements for social
developments may enhance individual capabilities.)
As different sorts of architectures with these general features are possible
it is important to consider an analysis of architectural options and trade-
offs.

2. Implementation deliverables:
Several implementations of working systems demonstrating successful ap-
plication of the theory, e.g. in a robot capable of performing a collection
of diverse tasks in a variety of scenarios described in the project, including
visual and other forms of perception, learning, reasoning, and communi-
cation (with another robot or a human) both in order to collaborate on
some task and in order to explain what it is doing and why. Our aim has
been to create robotic cognitive systems that have a kind of autonomy
that will justify describing it as having its own goals, which may change
over time.
The distinctive features of such a robot include integration of sub-
functions (e.g. vision and other senses can be combined in making sense
of a scene, vision can be used to disambiguate an utterance by looking at
what the utterance refers to, and learning processes can enhance different
kinds of capabilities, including linguistic, visual, reasoning, planning, and
motor skills).
Integration does not imply homogeneity, such as use of the same type of
representation throughout the system. For instance, low level visual mech-
anisms finding edge-features, optical flow patterns, etc. use different forms
of representation from higher level mechanisms e.g. those recognizing and
describing whole objects. Likewise, planning mechanisms will need differ-
ent forms of representation from fine-grained motor control mechanisms.
Nature vs. Nurture: A major research issue concerns how much should
be programmed into such a robot and how much will have to be learnt
by interacting with the environment, including teachers and other agents.
There are several AI projects aiming to develop intelligent systems on the
basis of powerful and general learning mechanisms starting from some-
thing close to a “Tabula rasa” (e.g. the COG project at MIT, the Cyberlife
Research “Lucy” Project, and the Dav project at Michigan State Univer-
sity). Their hope is that the structure of the environment will cause the
learning mechanisms to induce all required information about the nature
of the environment.
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Such projects are likely to be defeated by explosive search spaces requiring
evolutionary time-scales for success.
Biological evolution enables individuals to avoid this problem by providing
large amounts of “innate” information in the genomes of all species. In the
case of humans this seems to include meta-level information about what
kinds of things are good to learn, helping to drive the learning processes
as well as specific mechanisms, forms of representation, and architectures
to enable them to work.
Although such debates are most commonly associated with requirements
for language learning (e.g. [130] the issues are deep and general. For in-
stance, Kant [70] argued two centuries ago that notions of space, time and
causation are presupposed by and cannot be learnt from perceptual expe-
riences. Similar points could be made about notions of meaning, purpose
and action.
Instead of taking a dogmatic stance on what needs to be innate CoSy has
explored various alternatives for amounts and types of innate knowledge
and included a first analysis of the trade-offs.

1.3 A motivating example

At the core of the CoSy project have been the methods for construction of
embodied artifacts, such as robots, with advanced cognitive functions. Such
systems should be endowed with facilities for automatic interpretation of the
environment (in terms of mapping of the environment, recognition of a large
number of objects, etc.), adaptive acquisition of new skills and tasks in co-
operation with a human user, methods for advanced manipulation to allow
the system to perform extended missions on behalf of the users and reasoning
methods to ensure advanced autonomy. The interpretation facilities can be
used both to ensure autonomy and to verbalise knowledge and mission pa-
rameters to a user. Advanced service robots can be used for a large range of
tasks in our everyday environment ranging from vacuuming to clearing the ta-
ble after dinner. The tasks can also be in terms of mobility support for elderly
and handicapped. To be of true utility to an average citizen it is essential that
the system has facilities for automatic adaptation to the environment of the
user, it must also be able to adapt to the habits of the owner, it must be able
to understand the importance and consequences of instructions, and it must
be sufficiently flexible to learn new skills that it was not endowed with from
the factory. An example scenario is outlined below.

1. The Hartmut family decides to acquire a CoSy system to assist them in
their everyday life. A system is acquired from the local Robs-R-Us chain
of stores

2. Upon arrival at home the system is unpackaged and booted up. Upon
wakeup the CoSy system greets the owners and asks them to give their
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names (Helga and Oskar). The owners are asked to give it a name (Fido).
The system then asks for a tour of the home. As they traverse the home it
builds up a map of the house, and objects of particular interest are named
to the system (this is the refrigerator), ...

3. When asked to clean the table after dinner, Fido already has a built-
in strategy for cleaning of tables, but it needs to know the location of
the dishwasher (Oskar shows him the dishwasher – a Bosch 4590). Upon
recognition of the dishwasher Fido downloads an operations manual from
the Cosy corporate site. It then goes about its task.
Oskar notices that Fido is removing cutlery and dishes but moves glasses
to one side of the table. He asks: ‘Why are you leaving the glasses?’ Fido
answers: ‘My movements can be clumsy, so I’ll put them in the dishwasher
after all the objects that might break them.’

4. After dishes, cutlery, glasses and bottles have been cleared, a single object
is left on the table. Fido asks Helga: What am I to do about this object
left on the table? This is an Orrefors vase please leave it on the table!
Fido inquires if it is Ok to turn on the dishwasher.

5. A few months later the Hartmut family acquires a new GE refrigerator.
When Fido detects the new item, he inquires about the new objects. He
is told that it is a GE-Economy Fridge. Upon learning this he downloads
the latest skills from the CoSy skill database to allow him to operate the
unit in terms of opening of the door and placing objects on the shelves,
etc.

6. Later they replace the door to the bathroom with a sliding door, a new
object that Fido has never seen before. He asks Oskar to demonstrate to
him how to operate the door. Initially Oskar shows him how to operate
the door (learning by demonstration). Fido tries to replicate the action
and is corrected when he pushes to hard.

7. One day Julie, the 8 year old grandchild of Helga and Oskar, comes to
visit. At first Julie is a little afraid of Fido and keeps her distance. Later
when she is alone with Fido she says to Fido: Can you play Ludo? Fido
says: What is Ludo? Julie: A game - I’ll teach you. Will you play? Fido
understands the general category of game, does not know Ludo, but rea-
sons that since Julie wants him to play, and he is not required for anything
else at that time, he should oblige. He considers downloading information
about Ludo from the Cosy corporate site, but reasons that if Julie offers
to teach him she would probably like to do that, and he wants to please
her. So he does not download the information and says: Yes please. Show
me what to do. They both enjoy the ensuing interaction.

The above scenario is deliberately futuristic, but it does at the same time
illustrate “automatic mapping”, “recognition of objects”, “recognition of lim-
itations in knowledge or skills”, “natural interaction using speech and ges-
tures”, “never ending dialogues” to resolve ambiguities, and affective states
and processes.
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These are key issues that have been studied in the CoSy projects. Through
integration of perception, action generation, autonomy, flexible user interfaces
it has, however, been possible to approach the problem of building truly flex-
ible cognitive systems that can be used to implement scenarios as outlined
above.

1.4 Organization of the research/Research Questions

In the study of cognitive systems for cognitive assistants a number of key
research challenges were identified: architectures, representations, learning,
perception-action modelling, communication, and planning & failure handling.
In addition to addressing these issues at a fundamental level there is also
a need to consider the integration of the techniques into complete systems.
Two scenarios were identified for the study of integrated systems: i) explo-
ration/mapping of space, and ii) models of objects and concepts. Initially
we will discuss the research challenges (Sections 1.4.1 – 1.4.7) followed by a
discussion of the integrated scenarios (Sections 1.4.9 – 1.4.10).

The overall work has been organised according to two major milestones

1. “Using intermodality and affordances for the acquisition of concepts, cat-
egories and language”
The goal of the first milestone was to develop an agent that was capable
of exploring unknown spaces and objects in that space, learning represen-
tations of spaces and objects based on a known ontology. The agent can
determine what it does not know (or about which it is not clear), and
can carry out a dialogue with another agent to learn more. Fundamen-
tal to the latter effort was the acquisition of strategies for representing,
coordinating and understanding multi-modal action & dialog acts.

2. “Introspection of models & representations; planning for autonomy – goal
seeking”
Based on the idea of an embodied cognitive agent that is able to explore its
environment, and communicate with other agents about descriptions for
spaces and objects in that environment, the goal of the second milestone
iwas to develop an agent that can perceive of its environment in terms
of affordances, acquire knowledge about such affordances, and use such
knowledge to understand the intentions of other embodied agents in that
environment. Based on such understanding, the agent is able to (re-)plan
its own actions and dialogues to achieve its own goals, possibly requiring
communication with other agents to request or negotiate cooperation.

1.4.1 Architecture

For many years, research in AI and computational cognitive science focused
on forms of representation, algorithms to operate on them, and knowledge to
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be encoded and deployed or derived. In the last decade or two it has become
clear that there is also a need to investigate alternative ways of putting pieces
together into a complex functioning system, possibly including parts that
operate concurrently and asynchronously on different sub-tasks, for instance,
perception, action, reasoning and communicating.

Fig. 1.1. The CogAff schema: superimposing 2 functional divisions, giving 9 cate-
gories of possible sub-mechanisms and many possible connections – not all shown.

Unfortunately this has led to a plethora of architectures being pro-
posed including, for example SOAR, ACT (and its successors), PRODIGY,
ICARUS, 3T, APEX, CLARION, CIRCA, EPIC, Subsumption architectures,
H-COGAFF, and Minsky’s emotion machine. Many of these were discussed
at a DARPA/NSF-funded workshop in Stanford in March 2003.4 One reason
why this is a problem is that there is no agreement on what the space of pos-
sible architectures is like, nor on the terminology for describing architectures
or on criteria for evaluating and comparing them.

One of the tasks for this project, therefore, has been to produce a frame-
work for describing and comparing architectures. A first draft and relatively
simple example of such a framework is the CogAff schema developed at the
University of Birmingham, and described in [133], partly inspired by [95]. This
provides a way of classifying components of an architecture in terms of their
functional role, starting with a crude three-way division between perceptual,
central and action components, and another three-way division between com-

4 Most of the presentations are online here:
http://www.isle.org/symposia/cogarch/, including a useful survey paper by
Langley and Laird. Another useful overview can be found in [43]
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ponents concerned with reactive, deliberative or meta-management functions.
Superimposing these modes of division gives a grid of nine types of compo-
nents which may or may not be present in an architecture, and which may be
connected in various ways to other components as shown in Figure 1.1.

In recent years many researchers influenced by the work of Brooks [24] have
attempted to design robots using only the bottom layer of the CogAff grid,
the reactive layer, arguing that either features of the environment or emergent
interactions between many individuals will produce effects that were thought
to require deliberative and other mechanisms. Others have challenged this
view arguing that it suffices only for simple organisms and insect-like robots.

Our approach has not been to engage in such battles but to try to under-
stand under which conditions the various types of architectural components
are useful. For example if building something at location A requires materials
known to be at location B, and the agent does not have innately determined
reactive behaviours that cause fetching of materials from B, then the delib-
erative ability to consider and evaluate a possible journey to B in advance of
doing it will be useful. Of course this requires suitable forms of representation
for learning and storing re-usable generalizations and perceptual mechanisms
that can ‘chunk’ the environment into categories that support learning of use-
ful generalisations. Without discretization, planning several steps ahead in
a purely continuous space would be very difficult, although discretization of
percepts may not be needed for certain kinds of reactive behaviours involving
continuous control and no predictions.

One of the particularly interesting issues to explore is whether the kind of
self-understanding that so many AI systems lack can be provided on the basis
of a meta-management architectural layer permitting observation, classifica-
tion, evaluation and possibly some control of internal states and processes,
especially deliberative processes that are capable of getting stuck in loops,
wasting resources be repeating sub-tasks or in other ways performing sub-
optimally. An important form of learning might include detecting such cases
and finding out how to prevent them or reduce their effects. An early exam-
ple of this sort of thing was demonstrated 30 years ago by Sussman [140],
but never developed further. One of the issues to be explored is how our no-
tion of meta-management relates to notions of “executive function” used in
psychology and psychiatry. It is possible that empirical research on executive
functions in humans can contribute design ideas for the construction of ar-
tificial cognitive systems. Likewise our design work may shed new light on
puzzles about the nature of executive functions in humans.

Another interesting and important issue to consider is how such an archi-
tecture might develop. This relates to questions about the pros and cons of
various degrees of complexity of the innate mechanisms given to a robot by
its designers, or to animals by evolution.



12 Christensen et al.

Architecture Deliverables:

The study of architectures has continued throughout the project. It has three
sorts of outputs:

• A succession of theoretical papers analysing the variety of possible archi-
tectures and their trade-offs in various contexts

• experimental designs for working systems to help investigate the theories
and demonstrate the ideas

Software tools:

A major requirement for the success of a project like this is the availability of
tools that support construction of a complex architecture with many interact-
ing, concurrently active components doing different things, e.g. concurrently
active mechanisms involved in perception (concurrently processing at differ-
ent levels of abstraction – eg. feature detection and perception of affordances),
reasoning, motive generation, planning, plan execution, communication with
other agents, evaluation of whatever’s going on, learning of various kinds, etc.

Cosy has developed a platform for rapid prototyping and rapid deployment
of intelligent systems combining multiple software and hardware resources.
There were quite a lot of toolkits already available but mostly they tend either
to be committed to a particular sort of architecture (e.g. SOAR, ACT-R,
PRS, etc.) or else aimed at multi-agent systems composed of lots of relatively
simple agents perhaps distributed over many machines. More general and
open ended toolkits include the SimAgent toolkit developed at Birmingham
[135], the Cogent toolkit developed at Birkbeck College and the Mozart toolkit
developed in Saarbrücken and elsewhere. The project has evaluated these and
other tools and developed a new improved tool - CAST that is presented in
Chapter 2.

A cognitive systems project aimed at producing an integrated physically
embodied agent with diverse but cooperative concurrently active and possibly
strongly interacting capabilities needs tools that can be used to explore and
test out ideas about different sorts of architectures – preferably rapidly and
easily.

One of the requirements that arises in connection with architectures that
include a meta-management layer is the need for mechanisms that allow self-
observation during program execution. The SimAgent toolkit provides some
support for that, used in work by Kennedy on self-monitoring intrusion de-
tectors [71].

For all these explorations, merely using a powerful programming language,
e.g. Prolog, or Lisp or Java is clearly not enough. For instance, different sorts
of languages have been required for the different components (e.g. low-level vi-
sion, reasoning about where to go next, understanding or composing sentences,
etc.) Facilities to support concurrency, self-observation and self-modification
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of running systems should if possible be general and re-usable. Rapid proto-
typing, i.e. rapidly producing new experimental implementations that can be
run, is essential for research and exploration, as opposed to formal specifica-
tion and verification, which are often the main concerns of software engineers:
that only makes sense if the problem has already been understood, so that
researchers know what they are trying to verify.

Often, discovering requirements is the hardest part of the research task in
AI and exploratory design is a major tool for doing that (you soon find out
that things you have built are no good for surprising reasons, narrowing the
search space for what a working system needs to be able to do.)

Moreover, as the prototypes get more complex the human interface re-
quirements for interactive debugging, testing and interrogating parts of the
system, also get more complex and those requirements have to be met as well
as support for whatever is being built.

Note on representations:

There have been many debates in recent years about whether animals or
robots need representations (E.g. see [24]). Our view on this is that anything
that senses the environment and on the basis of what is sensed uses its own
energy stores in order to select among possible actions is using information
to determine what to do. Biological evolution discovered many variations on
that theme depending on the kind of information acquired, how it is processed,
how it is used, when it is used (e.g. long term storage may be required) how
it is transformed, how it is combined with other information, and how it is
communicated. In all cases there is some medium used for the information,
but there are great differences between different media, including whether
they are discrete or continuous, one-dimensional or multidimensional, what
sorts of structures they can have, and so on. Some people may be inclined to
argue about whether some of them are really representations or not, but we
avoid such disputes by investigation what kinds of representations they are,
and what their costs and benefits are to the organism.

1.4.2 Representations

A very important issue in the project has been the design of representations for
objects, scenes, actions, dialogues and affordances. The representations must
take into account visual, haptic, proprioceptive, and auditory — particularly
linguistic — information, capturing temporal as well as static aspects. Many
of these representations also need to be suitable for higher-level cognitive
processes, such as deliberative and reflective processing. Others may be used
only for reactive control. To accomplish the tasks, that formed for the basis
for the project, the representations should

• enable integration of representations of objects, scenes, actions, events,
causal relations and affordances; these representations should be linked
together to form a consistent framework.
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• allow incremental updating or sometimes correction.
• allow different types of learning (supervised, unsupervised, reinforcement).
• allow integration of various modalities, of very different input signals (vi-

sual, tactile, auditory, etc.), into a common framework of representations.
• deal with multiple cues, enable multiple representations of the same object,

scene, event or action.
• be suitable for recognition and categorization in the presence of a cluttered

background and variable illumination.
• take into account the context of an object, an action or a scene
• be scalable; they should enable efficient learning, storing of the represen-

tations, and recognition even when the number of objects, scenes and ac-
tions increases (in fact, with an increase in the number of entities, learning
should become more efficient).

• accommodate semantics (in terms of language); they should be linked with
symbolic descriptions.

• be suitable for acquiring, describing, and using spatial relationships, both
quantitatively and qualitatively.

• be suitable for higher level cognitive tasks, such as reasoning or planning.
• enable the formation of concepts and hierarchies of concepts.
• allow introspection leading to refinement of the representations, and the

construction of new representations at new levels of abstraction (e.g. cap-
turing and exploiting temporal, or geometric regularities not explicitly
programmed in by the designer).

Many of these issues have been addressed prior to CoSy. They were, how-
ever, addressed separately, considering only one, or a few aspects at a time.
They have never been tackled together, in a common framework. This has been
an important part of this project. The representations (and, consequently, the
learning and usage of the representations) of objects, scenes, actions, events,
causes and affordances should be linked together in a unifying framework. The
representations may be obtained in different ways, but processes employing
different representations need to able to exchange information, and to update
some representations on the basis of others.

Task Specific vs. General Representations

For a cognitive system there is a need for representations which can, on the
one hand, be quite general, to serve different tasks and goals, and, on the other
hand, be tailored for particular tasks. The advantage with task specific rep-
resentations is that they are efficient to use, and often compact. The problem
with specific representations is that they can only be used for the task that
they were trained for. One example is task specific recognition or classifica-
tion e.g., a system trained to distinguish faces with glasses from faces without
glasses would be inappropriate for other tasks e.g., to distinguish male from
female faces. Another example would be a reactive controller for plugging a
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socket into a power point, which is not directly of use for another task such
as grasping a cup.

A number of unsupervised learning methods produce generative represen-
tations which allow partial approximate reconstruction, or hallucination, of
the input data. According to Grossberg [54], reconstruction is central for a
two-way processing cognitive system. Memory traces in the short term mem-
ory could activate the long term memory forming a reconstruction, which gets
compared to the momentary input. This mechanism allows categorization and
establishment of a reference frame, forming a set of high-level expectations.
These expectations influence further processing in a top-down manner, by lim-
iting the contextual frame, checking for consistency, providing missing data
etc. Cognition is therefore performed as a two-way, bottom-up and top-down
process. Comparing the input to the “hallucination” can reinforce the good
hypotheses in the interpretation and inhibit inconsistent parts such as noise
and occlusions. A two-way interaction also enables the processing and organi-
zation of a huge amount of data, in contrast to the one-way processing with
no feedback. While being significantly faster [114], the lack of interaction with
the higher levels of a one-way processing schema could lead to a combinatorial
explosion of complexity.

Nevertheless, supervised non-generative methods can produce simpler rep-
resentations, which can be more efficient for specific tasks they are tuned for.
Our goal should be to combine both, unsupervised generative methods and
supervised non-generative methods, in order to obtain representations, which
are general enough to enable a two-way processing and robust recognition,
and to complement them with features, which are tailored for specific tasks.

1.4.3 Learning

Modes of learning

Learning can be considered using a number of different modes:

Tutor Driven A user (tutor) shows to the system an object or an action and
explains to the cognitive system what he/she is showing or doing. The tu-
tor can also provide figure-ground segmentation (e.g., showing the object
on a black background), which facilitates the learning process and enables
the creation of a reliable representation. In a similar manner, the tutor
can guide the agent around the space and give it additional information
(e.g. coordinates) to facilitate the creation of a map. In such a learning
scenario, the user has a high degree of involvement.

Tutor Supervised A cognitive system detects a new object, an action, event,
affordance or a scene by itself and builds its representation in an unsu-
pervised manner. Then it asks the user to provide additional information
about the object or action (e.g., What is this object, action or room?).
The involvement of the user in the learning process is now significantly
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reduced, yet it still assures that the produced representations are reli-
able/consistent.

Exploratory A cognitive system detects a new instance of an object, action,
event or scene, tries to recognize (categorize) it (using previously acquired
knowledge, statistical properties, etc.), and then updates the representa-
tions accordingly. Such a learning scenario does not require any involve-
ment on the part of the user.

To speed up the initial phase of the learning process and to enable devel-
opment of consistent basic concepts, one could start with mainly tutor-driven
learning with many user interactions. These concepts would consequently be
used to detect new concepts with limited help from the user (an important
role will be played by the dialogue between the cognitive system and a user).
Later on in the process, when the ontology is sufficiently large, many new
concepts could be acquired without user interaction.

Learning is embedded in the perception-action loop but must go beyond
simple percept-react cycles involving deliberative processes such as reason-
ing and planning. This is particularly important in tutor supervised and ex-
ploratory modes of learning, where the agent must plan how to interact with
the world so as to learn effectively. This will in turn require reflective pro-
cesses to modify the learning strategy, as well as a model of motivation and
attention.

Continuous learning

As mentioned in Section 1.2.3 in order to avoid evolutionary time-scales in
the development of the system, it has to initially encompass a certain level of
pre-defined functionality and knowledge. It then has to be able to build new
concepts upon these. It needs to do this throughout its lifetime.

It is therefore important that the representations employed allow the learn-
ing to be a continuous, open-ended, life-long process. The representations
should not be learned once and for all in a training stage and then used in
their fixed form for recognition, planning and acting. They should be con-
tinuously updated over time, adapting to the changes in the environment,
new tasks, user reactions, user preferences, etc. So there will be no strict dis-
tinction between the activities of learning, planning, recognising, acting and
introspection: these activities will be interleaved.

This is a non-trivial challenge. For example, most of the state-of-the-art al-
gorithms for visual learning and recognition do not consider continuous learn-
ing. They follow the standard paradigm, dividing the off-line learning stage
and the recognition stage [155, 153, 123, 84, 85, 68, 2, 45, 78]. Most of these
approaches are not designed in a way which would enable efficient incremental
learning, which is a basic prerequisite for continuous learning.

When having a hierarchical or multi-layered organization of representa-
tions, one has to ensure, when performing continuous learning, that the rep-
resentations are updated on all levels and that also all mutual dependencies are
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updated accordingly, to assure the consistency of the representations. Some
of these updates would need to be performed on-line (thus they have to be
simple and fast) while some of them may be performed off-line from time to
time (during the agent’s “sleeping mode”) by processing several updates at
once.

There are two issues which are very important for reliable continuous learn-
ing. First, the representations have to be carefully chosen, such that they must
allow efficient upgrading with the newly acquired data. Second, it is important
how new data is extracted and prepared. When this is performed under the
user’s supervision, this operation is risk-free in the sense that the algorithm
can update the model with high confidence. On the other hand, when the
information, which is to be added into the representation, is autonomously
extracted by the agent in an unsupervised manner (e.g., using a recognition
procedure) there exists a possibility of propagating an erroneous extraction
from the data through the learning process. Consequently, the representation
could be corrupted with false data, resulting in poorer performance and a less
reliable representation. Robust mechanisms, which prevent such propagation
of errors, play an important role in the process of continuous learning.

Similarly, the already learned concepts should facilitate learning of new
concepts. For instance, it should be easier to learn to recognise a new object
after a hundred objects have previously been learned than only after a few
objects have been considered. In the former case, information is captured in
the representations of already learned objects, which should make learning of
the new object easier. Such behavior (which is in accordance with some of the
properties of human perception) is not a characteristic of many state-of-the-
art algorithms for visual learning.

1.4.4 Perception-Action Modelling

In planning and acting approaches fall into two broad classes, although there
are now points of contact. On the one hand there are abstract relational
representations of the effects of actions as used in classical AI planning. On
the other there are probabilistic models of action effects in continuous spaces
as used in robot localisation and mapping. The former are general, and non-
task specific, but assume observability of the world, and a hand-constructed
abstraction from sensor data. Reasoning with them is also inefficient. The
latter capture uncertainty in both action and observation, and are tractable
for localisation and path planning in continuous spaces. They are, however,
typically tied to geometric representations of space, and in some cases to
quite strong assumptions about the sensors used. One of the tasks of this
projects has been to try to connect these different types of representation in
such a way that updates to one representation can be propagated to other
representations.

In neither case are the representations of actions entirely suitable for con-
tinuous learning. Some attempts have been made to achieve this. Early tech-
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niques like chunking attempted to capture reusable patterns of behaviour,
and probabilistic models of actions allow the natural integration of new ex-
periences into existing action models. But our agents also need to learn to
identify and acquire new action models on different time-scales, recognise new
events, introspect about their causes and thus identify affordances for specific
tasks.

Analogously in the literature on planning and learning to act there has
been some work on automatic relevance detection when learning action mod-
els. This can be seen as a simple form of affordance learning, and has been
studied in, for example, reinforcement learning. These algorithms learn action
models that are more efficient because they are task specific. These are ac-
quired by identifying features that are relevant to predicting the outcome on
the task. The state-of-the-art techniques, however, work only with unstruc-
tured or propositional representations, and rely on statistical methods to de-
tect the affordances. Another issue has been how knowledge be transferred
from one task specific representation to another.

1.4.5 Continuous Planning and Acting in Dynamic Multiagent
Environments

Continuous planning

Planning and acting in realistic environments poses a number of difficulties
to artificial agents many of which are due to the dynamic nature and partial
observability of such environments: Other agents’ actions as well as naturally
occurring events (e.g. sunset) may change the agent’s surroundings in ways
it cannot foresee, control or even perceive. It is thus crucial that during plan
execution agents react according to the perceived changes (e.g. stop moving
when there is a human standing in your way). Unfortunately, on the one hand
not all plans can easily be repaired during plan execution, on the other hand
with increasing dynamics of the world an agent’s knowledge will become less
accurate and its plans more likely to be not executable or to achieve undesired
effects. However, it is also not possible to give up planning at all or to use
purely reactive forms of planning [3] since its lack of flexibility does not allow
to account for diverse and varying goals and its lack of knowledge may prevent
an agent from selecting a “good” action to perform without some lookahead
planning.

Thus contingencies have to be taken into account already during the plan-
ning phase. Traditionally, research in AI Planning has addressed this problem
in the subfields of conditional planning [115, 14, 60] and probabilistic plan-
ning [21, 82]. The problem solved by conditional and probabilistic planning
algorithms is to find plans that will work not only for a given initial state
but under all circumstances imaginable, a fact that makes the problem com-
putationally hard [115, 82]. Considering the large number of unobservable
features and of possible contingencies in dynamic multiagent environments it
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is clear that even small-sized problems will be hard to solve by conditional
and probabilistic planners.

Luckily, in realistic domains (like those considered in the CoSy project)
there is often no need to devise universally executable plans before acting as
agents will continuously plan, act, monitor their actions, and learn in the same
environment. Therefore, in this project techniques have been developed that
allow agents to postpone the resolution of contingencies and handle them
only when they actually occur. Ideally, an agent learns from past experi-
ences which contingencies it can easily solve by re-planning at execution time.
During the planning phase the agent can then simply “ignore its ignorance”
about those contingencies. Instead of a conditional plan fragment, agents use
so-called assertions in their plans, non-conditional pseudo actions achieving
facts whose actual achievement will be planned for later. Assertions consist of
preconditions and effects just like normal actions and special planning trigger
conditions describing under which conditions in later phases of a planning-
execution cycle detailed planning for the assertion’s effect will be carried out.
Trigger conditions mainly consist in a set of state variables whose values are
unknown to the agent in the current state. As soon as the agent can observe
the actual values of these variables a detailed sub-plan achieving the assertion
is searched for.

The planning agent research goes beyond classical planning in integrating
planning and execution into a continuous planning agent. It contrast to related
approaches [156, 8, 158] the research goal of this project is not focused on
plan repair or re-planning5 but on planning under incomplete information
and partial observability. Unlike the conditional and probabilistic planners
presented earlier contingency resolution is based on postponing the solution
of parts of the planning problem to later points in time. In their use of abstract
pseudo actions that are decomposed into executable actions the resulting plans
resemble hierarchical task networks [159, 41, 42]. In our approach, however,
the abstraction hierarchy is not explicitly given, but the decompositions can
be planned by the agent itself during a later phase of the planning-execution-
monitoring cycle. Also the purpose of the abstraction is different from HTN
planning: while HTN decompositions embody knowledge about how to solve
subtasks, in our project assertions essentially represent a way to reason under
imperfect knowledge.

The approach to automatically interleaved planning and execution taken
in this project relies on explicit modeling of an agent’s perception. Assertion
achievement is planned for only when the observations specified by the trigger-
ing conditions can be made. It is therefore an important part of the proposed
project to model different perceptors and sensing capabilities in a general way.
There are two possibilities for modeling sensing: automatic sensing and active
sensing by executing sensory actions [121] which both are allowed in our rep-
resentation. Making perception explicit in this manner allows agents to plan

5 Modern planners like FF [62] allow fast re-planning whenever it is necessary.
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their own sensing, i.e. to actively try to reach states in which observations
can be made and thus to reduce their ignorance. Both kinds of sensing are
modeled as perceptive events, active sensing events being triggered by explicit
sensing actions of the agent while automatic sensing events “fire” similarly to
domain axioms [142] (also sometimes called derived predicates, causal rules,
or indirect effects). In contrast to earlier approaches to planning with sens-
ing [44, 72, 53, 9] the use of perceptive events allows to separate modeling of
the physical effects of events from their perception by an agent. This separa-
tion is especially important for active failure diagnosis (cf. section 1.4.5), but
also to describe when several agents with different perceptors are present in
a common environment (cf. section 1.4.5).

Active failure diagnosis

In the recent years, tremendous advances have been achieved in the field of
mobile robotics. The majority of the work, however, has focused on navigation
aspects such as path planning, localization and mapping. In most approaches
it is typically assumed that the sensors and actuators of the robot are reliable
in the sense that their input always corresponds to the expected input and
that there is no malfunction of the sensors or actuators. Accordingly, these
systems are prone to failure in situations in which a sensor breaks and provides
erroneous data that does not correspond to the assumptions.

Recently, several techniques have been developed to allow mobile robots
to detect or reason about potential failures. For example, Murphy and Her-
shberger [89] present an architecture that allows a mobile robot to exploit
causal models for generating tests about potential failures or changes in the
environment. Leuschen et al. [81] use a mixture of methods to analyze the
reliability of a robot. However, they do not provide means for fault detec-
tion. Scheding et al. [122] analyze the effects of faults to the innovation of a
Kalman filter. They introduce a metric for determining the detectability of
faults. Washington [152] uses a combination of Kalman filters and Markov
decision processes to identify faults on a mobile platform. Whereas Kalman
filters are efficient means for detecting faults, their drawback lies in the limited
capabilities to represent ambiguous situations in which multiple failures could
case the same effect. To also deal with ambiguous situations recently parti-
cle filters have been used with great success for fault detection in technical
systems [34, 33, 88, 150, 151, 149]

One important problem in the context of applying particle filters for fault
diagnosis in complex systems is caused by the high dimensionality of the state
space. In practice, a huge number of particles is needed to track all poten-
tial fault states of the system. Therefore, recent approaches have especially
addressed the problem of how to reduce the number of samples during the
sampling process [88, 151, 149].

All these approaches, however, are passive in the sense that they do not
exploit the actuators of the robot to identify potential faults. By generating
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appropriate actions, such as moving for example, the robot can actively gener-
ate measurements that make the robot more certain about potential failures,
i.e. a malfunction of its laser range scanner. This way, the complexity of the
state tracking problem can significantly be reduced. In particular, we have
investigated techniques allowing mobile robots to identify and to deal with
possible sensor failures. A crucial aspect in this context is active exploration,
i.e. the search for actions that allow the robot to identify whether the current
measurements are due to failures of the sensors or whether they correspond to
the current state of the environment. Promising approaches for exploration of
state spaces for active state estimation have recently been applied by various
authors [25, 69, 65, 73, 120]. Most of the systems rely on approximations of
partially observable Markov decision processes.

Throughout this project we have been especially interested in the integra-
tion of symbolic information into the process of active exploration for action
generation. Especially we have been interested in triggering the generation
of samples in the state estimation component based on assumptions repre-
sented at the higher-level planning system (cf. section 1.4.5). In many cases a
fault will be detected by the planning system due to a time-out. The explicit
representation of assertions (such as camera is functional, light is switched
on) allows the system to generate samples in appropriate regions of the state
space. This way we exploit high-level knowledge about the robot to efficiently
generate actions that reduce the uncertainty at lower levels. To generate sam-
ples we have used techniques similar to those presented by Lenser and Veloso
as well as Thrun et al. [79, 144]. Similar integrations of high-level and sym-
bolic and probabilistic representations has been applied successfully in the
past [58, 13]. Independently of actions triggered by the planning system, the
robot permanently monitors its state using a particle filter. To efficiently de-
tect failures, however, we exploit knowledge about the effects of typical faults
and generate the samples according to likely states [79, 144].

Based on the sample-based representation of the posterior about the po-
tential states of the system the robot can then generate actions that reduce its
uncertainty about the potential failure conditions. In this context, techniques
such as those mentioned above [25, 69, 65, 73, 120] are used. Once a fault(s)
has been identified, the high-level system is notified so that appropriate ac-
tions can be generated at the planning level.

Collaborative planning and acting

The modeling and planning techniques suggested in section 1.4.5 help indi-
vidual agents to act continuously in dynamic environments. However, those
techniques do not account for the fact that the dynamic nature of most en-
vironments is a consequence of the presence of multiple agents. If this is the
case, instead of being a handicap the dynamics can be exploited by means of
cooperation. The notion of cooperation is at the heart of the CoSy project:
artificial and human agents cooperate to solve problems, both by supplying
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each other with information and by executing parts of collaboratively devel-
oped plans. But cooperation is not limited to human-robot interaction. A
robot must also interact with other “intelligent” household appliances. (For
example, the Fido robot and the dishwasher may work out a plan together in
which the dishwasher closes it door and starts cleaning the dishes when Fido
has filled it). Sometimes it will even be necessary to collaborate with remote
agents via the Internet (for example the CoSy repository might be such an
agent, providing details of a sub-plan for Fido).

Collaborative action planning is not possible without communication.
However, different groups of agents may have different ways to communicate.
Groups of artificial agents can communicate using special-purpose languages
with rigid protocols, while human-robot interactions should allow the human
to use more convenient methods (cf. 1.4.6). For the sake of scientific clarity,
we have adopted an abstract view of communication, assuming that a group
of agents has decided on a common language and protocol that allows them to
communicate beliefs and intentions by abstract “communicative acts” if they
decide to do so. In this context the only focus is to investigate when and why
agents should engage in communication, not how. For the case of human-robot
interaction the latter question is dealt with when formulating how a concrete
dialogue can be generated on the basis of the abstract communicative acts
produced during the planning process.

Planning in multiagent systems or Multiagent Planning (MAP) is an am-
biguous notion. It can describe both a planning process distributed among
multiple planning agents as well as the concurrent execution of plans involv-
ing multiple acting agents. In most real-world domains both dimensions are
directly coupled as agents are both searching for and executing plans. Tra-
ditionally however, subfields of AI have almost exclusively concentrated on
either one of the two aspects. The field of AI Planning, for example, has de-
veloped formalizations of concurrent plans featuring durational, overlapping
actions and nontrivial joint effects [105, 51, 17, 10, 48, 20], but to date only
centralized planning algorithms have been developed for these expressive for-
malisms. In contrast, distributed planning algorithms developed in the fields
of Distributed Artificial Intelligence (DAI) and Multiagent Systems (MAS)
have mainly focused on coordination and merging of individually found plans
[49, 50, 40, 126, 145], ignoring the specific issues of both planning for concur-
rent execution and planning with incomplete knowledge (cf. 1.4.5).

The example of planning with incomplete knowledge is typical for realistic
multiagent applications like the ones studied in the CoSy project. It also shows
how an artificial separation of single-agent planning, multiagent coordination,
and individual execution has led previous research to neglect important prop-
erties of MAP domains: centralized planning algorithms, for example, have
ignored the need for coordinative actions (synchronization, communication)
in a multiagent plan; distributed planners have assumed that plans (or sets of
possible plans) can be found individually before coordination starts; nontrivial
effects or interferences of synchronously executed actions have been modeled
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and taken into account by neither approach. Just as the continuous planning
agent presented in section 1.4.5 is intended to couple planning, monitoring,
and execution its extension to the multiagent case in this project interleaves
(and thus integrate) planning, coordination, and execution in a novel way.

A key element for this integration is a formalism that allows agents to
reason about their distributed planning problem as well as about the concur-
rent execution of the partial plans found so far. Parts of such a formalism
have already been developed [22, 23] and has now been extended in the CoSy
project.

Several other formalizations of multiagent planning problems and plans
rely on hierarchical task decompositions [38, 37, 55] which allow to circum-
vent some of the aforementioned problems. Most hierarchical MAP algorithms
assume implicitly that these decompositions are predefined, i.e. explicitly for-
mulated by the domain designers, and that they are commonly known among
the agents [37, 35]. However, in general this cannot be assumed. In fact, dia-
logues often manifest an ongoing distributed search for a valid task decompo-
sition [83]. Assertions as a new form of abstraction introduced in this project
(cf. 1.4.5) allows agents to build and learn hierarchies automatically and in-
teractively. In the multiagent setting individual planning and learning of as-
sertions have been extended with the possibility to share assertions through
communication or devise them collaborative through dialogue.

If planning and execution of partial plans are to be interleaved it is a
necessary requirement that even the plan fragments produced are at least
executable. Many classical and modern planning algorithms do not have this
property. For example, regressive partial-order planning algorithms [86, 106,
93] search for solutions starting from the goals and may produce an executable
plan only when the problem is completely solved. The same is true for many
hierarchical planners [141, 157]. However, in recent years planners based on
heuristic forward-search have been developed [11, 18, 62] that not only are
more efficient than previous approaches but also produce executable plan
fragments during the search process. Unfortunately, these algorithms produce
totally-ordered sequences of actions which makes coordination (i.e. merging
or synchronization) of several agents’ plans difficult. In the CoSy project we
have investigated techniques for progressive partial-order planning that allow
one to combine executability and efficiency of forward-search techniques with
the flexibility of partial-order planning. When used within the continuous
framework of planning with assertions forward-search techniques can be also
extended to hierarchical planning [91].

1.4.6 Models of action & communication for embodied cognitive
agents

Often, an agent finds itself in an environment that it cannot fully know, con-
trol, or introspect. It is here important to explore the possibilities that collab-
orative action and communication offer to an agent to explore its environment,
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either on its own or together with other agents. Particularly in the case of joint
exploration and problem-solving, natural language is the most efficient and
effective way to communicate between artificial agents and humans: Instead
of learning an artifact-specific language, a human can use the communication
means she is accustomed to with little or no learning curve. This perspective
complements the other two settings, where we focus primarily on how an agent
can explore its environment through perception of the environment’s spatial
organization, and the objects found in the environment.

An important aspect of natural communication is that it is inherently
multi-modal. Humans communicate not only using natural language, but also
through gesture and other non-verbal acts such as body positioning, move-
ment, or pointing. There are long-standing efforts to construct multi-modal
dialogue systems that are able to capture various of these aspects: Not only
communication from system to human can use a variety of modalities (for
example spoken and graphical output), but also that from human to sys-
tem (for example spoken input and gesture, e.g. [29], or pen-based input, e.g.
[66, 101, 102, 67]).

However, despite significant advances in the design and building of multi-
modal dialogue systems over the past decades, these systems are still mostly
confined to relatively simple tasks that require little or no flexibility in the
kind of communication to be expected in such a setting. Most if not all of
the system’s behavior is structured to follow rigid predefined patterns. This
does not allow such systems to carry out more flexible and adaptive, natural
conversations between human and computer.

The literature on multi-modal dialogue systems [29, 7, 138] has raised sev-
eral issues that need to be addressed, if we are to develop systems that are
capable of flexible and adaptive, natural communication, thus going beyond
the typical master-slave relation common to dialogue systems for information-
seeking, moving to mixed-iniative systems as for example required in a col-
laborative problem-solving setting.

Integration of communication and action. Under a Gricean view of lan-
guage, dialogue rests on coordinated reasoning about and determination of
communicative intentions [5, 138]. To understand language, the issue is to
build a representation of the communicated content (language-as-product)
and relate that content to (communicative) intentions (language-as-action).
This presents challenges both in utterance interpretation (for example when
combining multiple modalities like speech and gesture, cf. e.g. [101, 67]) and
generation (e.g. [139, 137]). We need to understand intentions as commit-
ments in linguistic action, cf. [110], preferably separating generic strategies
for (collaborative) problem-solving from domain-specific knowledge [5, 6, 15].

Recognition of intention, attention, and grounding/understanding.
For an important part, communication is about communicating intentions
[30, 110, 111], possibly in the context of planning and expressing complex
(group) action [55, 83]. This is linguistically realized through different types of
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dialogue moves (e.g. Searle’s speech acts, DAMSL, or the VerbMobil ontology)
or generic problem-solving acts [6, 15], with the possibility to shift attention
among intentions [56, 15].

Besides recognizing intentions, and shifts in attention, an important point
is the grounding of understanding. An agent must be able to signal whether it
understood what was communicated, and it must be able to recognize whether
another agent has or has not understood. The agent needs to be able to ask
for and provide feedback or further clarification, as necessary. This also relates
to the problem of belief -modeling, possibly involving notions such as trust.

Mixed-initiative An inherent aspect of natural dialogues is mixed-initiative.
Agents must be able to lead or yield control in the conversation in ways that
best accomplish their goals, i.e. they should be able to take or release the
initative to speed up the solution when opportunities arise [4]. To be able to
model mixed-initiative, incremental strategies are needed for understanding,
planning, scheduling and execution/generation, cf. [138, 7]. This issue becomes
even more apparent for embodied cognitive agents: Being set in a partially
unknown and unpredictable environment, agents can hardly expect to work
out the full details of a plan at the outset without ever having to change
it in the light of the perceived results – new opportunities will arise (the
ramification and qualification problems, cf. [112]).

The embodiment and the cognitive character of the systems we have con-
sidered in this project add several new issues and twists.

Cognitively plausible architecture Multi-modal dialogue systems are en-
gineered so as to optimally perform the task that they have been designed for.
Resource-bounds, introduced to increase the naturalness of human-system
communication, may appear ad-hoc unless they are motivated on cognitive
grounds. For example, there is no reason for a system’s memory and its rea-
soning capabilities to be bounded; it is humans who forget or are unaware of
some logical consequences of their beliefs (cf. the logical omniscience problem).

One step in a more cognitively oriented direction is the introduction of in-
crementality and resource-boundedness into dialogue systems capable of flex-
ible and adaptive, natural dialogues [7, 138]. The challenge is to let these
mechanisms be based on models of human sentence processing, offering the
possibility to handle complexity of communication in a way that is natural to
a human language user.

Furthermore, multi-modal dialogue systems are normally endowed with
precoded world knowledge and linguistic skills required for carrying out their
tasks. From a cognitive perspective, the challenge is to develop models that
could explain how agents develop such knowledge and skills, i.e. acquire them
over time through interaction with the environment and other agents.

Finally, multi-modal dialogue systems usually have dedicated input chan-
nels. For example, the pen-input channel is dedicated to pen-input, and not
to any other form of interacting with the environment. In a cognitively plau-
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sible setting, channels are more likely to be multi-functional: Human visual
perception not only perceives gestures in communication, but for example
also objects and events in the environment. This gives rise to various chal-
lenges for both recognition and realization: How to separate different types of
information arriving over a multi-functional input channel? How could differ-
ent multi-functional modalities be combined to aid, and correct, recognition
(cross-modal recognition)? How can a particular type of information be sent
through a multi-functional modality unambiguously?

Embodiment in an unknown environment Most multi-modal dialogue
systems developed so far are not embodied – either not at all, like information-
seeking dialogue systems or more complex systems like TRAINS or TRIPS
[5, 7], or they are set in a virtual environment, e.g. [28, 29]. Embodiment in a
physical, unknown environment adds new challenges.

Because the environment itself may be dynamic, the agent needs incre-
mental strategies to handle not only flexible dialogue, but also environment
interrupts.

The qualification and ramification problems of the agent’s knowledge of
the world [112], coupled with the vagaries of sensoric-motoric control and
perception, require the agent to actively perceive the environment and the
outcome of its actions; it is not “said and thereby done”: Communicated
intentions, and the actions they represent, may work out differently in reality
than expected.

1.4.7 Multi-Modal recognition and categorisation

The capacity to recognize and categorize objects plays a crucial role for cog-
nitive systems in order to compartmentalize the huge numbers of objects it
has to handle into manageable categories. In order to achieve this, the ability
to learn from experience and adapt its object models must be at the core
of any cognitive system. There is consequently a need for methods for au-
tomatic acquisition of models, and structuring those models into hierarchies
to allow the system to operate in an open-ended fashion, i.e. beyond initial
specifications. This is related to points made in other sections about the need
for perceptual discretization or chunking to support deliberative processes of
exploring branching possibilities, e.g. searching for plans or explanations, in
order to avoid intractable branching continua.

Quite interestingly, for humans it was shown that entry-level categorization
(i.e. “Is this a dog/cat?”) is much faster in human vision than recognition or
identification (“Is this my dog/cat?”). These findings suggest that humans
do a sort of coarse to fine categorization and recognition of objects. This is
also reflected in language by the way humans talk about objects and scenes.
Evolution probably also developed the ability to categorise, e.g. food, prey,
shelter, before the ability to identify individuals, which for many organisms
is not a requirement.
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In this project we have taken the approach that dialogue models and ob-
ject models should cross-fertilize through cross-modal integration. Learning,
and linguistic semantic ontologies have been tightly coupled with perceptual
and planning ontologies. On the one hand language can serve as a trigger
and provide guidance to learn and acquire new models but also to structure
models and representations. On the other hand the role of object models and
representations used in perception and action may serve as partial determi-
nants of the semantics of the language. This is one example of what we refer to
as cross-modal integration. As mentioned before, an important issue for any
cognitive system is the ability to communicate about its internal knowledge
and state so that a particular challenge will be also to communicate about
the acquired models and model hierarchies of objects.

Recognition of objects is obviously one of the most fundamental problems
of computer vision and consequently has been studied widely. However, one
problem in recognition is that most approaches have been domain specific or
tailored to narrow domains. In addition most approaches have been based
on single visual cues such as invariants (points, lines, structures). It is here
suggested that recognition must be based on use of multiple visual cues as no
single cue is robust in a general setting [127, 87, 132]. In addition there is a
need to exploit contextual information to constrain the set of potential objects
[146]. Goal-oriented information has been utilized in a few recent efforts such
as [32, 47]. In addition context information has been used in a number of other
efforts as for example reported by [74, 90, 36].

In the context of categorization some have attempted to use the idea of
functional representations for modeling of object categories such as chairs
[136]. These efforts have, however, assumed access to a full CAD model of
the objects of interest, which clearly is unrealistic. Recently there have been
efforts to use simple geometric features for categorization of objects such as
cars and tools [154, 46], but it is not immediately obvious that this effort will
scale and generalize. In general conceptual models have been used as the basis
for categorization, yet it is not immediately obvious that such collections of
objects form visual categories in a natural fashion and there is thus a need to
revise the concept of categorization to match visual categories, which may be
combined into super-sets that form conceptual categories.

However by interacting with the objects and observing others using and
interacting with these objects another route for cross-modal learning is pos-
sible and have been pursued in this project: Here, cross-modal integration
is between perception and action where the system can start to represent
and build models of object affordances and then can recognize and categorize
objects based on those models.

Therefore, through construction of multi-cue and cross-modal representa-
tions that integrate these representations it is likely that more efficient and
robust mechanisms for priming, verification and recognition can be derived.
Another key ingredient is the use of task-oriented context driven methods for
association in the context of multiple cues that each are distorted due to un-
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certainty. Therefore as part of this project the visual recognition a multi-cue
and cross-modal basis for recognition and categorization have been studied.

Another important and notorious problem in computer vision in general,
is figure-ground segmentation in which objects are separated from the back-
ground. A very rich set of studies have addressed this problem. A fundamental
premise is that figure ground segmentation only makes sense when studied in
a task context, i.e. the segmentation is task dependent. In this context the role
of discriminant vs. representational model characteristics have also been stud-
ied. The former are required to recognize a large variety of objects, whereas
the latter allow segmentation of those objects in novel scenes.

Our work on the scenario “Models for Objects and Concepts” combines the
above ideas regarding the need for cross-modal and multi-directional process-
ing in segmenting the environment in a context- and goal-dependent manner,
including detection of regions of the environment about which the agent is un-
clear or confused. Depending on the agent’s current goals, such regions may
either be ignored, or else investigated more fully by re-directing attention to
possible sources of disambiguation or possible cues to check doubtful partial
interpretations. This not only helps to facilitate figure ground segmentation
(combining bottom-up and top-down processing) but also allows testing, ver-
ification, and subsequent improvement of the models learned by the agent.

1.4.8 Scenario driven research

Sections 1.4.1 – 1.4.7 have discussed basic research challenges involved in the
design of cognitive systems. Each of these key challenges are important by
themselves but more importantly they also have to be studied in the context
of integrated systems, where the system level issues can be studied as part
of operational systems embedded in natural environments. To complement
the studied of individual challenges two scenarios were defined as a basis for
systems integration and empirical studies. The scenarios were:

Exploration/Mapping of Space A fundamental competence of a cognitive agent
is the ability to recognize its own interaction with the environment and to
be able to generate an internal model of its environment as a prerequisite
for operation and interaction with the environment. In these scenario the
issue of self-recognition and insertion into the environment. This involves
modelling of perception interaction and recognition of the embodiment.
Once such a competence is available the agent can move about in the en-
vironment and generate an internal model of the environment. Without a
complete/comprehensive method for categorisation of objects/structures
in the environment the agent must be assisted by a tutor to recognize /
disambiguate structures in the environment. The emphasis of this scenario
is thus on spatial models and self-awareness.

Models of objects and concepts For interaction with the environment, rea-
soning about scenes, and communication with other agents it is essential
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that the system has facilities for acquisition of models of objects, events
and structures. This involves both static objects and dynamic phenom-
ena. The number of objects present in a natural environment calls not
only for recognition, but for categorisation of objects to place them in a
spatio-temporal hierarchy. For operation and interaction with objects pure
RE-cognition will facilitate a limited complexity of interaction and there
is thus a need to recognize/classify affordances as a more generic level
of modelling of structures and objects. In this scenario the emphasis has
been on categorisation of objects, events and structures. Again the agent
will cooperate with other agents in its environment to accomplish its mis-
sions/goals. In addition the agent will actively explore the environment
to “discover” new objects and structures.

Each of these three scenarios discussed below:

1.4.9 Exploration/Mapping of Space

A fundamental aspect of any autonomous / intelligent system is the ability
to navigate through semi-structured environments. Navigation involves three
questions: i) Where am I? ii) How do I get to my destination? and iii) how
do I detect that I have arrived at the destination? All of these questions are
closely related to a representation of space and equally important the ability
to reason about space. For autonomous operation in everyday life the system
needs

• A self-image that models the relationship between perception and action,
to understand how control actions influences perception of the world.

• Methods for localisation in the world (detection of present position)
• Methods for construction/acquisition of a map of the environment
• Methods to plan a sequence of actions (subject to the constraints/competencies)

for task achievement

In terms of basic cognitive competencies (representation, recognition, learning
and reasoning) each of these four issues have differing implications on the
system architecture, models of the environments, interaction with other agents
and operation.

Self-recognition and spatial insertion

Affordances and newer approaches:
In AI and robotics, the classic approach to building an agent that is able

to spatially explore its environment has been to assume that it is necessary
to create, within the agent, an internal representation or cognitive map of the
environment in which spatial locations (coded either in absolute or relative
coordinate systems) are associated with objects situated at those locations.

In biological systems however such an approach is unrealistic because both
the notion of location and the notion of object are not well defined.
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As concerns the notion of location, biological agents grow and change, and
so are often faced with modifications in their physical make-up which make
it difficult to obtain accurate, repeatable measurements. An agent might for
example be carrying a load or wearing interfering apparel, or moving in a
situation where terrain characteristics like mud or water modify the charac-
teristics of its motion and change the relation between its motor commands
and the spatial displacement they produce.

Similarly, a biological agent has sensors whose properties may change over
time, or which may be modified by environmental factors: an agent may be
moving at night, in fog, under water, in a dust storm, in conditions of unusual
lighting, where the response characteristics of its sensors might be severely
modified.

Both these examples show that the notion of “location”, simply conceived
as a coordinate system related to agent displacements, as measured by its
sensors and modified by its effectors, cannot be easily maintained in robust
biological systems.

As concerns the notion of object, here again similar problems arise. An
agent that establishes a map of its environment in terms of objects must nec-
essarily rely on some way of describing and coding the objects. And yet in
real biological life, the sensors used to identify objects may be damaged or
affected by environmental conditions. Similarly, the objects themselves may
suffer modifications or changes that make them no longer identifiable by simple
pattern matching techniques. For example, houses may be repainted, table-
cloths changed, furniture replaced, vegetation may grow, etc.

The notion of affordance [52] may be biology’s answer to these problems,
and a development of this notion, the notion of sensorimotor contingency
[100], can be of additional help.

Take as an example the notions of “wall”, “door”, “table”. In a classical
approach to wayfinding, such entities may be stored in the cognitive map
of a region by way of their particular visual characteristics: surface color,
shapes, orientation, etc., and their associated locations. But exact identity
or location of physical characteristics are generally unimportant as far as a
biological agent is concerned. What is important is what the agent can do
with respect to these entities. A wall is something which you can move along
but not through. A door is a thing through which you can see things outside
the room, and by which you can go out of the room. A table is a thing that
you can put objects on.

To a large extent these properties are invariant with surface properties
and visual aspect. The tablecloth can be changed, the size of the door can be
modified, the wall can have a new picture hanging on it.

The trick is to find a way of coding such aspects of the agent’s environment,
a way which does not depend on the particular visual aspects. One partial
answer to the problem is to use multimodal sensory cues. Making use of tactile,
auditory, or other sense modalities may provide precious help.
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But an additional, perhaps vital factor may be that in order to succeed
in this task, biological agents are helped by use of their ability to move and
manipulate their environments. For example, an open door can be detected by
the fact that because of parallax, when the agent moves there is a well-defined
patch of visual flow (coming from outside the door) which moves slower than
the surrounding surfaces (corresponding to nearby walls). A table is a thing
such that when the agent puts its hand on it, the table resists its pressure,
and such that when the agent moves with respect to it, the flow field produced
corresponds to that of a horizontal surface.

The world as an outside memory:
A second strategy that appears to be used by biological agents in order

to maximize their efficiency appears to be the idea of relying on the outside
world as its own representation.

Instead of making a detailed internal representation of the world, with the
risk that this representation will become out-of-date when the environment
changes, biological agents often use crude global cues in their environments to
allow them to home in to elements that they are interested in. For example,
instead of coding the GPS coordinates of the coffee container, humans know
it is in the cupboard, and that the cupboard is in the kitchen. Once they have
moved into the kitchen they look for the cupboard and find the coffee.

This way of coding the environment has several advantages. The first is
that it requires little memory. The second is that it is robust with respect to
variations in object properties and locations. Changes in the exact position
of the cupboard in the kitchen, the coffee in the cupboard make no difference
to performance. The exact shape of the cupboard, the marks on the coffee
package are of little importance, since these have not been stored. This way
of coding information is also insensitive to changes in sensor and effector
properties: Since it is not visual templates of objects which are coded but
sensory and motor, code-independent aspects of the way the objects change
as the agent moves, degradation or modification of the agent’s sensory and
motor apparatus will have little effect on behavior.

Clearly however this coding strategy is not always possible. There are many
cases where surface markings, shapes etc. of objects, which cannot be coded
in an intrinsic, code-independent sensorimotor fashion, must be retained. Fur-
thermore there are cases where the exact identity of an object is important
and must be stored, for example when an agent is required to detect small
changes in the environment. In that case a supplementary encoding strategy
must be used.

The problem of how to combine and coordinate both modes of representa-
tion must be solved. It is possible that this might be done within a Bayesian
framework. It is possible that such an approach might provide an instantia-
tion of the biological notion of attention, in which agents select useful parts
of their environment to attend to, be it at the time of encoding or during
everyday exploration.
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Mapping of the environment

Mapping of the environment [116] has been studied both in terms of data
acquisition with subsequent map construction (off-line) [39],[75], [125] and
more recently as part of Simultaneous Localisation and Mapping (SLAM)
[113], [143], [57], [80] and [160]. The by far most dominating approach to
localisation and mapping is based on use of geometric features encoded in an
occupancy grid or as a metric map of features such as lines, corners, feature
compositions, etc. The advantage of such maps is that they can be constructed
using standard parametric estimation techniques such as Kalman filtering.
Such maps do, however, have a number of problems:

• Geometry may not in an accurate fashion encode the concept of “place”.
• It is not immediately obvious that the approach scales to natural large

scale environments.
• The maps are unrelated to the embodiment of the agent.
• The maps may fail to contain crucial information for planning, spatial

reasoning, etc.

While the geometry based methods are well suited for basic navigation
there is obviously a need for a scalable, embodied, and richer representation
for cognitive systems. The requirements for a model of the environment (for
the purpose of moving about) are manifold:

• Encoding of position of objects/places
• Encoding of environmental topology
• Invariant to changes to perception system
• Invariant to changes in action system
• Facilitate spatial reasoning
• Allow localisation

In principle two different approaches can be considered to the problem of
spatial exploration/mapping. i) direct mapping of space based on a sensori-
motor map, ii) encoding of space as a hybrid topological, geometric/semantic
map that facilitates reasoning. Both types of representation carry different
types of advantages, which is the reason why both approaches have been
pursued as part of the research in Cosy.

To enable operation in the vicinity of objects and allow interaction with
them there is a need to consider the “affordances” of the objects, i.e. the type
of interaction and operations that an object facilitates. Acquisition of such
maps can be acquired through direct interaction with the objects through
which the perception-action coupling can be determined and invariances that
allow RE-cognition can be identified. The exploration can here use (at least)
three modes of acquisition.

1. Autonomous exploration: in which the agents explores the environment
on its own and gradually builds up a representation. The exploration can
both both random or pseudo structured in terms of coverage
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2. Operator Assisted: as the agent moves through the environment the var-
ious objects/structures are identified / labelled by the operator and the
agent can query the operator about the objects detected.

3. Supervised: the robot is given a tour of the environment and all objects
are directly identified to the agent.

In practical terms it is of interest to perform research on the use of all three
modes of operation to consider the differences in generated representations
and in terms of efficiency of learning.

In parallel to the generation of sensori-motor maps and their integration
of structures in the environment it is of interest to consider more traditional
hybrid representations of space in which a hybrid topological/graph based
model is used for encoding of the over-all structure of the environment. To
allow recognition of places there is a need to “categorize” objects into classes
that allow relocalisation. At the same there there is a need to construct spatial
maps in which the relations between places and objects are made explicit.
Where traditional localisation and mapping has considered geometric maps
the idea is here to utilize a semantic approach to localisation in which place
recognition is based on recognition of objects specific to a location rather
than pure geometric location. The places are then integrated into a graph
structure that encode spatial relations. Such a representation will not only
allow localisation and mapping but also reasoning about space. A crucial issue
considered here is the handling of uncertainty to allow the representation to
have convergence in terms of geometric accuracy and handling of topological
events such as loop closing. In this approach there is also a need consider the
efficiency of mapping in relation to each of the three interaction approaches
outlined above.

1.4.10 Models for object and concepts

Generally, an agent lives and operates in an external world which is nei-
ther fully known to or predictable by the agent, nor fully introspectable – no
representation is ever equal to the external world it represents. In order to
understand, reason and act in such an unknown and ‘hostile’ environment the
agent has to continuously learn and update its concepts and models about
this world.

This scenario in particular concentrates on the formation of concepts about
objects and object manipulation, as well as action, activities and events. A
particular emphasis is on the joint exploration of, communication about, and
dealing with unknown reality (objects & actions external to the embodied
agents), whereby “unknown” means not only “not-seen-before” but also un-
known in the sense of (ontologically) unknown affordances (“ontological nov-
elty”; surprise & true abduction). In this context the different modes of learn-
ing (tutor driven, tutor supervised, and exploratory) are particularly impor-
tant and their interplay have been explored in this scenario.
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More specifically we have started from the exploration of “static” objects
and simple action, yielding concepts based on a given ontology, objects about
which the agent can obtain further information (introspection) using com-
munication with other agents (requiring interpretation of deictic references).
Also we have worked on the perception, representation, and interpretation of
objects & actions in terms of affordances; introspection of an agent’s notion of
space in terms of (affect-)act-cause-effect, using abductive reasoning (“WHY
don’t I understand?”) and communication with other agents.

In this scenario we deal with the following cognitive abilities of an agent:

• The agent should be able to learn which features of an object, or an ar-
rangement of objects provide an affordance for achieving a certain goal.
The agent should be able to classify or categorise objects by their affor-
dances.

• The agent should be able to verbalise the properties of objects, the rela-
tionships between objects, and the presence (or lack) of affordances, for
semi-novel scenes.

• The agent should be able to infer and verbalise its beliefs about the causes
of events.

• The agent should be able to learn to categorise and recognize objects in
cluttered visual fields under standard lighting conditions using time series
of visual, haptic, verbal, and proprioceptive information.

• Representations of objects should encompass more than just static visual
information; they should take into account also temporal aspects, other
modalities, and higher-level cognitive processes in order to enable different
modes of life-long learning.

• Robustness is an important aspect of a cognitive agent since it is equipped
with imperfect sensors and effectors, and it is supposed to operate in a
partially unpredictable real-world environment.

• The algorithms for visual learning and recognition should not require a
user-specified figure-ground segmentation beforehand. Instead, the system
should arrive at a segmentation on its own based on previous knowledge
and expectations using a combination of multiple cues.

• Robust learning (not just robust recognition) is another very important
issue and should be strongly intertwined with the process of continuous
learning.

• Contextual information plays an important role during recognition and
learning and should be therefore integrated into the representation of the
objects and actions.

Learning of spatial-temporal concepts and causes

In the scenario on exploration and mapping of space we have devised repre-
sentations suitable for expressing, among other things, the qualitative spatial
relationships that exist between an agent and an environment. In the objects
and concepts scenario this has been extended to deal specifically with the
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spatial relationships that exist between objects, and their other properties. In
addition to static spatial relationships an important element of this scenario
will be representations used to express, and learn the way that these relation-
ships and properties may be altered. In effect we aimed to construct action
models automatically, selecting the correct levels of abstraction to use in a
hierarchy of representations.

Currently we have methods that are capable of expressing action models at
either the sub-object (geometric) level or the object level. The former are prob-
abilistic and essentially pose the problem of recognition of action sequences
as being akin to the problem of localisation. They naturally have a time series
formulation which is capable of representing the effects of actions, and there
are also algorithms for learning action models. These types of representations
are widely used in modelling visual behaviour [26]. They are flexible, but are
data-driven, and prone to over-fitting. They have also been applied in limited
cases to categorising time series information from robots. Open questions in
this area include the issue of how to learn more structured models directly
from data; how to identify events occurring over different time scales; and how
to learn to segment robot time series into natural and meaningful chunks.

The abstraction required to model actions at an object level is typically
done by hand, in for example the formulation of AI planning operators in
cognitive robotics. These do not interface easily with sensory information.
This work uses action models based on logics suitable for dealing with events.
Some workers have now linked these directly to sensory processing to per-
form recognition and inference [128, 129, 131]. These systems currently allow
recognition of events from visual or distance data and in some cases inference
of their causes by abduction. There are also rigourous inference procedures,
although these are typically intractable. Neither do they typically incorporate
multiple modes.

Reasoning about causes at an object level is also important because it
gives us a possible way of identifying affordances and expressing affordances
in a relational manner. For example we can say that a teacup and teapot
provide an affordance for pouring tea if the pot’s spout is above the teacup.
The exact vertical distance between them and the exact position of the cup
relative to the spout are part of a geometric description which can be ignored
at more abstract levels of reasoning.

In this scenario we will develop methods that connect the two levels of
description: object and geometric. As in the case of object recognition we
use context, so that recognition of behaviour and object will influence one
another. In summary representations for reasoning about changes in objects
and their relations that we have designed will:

• Efficiently infer causes of events.
• Give insights into natural phenomena such as change blindness and erro-

neous assignment of cause.
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• Allow the recognition and categorisation of objects by the types of inter-
action that they may be engaged in.

• Allow reasoning about change at different levels of abstraction.
• Allow learning about the invariant properties of objects under changes to

them.

Before even beginning to be useful, an agent has to understand its own
body, and the relation of its body to the environment. In the imitation scenario
for example, the agent has to be able to move its arm to a target position, do
eye-hand coordination, and do these things irrespective of whether the arm is
loaded with a load, impeded by some obstacle, or moving in unusual conditions
such as injury or mechanical dysfunction, and irrespective of similar variations
in its sensor characteristics.

Classical schemes for accomplishing these goals generally involve making
precise models of the agent’s motor and sensory apparatus, and generally use
analytical means to calculate the required control sequences.

We propose an alternative scheme based on the notion of intrinsic senso-
rimotor laws. These are intrinsic invariants of the functions that link motor
commands to the resulting sensory changes. The invariants are intrinsic in the
sense that they are independent of the exact physical structure and charac-
teristics of the agent, because they correspond to environmental affordances,
and not to aspects of the agent itself. For example, moving the fingertip in a
straight line is something that can be described in a way that does not depend
on the sensory or motor code that is used by the agent [99, 107, 108].

Multi-modal learning of object categories

Representations. Most of the state-of-the-art algorithms for visual learn-
ing and recognition represent objects and object categories as collections (or
constellations) of descriptors or parts, where each part has its distinctive ap-
pearance and spatial position relative to the other parts [155, 153, 123, 84,
85, 68, 2, 45, 78].

These representations are, however, far too narrow, inefficient, and in-
sufficient for accomplishing tasks which are envisioned in the project. The
representations of objects should encompass much more than just static vi-
sual information; they should take into account also affordances, temporal
aspects, other modalities, and higher-level cognitive processes. They should
also enable different modes of life-long continuous learning. The representa-
tions of objects and concepts should be merged together with representations
of places in a unifying framework.

From the point of view suggested in [99], [107] and [108] the intervention
of action and multimodal intervention can be conceptualized and modelled
naturally by appealing to the notion of intrinsic sensorimotor invariants. Like
affordances, these presuppose, in an essential manner, active exploration on
the part of the agent. For example, within this framework, an object is an
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entity that produces sensory changes which can be reproduced in other en-
vironments (that is, said more anthropocentrically: an object can be moved
around). Object categories can also be conveniently described in this senso-
rimotor framework: a table is a thing whose top surface has certain intrinsic
properties: the agent can glide its hand smoothly over it; the tabletop suf-
fers certain visual transformations characteristic of flatness when the camera
moves with respect to it.

Continuous learning. An essential characteristic of a cognitive system
is its ability to learn. The cognitive system has to be able to modify, adapt,
and expand the ontology. Only by learning can a cognitive system develop
and adapt to new situations enabling autonomous higher level reasoning and
behaviors in a general real-world settings. It is very important that learning
is a continuous, open-ended, life-long process.

Most of the state-of-the-art algorithms for visual learning and recognition
do not consider continuous learning and follow the standard paradigm of the
division on the off-line learning stage (characterized by a controlled environ-
ment, and slow, computationally demanding processing) and on the recogni-
tion stage, where the processing should be fast and should enable recognition
and categorization (also) in unconstrained environments [155, 153, 123, 84,
85, 68, 2, 45, 78].

Most of these approaches are not designed in a way, which would enable
efficient updating of the learned representations, as a basic prerequisite for
continuous learning. In contrast, we have designed representations, which will
not be learned once and for all in the training stage and then used in their fixed
form at the recognition stage. They will be continuously updated over time,
adapting to the changes in the environment, user reactions, user preferences,
etc. A strict distinction between the learning and the recognition stage should
diminish and learning and recognition should be performed intertwiningly.

The idea of continuous learning is natural within a sensorimotor, action-
based framework, where the system is continuously evaluating the effect of its
own actions on its sensory input, thereby effectively continuously recalibrating
its own body schema and sensor properties.

Robustness. Robustness should be another important property of a cog-
nitive agent, since it is equipped with imperfect sensors and effectors, and it
is supposed to operate in a partially unpredictable real-world environment.
The algorithms for object recognition and categorization should be able to
robustly operate in such non-ideal conditions as well. They should not require
an explicit and precise figure-ground segmentation beforehand. An implicit
figure-ground segmentation should be carried out using the combination of
bottom-up and top-down approaches, intertwined with the object recognition
procedure [78, 19].

Furthermore, within an active, sensorimotor approach, the problem of
figure-ground separation is radically simplified, since the agent can, by con-
trolling its own motions, generate sensory changes which allow it to isolate
objects from their surroundings.
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Robust learning is even a greater challenge than robust recognition. Since
during the learning process a model of an object is being built, there is no
previous knowledge, which could be used to determine the relevance of local
descriptors for characterizing the particular object. Therefore, robust learning
should be strongly intertwined with the process of continuous learning, which
could provide enough redundant information to determine statistically con-
sistent data (this information can also be provided by a user acting as tutor).
Only the consistent data would then be used to build the representations of
objects, enabling robust learning (and updating of the representations) under
non-ideal real-world conditions.

Context. Another issue, which has been addressed in the project, is con-
textual information. Traditional object recognition algorithms can, in general,
recognize only isolated objects. Some newer object recognition algorithms are
robust and enable recognition of objects in the presence of occlusions and
cluttered background without explicit figure-ground segmentation. However,
all these algorithms tend to discard background regions and use only the in-
formation contained in the foreground. However, the background (contextual)
information can be very useful: objects usually appear in a specific environ-
ment (context). Thus, context can be very useful for reducing the number
of objects, which can appear in a particular environment, it can increase the
confidence about the identity of the objects (resolve possible ambiguities),
and it can narrow the image area, which has to be explored (set the focus of
attention). These facts have been considered very rarely in the algorithms for
object recognition [146, 98]. Therefore, we aimed at incorporating contextual
information into the representation of the objects and scenes. The contextual
information should be continuously updated, reflecting the changes in the real
environment.

Categorisation. Objects and concepts can be recognized/classified on
different levels of abstraction, considering different properties and following
different goals. Traditionally, computer vision research has frequently focused
on the recognition of specific object instances. While there has been consider-
able interest in the more general problem of object categorisation from the be-
ginning, research has only recently made progress on recognizing object class
members in challenging real-world settings [124, 104, 155, 153, 2, 45, 77, 78].

These approaches try to implement basic-level object classification [117]
using visual input. Having other modalities as well, one could also consider
them for a more reliable object classification. For example, basic level cat-
egories are also specified by common motor programs for interaction with
category members [117, 76]. Therefore functional categories could arise by
grouping objects with similar affordances, ad-hoc categories [12] could result
from objects’ contextual information. Using higher level cognitive processes,
the different types of higher level categorization (beyond basic level) could be
possible.

Architecture. In this scenario the implications for the overall architecture
have been investigated. It may for example turn out useful to have different
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perceptual and learning processes in a reactive layer, in a deliberative layer
and in a meta-management layer that includes information about intelligent
systems. All these mechanisms will of course share the same physical sensors
and may share a lot of the low level visual analysis mechanisms.

However it is possible that outputs from those low level systems will go
in parallel to different perceptual systems performing different sorts of tasks,
including for instance feedback control of actions, rapid recognition of ob-
stacles within reactive motion systems, classification of objects and events
at a level of abstraction required for learning re-usable generalisations about
the environment, and interpretation of mental states and intentions of other
agents.

Communication and Language One of the main necessities for an em-
bodied cognitive agent is to be able to communicate about the environment it
finds itself in, to be able to learn more about the environment or to coordinate
actions among multiple agents so as to collaborate in solving a task.

Whether using communication about the environment for learning or for
coordinating actions, a fundamental issue is how language can be used to
refer to objects and locations in the environment, either by describing them
directly or by referring to them. The long-term goal we want to explore in this
project how such descriptions and references can be interpreted and realized in
a cross-modal setting, integrating different modalities such as speech, gesture,
vision, and movement (“body positioning”).

Not only does a cross-modal integration of modalities often lead to more
efficient and more natural communication. It is also an essential aspect of
learning through language, where an agent uses communication to learn more
about the environment it finds itself in. For example, the agent could com-
municate with an expert who guides the agent and provides all the necessary
information. Learning through language involves acquiring new words as well
as new ways of talking about and dealing with reality, and thus inherently
requires the integration of information from various modalities.

In turn this leads to the interesting issue of how to ground the semantics
learned for the new word. On the one hand, the semantics should reflect the
sensory data, and the categorization of that data in relation to an ontology –
the word meaning needs to be fit into the agent’s existing knowledge of the
environment. On the other hand, the semantics of the word puts it in semantic
relations with other words, e.g. via synonymy (different words, same meaning),
hypernymy (super/sub-concept) and hyponymy (sub/super-concept). This re-
flects a lexical organization which determines for example in what contexts
it would be appropriate to use the word as a description. The interaction
between linguistic knowledge and situational knowledge again stresses the
broader understanding of cross-modality we develop in this project.
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1.5 Consortium

(Embodied) Cognitive systems naturally involve research on robotics, per-
ception, action modelling, reasoning, learning, language and representations.
Consequently the CoSy consortium brings together core competence from each
of these disciplines in addition to systems integration. The involves institu-
tions are briefly summarized below.

The Centre for Autonomous Systems (CAS), KTH has been the coordi-
nator of the consortium. CAS has a proven record of constructing (robot)
systems for natural environments. The research involves computational vi-
sion, control methods, behaviour based systems, and systems integration. In
CoSy the research has been on perception-action modelling, categorisation,
integration and spatial mapping.

DFKI is the largest European R&D Center in Artificial Intelligence. Its
main areas of research are language technology, intelligent user interfaces, au-
tomated reasoning, multi-agent technology, knowledge management and visu-
alization. In CoSy DFKI has mainly contributed expertise and technology in
language processing and dialogue modelling.

University of Freiburg has a long term record on representations, formal
methods, planning and mobile agents. The group is well known for it basic
research on artificial intelligence. In this project the group has in particular
focused on planning, failure detection and multi-agent interaction.

The University of Birmingham has a strong record on general aspects
of artificial intelligence, cognitive systems, architectures and robotics. The
partners brought a strong AI / Cognition experience to the consortium.

The partner from TU Darmstadt has a solid background in computer
vision, multi-cue integration and learning. In relation to CoSy TUD has in
particular performed research on categorisation, object categorisation, cross
modal representations, and learning.

University of Ljubjlana has a strong research effort on computational vi-
sion and robotics. The work has considered both integration, recognition,
learning and visual representations. In CoSy the research has emphasized cat-
egorisation, learning and representations.

The Laboratory of Experimental Psychology, CNRS has long studied the
role of perception action modelling and in particular the sensory character-
istics of vision and it implications for perception in general. LPE-CNRS has
in particular been involved in perception-action modelling, categorisation and
multi-cue integration.

1.6 Organization of the book

The CoSy project ended in August 2008 and the main results of the four year
research program are reported in the following chapters.
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Chapter 2 present the main results in terms of design of a common ar-
chitecture for cognitive systems and corresponding considerations related to
representations. A key aspect of design of system is the perception-action
embedded or spatial insertion into the world. Aspects related to perception-
action integration are presented in Chapter 3. The generation of spatial maps
in terms of basic geometry, topology and semantics is presented in Chapter
4. Visual perception for mobility and manipulation is presented in Chapter 5.
Cognition heavily relies on planning and recovery from failures as presented
in Chapter 6. Another key aspect of a cognitive system is adaptation and
learning across perceptual modalities, skills and tasks as presented in Chap-
ter 7. Cognitive systems does not exist in isolation but interact closely with
humans as part of task specification, skill learning and clarification. Human-
robot interaction based on situated dialogue is thus a key aspect of a system
as presented in Chapter 8. Chapters 9 and 10 present demonstration systems
and the final two chapters present reflections on lessons learnt during CoSy
and challenges for the future.
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2.1 Introduction

The study of architectures to support intelligent behaviour is certainly the
broadest, and arguably one of the most ill-defined enterprises in AI and Cog-
nitive Science. The basic scientific question we seek to answer is: “What are
the trade-offs between the different ways that intelligent systems might struc-
tured?” These trade-offs depend in large part on what kinds of tasks and
environment a system operates under (niche space), and also what aspects of
the design space we deem to be architectural. In CoSy we have tried to answer
that question in several ways. First by thinking about the requirements on ar-
chitectures that arise from our particular scenarios (parts of niche space). Sec-
ond by building systems that follow well-defined architectural rules, and using
these systems to carry out experiments on variations of those rules. Third by
using the insights from system building to improve our understanding of the
trade-offs between different architectural choices, i.e. between different partial
designs. Our objective in CoSy has not been to come up with just another
robot architecture, but instead to try to make some small steps forward in a
new science of architectures.

When the project started we had several specific scientific goals for our
work. First, we wanted to identify a space of possible architectures that in-
cludes most of the good ones for our scenarios. Our methodology is to define
this space of possible architectures using an architectural schema, which is a
simply a set of constraints and rules on what architectures we allow. We refer
to specific points within it as architectural instantiations. Second we aimed
to develop a toolkit and an experimental methodology to explore this space,
identifying the trade-offs as we move through it. Finally, our third goal was
to use our toolkit to implement quickly and easily robotic systems that adhere
to certain architectural principles. Those systems are described in Chapters 9
and 10. In this chapter we will describe our schema; some specialisations of
it; experiments showing the trade-offs between some of those specialisations;
and the toolkit we devised. In addition we will describe how our work sits in



54 Hawes et al.

between the two major camps of work on architectures for intelligence. The
specific contributions are:

• a set of requirements for embodied cognition as a way of generating an
architectural schema.

• a new architectural schema that draws on important work from both cog-
nitive architecture and robotic architecture traditions.

• a toolkit for implementing architectures within this schema.
• a series of robotic implementations that utilise the schema and provide a

proof of concept (covered in Chapters 9 and 10).
• a set of well defined problems in architectures, posed if the schema is

accepted: binding; filtering; management; action fusion.
• experimental profiling of the effects of steps through schema space, specif-

ically with respect to the filtering problem.

The contributions are sequenced in the chapter as follows. First we make
some introductory remarks about the science of architectures, our methodol-
ogy, and define our terminology. Second we describe run-time and design-time
requirements that arise from the needs of the CoSy scenarios, and of which
our architectural theory must take account. After this we describe our archi-
tectural schema (CAS) and show how it meets these requirements. Fourth, we
describe how the schema poses at least four further problems that we refer
to as the binding problem, the filtering problem, the processing management
problem, and the action fusion problem. Solutions to these problems provide
a second level of constraints and thus a more specific architectural schema.
Fifth, we describe the relationship between CAS and other schemas. We follow
these contributions with a brief discussion of future research directions.

2.2 Architectures and the science of cognitive systems

We start by clarifying the role of work on ”architectures”. AI is a science
that attempts to understand intelligent systems partly through the process of
synthesising them, and partly by analysis of the systems that result. In most
areas of AI while the problems are technically difficult, the methodology is
clear. When considering integrated systems, however, the methodology itself
is a stumbling block. How can we objectively compare the architectures for
two systems that might perform different tasks, in different environments,
using different processing content? The short answer is that we can’t. Yet
most examples of work on architectures in robotics are precisely systems that
combine architectural choices with task specific processing content, and that
are evaluated in different environments from one another. From the point of
view of a science of architectures for embodied intelligence this is no good. For
a science of architectures we need to separate the processing content from the
architectural bones on which it is hung. In other words we want to assess how
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the changes in the architecture alter the run time properties of that system,
independent of changes in the information processing content.

This is tricky, since in both natural and artificial systems the shape of the
architecture is intimately related to the shape of the pieces it pulls together. In
nature, moreover, the information processing architecture is intimately related
to the hardware implementation and the information processing functions
implemented in that hardware. On the engineering side, complete cognitive
systems are still so difficult to construct that the architecture is essentially
almost always bespoke. Separation of architecture and content in a theory is
made harder by the fact that the processing in an intelligent system can be
described at a variety of levels of abstraction. We may speak of the neural or
machine architecture, of information processing architecture, or of the cogni-
tive architecture. In a complete theory of architectures for intelligence we need
a clear account of how these different levels of description are related. At the
current time we do not even have a clearly defined terminology to distinguish
the different uses of the word.

There is an important distinction in the literature between architectures
that are entirely specified in advance and those that are partially specified. In
CoSy, following [1, 2], we use the notion of an architectural schema to refer to
architectures of the latter type. In simple terms we can think of an architectural
schema as a set of constraints that defines a space of possible architectures
and ways of moving through that space. We can add constraints to a schema
to create sub-schemas, i.e. sub-spaces. If we add enough constraints we can
create a fully specified architecture, and these we refer to as architectural
instantiations. Hereon, we frequently use the terms schema and instantiation
as shorthand for these terms.

If we have a software toolkit that implements a particular schema, it can
be used to implement specific working systems that follow the schema. These
implemented systems require us to make both a complete set of architectural
choices, and to have processing content. As described above the two are very
hard to separate. Our approach must therefore be based on a judicious division
of our design choices into architectural ones (i.e. ones we can easily vary in
the schema), and those concerned with content (i.e. which vary outside the
schema).

In CoSy the specific schema we have designed is called CAS (Cognitive sys-
tems Architecture Schema). Our toolkit implementing this schema is called
CAST. It allows researchers to implement systems that fall within the space
defined by CAS. CAST is particularly powerful because it allows us to imple-
ment a system, and then change some of the architectural choices independent
of the processing content of that specific system. Thus CAST allows us to take
steps through the architectural space, and to isolate the effects on system
behaviour due to architectural changes. Thus CAST provides an important
element necessary for a science of architectures as described above.

Overall our architectural work in CoSy is neither concerned with trying to
model humans or any other specific type of animal, nor with trying to compete
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on performance on a specific set of tasks. Rather it is concerned with trying
to understand the possibilities and trade-offs involved in different designs in
relation to different sets of requirements. In our approach we have several
stages through which we must go:

• We identify sets of scenarios (tasks and environments) that we want our
systems to solve. We then identify the requirements on architectures arising
from these scenarios.

• These requirements lead us to hypothesise an initial architectural schema,
together with a toolkit implementing the schema.

• Using the scenarios and the schema toolkit we produce one or more systems
based on one or more instantiations of the schema. In these designs there
is, as far as possible, a clear separation between the architectural choices
and the processing content.

• We analyse our architectural choices, both empirically, and by introspect-
ing on the flaws in our designs. We use the toolkit to make architectural
changes to these designs, while holding the processing content fixed.

• Using the insights gained we can refine our schema.

In the rest of this document we will step through this process, stopping
along the way to reflect on the choices we made, and to compare our schema
with previous work. We now turn to the two scenarios driving CoSy, and to
the requirements arising from them.

2.3 Requirements for architectures for cognitive robots

As stated previously our starting point is to analyse scenarios in order to
define requirements for architectures. This is an example of backward chaining
research in which we consider goals beyond our immediate capabilities, and
work backwards to define sub-problems that are more easily tackled — while
also understanding a little of the way their solutions might be composed. In
the CoSy project we picked scenarios based on robot systems that are able
to interact with humans, either while mobile in an office or home setting (the
Explorer); or while manipulating objects in a space shared with a human (the .
PlayMate). In the Explorer scenario typical tasks might be human augmented
mapping of an office environment, using natural language utterances to name
and describe places, and with mixed initiative dialogue. For example in this
scenario the robot can ask the human what type of room it is in, if it is unsure,
and must understand questions, instructions to learn, and instructions to act.
In the PlayMate scenario the tasks include the robot answering questions
about the identity and properties of objects on the table and also about the
spatial relationships between them. The robot may be given instructions to
manipulate the objects to alter their spatial relationships, and to learn not
just word labels for objects, but also the meanings of the property words used
to describe an object (e.g. what visual features correspond to the word red).



2 Architecture and Representations 57

What sorts of requirements do these scenarios and other typical robot
scenarios place upon the robot designs, and in particular upon the manner in
which the pieces of the intelligent system are put together? There are a number
of well-known properties of the robot-environment interaction that any robot
system operating in human environments typically has to deal with. Our run-
time requirements therefore include the ability to deal with the following
properties of this interaction:

• Dynamism: The world changes frequently, rapidly and independently of
the robot.

• Uncertainty: Sensors are inaccurate, and the actions of the robot often fail
to have the planned for consequences.

• Multiple modalities: Many robots — but especially the robots in our two
scenarios — must use information from multiple sensory modalities in or-
der to make decisions. In our case these include simple haptics, vision,
proprioception and speech. All but the most trivial robot also has multi-
ple modes of action (manipulation, looking, facial expression, utterances,
locomotion) enabled by multiple motor systems and the actions of these
must be coordinated.

• Re-taskability: In our scenarios our robots must be re-taskable, either by
others, or autonomously. Behaviour should be goal directed, but not to
the extent that it cannot be re-tailored to the context, perhaps on the fly,
switch to a new task, or interleave new tasks with old ones.

These are quite general run-time requirements on the interaction between
a robot and its environment, i.e. requirements on the system during per-
formance. Out of these arise run-time and design-time requirements on the
architectural schema itself. Architectures for artificial cognition do not just
structure the way components work together during a system run, but struc-
ture the engineering efforts of the designers. A good software implementation
of an architecture or architecture schema should therefore assist the design
process. This means that the architecture should make it easier to design a
cognitive system, and easier to evaluate a system, and understand the causes
of its particular behaviour. A proper engineering science of cognition will also
require the architecture to have a number of other properties:

• Understandability: Cognitive systems of the order of complexity we are
describing must be understandable. This means that at least some of the
tokens within the system need to be semantically transparent to the de-
signers at some level of abstraction. If we are to understand why our robots
succeed or fail in a task, and how they can be re-engineered, then we must
have the ability to look at the tokens within the system, and to allocate
them meaning as designers. An architecture schema for cognitive systems
therefore needs to provide a variety of clear ways by which tokens can be
related to one another.
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• Incrementality in design: Large, bug-free, complex software systems need
to be constructed and tested incrementally. This requires that a schema
allow new sub-systems to be added without completely redesigning the
existing sub-systems.

• Multiple specialist representations: the field of AI has fragmented, and
the sub-disciplines have developed their own specialist representations for
inference and decision- making. In designing robots with multiple forms of
sensing and acting we need to bridge the gaps between them.

• Parallel processing: many of the algorithms employed in vision, language
processing, planning, and learning are computationally demanding. A se-
rial model of processing is thus unworkable. There is a need for perceptual
components to run in parallel, so that the system may respond rapidly to
change. Action components must also run in parallel so that the robot can
do more than thing at a time, e.g. looking and reaching.

• Asynchronous updating: information arrives in different modalities at dif-
ferent rates. In addition processing in some modalities is slower than in
others. This requires us to accept that updating of information will occur
asynchronously across the system.

Given these constraints the management of information flow in the robot
system becomes key. How should information from one sub-system be commu-
nicated to others? How should decisions to act be combined and sequenced?
How should we determine whether separate pieces of information are related?
These are questions to which we should provide architectural answers. Follow-
ing from our requirements together with the specification of the Explorer and
PlayMate scenarios are a number of useful properties of robot control systems
that would satisfy those requirements (though they may not be the only way
of satisfying them), and of an architectural schema should take account. In
order to satisfy our requirements in our scenarios we will assume the following
principles:

1. Our robots will have representations of entities in the world at a variety
of levels of abstraction from the sensory information.

2. Some of these representations will have roots in multiple sensory modali-
ties.

3. There will be many concurrently running sub-systems in our robots refin-
ing and using these representations.

4. Both the PlayMate and the Explorer must represent and reason about
hypothetical future states, in order to be able to plan, answer questions,
etc. They will therefore require representations that support this kind of
reasoning.

5. A large part of what our architectural solution will be concerned with is
the refinement, sharing and transmission of these representations by and
to these different sub-systems.
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6. The system will not be able to draw all possible inferences from the avail-
able sensory information, and thus will have to make judicious choices
about which processing to perform.

7. There will multiple modes of action which have to be coordinated.

In the next section we describe the architectural schema CAS. CAS en-
compasses systems that satisfy our assumptions above, and also satisfies the
requirements that precede them. In the following sections we also explain why.

2.4 A new architectural schema

The requirements and assumptions described in the previous section give rise
to a space of possible architecture schema designs. In order to produce a single
schema to constrain our research work we must design a schema that satis-
fies all of these requirements, whilst still being general enough to capture a
selection of the space of possible designs. It is also important that any design
reflects both our previous experiences as system designers (i.e. we have knowl-
edge about what works and what doesn’t work), and the experience of the
wider research community (i.e. what concrete designs have proven successful
in the past). Given all of these (interacting) constraints, it is not possible to
claim that the following design is the best possible schema design for our sce-
narios. Instead we put it forward as an initial attempt at producing a schema
to satisfy our requirements given our experience.

2.4.1 Key Features of CAS

To quickly convey the features of CAS we summarise them below. More detail
is given in the following sections.

• Distributed shared memory: The schema contains sub-architectures each
of which has a blackboard (working memory). These sub-architectures
are loosely coupled to reduce complex inter-dependencies. Systems could
contain sub-architectures for motor control, vision, action, planning, lan-
guage etc. The structure is recursive: sub-architectures can contain other
sub-architectures.

• Parallel refinement of shared representations: Each sub-architecture con-
tains a number of processing components which run in parallel and
that asynchronously read and update shared information via the sub-
architecture specific working memory.

• Limited privileges: Each of these sub-architecture working memories is only
writable by processes within its sub-architecture, and by a small number
of privileged global processes (e.g. a global goal manager).

• Control of information and processing: Information flow is controlled by
goals generated within the architecture at run time, allowing it to deal with
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new problems and opportunities. This allows the schema to support differ-
ent approaches to processing (e.g. incremental processing, forward chain-
ing, backward chaining etc.). The schema distinguishes between two classes
of goal: global goals (that require coordination across sub-architectures),
and local goals (that are dealt with inside a single sub-architecture).

• Knowledge management by ontologies: The knowledge that can be used
within a sub-architecture is defined by an ontology for that sub-architecture.
Relationships between the ontologies in different sub-architectures are de-
fined by a set of general ontologies. These ontologies can also be used to
define knowledge at an architecture-general level.

2.4.2 Sub-architecture design

Components

Our schema starts on the level of a collection of processing components. Ev-
ery component is concurrently active, allowing them to process in parallel.
This satisfies our requirement of supporting concurrent processing. We do not
specify any constraints on the contents of components: they could have be-
have like a node in a connectionist network, an activity in a behaviour based
system [3], or a unit of processing in a decomposition by information pro-
cessing function. Components can take input either directly from sensors, or
from the working memory. They can also directly control actuators in the
manner of closed loop controllers, or initiate fixed action patterns. Compo-
nents can have processing triggered by the appearance of certain information
on the shared working memory, and can modify structures on that memory.
Components may also have their own private memory. Finally components
are of two types: managed and unmanaged. Unmanaged components are low-
latency processes that run all the time. They are useful for several types of
processing. They can be used for low-latency early processing of information
coming directly from sensors at a high rate. In a visual system, for exam-
ple, they could correspond to the earliest stages of pre-attentive processing,
pulling high bandwidth data from cameras at frame rate and pumping the pro-
cessed frames onto the working memory. Alternatively they could implement
reflexes, providing rapid reaction to sensory information; or they could imple-
ment monitors on signals that raise alarms or actions elsewhere in the system,
or modify global parameters. Managed components by contrast are typically
computationally expensive processes, and the schema assumes that there are
not the computational resources available to run them all. They therefore post
requests to run to the task manager associated with the sub-architecture.

Shared Workspaces

Rather than exchange information directly, processing components are con-
nected to a shared working memory. The content of the working memory is
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solely composed of the outputs of processing components. Working memories
also connect to and exchange information with other working memories in
other sub-architectures. In our implementation of CAS the communication
method between the working memory and the components determines the ef-
ficiency of the model. But for now let us consider simply that the schema itself
allows reading and writing to working memories, and transfer of information
between them.

This use of shared working memories is particularly well suited to the
collaborative refinement of shared structures. In this approach to information
processing, a number of components use the data available to them to in-
crementally update an entry on shared working memory. In this manner the
results of processing done by one component can restrict the processing op-
tions available to the others in an informed way. As all components are active
in parallel, the collective total processing effort (i.e. the amount of work done
by all the components in solving a problem) may be reduced by sharing infor-
mation in this way. This feature turns out to be very powerful aspect of the
schema.

Processing management

Our previously discussed requirements included the requirement that any de-
sign should support the explicit control of processing. Although control strate-
gies could be implemented using communication via working memory entries,
failing to support control requirements in the schema would mean that they
would fall outside of the regions of design space we could explicitly manipu-
late with it. It would also mean that system designers would have to reinvent
the control strategies they required with each new instantiation. The schema
therefore supports control strategies by including a dedicated control compo-
nent, the task manager, in each sub-architecture. In addition to the usual com-
ponent connections to working memory, each task manager has a dedicated
control connection to each component in its sub-architecture. Task managers
are also connected across sub-architectures, allowing control strategies to be
coordinated across entire instantiations. The task manager can operate in ei-
ther a demand driven mode or in request mode. In the demand driven mode
components request permission to perform a particular task and then have
this request accepted or rejected by the task manager. In request mode, the
task manager sends task requests to components which can then be accepted
or rejected.

2.4.3 System wide design

While a system could be composed of a single sub-architecture we intend that
there should typically be several sub-architectures in operation. Support for
multiple sub-architectures is required in the schema for a number of reasons.
It allows the designer of an instantiation to include separate modules in their
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Fig. 2.1. Left panel: A single sub-architecture within CAS. There are components,
which run in parallel, asynchronously updating shared structures on a common
working memory. They can also take input from sensors or give output to actuators.
The task manager determines whether managed components are able to run, while
unmanaged components always run. Right panel: sub-architectures are coupled to
make an overall system. Local changes are transmitted globally between working
memories, not components directly.

system, where each sub-architecture plays a specialised role in processing.
This contributes towards satisfying the requirement of supporting the multiple
representations required to develop a robotic system from currently available
technology. Multiple sub-architectures also, if implemented correctly, improve
support for concurrency.

In the integrated systems we describe in Chapters 9 and 10 we have be-
tween three and nine sub-architectures. The schema, note, makes no assump-
tions about whether system decomposition should be predominantly according
to behaviour or information processing function. What is important is that
the decomposition groups components that commonly exchange information
via shared structures. When events occur on a working memory computation
linear in the number of components must be performed to trigger process-
ing by the right components. Early on in our system building experiences
we discovered that doing this for all components in the whole system meant
the system was paralysed by information change. One of the main benefits of
having distributed working memories is precisely that the working memory
can act as a gate-keeper for its local components, only letting them become
aware of events elsewhere in the system when necessary. We show why this
arrangement is beneficial in our exploration of different sub-schemas later in
the chapter. Having loosely coupled sub-architectures also allows us to explore
architecture sub-schemas where there are global controllers that utilize very
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abstract representations. We explore some specific architectural instantiations
in Chapter 10.

In the next subsection we describe in more the way that CAS is imple-
mented in CAST. This includes discussion of the memory model, and the
communication model. Following that we define four problems that are raised
by CAS, and indeed by any architecture schema which satisfies our assump-
tions from Section 2.3. After describing these we describe sub-schemas for
CAS that address each of the four problems.

2.4.4 CAST: A toolkit implementing CAS

In Section 2.4 we described how CAS works at an abstract, conceptual level.
However, the details of the implementation of our schema in CAST determine
a great deal about its efficiency, and how easy (or hard) it is for it to be
specialised in one way or another — i.e. the kinds of moves the implementation
supports through the space of architectures. In particular the communication,
filtering and memory access models employed by CAST are key in how efficient
particular architectural instantiations of the schema tend to be.

In our schema, a working memory is an associative container that maps
between unique identifiers and working memory entries. Each entry is an in-
stance of a type, which can be considered as analogous to a class description. A
working memory entry can be any information that can be encapsulated into
a single object class. A system that includes visual components may, for exam-
ple, include entries that describe regions of interest and visually determined
objects. A system that must navigate through a building may have entries
representing maps of various floors, and objects that have been detected.

Components can add new entries to working memory, and overwrite or
delete existing entries. Components can retrieve entries from working mem-
ory using three access modes: id access, type access and change access. For
id access the component provides a unique id and then retrieves the entry
associated with that id. For type access the component specifies a type and
retrieves all the entries on working memory that are instances of this type.
Whilst these two access modes provide the basic mechanisms for accessing the
contents of working memory, they are relatively limited in their use for most
processing tasks. Typically most component-level processing can be charac-
terised by a model in which a component waits until a particular change has
occurred to an entry on working memory, before processing the changed entry
(or a related entry). To support this processing model, components can sub-
scribe to change events. Change events are generated by the working memory
to describe the operations being performed on the entries it contains. Dif-
ferent instantiations of the schema may support different content for change
events, but a minimum set of useful information is the unique id and type
of the changed entry, the name of component the made the change, and the
operation performed to create the change (i.e. whether the entry was added,
overwritten or deleted).
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As stated previously an instantiation of the schema can be composed of one
or more sub-architectures. The addition of multiple sub-architectures requires
that the single sub-architecture schemes for working memory access are ex-
tended. We assume that a design would not include multiple sub-architectures
unless necessary for imposing modularity on the processing, and so use sub-
architecture boundaries to impose restrictions on cross sub-architecture com-
munication. By default a change event is only broadcast within the sub-
architecture in which it was generated. This restricts knowledge about the
changes on working memory to within a sub-architecture. If a component
should require information about changes on a working memory in a differ-
ent sub-architecture, it can choose to subscribe to these changes. This action
opens up a connection between the two working memories in question (the
working memory where the change was generated, and the working memory
local to the component requesting the information), down which all requested
changes are sent as they are generated. The receiving working memory then
includes any changes it receives from other sub-architectures in the list of
changes it broadcasts within its sub-architecture. The schema allows restric-
tions to be placed on which working memories a component can access. The
default is that a component can read entries from any working memory, but
only write to the working memory in its own sub-architecture. Any variation
of this scheme can be specified by an instantiation of the schema, allowing
components to write to working memories as required.

As described in Section 2.4 support for multiple sub-architectures is re-
quired in the schema for a number of reasons. One of these is that in the given
an efficient implementation it increases the support for concurrency in the
system. In CAST although components are concurrently active, their parallel
interactions via working memory have the potential to become a bottleneck
in processing. By distributing processing across multiple working memories,
CAST allows designers to avoid these potential delays caused by unrelated
processing.

2.5 Four problems

From our first year of system building experience in the PlayMate, and our
attempts to build systems using other architectures (e.g. OAA) we realised
that there were a number of problems that must be addressed by all em-
bodied intelligent systems that exchange representations between different
sub-systems, and which must satisfy the requirements and assumptions we
listed in Section 2.3. We refer to these as the binding problem, the filtering
problem, the processing management problem and the action fusion problem.
We define them as follows.

The binding problem arises as soon as we have a system with two pieces of
information in different places that refer to the same entity. In some instances,
to produce coherent decision-making and action execution we need to relate
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those pieces of information to one another. For example, if I have several blue
objects in front of me, and someone refers to an entity as being “blue” how do
I decide which entity that I can see is the object of the referent? In general,
given many pieces of information residing in different sub-systems, how should
the overall system efficiently decide which pieces are related to which other
pieces and in what ways? In short how do we match information from one
component with information from another? The binding problem occurs in
many forms, and is a well studied phenomenon in the visual system [4], and
in neural architectures [5].

The filtering problem arises as soon as a piece of information is created
in one sub-system. How should the system decide where else that piece of
information is needed? The key issue here, as stated above, is that we do
not want to share all information with all sub-systems. The problem is that
where information is needed depends both on the context and the problem
the system is trying to solve [6]. We call this the filtering problem because
we think of it precisely as the problem of deciding what information to send,
and what information to filter away, i.e. to hold back from other sub-systems.
Filtering mechanisms need to be cheap, context sensitive and to generate few
false positives, and very few false negatives.

The processing management problem is the problem that arises because we
do not have enough computational resources to draw all possible inferences
from the sensory data. It is acknowledged that many animals utilise some
form of attention to limit processing. On the one hand we can limit what
information is processed, and on the other we can limit the processing that
is done to the information selected. In other words we want to manage the
processing according to the task. We want to investigate the different possible
mechanisms and the trade-offs between them. In some solutions or models
of human processing the solutions to the binding, filtering and processing
management problems are intimately related.

The action fusion problem arises when different sub-systems recommend
actions to motor systems that need to be fused or otherwise coordinated. Per-
haps two behaviours are vying for control of a motor subsystem, or perhaps
the activities of two separate motor systems need to be coordinated. In either
case the architectural schema must have mechanisms for enabling this coordi-
nation. Behaviour based systems use arbitration or fusion mechanisms, which
are limited to a very small number of tasks. Planners use action models to
coordinate activity, and can produce controllers on the fly for many different
tasks, but each of which has only limited feedback. The architectural question
is again what the trade-offs are between different approaches. In CoSy we have
not yet investigated this question, but sketch some possible choices at the end
of the chapter.

We now go on to describe, for each of the first three problems, the solution
spaces that we have investigated. We have captured the best of these solutions
and incorporated them into CAS as sub-schemas, i.e. as more specific parts
of our architectural schema.



66 Hawes et al.

2.5.1 Binding

Requirements on binding

Earlier, we stated that systems suitable for the PlayMate and Explorer scenar-
ios often need to connect related information across sub-systems. We referred
to this as the binding problem3 [7, 8]. As a simple example take a system that
can discuss and manipulate objects in a tabletop scene. Perhaps it receives
the instruction “put the blue things to the left of the red thing”. To carry this
out it must be able to relate disparate pieces of information. The object iden-
tities and their properties from vision must be connected with corresponding
information from the utterance. The robot also needs to connect not just in-
formation about physical entities, but also about relations between them —
there is information in this example about current spatial relationships from
both vision and language. Finally the goal state from language must be related
to a possible spatial configuration, and the objects in this hypothetical state
related to the objects in the current state. In fact the binding problem exists
in a much larger range of designs than those necessary for the PlayMate or
Explorer or indeed those covered by CAS. It exists in any system where infor-
mation from multiple sub-systems must be fused in order to make decisions.
The binding problem is related to theory tethering4 and symbol grounding [9],
in that some kind of binding must underlie either approach. After four years
of investigating different approaches we have included a method for solving
the binding problem in CAS. In this section we describe our solution as it
currently stands.

There are two constraints from our scenarios that have influenced our ap-
proach to binding. The first is that one of the main features of both our sce-
narios is the need for an ability to perform deliberative reasoning, by which
we mean processes that explicitly represent and reason about hypothetical
world states. The second is that because the systems are also embodied, de-
liberation relies on representations derived from perceptual subsystems that
are unreliable and update at unpredictable rates. Embodiment also requires
that representations are interpretable by effector sub-systems.

These constraints lead us to impose the following three requirements on
our solution to the binding problem. First, binding must produce representa-
tions that are stable for the duration of the deliberative processes they are
involved in. For example, a representation of an object from vision should
remain stable across multiple image frames if that object is to be involved in
a planning process. Second, these representations produced by binding must
be at a level of abstraction appropriate for the processing they will be involved
in. For example, the positions of objects on a tabletop could be represented
metrically or as predicate relations. The first is necessary for visual servoing,

3 We realise that there are other binding problems in other fields, e.g. neuroscience,
but they are somewhat different to the problem here.

4 See http://www.eucognition.org/wiki/index.php?title=Symbol Tethering
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the second for understanding utterances about the scene. The two require-
ments are linked: the level of detail influences temporal stability, in that more
abstract representations are typically more durable. Our third requirement
arises because the symbols to be bound come from concurrently active, asyn-
chronously updating sub-systems, binding cannot happen in a synchronous
manner. To keep a representation of the state as current as possible, it is im-
portant that perceptual information is processed as soon as it is generated.
Therefore it is important that any representation generated by binding can
be incrementally and asynchronously extended as soon as new information is
available. To summarise, the requirements on our approach to binding are:

• The representations it produces should be stable across the lifetime of the
processing for which they are necessary.

• The representations should have the appropriate level of abstraction for
the processing for which they are necessary.

• The process of binding must be proceed in an asynchronous and incremen-
tal manner.

The binding solution: overview

Implicit Binding

Our solution to the binding problem within CAS relies on the separation of
representations into two levels of abstraction. At the low level we have sub-
architecture specific representations (Figure 2.2). Within a sub-architecture
the representations that reside on the working memory can be structured,
they could for example be slot and filler structures. These structures allow
the results of components to be bound together: two components can fill
in different slots in the same structure. This could be because the different
pieces of information in the two slots were derived from the same original
data (e.g. the same Region of Interest in an image), or from two different data
items that the system designers deem to be related (e.g. a ROI tracked across
two frames). This kind of binding therefore relies entirely on the structure
of the representations, and the relationship of the processing components as
decided at design time. The binding is not explicitly decided by the system,
and thus we call it implicit binding. Implicit binding has turned out to be
a very powerful feature of CAS. In addition since structures on the working
memories may contain links to other structures — possibly on other working
memories — there is the ability to use implicit binding to bind information
along a single processing trail. This kind of book-keeping turns out to be
another powerful feature of CAS. The reason for this is that it allows us
to abstract information that changes slowly from information that changes
rapidly, e.g. the identity of an object from the visual description of that object.
We can then store the slowly changing information in a new structure that has
a reference back to the fast changing structure. So, in our example, the pose of
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the object could be recovered without re-abstraction by using the references
in the processing trail. This is another kind of implicit binding.

Implicit binding, while powerful, is not suitable in all situations. If the
decision to bind two pieces of information from two different sub-architectures
must be made at run-time then we need explicit binding. In explicit binding
the two pieces of information are translated into a general representation, and
in this form are written to the working memory of a specialised binding sub-
architecture. A third comparison component decides whether they should be
bound into a set. This set is written to the binding working memory and is
globally readable by the whole system.

The motivation for this centralised approach rather than any other is one
of minimising the effort of translation. Suppose we have no general represen-
tation. This means that if every one of N sub-architectures needs information
from all the others N · (N − 1) pair-wise translation processes are required.
Whereas if we have a general representation only at most N ·2 translators are
needed5. From a systems engineering viewpoint, translation to a single general
representation makes the translation process more modular and less redun-
dant (although this depends on implementation details). It is more modular
in the sense that all translations from a collection of sub-architecture specific
representations happen in one place in the system, rather than (potentially)
in N − 1 places. It reduces redundancy because the N − 1 translations may
feature many similar operations, whereas these can all be grouped into a single
translation into the general representation.

Fig. 2.2. The binding sub-architecture.

To implement this scheme (see Figure 2.2) each sub-architecture has a
special component called a binding monitor that translates any structures
on its working memory into binding proxies that are written to the binder’s
5 This assumes separate steps for translating into and out of the general represen-

tation, which may be reduced into a single step in practice.
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working memory. A proxy is simply a set of binding features. Features are in
turn simply attribute-value pairs. For example, a visual sub-architecture may
create proxies for visible objects that have feature attributes for colour, shape,
ontological category etc. The role of a binding monitor is to keep its proxies
linked to the source information in its sub-architecture, and to update them
as that source changes. This link allows other components to operate on the
proxies in place of the source data.

All the binding monitors in the system write their proxies to the work-
ing memory in the binding sub-architecture. There a collection of components
which we will refer to as the binder groups these proxies into binding unions
based on whether their features match. Unions also have minimal internal
structure, but are instead composed of the union of the sets of features from
its bound proxies. The set of unions on binding working memory represents
the current best architecture-wide hypothesis of the current state of the things
the sub-architectures can represent about the world (including its own inter-
nal processing). This is based on the assumption that the underlying prox-
ies and features are also the best hypotheses from the corresponding sub-
architectures. The comparison of features is performed by feature compara-
tors. Each comparator compares features to determine whether they could
refer to the same underlying item of information (e.g. whether the colour or
spatial location of two objects is the same). The collected results of these com-
parisons is used to determine whether a proxy could be bound into a union
with other proxies. We now give a formal description of binding.

The binding solution: details

The set of possible features is broad:

Definition 1. A feature space Φx ∈ Φ is any data format in the space of all
possible data formats, Φ. φx

i ∈ Φx denotes an instantiation of a particular
representation where x should be interpreted as any feature space name.

For example, φColourLabel
red ∈ ΦColour denotes the colour “red” in the repre-

sentation space of colours. In our CAST instantiation, Φ corresponds to any
representation that may inhabit a working memory.

Information from the sub-architectures (SAs) is shared as a collection of
proxies:

Definition 2. A binding proxy is a structure p = 〈Fp, up〉 where Fp is a set
of instantiated features of different types (i.e. Fp = {φx1

1 , φx2
2 . . . φxn

n }) and up

refers to a binding union with which the proxy is bound (see below).

The unions should express information from proxies that, by all accounts (cf.
Algorithm 2.3), refer to the same entity. Unions simply inherit the features of
the bound proxies and are defined as:
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Definition 3. A binding union is a structure u = 〈Fu,Pu〉 where Pu refers
to the subset of proxies unified by the union u and Fu is defined as the union
of the features in all proxies in Pu.

The problem for the binder is to assess whether two proxies are matching
or not. By matching we mean that they should refer to the same thing. To
do this, all new or updated proxies are compared to all unions on the basis
of their respective features. The basis of this comparison is that each pair of
feature types has an associated comparator function:

Definition 4. A feature comparator is a function ∆ : Φx × Φy → {true,
false, indeterminate} returning a value corresponding to whether two fea-
ture instances are equivalent (or similar enough) or not. The comparator can
also choose to not return a definite answer if the answer is undefined, or the
uncertainty is too big (i.e. indeterminate).

Obviously, indeterminate is the only answer most such comparators can
return, e.g. the comparison of a ΦColour and a ΦPosition is likely undefined6.
However, for many pairs of features there exist informative comparators. For
example, features such as linguistic concepts can be compared to other con-
cepts (with ontological reasoning) or physical positions can be compared to
areas.

Definition 5. Two feature spaces (Φx, Φy) are comparable iff ∃(φx
i , φ

y
j ) ∈

(Φx, Φy) such that ∆(φx
i , φ

y
j ) 6= indeterminate.

The more pairs of features from different SAs that are comparable, the more
likely it is that proxies from these SAs will be accurately matched.

To compare a proxy and a union, the corresponding feature sets are the
basis for scoring:

Definition 6. The binding scorer is a function S+ : P ×U → N where P and
U denote the set of all proxies and unions respectively and

S+(p, u) =
∑

φx
i ∈Fp

∑
φy

j∈Fu

{
1 if ∆(φx

i , φ
y
j ) = true ∧ φx

i 6= φy
j

0 otherwise

where Fp and Fu are the feature sets of p and u respectively.

Note that identical features are not counted. This to prevent a union getting
a higher score just because it is compared to one of its member proxies (this
would sometimes prevent a proxy switching to a better union). The number
of feature mismatches is also counted (i.e. with true replaced with false in
S+). That function is here denoted S− : P × U → N.

S+ and S− are the basis for selecting the best among all unions for each
new or updated proxy. This is conducted by the function bestUnionsforProxy

6 Of course, in the implementation, such undefined comparators are never invoked.
Mathematically, however, this is exactly what happens.
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bestUnionsforProxy(p,U)
Input: A proxy, p, and the set of all unions, U .
Output: Best union(s) with which a proxy should bind.
begin

best := ∅;
max := 0;
for ∀u ∈ U do

if S−(p, u) = 0 ∧ S+(p, u) > max then
best := {u};
max := S+(p, u);

else if S−(p, u) = 0 ∧ S+(p, u) = max then
best := best ∪ {u};

end

end
return best;

end
Algorithm 1: The algorithm which computes the set of best candidate
unions for being bound with a new or updated proxy (see definitions 1-6 for
an explanation of the notations).

Note that identical features are not counted. This to prevent a union getting
a higher score just because it is compared to one of its member proxies (this
would sometimes prevent a proxy switching to a better union). The number
of feature mismatches is also counted (i.e. with true replaced with false in
S+). That function is here denoted S− : P × U → N.

It is important to state that S+ and S− are implemented asynchronously
with respect to the comparators. Until a comparator has returned an answer,
S+ and S− will simply assume that the answer is neither true or false, i.e.
indeterminate.

S+ and S− are the basis for selecting the best among all unions for each
new or updated proxy. This is conducted by the function bestUnionsforProxy
described in Algorithm 1. The result of best = bestUnionsforProxy is a set
of zero, one or more unions. If |best| = 0 then a new union will be created for
the proxy p alone (i.e. with all the features of p). If |best| = 1, then the proxy
is bound to that union.

When |best| ≥ 2 we are faced with a disambiguation problem. To avoid
deadlocks in such cases the binder can select a random union from best for
binding. However, bindings are sticky, meaning that if an already bound proxy
subsequently matches a union in a larger “best”-list, then it will not switch to
any of those unions. This to avoid excess processing in, and signalling from,
the binder. This also helps to satisfy our requirement for symbols to be stable
as far as possible. Disambiguation problems cannot be solved by the binder
itself, but it can request help from others SAs. This may result, for example, in
the communication SA initiating a clarification dialogue with a human tutor.

Fig. 2.3. The algorithm which computes the set of best candidate unions for being
bound with a new or updated proxy (see definitions 1-6 for an explanation of the
notations).

described in Algorithm 2.3. The result of best = bestUnionsforProxy is a
set of zero, one or more unions. If |best| = 0 then a new union will be created
for the proxy p alone (i.e. with all the features of p). If |best| = 1, then the
proxy is bound to that union.

When |best| ≥ 2 we are faced with a ambiguity. To avoid deadlocks in such
cases the binder can select a random union from best for binding. However,
bindings are sticky, meaning that if an already bound proxy subsequently
matches a union in a larger “best”-list, then it will not switch to any of those
unions. This to avoid excess processing in, and signaling from, the binder.
This also helps to satisfy our requirement for symbols to be stable as far as
possible. Ambiguities cannot be solved by the binder itself, but it can request
help from other SAs. This may result, in principle, in the communication SA
initiating a clarification dialogue with a human tutor.

Relations and Groups

The proxies and unions described so far have been assumed to roughly corre-
spond directly to physical objects. They may also correspond to more abstract
entities as well. To support this, two special proxy types are implemented in
a slightly different manner: proxies denoting groups of proxies, and proxies
denoting relationships between proxies.

Since proxies contain features that are of any representable type, prox-
ies can also have features attributable to groups and relations, e.g. cardinality
and relative metric information respectively, and explicit references to relating
proxies. Currently we handle groups in a fairly simple yet direct way: a spe-
cial kind of “group proxy” is created exactly like an ordinary binding proxy
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with all the features that the members of the group have in common (e.g.
“the blue balls to the left of the mug” creates a group with features φConcept

ball

and φColourLabel
blue and with a spatial relation φSpatialRel

left of -proxy to the φConcept
mug -

proxy. A separate process in the binding SA (the “group manager”) then
spawns off individual proxies which inherit the features of the group proxy.
Every time an individual is bound to something, a new proxy is spawned7. To
all the other processes, the individuals appear as an endless supply of normal
proxies.

Relation proxies are implemented in a similar way as standard proxies, but
with additional features indicating the other proxies involved in the relation.
Features of relation proxies are thus compared using the same mechanism
that compares the features of standard proxies. For example, spatial metric
features, e.g. φR3

(x,y,z), could in principle be compared to a linguistic feature

describing the same relation, e.g. φSpatialRel
left of . It has turned out that features

that link relations to normal proxies and vice versa make the scoring ineffi-
cient. Therefore, a separate scoring scheme similar to that in definition 6 is
used to assess how well proxies match to unions w.r.t. their relational context.

Assume that union u1 has a relation (union) u1→2 to union u2 If a now
three additional proxies are added, arranged internally as two proxies and a
relation proxy between them, pa, pb and pa→b respectively, it is possible that
they will be bound with the existing unions. First of all, if S+(pa, u1) = 0 and
S−(pa, u1) = 0, then pa may be unified despite no convincing score if pa→b is
unified with u1→2. In other words, the relational context of an ordinary proxy,
as defined by the relational proxies, can tip over the balance and favour that
it binds with an existing union despite that there are no features that match.
The relational proxy pa→b may also be unified under similar conditions (i.e.
where pa is unified with u1). If S−(pa, u1) > 0 or S−(pb, u2) > 0, however, the
relation will not bind even if S+(pa→b, u1→2) > 0 and S−(pa→b, u1→2) > 0.
The reason is that two relations that are between entities that cannot be the
same, can also not be the same relation.

Visual & Spatial Reference Resolution

To illustrate how our binder supports a number of behaviours typically re-
quired of robots that interact with humans, the following sections present a
number of examples taken from the Explorer and PlayMate systems. Perhaps
the most common use of information fusion systems is to interpret linguistic
references in terms of visual information. Our binder handles this task as an
instance of a more general problem of information fusion. We will here con-
sider the simple situation where we have a red object and two blue objects on
the table. The objects are arranged in a straight line of alternating colours.
The human then asks the robot to “put the blue objects to the left of the red
objects”.
7 With some obvious limitations to allow finite groups and to prevent excess proxies

being generated when members of different groups merge.
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We will start our example in the visual sub-architecture, where change
detection, tracking and segmentation components create representations of
the objects in the scene. These objects have 3D poses and bounding boxes
and a number of slots for visual properties such as colour, shape and size.
These slots are filled by a recogniser that has been previously trained (see
Chapter 7) using input from a human trainer [10]. For this example we assume
the recogniser correctly extracts the colours of the objects as red and blue.
When the scene becomes stable (determined by the change detector) the visual
subarchitecture binding monitor creates a proxy for each of the currently
visible objects. As the visual property recogniser processes the objects, the
monitor updates the proxies with features reflecting these properties. This is
an incremental process, so the visual proxies are updated asynchronously as
the objects are processed. At this point only the visual proxies are present in
the binding working memory, each one is bound to its own union.

The presence of objects in the visual working memory is also noticed by
the components in the spatial subarchitecture. These abstract the objects as
points on the tabletop, and the spatial binding monitor creates a proxy for
each. These proxies are tagged with the ID of the visual proxy for the corre-
sponding object so they are bound correctly8. Concurrently with the proxy
creation, qualitative spatial relations between the spatial objects are added
to working memory. These are generated by components using potential-field-
based models of spatial relations [11]. In our example the two blue objects are
to the left and to the right of the red object respectively. They are both also
near the red object (but not near each other). As these relations are added,
the spatial binding monitor reflects them on the binding working memory as
relation proxies between the spatial proxies. The binder uses these as the ba-
sis of relations between the unions featuring the spatial proxies. This provides
our basic model of the current state.

When the human speaks to the robot, a speech recognition module in the
communication subarchitecture is triggered. The resulting speech string is
written to the communication working memory. This triggers a cycle of deep
sentence analysis and dialogue interpretation, yielding a structured logical
description of the utterance’s content. From this structure the communication
binding monitor generates communication proxies for the discourse referents
from the utterance and the relations between them. These proxies include
features that can match against both those attached to visual proxies (colour,
shape and size), and those attached to spatial proxies (relations based on
spatial preposition). In the example two proxies are generated: one normal
proxy for the red object, and one group proxy for the blue objects. The binder
uses the features of these communication proxies to bind them into unions
with the visual and spatial proxies. In the example the φColourLabel

red -proxy is
bound together with the visual and spatial proxies relating the red object,

8 A similar, but more general, functionality could be generated by matching
location-derived features.
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and the φColourLabel
blue -proxies spawned from the corresponding group proxy

(see Section 2.5.1) are bound with the remaining proxies for the blue objects.
This provides the system with an interpretation of the utterance in terms of
the visual scene.

In this example, the process of reference resolution involves simply ensuring
that the communication proxies referring to visual entities (i.e. those referring
to objects in the tabletop scenario) are bound to unions that have a visual
component. If the utterance contains spatial language, then relation proxies
are generated by the communication binding monitor. This causes the binding
process to bind proxies via the relations between proxies as well as the features
of single proxies. Failure to bind proxies can trigger a number of different
processes.

Binding summary

In this section we have described two main mechanisms to tackle the binding
problem: implicit binding and explicit binding. Implicit binding is essentially a
design time choice, while explicit binding is a run time decision by the system
itself. We have described how implicit binding also allows us to implement
stable abstract features that are linked to rapidly changing features via the
creation of processing trails. Finally we have described how explicit binding
occurs. In addition to the basic mechanism we have also explored the problem
of early binding. This is when possible bindings can be used to cut down the
number of possible interpretations in some sub-architecture specific process. In
other words tentative bindings across sub-architectures can prune hypotheses
within those sub-architectures. This kind of approach we term incremental
binding and it is described in Chapter 8. The key issue with binding is whether
or not a centralised approach to the problem is the right one. We have shown
that it is possible, not for which kinds of niches it is the right choice.

2.5.2 Filtering

Previously we described the filtering problem as being how to decide effi-
ciently where a piece of information that arises in one sub-system needs to be
sent. In other words it is a problem of efficient information sharing. In CAS
our atomic information generating sub-systems are components. There is a
space of possible models for information sharing between components, rang-
ing from point-to-point communication (i.e. that used by our OAA-based first
PlayMate system) to a broadcast model. Between these two extremes exist
a range of possible systems in which components share information with a
subset of components. Which model is chosen can have a great impact on the
final system behaviour. In this section we use the shared memory-based de-
sign of CAS to explore the effects of varying the information sharing patterns
between components empirically. Specifically we achieve this by altering the
ratio of components to sub-architectures in a subset of the PlayMate system.
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We start with an n-m design where n components are divided between
m sub-architectures, where n > m > 1. The design is part of the Play-
Mate system described in Chapter 10, in which components are assigned to
sub-architectures based on functionality (vision, binding or qualitative spatial
reasoning), although for this experimental work arbitrary n-m assignments
are also possible (and would explore a wider area of design space). We then
reconfigure this system to generate architectures at two extremes of the de-
sign space for information sharing models. At one extreme we have an n-1
design in which all n components from the original system are in the same
sub-architecture. At the other extreme of design space we have an n-n design
in which every component is in a sub-architecture of its own. Each of these
designs can be considered a schema specialisation of the CAS schema from
which a full instantiation can be made.

These various designs are intended to approximate, within the constraints
of CAS, various possible designs used by existing systems. The n-1 design
represents systems with a single shared data store to which all components
have the same access. The n-m design represents systems in which a designer
has imposed some modularity which limits how data is shared between com-
ponents. The n-n design represents a system in which a no data is shared, but
is instead transmitted directly between components. In the first two designs
a component has do to extra work to determine what information it requires
from the available shared information. In the latter two designs a component
must do extra work to obtain information that is not immediately available
to it (i.e. information that is not in it’s subarchitecture’s working memory).

In order to isolate the effects of the architectural alterations from the
other runtime behaviours of the resulting systems, it is important that these
architectural differences are the only differences that exist between the final
CAS instantiations. It is critical that the systems are compared on the same
task using the same components. CAST was designed to support this kind
of experimentation: it allows the structure of instantiations to be changed
considerably, with few, if any, changes to component code. This has allowed
us to take the original implementation described above and create the n-1,
n-m, and n-n instantiations without changing component code. This means
that we can satisfy our original aim of comparing near-identical systems on
the same tasks, with the only variations between them being architectural
ones.

To measure the effects of the architecture variations, we require metrics
that can be used to highlight these effects. We previously presented a list of
possible metrics that could be recorded in an implemented CAS system to
demonstrate the trade-offs in design space [12, 13]. Ultimately we are inter-
ested in measuring how changes to the way information is shared impacts on
the external behaviour of the systems, e.g. how often it successfully completes
a task. However, given the limited functionality of our experimental system,
these kind of behaviour metrics are relatively uninformative. Instead we have
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Fig. 2.4. Left panel: Average number of relevant change events received per com-
ponent. Right Panel: Average filtering effort per relevant change event received.

chosen to focus on lower-level properties of the system. We have compared
the systems on:

1. variations in the number of filtering operations needed to obtain the
change events necessary to get information to components as required by
the task.

2. variations in the number of communication events required to move
information around the system.

As discussed previously communication and change events underlie the be-
haviour of almost all of the processing performed by a system. Therefore
changes in these metrics demonstrate how moving through the space of infor-
mation sharing models supported by CAS influences the information process-
ing profile of implemented systems.

We studied the three different designs in two configurations: one with
vision and binding sub-architectures, and the second with these plus the ad-
dition of the QSR subarchitecture. This resulted in six final instantiations
which we tested on three different simulated scenes: scenes containing one ob-
ject, two objects and three objects. Each instantiation was run twenty times
on each scene to account for variations unrelated to the system’s design and
implementation.

The results for the filtering metric are based around the notion of a rele-
vant event. A relevant event is a change event that a component is filtering
for (i.e. an event that it has subscribed to). Figure 2.4 demonstrates the per-
centage of relevant events received per component in each instantiation. 100%
means that a component only receives change events it is listening for. A lower
percentage means that the connectivity of the system allows more than the
relevant change events to get the component, which then has to filter out
the relevant ones. This is perfectly natural in a shared memory system. The
results demonstrate that a component in an n-1 instantiation receives the low-
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est percentage of relevant events. This is because within a subarchitecture, all
changes are broadcast to all components, requiring each component to do a
lot of filtering work. A component in an n-n instantiation receives the greatest
percentage of relevant changes. This is because each component is shielded by
a subarchitecture working memory that only allows change events that are
relevant to the attached components to pass. In the n-n case because only a
single component is in each subarchitecture this number is predictably high9.
This figure demonstrates the benefits of a directly connected instantiation:
components only receive the information they need.

However, this increase in the percentage of relevant changes received comes
at a cost. If we factor in the filtering operations being performed at a subar-
chitecture level (which could be considered as “routing” operations), we can
produce a figure demonstrating the total number of filtering operations (i.e.
both those at a subarchitecture and a component level) per relevant change
received. This is presented in Figure 2.4. This shows a striking similarity be-
tween the results for the n-1 and n-n instantiations, both of which require a
larger number of filtering operations per relevant change than the n-m instan-
tiations. In the n-m systems, the arrangement of components into functionally
themed sub-architectures results in both smaller numbers of change events be-
ing broadcast within sub-architectures (because there are fewer components in
each one), and a smaller number of change events being broadcast outside of
sub-architectures (because the functional grouping means that some changes
are only required within particular sub-architectures). These facts mean that
an individual component in an n-m instantiation receives fewer irrelevant
change events that must be rejected by its filter. Conversely a component in
the other instantiations must filter relevant changes from a stream of changes
containing all of the change events in the system. In the n-1 instantiations
this is because all of these changes are broadcast within a subarchitecture.
In the n-n instantiations this is because all of these changes are broadcast
between sub-architectures. Figure 2.5 (left panel) shows that these results are
robust against changes in the number of objects in a scene. Also, the nature
of the results did not change between the systems with vision and binding
components, and those with the additional QSR components.

Figure 2.5 (centre panel) demonstrates the average number of commu-
nication events per system run across the various scenes and configurations
for the three different connectivity instantiations. This shows that an n-n
instantiation requires approximately 4000 more communication events on av-
erage to perform the same task as the n-1 instantiation, which itself requires
approximately 2000 more communication events than the n-m instantiation.
Figure 2.5 (right panel) demonstrates that this result is robust in the face of
changes to the number of objects in a scene. The nature of the results also

9 The events required by the manager component in each subarchitecture mean the
relevant percentage for the n-n instantiations is not 100%.
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Fig. 2.5. Left panel: Average filtering effort per relevant event compared to scene
complexity. Centre panel: Average total communication events per instantiation run.
Right panel: Average total communication events per instantiation run compared
to scene complexity.

did not change between the systems with vision and binding components, and
those with the additional QSR components.

This result is due to two properties of the systems. In the n-n system,
every interaction between a component a working memory (whether it’s an
operation on information or the propagation of a change event) requires an
additional communication event. This is because all components are sepa-
rated by sub-architectures as well as working memories. In addition to this,
the number of change events propagated through the systems greatly effect
the amount of communication events that occur. In the n-n and n-1 instanti-
ations, the fact that they effectively broadcast all change events throughout
the system contributes significantly to the communication overhead of the
system.

2.5.3 Filtering summary

From these results we can conclude that a functionally-decomposed n-m CAS
instantiation occupies a “sweet spot” in architectural design space with ref-
erence to filtering and communication costs. This sweet spot occurs because
having too much information shared between components in a system (the
n-1 extreme) means that all components incur an overhead associated with
filtering out relevant information from the irrelevant information. At the other
extreme, when information is not shared by default (the n-n extreme) there
are extra communication costs due to duplicated transmissions between pairs
of components, and (in CAS-derived systems at least) the “routing” over-
head of transmitting information to the correct components (i.e. the filtering
performed by working memories rather than components).

In addition we have demonstrated here an empirical approach to compar-
ing different points within design space, where we have held the content of the
system constant, while making architectural changes. In this way we have also
shown how to use CAST to help carry out the empirical part of the science of
architectures we discussed at the beginning of the chapter. We now proceed
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to discuss the third of our problems, that of managing processing across the
system.

2.5.4 Processing Management

In this section we discuss the problem of how a complex artificial cognitive
system such as the Explorer or PlayMate systems we describe in Chapters 9
and 10 should manage their internal activity. In particular, when the process-
ing possibilities exceed the processing resources, how should the robot choose
what kind of processing to do? We refer to this as the processing management
problem. We sketch several possible solutions to it, and then discuss the solu-
tion we have been exploring, which relies on technologies for planning under
uncertainty.

To begin with consider a visual system that contains some of the many
algorithms and representations described in Chapters 4 and 7. Each of these
requires considerable computation to run, even in their classification (or non-
learning) mode. In a robot with multiple competences we will need all of
those vision algorithms and many more besides. For any natural visual scene
running all such algorithms on all parts of the image is not feasible. This is
not a problem in so far as we never need to perform all visual processing on
a scene: the vision we need is determined by the task we are performing. To
tackle this there has been much work on attention, and in particular the use
of visual saliency models to identify which parts of the scene to process. There
has been little or no work, however, on how to select which algorithms to run.
It is this issue that we address here.

In our PlayMate domain, both a robot and human can converse about
and manipulate objects on a table top (see [14]). As described previously,
typical visual processing tasks in this domain require the ability to find the
colour, shape identity or category of objects in the scene to support dialogues
about their properties; to see where to grasp an object; to plan an obstacle
free path to do so and then move it to a new location; to identify groups
of objects and understand their spatial relations; and to recognize actions
the human performs on the objects. Each of these vision problems is hard
in itself, together they are extremely challenging. The challenge is to build a
vision system able to tackle all these tasks. One early architectural approach to
robot vision was to attempt a general purpose, complete scene reconstruction,
and then query this model for each task. This is still not possible and in the
opinion of many vision researchers will remain so. An idea with a growing body
of evidence from both animals and robots is that some visual processing can
be made more effective by tailoring it to the task/environment ([15, 16, 17].

Consider the scene in Figure 2.6, and consider the types of visual opera-
tions that the robot would need to perform to answer a variety of questions
that a human might ask it about the scene: “is there a blue triangle in the
scene?”, “what is the colour of the mug?”, “how many objects are there in
the scene?”. In order to answer these questions, the robot has at its disposal
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Fig. 2.6. A picture of the typical table top scenario—ROIs detected for processing
are bounded by rectangular boxes.

a range of information processing functions and sensing actions. But, in any
reasonably complex scenario (such as the one described above), it is not feasi-
ble (and definitely not efficient) for the robot to run all available information
processing functions and sensing actions, especially since the cognitive robot
system needs to respond to human queries/commands in real-time.

There are many approaches that could be taken. The key choices concern
how bottom up and top down processing are mixed. Within the constraints
provided by CAS we have explored at least three approaches. In the first two
approaches, processing opportunities can be identified as data arrives, and
requests for processing resources be posted by the components to a local task
manager. The task manager may simply have a policy which is unvarying,
e.g. it permits all requests, or grants them up to some load threshold. This
is what we have done for most our visual systems to date, because they have
been very small. Alternatively the allocation policy could change according
to the mode that the task manager is in. This is the approach we took in the
communication sub-system for the Explorer and PlayMate systems. In this
sub-architecture the task manager has modes, which it can switch between,
and which are associated with different resource allocation policies. The third
approach, and the one we detail here is to drive the processing in a largely
top down way. In reality a mix of both top down and bottom up processing
will be required. A top down approach essentially takes the current robot
task, and uses this to determine which processing will be performed. There
are several ways that we can conceive of the top determination of processing.
In principle a (perhaps learned) task specific visual routine could be invoked
from a library. The problem with this approach is that it is not at all obvious
how to generalise from one task to another from a set of learned instances.
A different approach would be to use planning to compose a completely new
visual routine on the fly. The problem with this approach is that the planning
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process is itself expensive. However, we explore this approach, and show that
it can work.

There already exists a body of impressive work on planning of image pro-
cessing ([18, 19, 20, 21]). However, it is largely used for single images, re-
quires specialist domain knowledge to perform re-planning or plan repair, has
only been extended to robotic systems in the most limited ways, and poses
the problem in an essentially deterministic planning framework or as a MDP
([21]). In our approach we push the field of planning visual processing in a
new direction by posing the problem as an instance of probabilistic sequen-
tial decision making. We pose it as a Partially Observable Markov Decision
Process (POMDP), thereby taking explicit, quantitative account of the un-
reliability of visual processing. Our main technical contribution is that we
show how to contain one aspect of the intractability inherent in POMDPs for
this domain by defining a new kind of hierarchical POMDP. We compare this
approach with an earlier formulation based on the Continual Planning (CP)
framework of [22]. Using a real robot domain, we show empirically that both
planning methods are quicker than naive visual processing of the whole scene,
even taking into account the planning time. The key benefit of the POMDP
approach is that the plans, while taking slightly longer to execute than those
produced by the CP approach, provide significantly more reliable visual pro-
cessing than either naive processing or the CP approach. We give an overview
of the POMDP approach here, describe the results, and relate it back to the
CAS framework.

A POMDP formulation of visual processing

In robot applications, typically the true state of the world cannot be observed
directly. The robot can only revise its belief about the possible current states
by executing actions, for instance one of the visual operators.

We pose the problem as an instance of probabilistic sequential decision
making, and more specifically as a Partially Observable Markov Decision Pro-
cess (POMDP) where we explicitly model the unreliability of the visual op-
erators/actions. This probabilistic formulation enables the robot to maintain
a probability distribution (the belief state) over the true underlying state.
To do this we need an observation model that captures the likelihood of the
outcomes from each action. In this paper, we only consider actions that have
purely informational effects. In other words, we do not consider actions such
as poking the object to determine its properties, with the consequence that
the underlying state does not change when the actions are applied. However,
the POMDP formulation allows us to do this, which is necessary if we wish
to model the effects of operators that split ROIs, move the camera, or move
the objects to gain visual information about them.

Each action considers the true underlying state to be composed of the
normal class labels (e.g. red(R), green(G), blue(B) for color; circle(C), trian-
gle(T), square(S) for shape; picture, mug, box for sift), a label to denote the
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absence of any object/valid class—empty (E), and a label to denote the pres-
ence of multiple classes (M). The observation model for each action provides a
probability distribution over the set composed of the normal class labels, the
class label empty (E) that implies that the match probability corresponding to
the normal class labels is very low, and unknown (U) that means that there is
no single class label to be relied upon and that multiple classes may therefore
be present. Note that U is an observation, whereas M is part of the underlying
state: they are not the same, since they are not perfectly correlated.

Since visual operators only update belief states, we include “special ac-
tions” that answer the query by “saying” (not to be confused with language-
based communication) which underlying state is most likely to be the true
state. Such actions cause a transition to a terminal state where no further
actions are applied. In the description below, for ease of explanation (and
without loss of generality) we only consider two operators: color and shape,
denoting them with the subscripts c, s respectively. States and observations
are distinguished by the superscripts a, o respectively.

Consider a single ROI in the scene—it has a POMDP associated with it
for the goal of answering a specific query. This POMDP is defined by the tuple
〈S,A, T ,Z,O,R〉:

• S : Sc × Ss ∪ term, the set of states, is a cartesian product of the state
spaces of the individual actions. It also includes a terminal state (term).
Sc : {Ea

c , R
a
c , G

a
c , B

a
c ,Mc}, Ss : {Ea

s , C
a
s , T

a
s , S

a
s ,Ms}

• A : {color, shape, sRed, sGreen, sBlue} is the set of actions. The first two
entries are the visual processing actions. The rest are special actions that
represent responses to the query such as “say blue”, and lead to term. Here
we only specify “say” actions for color labels, but others may be added
trivially.

• T : S ×A× S → [0, 1] represents the state transition function. For visual
processing actions it is an identity matrix, since the underlying state of
the world does not change when they are applied. For special actions it
represents a transition to term.

• Z : {Eo
c , R

o
c , G

o
c , B

o
c , Uc, E

o
s , C

o
s , T

o
s , S

o
s , Us} is the set of observations, a

concatenation of the observations for each visual processing action.
• O : S×A×Z → [0, 1] is the observation function, a matrix of size |S|×|Z|

for each action under consideration. It is learned by the robot for the visual
actions (described in the next section), and it is a uniform distribution for
the special actions.

• R : S ×A → <, specifies the reward, mapping from the state-action space
to real numbers. In our case:

∀s ∈ S, R(s, shape) = −1.25 · f(ROI-size)
R(s, color) = −2.5 · f(ROI-size)
R(s, special actions) = ±100 · α
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For visual actions, the cost depends on the size of the ROI (polynomial
function of ROI size) and the relative computational complexity (the color
operator is twice as costly as shape). For special actions, a large +ve (-ve)
reward is assigned for making a right (wrong) decision for a given query.
For e.g. while determining the ROI’s color:
R(Ra

cT
a
s , sRed) = 100 · α,R(Ba

c T
a
s , sGreen) = −100 · α

but while computing the location of red objects:
R(Ba

c T
a
s , sGreen) = 100 · α. The variable α enables the trade-off between

the computational costs of visual processing and the reliability of the an-
swer to the query.

Our visual planning task for a single ROI now involves solving this
POMDP to find a policy that maximizes reward from the initial belief state.
Plan execution corresponds to traversing a policy tree, repeatedly choosing
the action with the highest value at the current belief state, and updating the
belief state after executing that action and getting a particular observation. In
order to ensure that the observations are independent (required for POMDP
belief updating to hold), we take a new image of the scene if an action is
repeated on the same ROI.

Actual scenes will have several objects and hence several ROIs. Attempting
to solve a POMDP in the joint space of all ROIs soon becomes intractable due
to an exponential state explosion, even for a small set of ROIs and actions.
For a single ROI with m features (color, shape, etc.) each with n values, the
POMDP has an underlying space of nm; for k ROIs the overall space becomes:
nmk. Instead, we propose a hierarchical decomposition: we model each ROI
with a lower-level (LL) POMDP as described above, and use a higher-level
(HL) POMDP to choose, at each step, the ROI whose policy tree (generated by
solving the corresponding LL-POMDP) is to be executed. This decomposes
the overall problem into one POMDP with state space k, and k POMDPs
with state space nm. Space does not permit us to give the full details of the
hierarchical POMDP formulation here, but these can be found in [23]. The
key technical point is that in the HL-POMDP the observation function and
the cost/reward specification for each action is based on the policy tree of a
LL-POMDP that corresponds to that action. An example of the type of policy
tree found for a LL-POMDP is given in Figure 2.7 where the LL-POMDP’s
policy tree has the root node representing the initial belief when the visual
routine is called. At each node, the LL-POMDP’s policy is used to determine
the best action, and all possible observations are considered to determine the
resultant beliefs and hence populate the next level of the tree.

Once the observation functions and costs are computed, the HL-POMDP
model can be built and solved to yield the HL policy. During execution, the
HL-POMDP’s policy is queried for the best action choice, which causes the
execution of one of the LL-POMDP policies, resulting in a sequence of visual
operators being applied on one of the image ROIs. The answer provided by
the LL-POMDP’s policy execution causes a belief update in the HL-POMDP,
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Fig. 2.7. Policy Tree of an ROI—each node represents a belief state and specifies
the action to take.

and the process continues until a terminal action is chosen at the HL, thereby
answering the query posed. Here it provides the locations of all blue objects
in the scene. For simpler occurrence queries (e.g. “Is there a blue object in the
scene?”) the execution can be terminated at the first occurrence of the object
in a ROI. Both the LL and HL POMDPs are query dependent. Solving the
POMDPs efficiently is hence crucial to overall performance.

A Continual Planning Formulation

The Continual Planning (CP) approach of [22] interleaves planning, plan exe-
cution and plan monitoring. Unlike classical planning approaches that require
prior knowledge of state, action outcomes, and all contingencies, an agent in
CP postpones reasoning about unknowable or uncertain states until more in-
formation is available. It achieves this by allowing actions to assert that the
preconditions for the action will be met when the agent reaches that point
in the execution of the plan, and if those preconditions are not met during
execution (or are met earlier), replanning is triggered. But there is no rep-
resentation of the uncertainty/noise in the observation/actions. It uses the
PDDL ([24]) syntax and is based on the FF planner of [25]. Consider the
example of a color operator:

(:action colorDetector
:agent (?a - robot)
:parameters (?vr - visRegion ?colorP - colorProp )
:precondition (not (applied-colorDetector ?vr) )
:replan (containsColor ?vr ?colorP)
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:effect (and
(applied-colorDetector ?vr)
(containsColor ?vr ?colorP) ) )

The parameters are a color-property (e.g. blue) being searched for in a
particular ROI. It can be applied on any ROI that satisfies the precondition i.e.
it has not already been analyzed. The expected result is that the desired color
is found in the ROI. The “replan:” condition ensures that if the robot observes
the ROI’s color by another process, replanning is triggered to generate a plan
that excludes this action. This new plan will use the containsColor fact from
the new state instead. In addition, if the results of executing a plan step are
not as expected, replanning (triggered by execution monitoring) ensures that
other ROIs are considered. Other operators are defined similarly, and based on
the goal state definition the planner chooses the sequence of operators whose
effects provide parts of the goal state—the next section provides an example.
The CP approach to the problem is more responsive to an unpredictable
world than a non-continual classical planning approach would be, and it can
therefore reduce planning time in the event of deviations from expectations.
But, while actions still have non-deterministic effects, there is no means for
accumulating belief over successive applications of operators. We show that
the HiPPo formulation provides significantly better performance than CP in
domains with uncertainty.

An example query

Figs 8(a)-8(d) show one execution example for an image with two ROIs.
The example query is to determine the presence and location of one or

more blue circles in the scene (Fig 8(a)). Since both ROIs are equally likely
target locations, the HL-POMDP first chooses to execute the policy tree of
the first ROI (action u1 in Fig 8(b)). The corresponding LL-POMDP runs the
color operator on the ROI. The outcome of applying any individual operator
is the observation with the maximum probability, which is used to update
the subsequent belief state—in this case the answer is red. Even though it is
more costly, the color operator is applied before shape because it has a higher
likelihood of success, based on the learned observation functions. When the
outcome of red increases the likelihood (belief) of the states that represent the
“Red” property as compared to the other states, the likelihood of finding a
blue circle is reduced significantly. The dynamic reward specification (α = 0.2)
ensures that without further investigation (for instance with a shape opera-
tor), the best action chosen at the next level is a terminal action associated
with the “Red” property—in this case it is sRedSquare. The HL-POMDP re-
ceives the input that a red square is found in R1, leading to a belief update
and subsequent action selection (action u2 in Fig 8(c)). Then the policy tree
of the LL-POMDP of R2 is invoked, causing the color and shape operators
to be applied in turn on the ROI. The higher noise in the shape operator is
the reason why it has to be applied twice before the uncertainty is sufficiently
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(a) Input image. (b) Execution Step 1.

(c) Execution Step 2. (d) Execution Step 3.

Fig. 2.8. Example query: “Where is the Blue Circle?” Dynamic reward specification
in the LL-POMDP allows for early termination when negative evidence is found.

reduced to cause the choice of a terminal action (sBlueCircle)—the increased
reliability therefore comes at the cost of execution overhead. This results in
the belief update and terminal action selection in the HL-POMDP—the final
answer is (s¬R1∧R2), i.e. that a blue circle exists in R2 and not R1 (Fig 8(d)).

In our HiPPo representation, each HL-POMDP action chooses to execute
the policy of one of the LL-POMDPs until termination, instead of performing
just one action. The challenge here is the difficulty of translating from the
LL belief to the HL belief in a way that can be planned with. The execution
example above shows that our approach still does the right thing, i.e. it stops
early if it finds negative evidence for the target object. Finding positive evi-
dence can only increase the posterior of the ROI currently being explored, so
if the HL-POMDP were to choose the next action, it would choose to explore
the same ROI again.

If the same problem were to be solved with the CP approach, the goal
state would be defined as the PDDL string:

(and (exists ?vr - visRegion) (and (containsColor ?vr Blue) (containsShape
?vr Circle) ) )
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(a) HiPPo vs. joint POMDP. Joint
POMDP soon becomes intractable.

(b) Planning times of HiPPo vs. CP.
Policy-caching makes results compara-
ble.

(c) Execution times of HiPPo, CP vs.
No planning. Planning makes execu-
tion faster.

(d) Planning+execution times of
HiPPo, CP vs. No planning. Planning
approaches reduce processing time.

Fig. 2.9. Experimental Results—Comparing planning and execution times of the
planners against no planning.

i.e. the goal is to determine the existence of a ROI which has the color
blue and shape circle. The planner must then find a sequence of opera-
tors to satisfy the goal state. In this case it leads to the creation of the
plan:

(colorDetector robot vr0 blue)
(shapeDetector robot vr0 circle)
i.e. the robot is to apply the color operator, followed by the shape operator

on the first ROI. There is a single execution of each operator on the ROI. Even
if (due to image noise) an operator determines a wrong class label as the closest
match with a low probability, there is no direct mechanism to incorporate
the knowledge. Any thresholds will have to be carefully tuned to prevent
mis-classifications. Assuming that the color operator works correctly in this
example, it would classify the ROI as being red, which would be determined
in the plan monitoring phase. Since the desired outcome (finding blue in the
first ROI) was not achieved, replanning is triggered to create a new plan with
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the same steps, but to be applied on the second ROI. This new plan leads to
the desired conclusion of finding the blue circle in R2 (assuming the operators
work correctly).

An experimental study

In considering the trade-offs between the different types of solution to the
processing management problem we consider several hypotheses that we can
test. Specifically we hypothesise that:

• The hierarchical-POMDP planning (HiPPo) formulation is more efficient
than the standard POMDP formulation.

• HiPPo and CP have comparable plan-time complexity.
• Planning is significantly more efficient than blindly applying all operators

on the scene.
• HiPPo has higher execution time than CP but provides more reliable re-

sults.

In order to test these hypotheses we ran several experiments on the robot
in the tabletop scenario. Objects were placed on the table and the robot had to
analyze the scene to answer user-provided queries. Query categories include:

• Occurrence queries: Is there a red mug in the scene?
• Location queries: Where in the image is the blue circle?
• Property queries: What is the color of the box?
• Scene queries: How many green squares are there in the scene?

For each query category, we ran experiments over ∼ 15 different queries
with multiple trials for each such query, thereby representing a range of vi-
sual operator combinations in the planning approaches. We also repeated the
queries for different numbers of ROIs in the image. In addition, we also im-
plemented the naive approach of applying all available operators (color, shape
and sift in our experiments) on each ROI, until a ROI with the desired prop-
erties is found and/or all ROIs have been analyzed.

Unlike the standard POMDP solution that considers the joint state space
of several ROIs, the hierarchical representation does not provide the optimal
solution (policy). Executing the hierarchical policy may be arbitrarily worse
than the optimal policy. For instance, in the search for the blue region, the
hierarchical representation is optimal iff every ROI is blue-colored. But as
seen in Figure 9(a) that compares the planning complexity of HiPPo with
the standard POMDP solution, the non-hierarchical approach soon becomes
intractable. The hierarchical approach provides a significant reduction in the
planning time and (as seen below) still increases reliability significantly.

Next, we compare the planning times of HiPPo and CP approaches as
a function of the number of ROIs in the scene—Figure 9(b). The standard
hierarchical approach takes more time than CP. But, the computationally
intensive part of HiPPo is the computation of the policies for the ROIs. Since
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Approach % Reliability

Naive 76.67
CP 76.67
HiPPo 91.67

Table 2.1. Reliability of visual processing

the policies computed for a specific query are essentially the same for all
scene ROIs, they can be cached and not repeated for every ROI. This simple
adjustment drastically reduces the planning time and makes it comparable to
the CP approach.

Figure 9(c) compares the execution time of the planning approaches
against applying all the operators on each ROI until the desired result is
found. The HiPPo approach has a larger execution time than CP because it
may apply the same operator multiple times to a single ROI (in different im-
ages of the same scene) in order to reduce the uncertainty in its belief state.
In all our experiments the algorithms are being tested on-board a cognitive
robot which has multiple modules to analyze input from different modalities
(vision, tactile, speech) and has to bind the information from the different
sources. Hence, though the individual actions are optimized and represent the
state-of-the-art in visual processing, they take some time to execute on the
robot.

A key goal of our approach is not only to reduce overall planning and execu-
tion time, but to improve the reliability of the visual processing. In these terms
the benefits are very clear, as can be seen in Table 2.1. The direct application
of the actions on all the ROIs in the scene results in an average classifica-
tion accuracy of 76.67%, i.e. the sensing actions misclassify around one-fourth
of the objects. Using CP also results in the same accuracy of 76.67%, i.e.
it only reduces the execution time since there is no direct mechanism in the
non-probabilistic planner to exploit the outputs of the individual operators (a
distribution over the possible outcomes). The HiPPo approach is designed to
utilize these outputs to reduce the uncertainty in belief, and though it causes
an increase in the execution time, it results in much higher classification accu-
racy: 91.67%. It is able to recover from a few noisy images where the operators
are not able to provide the correct class label, and it fails only in cases where
there is consistent noise. A similar performance is observed if additional noise
is added during execution. As the non-hierarchical POMDP approach takes
days to compute the plan for just two ROIs we did not compute the optimal
plan for scenes with more than two ROIs, but for the cases where a plan was
computed, there was no significant difference between the optimal approach
and HiPPo in terms of the execution time and reliability, even though the
policy generated by HiPPo can be arbitrarily worse than that generated by
the non-hierarchical approach.

A significant benefit of the POMDP approach is that it provides a ready
mechanism to include initial belief in decision-making. For instance, in the
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example considered above, if R2 has a higher initial belief that it contains a
blue circle, then the cost of executing that ROI’s policy would be lower and
it would automatically get chosen to be analyzed first leading to a quicker
response to the query.

Figure 9(d) shows a comparison of the combined planning and execution
times for HiPPo, CP, and the naive approach of applying all actions in all ROIs
(no planning). As the figure shows, planning is worthwhile even on scenes with
only two ROIs. In simple cases where there are only a couple of operators
and/or only one operator for each feature (color, shape, object recognition
etc) one may argue that rules may be written to decide on the sequence of
operations. But as soon as the number of operators increase and/or there is
more than one operator for each feature (e.g. two actions that can find color
in a ROI, each with a different reliability), planning becomes an appealing
option.

Summary of processing management work

In this sub-section we have explored the implications of the fact that within
a complex cognitive system with many goals it will not be possible to per-
form all processing. We have studied this problem within the context of vi-
sion, specifically the kind of visual sub-architecture we use for the PlayMate
scenario. Architecturally there are many possible solutions. Bottom up, data-
driven processing is implemented naturally in CAS. In this section we have
shown how to augment it with top down control, achieved using techniques
for planning under uncertainty, and continual planning.

2.6 The relationship of CAS to previous work on
architectures

2.6.1 Cognitive Architectures

There have been several attempts at unified theories of intelligence from within
cognitive science. At least two of these emphasise the role of production sys-
tems. In SOAR Newell and Laird [26] proposed a production system model in
which serial application of rules, written in a common form, modified represen-
tations held in a workspace shared by those rules. An important component
of the theory was that there was a single unified representational language
within which all data held in the shared workspace was expressed. Another
key idea was that a set of meta-rules controlled the serial application of these
productions. These three key ideas: a single shared workspace, serial appli-
cation of processing elements, and a common representational language have
been extremely influential. They are both simple to comprehend and allow
the construction of effective systems. In ACT-R [27] John Andersen and col-
leagues have taken some of the elements of production systems and used them
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to produce models of aspects of human cognition that produce testable pre-
dictions. In ACT-R productions now represent the serial actions of processing
in the thalamus and connect to information in buffers. Together these simu-
late the behaviour of multiple thalamic-cortical loops. ACT-R has been used
to construct models that give impressively accurate predictions for human
performance on a range of tasks, including reading and mental arithmetic.
ACT-R models rely heavily on the provision of timing information about de-
lays in each stage of processing. Both SOAR and ACT-R have in common the
fact that they have widely available languages that allow researchers to im-
plement computational models. Finally in Global Workspace Theory (GWT),
Baars and Shanahan [6] have proposed the idea that conscious thought is ex-
plainable at an abstract level by the idea of a global workspace. The key idea
in GWT is that local processes propose items to be posted onto a single global
workspace, and that mechanisms exist that select one collection of items that
are in turn re-transmitted to all the local processes. It can be seen that all
three theories emphasise the idea of a single shared workspace for parts of
cognition. There is evidence however, at least from robotics, that such a sin-
gle workspace is an incomplete architectural account of intelligence. I now
turn to describe ideas from robotics on architectures, in order to compare and
contrast them with the ideas from work on cognitive architectures.

2.6.2 Robotic Architectures

The first significant attempt to implement what might be loosely called a
cognitive robot was the Shakey project [28]. Detailed examination of their
approach bears fruit. The architecture in Shakey was dominated by a cen-
tral workspace within which all data about the contingent state of the world
was written in a single representational language. In the case of Shakey this
was a form of first order predicate logic minus quantification. Sensory pro-
cessing was essentially a business of abstracting from the raw sensor data to
this predicate description. Typing of entities was captured using predicates,
and the representation also captured some metric information for the highly
simplified world. Qualitative action effects were captured using STRIPS oper-
ators, which addressed some of the difficulties previously encountered by the
situation calculus. This declarative knowledge about action effects was used
in a planning process that had available all knowledge in the world model.
In addition to this the robot had fixed routines that would update the world
model when sufficient uncertainty had accumulated about its state. This was
the way that gross error recovery occurred: through re-sensing and then re-
calculating the world model. Simpler errors were handled using Intermediate
Level Actions (ILAs). These were essentially discrete closed loop controllers
that relied upon the world to settle between each step and thus couldn’t deal
easily with ongoing rapid change. Overall, Shakey shares, at an architectural
level, some of the assumptions of SOAR and ACT-R. It relies on serial appli-
cation of planning operators to simulate trajectories through the state space
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and selects courses of action based on those. It uses a single representational
language, although it does reason with that representation using two differ-
ent kinds of reasoning. It has completely serial control of execution: only one
ILA is in control of the robot at a time. It collects all contingent knowledge
about the world in a single shared workspace. It handles error recovery in two
ways: re-sensing leading to model updating and re-planning, and closed loop
recovery from errors without planning. Finally it does not provide an archi-
tectural answer to the problem of sensory interpretation: perceptual routines
existed in Shakey, but there are no architectural constraints or aids to how
they operate, communicate, or share information. They serve only to provide
information to a central model in a unified language. The classic story about
Shakey given by behaviour based roboticists, is that it could never have worked
outside of its carefully controlled environment, and that even within it perfor-
mance was unreliable. Shakey was able to perform different tasks, but it relied
upon an accurate world model. It was able to construct a sufficiently accurate
representation under benign sensory conditions, but robot vision researchers
unsuccessfully spent the decade following the Shakey project trying to extend
this approach of scene reconstruction to more natural visual environments.
Thirty-five years later our ability to perform scene or surface reconstruction
is still poor, although it has improved. Of course to be fair to the designers
of Shakey it is not clear that they took a principled stance on whether all
aspects of a scene should be recovered, only that attempts to extend their
approach often sought to do this, and have largely failed to date. A strong
reaction to this paradigm that occurred in the mid 1980s was exemplified by
the behaviour based approach to robotics [29]. The approach is characterised
by a number of authors including proponents and sceptics. One key idea is
that the system is almost entirely representation free. The meaning of this
statement depends on what is meant by representation. Kirsch [30] describes
three types of representation: data items the values of which co-vary with
features in the world; declarative statements which release their information
when queried; and predicate descriptions that allow generalisation by type,
leading to the ability to reason about inheritance. Brooks’ early robots were
certainly representation free on the basis of either of the last two definitions.
Furthermore, while modules may have representations of the first kind, they
do not typically transmit these representations to other modules for further
processing or consumption. In other words there is no sharing of information,
only competition for control of the robot. Other important aspects of the
approach are that many controllers run in parallel, that each is relatively sim-
ple, and that their action recommendations are fused through a single global
mechanism. The obvious weakness of the behaviour based approach is the lack
of evidence of its ability to scale to higher cognitive functions, despite nearly a
quarter of a century of effort. Instead, roboticists typically use behaviours as
the lowest level of control in a hierarchical system. Three tiered architectures
such as 3T [31] employ behaviours at the lowest level, and link these to a
symbolic planning level via a sequencing level in which transitions are made
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from behaviour to behaviour using a finite state machine like representation.
Representations have made a re-appearance via advances in filtering and sta-
tistical approaches imported from machine learning. Behaviours, rather than
truly behaviour based approaches have thus been merged into the tool-box
of techniques employed by most roboticists within architectures, rather than
being an architectural choice in their own right.

2.7 Summary of contributions and conclusions

In this chapter we have explored a small part of the space of designs for a par-
ticular part of niche space. Working from run and design time requirements
imposed by our combination of task and environment (our two scenarios) we
have suggested one architectural schema (CAS). We have argued that CAS
includes a large number of architectural instantiations and sub-schemas that
meet those requirements. From our experience of building real robot systems
using the software implementation of the schema (CAST) we have identified
four problems which are common to a very large range of systems, and which
we argue warrant architectural solutions. These are the problems of binding,
filtering, processing management and action fusion. We have gone on to detail
our work within CAST to create solutions to each of these problems. Finally
we have tried to show that an empirical science of architectures is possible.
The work in this aspect of CoSy has been exceptionally useful in allowing us
to integrate the work of many of the other chapters. In particular we believe
that any true systems approach to AI must include an architectural theory. We
believe that CAS represents a significant step forward in architectures for em-
bodied cognitive systems because of the way that it combines the parallelism
and incrementality of behaviour based systems with the use of representations
that should lie at the heart of any cognitive system.
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3.1 Introduction

This chapter presents an algorithm implementing a basic requirement for any
interface between sensory data and cognitive functions: dimensionality reduc-
tion. The algorithm extends the classical framework of dimensionality reduc-
tion to the case where sensory data are acquired through an embodied agent,
by grounding the metric that is at the basis of the dimensionality reduction
in the sensorimotor abilities of the agent. The final objective (which was not
realized because of time constraints) within CoSy was to build on this to pro-
vide a demonstration of some basic unsupervised learning of interactions with
space and objects, as would be required in an explorer-type scenario.

The algorithm provides several functionalities for the local analysis of sen-
sory data: it can estimate a code independent distance between sensory data
points, suggest actions to be taken so as to link neighboring sensory configu-
rations, and decompose possible sensory variations into sets of variations with
structurally different properties. Additionally, it can provide a local flatten-
ing of the sensory manifold and therefore it can be used in the way classical
dimensionality reduction is used.

The work described is situated within an approach called the “sensorimo-
tor approach” ([1]). The approach derives its motivation from the idea that
biological and artificial systems that have a variety of different types of sen-
sory inputs, and that have diverse and complicated effector mechanisms, are
best described in a way that does not depend in an essential way on the par-
ticular sensory or motor systems involved, but is instead code-independent.
Note that the sensorimotor approach, as understood here, is quite a radical
departure from classic views of natural or artificial perception. It should be
distinguished from other approaches where the term “sensorimotor” is used
more loosely (cf. e.g. [2]), and from approaches like those of‘ ‘Active Vision”
(c.f. [3, 4, 5, 6, 7]) where action plays an important role only to the extent that
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it increases the amount of information available to the system. Here the sen-
sorimotor approach is taken to imply the idea that the only type of knowledge
concerning the environment that a system can access is knowledge about the
laws that link the system’s actions to the resulting changes in sensory input.
These sensorimotor laws are the only basic entities that a system can ever
have access to.

The idea applies in an obvious way to geometrical notions: A system’s
understanding of the dimensionality and structure of the (probably Euclidean)
space in which it is embedded is constrained by the particular movements
the system can effect, and by the system’s ability to observe the sensory
changes these movements produce. But the idea must also apply to all other
sensory notions that a system possesses: for example the notion of its own
body characteristics, or its tactile perception or its perception of sound or
color.

Indeed, a dditional work performed during the CoSy project using the sen-
sorimotor approach concerned color. This work, though very interesting from
a fundamental point of view, was of less direct concern to the CoSy platforms
because using biologically inspired color perception was not considered a main
priority in the project. The work can be referred to in [8].

3.2 Artificial agents and human perception

Sensory data to be dealt with by embodied agents are complex, high dimen-
sional and grounded in the continuous domain. On the other hand cognitive
functions like navigation, planning and communication usually are considered
algorithmic in nature. For this reason, most research in the field (although for
an exception see e.g. [9]) considers that actions, sensory configurations and
possible states of the system are taken from finite sets (this is for instance the
standard framework in machine learning, topological map building, language,
dynamic logic, qualitative reasoning: see for instance [10, 11, 12]). The com-
plexity of these algorithms is often exponential in the number of such states,
and consequently they crucially require tractable information as inputs. This
requires modules to be implement that interface low level data acquisition and
higher cognitive processing: for instance, modules that convert visual flow into
a small collection of coordinates and attributes that identify the position and
properties of objects in the field of view.

Evolution has endowed biological organisms with neuronal processing
schemes adapted to the organisms’ sensors. By analogy it makes sense for
artificial systems to consider creating interfacing modules specifically engi-
neered for the agent’s sensory devices and the data format used by cognitive
functions. On the other hand, while device dependent solutions will ensure
a tractable level of efficiency and robustness, they also constrain a system’s
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ability to adapt as task requirements and sensorimotor competences change,
or as the agent’s body suffers evolution, modifications, changes in environ-
mental conditions, or damage. Such issues might presumably be handled at
a cognitive level, but if information is erroneously discarded or even merely
impoverished by early perceptual processing then the task may be very hard.
In the case of humans, this seems essentially unrealistic in the long term as
it would mobilize too many of the resources required by cognitive functions.
Finally, if modifications occur at the sensorimotor level then it seems that
methods considering a continuous framework will be more adaptable than
methods conceptually based on the manipulation of a limited set of entities.

These arguments all suggest investigating the question of an unsupervised
and multimodal approach to sensory data analysis. Insofar as global interac-
tions with space and objects are based on the coupling of cognitive functions
with the mastery of local interactions [13], such an approach would provide
the required basic tools. It would ultimately lay the ground for unsupervised
algorithms converging to the flexible exploitation of the sensorimotor abilities
available to the agent.

The issues faced by research in the field of embodied articial agents are also
related to research in the field of human perception. There is a long history
of theories about the sensorimotor grounding of perceptual experience, espe-
cially as concerns space: Helmholtz at the end of the 19th century had already
suggested a general formulation of the notion of displacement for a sensorimo-
tor system [14], and Poincaré expressed his thoughts on the relation between
compensability and space a few decades later [15]. More recently Piaget devel-
oped the idea that sensorimotor interactions were fundamental in structuring
an individual’s cognitive and perceptual abilities [16], and Gibson founded
a theory of perception tightly linked with action [17]. As a natural outcome
of this history several issues addressed today in developmental psychology
revolve around the interplay between sensorimotor skills, cognitive/symbolic
abilities and perception.

In the field of psychophysics, the importance of sensorimotor interactions
has been recently pushed to quite an extreme limit in the idea that perception
should be envisioned in terms of cognitive access to the mastery of sensorimo-
tor abilities, rather than in terms of passive sensory processing decoupled from
both cognitive and motor constraints [1]. Though this is more of philosophical
importance than critical to a concrete project like CoSy, it is worth noting
that the basic motivation for such a radical shift, as compared to the stan-
dard view of sensory processing, lies in a central difficulty faced by theories
of perception: the difficulty in explaining the existence and character of the
qualia of sensations [18]. Thus, an approach to perception emphasizing neu-
ronal processing will be faced with the a priori impossible task of finding an
explanation of qualia within properties of this processing or properties of the
neuronal substrate underlying this processing [19, 20, 21]. On the other hand
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an approach emphasizing sensorimotor interactions has instead the easier task
of matching qualia to properties of sensorimotor interactions.

3.3 Dimensionality reduction

To address the mismatch between the complexity existing at the sensor level
and the requirement that cognitive processing should be tractable, a com-
mon hypothesis is that perception is preceded by a process that extracts low
dimensional representations of the sensory information. The so-called Swiss
Roll gives a clear illustration of the situation. Given data points in the ”high”-
dimensional space R3 that really lie on a rolled plane, metrical reduction al-
gorithms will search for a mapping from R3 to R2 that does not alter geodesic
distances between points.

Fig. 3.1. Unfolding the Swiss Roll. A, the manifold on which the data lies; B, the
data points; C, the resulting embedding. From [22].

However, as will be shown in the following overview, current research on
methods of dimension reduction has mainly focused on technical aspects of di-
mensionality reduction itself without questioning the metric used on the data
to be reduced. It is usually assumed that the format of data representation
should itself suggest a metric. But according to the sensorimotor approach,
we expect that actions, rather than the peculiarities of particular data rep-
resentations, are what should essentially determine the metric to be used on
sensory data.

3.3.1 Review of classical, “passive” approaches

Variance based methods

Principal Component Analysis (PCA) is a ubiquitous method when data lie in
a vector space, and it exists in several flavors: variance analysis and reduced
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rank analysis [23], Probabilistic PCA [24], incremental PCA [25], recursive
PCA [26], etc. The basic idea is to provide the d-dimensional linear approxi-
mation of a dataset yielding minimal error with respect to the n-dimensional
original data (n ≥ d). Approximation is obtained by retaining from the data
only their orthogonal projection on a d-dimensional subspace accounting for
as much as possible of data variance. Actually, PCA provides an ordered set
of n approximations of dimensions d = 1 . . . n having this property. It can be
performed algebraically or using neural networks. Note that both the notion
of minimal error and orthogonal projection follow from the specification of a
norm on the data.

Several generalizations of PCA have been developed. Projection Pursuit
(PP) searches for axes in input space that optimize a user defined index de-
scribing the ”interestingness” of the axis [27, 28]. If the index of an axis is the
variance of data along this axis then PP equates with PCA, but other indexes
such as data kurtosis or multimodality can also be considered. Generalization
of the Gaussian assumption underlying PCA to the more general assumption
of an exponential family of probabilities has also been investigated [29].

Practical attempts towards a nonlinear version of PCA are found in Local
PCA [30] or mixture of principal component analysers [31], which indepen-
dently analyses cells of a partition of the input space, and Locally Weighted
PCA (LWPCA), which interpolates with radial functions between different lo-
cal models [32]. Kernel PCA [33] provides a nonlinear version of PCA through
an implicit mapping of data in a higher dimensional space on which PCA is
performed, computations being optimized by the fact that only scalar products
of mapped data are actually required. Principal Curves (PC) and Principal
Surfaces provide a more geometrical viewpoint on a nonlinear version of PCA:
instead of searching for subspaces fitting the data, PC searches for surfaces
fitting the data [34]. By analogy with the property satisfied by principal sub-
spaces in the case of data drawn from a Gaussian distribution, each point of a
principal surface is expected to be the mean of the data whose projection on
the surface is this point. This Riemannian approach is quite general in extent,
and there are developments for the more constrained (hence richer) case of
Lie groups [35].

Distance matching methods

The methods of MultiDimensional Scaling (MDS) originally developed for
psychophysics [36] can also be used for dimension reduction, by retaining
from the data only their distances, and then searching from scratch for low
dimensional representations satisfying the same set of distances. The simplest
approach uses a least square citerion and is purely algebraic, but there are
numerous variants. Notably, nonmetric MDS aims at replicating the rank
orders for distances instead of the actual distances [37, 38], and is based on
minimization of a complex cost function for the mismatch of distances instead
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of using the least square criterion. Sammon’s NonLinear Mapping (NLM)
follows the same philosophy as nonlinear MDS but uses yet another criterion
for the mismatch of distances [39].

Laplacian eigenmaps can be seen as a form of distance matching [40]. The
idea is to find real functions of unit norm over the data manifold that pre-
serve locality as much as possible (i.e. close points are mapped onto close real
values). An embedding can then be found from the fact that an orthonormal
basis of such functions is the solution of a general eigenvalue problem, with
the size of the eigenvalues quantifiying the goodness of locality preservation
for the associated eigenfunctions.

Vector quantization methods

Self-Organizing Maps (SOM) represent a somewhat different trend of research,
based on the idea of Vector Quantization (VQ) with topological constraints
[41]: SOM provides a feature map from a specified set of representatives (called
‘neurons” in the SOM nomenclature or “codebooks” in the VQ nomenclature)
in a topological space to a set of prototypes in input space, so as to yield
minimal quantization error in input space. Curvilinear Component Analysis
(CCA) circumvents the requirement of a predefined neighborhood relation be-
tween representatives by adapting both the set of prototypes, using standard
VQ methods, and their representatives, by a gradient descent minimizing the
mismatch between the set of local distances for input data and the set of lo-
cal distances for representatives [42]. Neural Gas (NG) and Growing Neural
Gas (NNG) provide efficient VQ methods able to adapt to data with different
dimensionalities at different locations [43, 44]. Approaches to dimension re-
duction based on Shannon information theory [45] should also be mentioned
as they are closely related with VQ.

Geometric methods

In recent years, two methods of dimension reduction for data lying on a non-
linear manifold have been very popular: Isomap [22] and Locally Linear Em-
bedding (LLE) [46]. Isomap first computes geodesic distances between points
within the input manifold using shortest path algorithms, and then applies
MDS to represent the data in a space such that Euclidean distances corre-
spond to the computed geodesic distances. Curvilinear Dimension Analysis
(CDA) is very similar in spirit, its main difference being to use CCA instead
of MDS [47]. As for LLE, it is based on the preservation of local linear rela-
tionships instead of the preservation of local distance relationships: LLE first
expresses each point as a linear combination of its neighbors in input space
and then computes a low dimensional representation satisfying identical linear
relationships. A fundamental difference between Isomap and LLE is that the
first tries to preserve global geodesic distances over the whole set of data while
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the second attempts to preserve local linear relationships between neighboring
points: the first is global, the second local.

3.3.2 Standard issues

Algebraic versus gradient based/neural network methods

Approaches providing algebraic solutions such as PCA, classical MDS, Isomap
and LLE profit from a clear analytical framework for studying the robustness
of the algorithms and from highly optimized routines developed on computers
for linear algebra. On the other hand approaches with gradient based solutions
are more biologically appealing and suggest the existence of very efficient
implementations in physical dynamical systems, that are presumably better
behaved than algorithmic processing. It is therefore difficult to judge these
approaches on the basis of this algebraic versus gradient based distinction,
even though this point is often discussed in the arguments supporting each
approach.

On the other hand, what may have an impact is the possible existence of
strong discontinuities in the behavior of an algorithm with respect to its data
and parameters. The behavior of Isomap, for instance, has been argued to be
strongly dependent on the size of the neighborhood that is considered to es-
timate geodesic distances [48]: a neighborhood which is too large might cause
collapse of nearby parts of the manifold on which the data lie and a neigh-
borhood which is too small might lead to conjecture a myriad of unconnected
components. This is a very unfortunate behavior, but it seems unavoidable in
a numeric context which spoils the notion of continuity on which the geometric
intuition of such algorithms is grounded.

Linear versus nonlinear approaches

PCA definitely possesses numerous advantages: it is easy to implement, ro-
bust (in the sense that it will not often yield absurd results), its memory and
computational requirements scale reasonably with respect to the dimension-
ality of the data, and for about the same cost as a unique approximation it
actually provides a series of approximations with increasing degree of accu-
racy. It must however be recalled that principal components are defined only
on the basis of the variance of the data along a family of orthonormal axis.
This means that the extracted components will not necessarily have an intu-
itive meaning. Indeed PP demonstrates that other criteria can equally well be
considered, and may be more relevant from a statistical point of view. The
linear assumption underlying PCA will also lead to an overestimation of the
number of coordinates needed to approximate the data if the input dataset lies
in a nonlinear manifold. Further, distances between approximations may be
substantially different from distances in input space if the latter are geodesic
distances. These two points are the main reasons that drove research from
linear approaches to nonlinear ones.
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Topological and geometrical constraints in the nonlinear case

Nonlinear approaches suffer from more subtle difficulties than might be imag-
ined from the local notion of a smooth manifold: in particular, there may be
a global topological incompatibility between the d-dimensional submanifold
considered for reduction and the Euclidean space Rd in which a low dimen-
sional representation is sought. Consider a circle in R2: any global attempt to
represent it in the Euclidean space R having its intrinsic dimension will fail to
preserve such an elementary feature as neighbor relations between its points.
There is research aiming to specifically address this issue either by cutting the
data manifold so as to achieve an embedding in a Euclidean space having the
intrinsic dimension d of the manifold [49], or by using Whitney’s theorem to
preserve the global topological structure of the data manifold but achieving
an embedding in a Euclidean space of dimension 2d+ 1 [50].

As for metrical aspects, it may sometimes be the case that there is an
incompatibility between the intrinsic curvature of the data manifold and the
flatness of the representational space: consider the case of data lying on a
fishbowl in R3. Such data cannot be represented in R2 without introducing
a systematic distortion of distances as compared to geodesic distances on the
data. A possible way to overcome this problem in some cases is to relax the
assumption of a Riemannian metric on the data manifold, and use a conformal
metric (i.e. undetermined by a scale factor at each point of the manifold) [51].
This can however only solve very specific cases.

3.3.3 The central issue of the metric

All the approaches reviewed above have a fundamental problem. They assume
a particular metric specified in input space, but in general they give no reason
why this metric should be prefered over another one. Yet clearly the metric
used for dimension reduction is crucial in determining 1) aspects of the data
that can be neglected in the reduction process, 2) the kind of distance rela-
tionships that have to be preserved in representational space, and 3) the kind
of coordinates yielded by dimension reduction.

Metrics based on noise

Dimensionality reduction presumably takes from its oldest solution, PCA, the
conceptual framework that lets the Euclidean norm be considered as a natural
default choice for a metric on data. Consider the very simple example of two-
dimensional data obtained from one-dimensional data by a noisy process (the
standard situation underlying PCA), so that

Y = u ·X + ε

where u ∈ R2 is some vector, X ∈ R are the ”true” data and ε is from
white normal noise. The choice of norm ||y||2 = yT y = y2

1 + y2
2 will equate
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statistical concerns with a geometrical picture: the estimation for X that
results from maximum likelihood can be read as the orthogonal projection
of data on the line yielding minimum distance expectation between data and
their projections. This expectation equates in turn the geometrical picture
with PCA since it can be shown that minimization of distance expectation
is achieved by using the line yielding maximum projected variance. Here it
must be emphasized that “orthogonal projection” and “distance” both depend
on the norm just defined. Hence if one assumes that data are corrupted by
independent and identical noise on each coordinate, the Euclidean norm is a
natural criterion to minimize as regards approximation concerns.

Note of course that this is already no longer the case if the noise sources
are not identical and independant. In order for the minimization of distance
expectation to yield the maximum likelihood estimate for X, a coordinate
system whitening the noise has to be considered: put Ỹ = Cov(ε)−1/2Y , then

Ỹ = v ·X + ε̃

with ε̃ white noise takes us back to the previous situation. But if ||ỹ||2 = ỹT ỹ,
then we have ||y||2 = yTCov(ε)y which shows that the noise covariance indeed
defines the norm that should be used as a minimization criterion if we want
to perform a maximum likelihood estimation of “true” data.

This kind of approach may therefore provide arguments for use of a specific
metric, but the point is: methods such as Isomap are not really concerned by
the issue of the noise. In fact, their simplest examples involve data without
any noise. Thus the question is: what is that metric whose preservation is the
main virtue of a ”good” dimension reduction algorithm? This is discussed for
instance in [52] from the perspective of standard tasks to be fulfilled in image
processing. We propose here a somewhat different viewpoint.

Metrics based on invariance

Since images are a classical example where dimension reduction is often re-
quired, we could search as a starting point for arguments leading to consider
specific metrics on image manifolds. For that purpose, we will distinguish be-
tween the continuous field amplitude I(x, y) that represents the information
with which sensors interact, and Iij the pixel array delivered by the sensors
of a camera. The idea is that the pixel representation should be considered
merely as a choice of coordinates for the physical entity I(x, y) facing the sen-
sors. This coordinate system is obviously not neutral on general grounds: first,
it will determine the kind of information loss induced by noise on these repre-
sentations, and second, if computations performed by modules receiving such
representations are limited then this representation will imply specific possi-
bilities and impossibilities as regards what can be performed by such modules.
While these two points are very important they are not usually mentioned ex-
plicitly in the framework of dimension reduction. From the viewpoint of this
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framework, coordinate systems should be neutral, and the choice of a met-
ric has no reason to be based on it. This means that we must search within
external constraints for ideas about what metric to use.

We might first try to find whether there is a natural metric on amplitude
fields I(x, y). As for infinitely extended fields, a presumably important re-
quirement is that this metric should yield a notion of distance between fields
independent of a frame of reference in the 2D plane, otherwise we would need
to take into account some ”absolute” position and orientation of our own
viewfield to estimate the distance between two fields. Note p = (x, y) for
convenience, then I observed in a frame of reference with change of position
t ∈ R2 and change of orientation r ∈ SO(1) is the field (t, r)∗I : p 7→ I(r·p+t),
and therefore we want

d(I, J) = d((t, r) ∗ I, (t, r) ∗ J) ∀t ∈ R2, r ∈ SO(1) (3.1)

If d is a norm on square integrable functions, then it derives from a scalar
product of the form

〈I, J〉 =
∫
k(p, q)I(p)J(q)dpdq

and we can easily show the constraint 3.1 to be equivalent to

k(p, q) = k̃(||p− q||)

where ||p|| is the Euclidean norm on the 2D plane. Hence the norm

||I||2 =
∫
I(p)2dp

is a simple case of such invariant norms obtained by using a delta function as
a kernel: k̃(v) = δ(v − 0). This suggests that this norm on pixel arrays yields
an intuitive notion of approximation (for instance when used to perform a
PCA) because cameras have been built so that this norm satisfies invariance
properties that may underlie our own perceptual analysis.

The previous simple formalization is instructive on three points:

• First, it shows that the standard norm used on pixel arrays has the very
desirable property of being approximately invariant to changes of view-
point on fields. This is however so only because of the regularity of the
sensor array, and because all sensors are assumed identical and linear with
respect to fields1 2.

1 This shows that the physical architecture of a device is part of its computational
abilities.

2 As a consequence of this invariance we have the following result. Take T = (dt, dr)
a tangent vector to the identity in SE(2), and put I(s) = exp(Ts)∗I a trajectory
in the space of pictures obtained by the action of the exponential of T : then
||İ||2 = const.
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• Second it suggests a whole class of metrics on fields that are invariant and
therefore could be considered on pixel arrays. It is easy to construct a
whole family of invariant norms once we have one. This can be done using
linear transformations A such that A((t, r)∗I) = (t, r)∗A(I). Convolutions
with kernels of the form h(||p − q||) satisfy this, hence isotropic blurring
or banks of linear invariant filters for instance obviously do not destroy
invariance.

• And third, it suggests a generic criterion, invariance, to deal with the case
where sensors no longer satisfy favorable constraints of regular layout, sim-
ilarity and linearity of sensors. In the case of humans, it must be recalled
for instance that photoreceptors are organized on the retina in very inho-
mogenous way, and furthermore that blood vessels in the eye obstruct a
large number of photoreceptors. In the case of an artificial agent, the use
of an inhomogeneous optical filter is equivalent to a distortion of sensor
layout and sensor responsiveness. If such a filter is added to the camera,
then the pixel norm and invariant norm on physical fields will not match
anymore. The invariance property of the pixel norm will break down and
the distance between pairs of pictures will for instance vary when both
pictures are translated by the same amount. We may wonder why optical
filters should be added to the camera: the point is merely to emphasze that
important assumptions about the sensory device are made when consider-
ing the Euclidean norm on arrays of pixels. The role of these assumptions
has to be kept in mind when conceiving an unsupervised approach to sen-
sory processing.

The goal of section 3.4.1 will be to provide a more general formalization
for the notion of invariance, so as to provide the definition in the most relevent
way for a given sensorimotor system.

3.4 Dimension reduction in the context of sensorimotor
interactions

Having considered a general overview of known dimension reduction methods
and acknowledged the need for them to provide arguments for the choice of a
metric, we try in this section to put forward sensorimotor arguments. We will
first focus on the construction of a mathematical conception for what can be
meant by a sensorimotor system. We need a picture that is constrained enough
so that we avoid getting lost in wide-ranging considerations about dynamical
systems, and yet a picture that is general enough so that we leave substantial
room for applicability and unsupervised learning: we want to carefully weigh
constraints to be added and put them in a general form so that they can be
instantiated by an agent involved in sensorimotor interactions that may not
resemble our own.
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For the reasons we have already discussed, we deliberately make the choice
of considering a continuous and dynamical picture of a sensorimotor system.
Further we make the choice of a geometrical picture, that is: we want to think
in a coordinate-free way about the mathematical objects considered in the
model. This means in particular that we do not want models that depend
on a specific encoding of sensory data and motor commands. This is the
condition to find device independent algorithms, but it is also motivated by
considerations at the foundations of the sensorimotor approach to perception
developed in [1]: namely the assumption of a functional, rather than dualist
or reductive physicalist explanation for perceptual experience.

3.4.1 Finding a mathematical framework

To ground the intuition of this framework we will often go back to a standard
example of robotic system interacting with space: that of a two wheeled vehicle
on a 2D plane (Figure 3.2).

Fig. 3.2. Two wheeled vehicle on a 2D plane with various variables defining its
physical state

Model for sensorimotor dynamics

A quite general model for sensorimotor interactions of an embodied agent
could be  ω̇ = F (ω,m)

s = G(ω)
m = H(s, a)

(3.2)

where ω are physical states of the agent-and-environment, m are motor com-
mands, s are sensory inputs, and a are action commands imposed by higher
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level cognitive functions. F describes the possible dynamics of the physical
state under different commands, G essentially describes perceptual aliasing
(the fact that a given sensory input most often can result from a whole set of
physical states), and H describes feedback control laws associated with differ-
ent actions a. This is for instance a model equivalent to that of [53], apart for
one important point: actions a will be here considered a priori to constitute
a continuous set rather than a finite set.

Our motivation to consider a continuous set of actions is that we want to
investigate sensorimotor arguments for abstracting a finite number of actions
so that the global sensorimotor interactions of the organism driven by cogni-
tive functions still exploit the whole range of low level abilities3. This actually
means that we will overview some arguments for turning the previous system
into a hybrid system [54] without losing too many of the possibilities offered
by the underlying continuous dynamics. As we will see, the issue of isolating
a finite number of actions will be related, in the algorithm that we suggest,
to the question of finding a metric on sensory input. But more essentially the
issue of the interface between a continuous dynamical system and cognitive
functions (e.g. algorithms for Turing machines) is at the heart of our general
approach in the scope of this work.

Notation: We will refer to the first equation of the model (3.2) as the
system dynamic or external dynamic. We will refer to the dynamic involving
feedback control as the low level sensorimotor dynamic, that is:

ω̇ = F (ω,H(G(ω, a))) = ϕ(ω, a) (3.3)

The term low level is in contrast to the global dynamic which also involves
slower cognitive feedback. This gives the picture of a fast dynamic (the low
level sensorimotor dynamic) driven by a slow one (the cognitive dynamic), as
also suggested in synergetics [55] and hybrid systems [54].

Overview of structural aspects

Model (3.3) is typically far too general to provide much insight about the
possible structure of low level sensorimotor interactions. Constraints to con-
sider in order to obtain a mathematically tractable framework are suggested
by viewpoints that have arisen in the mathematical study of dynamical sys-
tems. We evoke these viewpoints as they can provide hints to ground selection
of actions by specifying ‘structures” that we may want to see preserved by
cognitive processing.
3 For instance, it seems intuitive that most of the time neighboring actions will

lead to similar sensorimotor loops and therefore only one representative action
for the whole set needs to be retained by cognitive functions. But there will also
be some actions leading to very different sensorimotor loops, or bearing specific
relationships with other loops, and these will need to be differentiated by cognitive
functions if the overall structure of the sensorimotor dynamics is to be preserved.
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Catastrophe theory.

An example of a possible and natural constraint to consider on the model, if
it is to refer to a physical system, is the existence of a potential from which
the dynamic derives. If the sensorimotor dynamic depends on a smooth po-
tential then catastrophe theory details conditions under which slight changes
of a given action will result in a very different organization of the associated
low level sensorimotor dynamic: changes in the number of fixed points, the
structure of stable, unstable and repelling sets, structure of cycles, etc. This
could be used to partition the action space into areas associated with qualita-
tively similar dynamics, and identify low level sensorimotor dynamics that are
singular in the sense that they require a very precise tuning of the parame-
ters to occur. This would be the viewpoint of structural stability [56]: identify
and represent dynamics that are robust to slight perturbations in the choice
of action. While such general aspects of dynamical systems must be kept in
mind, they do not seem to express sufficiently strong constraints to account
for the kind of physical regularities that we need to ground a notion of space
and objects.

Geometrical nonlinear systems.

Another possible constraint is the one considered in standard approaches to
nonlinear control theory [57], namely: a vector space structure for the set of
all possible actions, and external dynamics affine with respect to actions i:

ω̇ = ϕ0(ω) +
∑

i

ϕi(ω) · ai (3.4)

This model can be applied to many robotic systems, and is further compatible
with physiological work about the linear combination of motor primitives in
humans [58]. The affine assumption is a very natural one from a geometrical
perspective, as will be sketched later, and it will be retained in the following
approach.

Example. To fix ideas, we can slightly detail the case of an ideal
vehicle on the 2D plane. Put

ω = (x, y, θ, ψ1, ψ̇1, ψ2, ψ̇2)

where these variables describe, respectively, the position of the middle
of the two wheels’ contact points, the vehicle’s heading direction, and
the angles of a fixed point on each wheel with respect to the vertical.
Then standard mechanical principles show that

(ẋ, ẏ, θ̇) = f0(θ, ψ̇1, ψ̇2)
(ψ̈1, ψ̈2) = J1 · τ1 + J2 · τ2
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where control variables τ1 and τ2 are the torques applied to drive the
wheels. We then see that the dynamic is indeed linear in the motor
commands.

In the context of nonlinear control theory, reachability is the issue of de-
termining which configurations of the system can be reached from a given
starting configuration. This is an issue well understood in the geometrical
picture of equations (3.4), and it naturally suggests that an important and
tractable requirement to be considered on the choice of a finite set of actions is
that this choice should not reduce reachability, at least in the limit of infinite
sequences of such actions. Here we will consider that issues about observabil-
ity and stability are about available low level sensorimotor abilities, and so
we will not discuss them.

Mechanical and geometrical symmetries.

A last important constraint that may be considered is the case where the
physical world possesses a very strong regularity, namely the existence of a
symmetry group for system dynamics. This is the case we detail in the next
section.

The existence of a symmetry group can be interpreted as the situation
where an underlying space imposes that system dynamics are invariant when
physical states are merely moved in this space. Consider lifting up the vehicle
from the 2D plane then putting it at another place: There is no change in the
dynamic ruling the system, there is no way to infer from the dynamic where
the vehicle is.

If we take as our goal to investigate algorithms allowing a system to locate
itself in space, we will need to define a constraint that will let us consider mod-
els of sensorimotor interactions in which there is indeed a space to find. The
existence of a symmetry group will allow us to introduce on general grounds
notions such as displacement, and relative configuration. This provides further
ideas to select specific actions: we can expect some actions to bear very spe-
cific relationships with all other actions, and these specific relationships could
provide a simplification for the set of policies to be considered4. In any case
the presence of symmetries is known to simplify the complexity of optimal
planning in the paradigm of machine learning [59].

In this chapter the symmetry group will suggest constraints on metrics
to be used on sensory inputs: we wish to search for metrics respecting this
symmetry.

4 Consider the case of commutative actions a and b. The set of possible action
sequences to consider for planning reduce to {anbm, n ∈ N, m ∈ N} ∼ N2 while if
actions do not commute then the set of possible action sequences to consider is
N{a,b} ∼ R.
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Space: system symmetries and sensorimotor symmetries

Symmetries.

In order to formulate the assumption of the existence of a symmetry group,
we make a slight shift of viewpoint towards a geometric framework: we rewrite
the first equation of model (3.2) as

ω̇ = Fm(ω)

and we view Fm as a family of vector fields on the state manifold Ω parameter-
ized by motor outputs m. We can see here that the assumption of a dynamic
which is affine in the motor commands is natural, since the family Fm can be
seen as a submanifold of the vector space of vector fields: the affine assumption
can therefore be seen either as a local approximation or as a general frame
inside which smooth constraints will be considered later.

The existence of a symmetry groupΣ onΩ for the dynamics can be written

T ∗Fm = Fm

Here T ∗ denotes the pull-back application for the diffeomorphism T of Ω (see
for instance [60]).

We already have cited the common example of a vehicle moving on a 2D
plane. Other examples could include a vehicle moving on 2D manifolds of
constant curvature5. To fit with the physics of our world, we will assume the
existence of a smooth symmetry group, i.e. a Lie group.

Relative configurations.

Under suitable assumptions of regularity for the action of symmetries6, the
symmetry group induces a partitioning of the state manifold Ω into equiva-
lence classes defining a manifold of relative configurations7 Ω/Σ. This sug-
gests a quite general aspect of an agent body in model (3.2), expressed in

5 The case of manifolds of non-constant curvature intuitively calls for a distinction
between a sensorimotor agent in a 3D symmetrical world constrained to move for a
while on an arbitrary manifold (physical symmetries still exist, but are symmetries
of the 3D world), and an agent in some sense living ”inside” this manifold (there
are no symmetries there as the agent could distinguish some places on the basis
of a different relation between sequences of movement controlled by identical
sequences of commands).

6 The action must be properly continuous.
7 We prefer to use this term rather than the one more classically used in this context

of shape, because in our framework relative configuration could a priori include
more than shape in the classical sense: for instance changes in the sensitivity of the
sensors. Furthermore, if there are objects in the environment their configuration
relative to the agent enters into Ω/Σ



3 Dimensionality Reduction 113

an abstract framework: the agent’s own configuration resides in what remains
among physical states when symmetries of the system dynamics have been
taken into account.

Example. In the case of the two wheeled vehicle, physical states
equivalent up to Euclidean symmetries of the 2D space are states
with equal wheel configurations, hence relative configurations can be
written c = (ψ1, ψ̇1, ψ2, ψ̇2).

If further there is no physical state left invariant by symmetries8 (any
Euclidean displacement of the vehicle can be identified straightforwardly by
reading out changes in ω), then the geometrical picture of model (3.2) is that
of a principal bundle

π : Ω → Ω/Σ

with group structure Σ.

Locomotion.

This was for the constraints on the external dynamic. As for the sensorimotor
model, we will take into account the control law of the agent in order to define
its displacement abilities. Here also we operate a slight shift toward geometry
by writing sensorimotor dynamics as

ω̇ = ϕa(ω)

and view them as a family of vector fields on the state manifold parameterized
by actions.

Sensorimotor dynamics such that Tωπϕa(ω) = 0, ∀ω (i.e. vertical vector
fields) define sliding locomotion: this means that such dynamics correspond
to a displacement of the agent that occurs without any change of relative
configuration. This is hardly expected to happen in our physical world9, but
is actually often considered as an approximation when abstracting details of
a sensorimotor system.

Example. If we forget about the wheel configuration of the vehicle
on the 2D plane, then the relative configuration manifold is reduced
to a point (no change other than position and orientation is left in the
model) and locomotion will therefore necessarily be sliding locomo-
tion. Indeed, assuming high gain feedback controllers that let wheel
rotation velocity quickly converge to specified velocities a = (v1, v2),
we can write

8 In other words: if symmetries act freely.
9 We mean here: controlled sliding locomotion is hardly expected to happen, since

any system left in outer space with an initial nonzero momentum will suffer sliding
locomotion.
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(ẋ, ẏ, θ̇) ≈ ρ

2l
(l(v1 + v2) cos θ, l(v1 + v2) sin θ, v1 − v2) (3.5)

which provides a sensorimotor model with sliding locomotion. Note
the requirement to involve control schemes to obtain such a model: on
physical grounds the configuration of the wheels cannot be abstracted
from the model.

On the other hand, some sensorimotor dynamics will correspond to loco-
motion associated with changes of relative configuration. This suggests focus-
ing on the link between changes in relative configuration and locomotion. It
turns out that both geometrical constraints of the form ”no slipping contact”
and mechanical constraints (that is, stemming from a Lagrangian approach),
can be expressed as a connection on the principal bundle π : Ω → Ω/Σ
[61, 62]. This has been shown to be valid for various artificial systems on a
rigid ground [63] or in an ideal fluid [64], as well as for swimming microscopic
organisms when viscous forces dominate inertial forces [65]. The fact that
the physics can be written as a connection implies that only the trajectory
of relative configurations affect the agent’s displacement, not the velocity at
which the trajectory is traversed. This is a strong constraint on the external
dynamics of a sensorimotor system. It may actually be valid only piecewise,
for instance when considering manipulation [66] or legged locomotion [67]. At
the level of the external dynamics this connection allows a holonomy group
to be defined, that is, the group of displacements for that dynamic10. It also
allows a notion of curvature to be defined on the principal bundle π that can
then be used to highlight a distinction between stationary changes of relative
configuration (whose sensorimotor dynamics are within flat submanifolds of
Ω and correspond to changes of relative configuration that do not interfere
with locomotion) and other changes that can be called locomotive changes of
relative configuration.

3.4.2 Back to dimensionality reduction

Constraints on a spatial metric for sensory data

An invariant metric g on the state space Ω is a metric that is invariant under
the action of symmetries:

T ∗g = g

It must therefore satisfy, using the symmetry of the metric :

g|ω(Fm(ω), Fn(ω)) = T ∗g|ω(Fm(ω), Fn(ω))
= g|T (ω)(DpTFm(ω), DpTFn(ω))

10 Note that this group need not be a Lie group: in particular it might be a discrete
subgroup of the symmetry group (even though the whole framework is continu-
ous). We will however assume a Lie group.
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and using the symmetry of system dynamics:

g|ω(Fm(ω), Fn(ω)) = g|T (ω)(Fm(T (ω)), Fn(T (ω))) (3.6)

In particular, we find the intuitive result:

Land survey lemma: The norm of tangent state change ω̇ associated
with a given motor command m is the same for all states associated
with the same relative configuration.

In the case of system dynamics that are linear in motor commands we
have

g(Fm, Fm) =
∑
i,j

mi ·mj · g(Fmi
, Fmj

)

Therefore if for each state ω the system dynamics span the tangent space TωΩ
then the choice of an invariant metric reduces to the choice for each relative
configuration of a scalar product on the finite dimensional vector space of
system dynamics. Note that there are a priori several invariant metrics, still
leaving room for the consideration of other constraints such as biinvariance
or energetic costs of the different dynamics.

No local aliasing.

Now of course the point is that physical states are not accessible to the agent,
and we would like to actually define a metric on sensory inputs. If there is
no local perceptual aliasing then we can still apply the land survey lemma:
the norm of tangent sensory input change ṡ associated with a given motor
command m must be the same for all sensory inputs associated with the same
relative configuration.

This will be the case considered in section 3.5.

Local aliasing: a suggestion.

In the more difficult case where there is local aliasing, then the previous
viewpoint could be used to search for a metric on sensory inputs that satisfy
the land survey lemma “as much as possible”. We will not follow this line
here, but we present the suggestion anyway: gradient descent could be used
to minimize over a parameterized set of metrics gθ the invariance criterion:

ε2(θ) =
∑
i,j,k

[
gθ(Ṡk,i, Ṡk,i)− gθ(Ṡk,j , Ṡk,j)

]2
where for each k, Sk,i(t), i = 1 . . . n is a set of sensory evolutions resulting
from motor command mk such that the relative configuration of the agent
at time t = 0 is the same for all evolutions. The minimizer will be a metric
such that, in expectation, the norm of tangent sensory inputs associated with
identical spatial displacements is the same.
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Note that the use of the metric obtained could be interpreted as Bayesian
inference, since the metric learned could then be read as agent beliefs on
physical states associated with the sensory inputs used to infer the distance
between the those physical states.

Nonlinear sensory manifolds

Submanifold of Euclidean spaces.

Nonlinear approaches to dimensionality reduction usually define a metric on
a data manifold by considering the metric induced on a submanifold of some
space Rd by a norm on that space. Yet it is not clear on general grounds
why we should consider the sensory manifold as a submanifold of some vector
space. Of course, this makes sense from the computational viewpoint since
enforcing such a hypothesis allows use of linear algebra and limits the num-
ber of parameters to estimate, therefore leading to simple algorithms with
fast generalization. But it imposes a constraint that may reduce the possible
number of distance-preserving transformations compatible with such a model.
Invariance to spatial displacements suggests for instance considering a met-
ric that is preserved when pictures are zoomed, so that the distance between
two object pictures does not depend on the depth from which the pictures
are taken11. Yet when taken together with invariance to 2D translations and
rotations, this cannot be enforced using a norm. This therefore suggests inves-
tigating more general models for the metric than those deriving from a norm
in a Euclidean embedding space. This will be the framework of the algorithm
presented in section 3.5.

Unfolding and beyond.

As already discussed, the standard framework of nonlinear dimension reduc-
tion focuses on the unfolding of data manifolds and therefore essentially deals
with flat manifolds such as the swiss roll. The issue that data manifolds can
possess intrinsic curvature (such as a sphere that cannot be flattened out
without introducing large distortions like those observed on earth maps) is
actually often discarded as a second order problem because the metric with
respect to which this curvature has been defined anyway did not rely on strong
justifications. In our case however, since we are searching for metrics grounded
on sensorimotor interactions, we expect curvature to reflect important differ-
ences between sensory data variations with respect to these interactions and
we do not want to discard this information.

The goal of unfolding the data however usually stems from the use of
dimension reduction algorithms to visualize high dimensional data in a 2D
11 That is, the same change of depth for two pictures should not change the distance

between them. Independent changes of depths for the two pictures may (will) still
affect the distance.
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vector space. But in the case of an embodied agent this is not a natural
requirement and we only want to exploit the geometrical structure as it is,
therefore leaving room for a more open framework. For instance, we may want
to compute distances between sensory inputs to know whether two sensory
configurations are more or less similar so as to perform quantization on this
basis. Or, we may want to know what actions can link two neighboring sen-
sory inputs so that we can actively try to perform alignment in a navigation
context. Or we may want to identify points of highest or lowest curvature in
a given sensory trajectory, so as to consider a possible segmentation of sen-
sorimotor interactions. All these tasks can be performed without having to
flatten out the data.

3.5 An embodied algorithm for dimension reduction

Here we finally present a general attempt to build an invariant metric for
sensory inputs delivered by an unknown sensorimotor device (satisfying a
certain linearity constraint described in 3.5.1). To ground the intuition and
explain simulations run in section 3.5.2, here is the example we have in mind.
Consider an agent exploring a 2D world that is an infinitely extended 2D
picture. Assume that the agent is able to move above the picture, drifting
ahead, sideways, and turning to different extents so that its action space is
continuous. Assume that the agent’s sensory inputs are constituted by a small,
say 10×10 pixel, snapshot taken of the picture below the agent. We would like
the agent to build a metric on its sensory inputs that is invariant with respect
to symmetries of its sensorimotor interactions in this world. We would also
like the agent to discover that there are some actions (namely translations)
that bear a very special relationship with other possible types of actions.

We will make the assumption that there is no relative configuration change
(see section 3.4.1) and that there is no local perceptual ambiguity (i.e. per-
ceptual aliasing). As for ambiguities, we will then show with examples that
the algorithm does not suffer significantly from them.

3.5.1 Description of the algorithm

Invariant sensorimotor metrics

Transformation based metrics.

With the example of our 2D agent in mind, we note that each displacement
of the agent corresponds to modifications of sensory inputs that are approx-
imately12 linear in sensory inputs. The reason is that sensory inputs result

12 only approximately, as modifications at the edges of view field cannot be predicted
from what is in the view field.
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from sampling of a field I on space and that the viewpoint transformation
(t, r) ∗ I : p 7→ I(r · p + t) (see section 3.3.3) is linear in I. Therefore if each
sensor output is linear in the field (but without requiring that all sensors are
identical nor that they have a uniform layout), then we can expect that each
motor command resulting in a displacement (t, r) is associated with a global
linear transformation P (m) of sensory inputs:

ṡ = P (m) · s (3.7)

In this case, the Land survey lemma suggests the invariance criterion:

g|s(P (m) · s, P (m′) · s) = const

for all points s of the sensory submanifold and all motor commands m and
m′.

We recall that a simpler way to describe metrics than providing an explicit
formula is by specifying an orthonormal basis {Xi(s)} at each point of the
sensory manifold. Evaluation of the metric is then performed by computing
tangent vector coordinates in this basis:

ṡ =
∑

i

xiXi(s) ⇒ ||ṡ||2 =
∑

i

x2
i (3.8)

As a consequence, if we consider the case where there is a finite number
of displacements triggered by commands mi and that the family of vectors
Xi(s) = P (mi) ·s forms a basis of the tangent space of the sensory manifold at
each s, then we can use transformations P (mi) to define a norm by positing
that the family of Xi(s) should be an orthonormal basis. Then obviously we
will have g|s(P (mi) · s, P (mj) · s) = δij which is indeed independent of s.

The specific example of the 2D agent in a picture world therefore suggests
that invariant metrics can be built from linear predictors of sensory changes
induced by actions. The whole problem then is: first choose appropriate ac-
tions, i.e. appropriate predictors, and second compute geodesic distance. The
first point will be explained in section 3.5.1, here we present the approximation
scheme that will be used for computing geodesics.

Approximation scheme for local distances.

If the motor command m is held fixed for a duration ∆t, then equation 3.7
can be integrated using the matrix exponential:

s2 = exp (P (m)∆t) s1 ⇒ s2 − s1 = [exp (P (m)∆t)− Id] s1

Therefore the approximation scheme in time for linear predictors P̄ (m) of
sensory changes resulting from holding motor command m fixed for a time ∆t
reads:
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s2 − s1 = P̄ (m)s1, P̄ (m) ≈ P (m)∆t

Herein the notation P will refer to the differential transformation of sensory
inputs expressed in equation 3.7, while the notation P̄ will refer to the numer-
ical estimation of this transformation (i.e. to a predictor) based on sensory
changes between a time t and a time t+∆t.

Given a finite family of predictors P̄ (mi), a linear approximation for the
evaluation of distances between neighboring points (i.e. equation 3.8) is con-
sequently given by

s2 − s1 =
∑

i

xi · P̄ (mi)s1 + ε⇒ d(s2, s1)2 =
∑

i

x2
i

This approximation is depicted in Figure 3.3.a.

To provide a more robust estimation for the case of strong nonlinearities,
we however consider in the algorithm a slight improvement of this scheme.
This improvement requires to have, in addition to the family of actions mi,
a family of actions ni such that sequences of commands (mi, ni) yield no
change of sensory inputs. The way to learn such a family will be explained
in the section on action choice, here we give the expression for the improved
approximation scheme depicted in Figure 3.3.b:

s2 − s1 =
∑

i xi · P̄ (mi)s1 +
∑

i yi · P̄ (ni)s1 + ε
with xi ≥ 0 , yi ≥ 0 ⇒ d(s2, s1)2 =

∑
i

x2
i +
∑

i

y2
i

(3.9)
Justification for this scheme stems from the fact that if we have a family

of commands ni such that:

exp (P (mi)∆t) exp (P (ni)∆t) s = s ∀s

then to first order
Id+ P (mi)∆t+ P (ni)∆t = Id

and therefore P (mi) = −P (ni), which can be used in equation 3.8 to split∑
i xiP (mi) · s into terms with positive and negative coordinates, substitute

P (mi) with negative coordinates into −P (ni) with positive coordinates, and
find the scheme 3.9 involving only positive coordinates.

Computation of geodesic distances.

Using a set of predictors P̄ (mi) and P̄ (ni), the algorithm analyses sets of data
points {st} with the following procedure. The algorithm considers each point,
computes the distance with its k nearest neighbors using the scheme 3.9 (pos-
itive coordinates xi and yi are computed using Matlab’s routine lsqnonneg
for linear least squares with nonnegativity constraints), and finally computes
shortest path distances between points that are far apart using Floyd’s algo-
rithm, in exactly the same way Isomap does. In this way, the algorithm is able
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Fig. 3.3. Approximation scheme for geodesic distance between neighbors. Green
axis shows the tangent space at s1, and P (m)s1 shows a normal basis for the trans-
formation based metric. Assume the length of the segment joining s1 to P̄ (m)s1 has
been normalized to 1, then red and blue segments show the coordinate of s2 in the
basis defined by predictor P̄ (m), and in this one dimensional example the length of
these segments actually is the approximation for the geodesic distance d(s2, s1). a)
Approximation of geodesic distances based on the sole predictor P̄ (m) using both
positive and negative coordinates of s2 on P̄ (m)s1. There is a big distortion in the
estimation of distances depending on the sign of the coordinate. b) approximation
of geodesic distances based on predictors P̄ (m) and inverse predictors P̄ (n) with
positivity constraint: the previous distortion is removed (see text)

to compute a distance between sensory data that is dependent of its action
abilities and not on the sensory code. Basically, the distance d(s1, s2) gives an
indication of the time the agent has to hold the appropriate motor command
that will take it from sensory configuration s1 to sensory configuration s2.

If the transformation based metric on the sensory manifold is flat, then
the matrix Mij = d(si, sj) of geodesic distances can be used with MDS to
represent the data in a vector space having the intrinsic dimensionality of the
data.

Choice of actions

Ultimately the choice of motor commands to be isolated should be based on a
general analysis of the holonomy group, such as provided by the analysis of the
group root system (see for instance [68]). So far however we limit ourselves to
a much simpler approach, namely: identify commuting displacements, choose
a generating family for this set, then complete this family into a basis for the
agent’s displacement abilities. Within these constraints, we will choose actions
associated with changes of sensory inputs as different as possible with respect
to the noise-norm on sensory inputs.
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Identification of commuting displacements.

The identification of commuting displacements is done through a piecewise
bilinear approximation for the composition of predictors resulting from two
successive motor commands, as explained now.

In the first stage the system draws randomly a number of motor commands
mi, i = 1 . . . N (N = 30). It must be noted that if the model described
by the equation 3.7 were exact, then we could write the expression for the
predictors associated with successive motor commands from transformations
P (mi) because integrating the equation withm = m1 for∆t and thenm = mj

for another ∆t would yield

s2 = exp (P (mj)∆t) exp (P (mi)∆t) s1

But to be robust to underdetermination of the sensory system, which imply
that equation 3.7 only holds approximately, it is better to build an estima-
tion of the predictor associated with successive motor commands using direct
experimentation of sequences of motor commands. The algorithm therefore
performs a linear regression over a sufficient number of pairs of {after/before}
sensory inputs to learn predictors Q̄ij = Q̄(mi,mj) associated with sensory
changes resulting from each sequence of two moves.

If the mapping Q̄ is smooth, then we can consider a piecewise bilinear
approximation Q̂ of Q̄ based on the sample of learnt predictors Q̄ij . Q̂ is
defined by the constraints to have value Q̄ij at grid nodes (mi,mj) and to be
linear along each edge of grid cells (see Figure 3.4).

In equations, this means that we put

Q̂(m,m′) =
∑

i∈I,j∈J

αiβjQ̄ij

where the αi and βj express the linear relationship between m, m′ and the
experimented commands closest to them {mi, i ∈ I} and {mj , j ∈ J}, i.e.
m =

∑
i∈I αimi and m′ =

∑
j∈J βjmj . Q̂ can then be used to infer that some

(not experimented) motor commands should lead to commuting predictors:
this is done by minimizing the criterion

∆I,J(α, β) = ||Q̂(m,m′)− Q̂(m′,m)||2 = ||
∑

i∈I,j∈J

αiβj

[
Q̄ij − Q̄ji

]
||2

for neigborhoods (I, J) of each motor command sequences (mi,mj) (see Fig-
ure 3.4). In this equation, we consider the norm on matrices defined by
||A||2 = Tr(ATA) (recall that Q̄ij are predictors, i.e. matrices).

Choose a generating family for translations and complete it.

The algorithm retains a defined number of linearly independent (α, β) hav-
ing the smallest ∆ value (commuting commands, i.e. translations) and largest



122 Philipona and O’Regan

Fig. 3.4. Computing commuting predictors (illustrative sketch). Transparent gray
surface is the predictor mapping Q̄, black wireframe is the piecewise bilinear approxi-
mation Q̂ from sampling Q̄ on a grid with nodes (mi, mj). Red cell correspond to the
choice of a neigborhood for motor sequences (m, m′), blue cell shows neighborhood
for the motor sequences preformed in reverse order (m′, m), green arrows shows a
sequence that is expected from the approximation Q̂ to yield the same predictor in
both orders.

∆ value (non-commuting values, i.e. rotations). For now, the number of com-
mands retained is given to the algorithm and not estimated. Predictors P̄ (mk)
associated with the corresponding motor commands mk are then learnt to be
used in the scheme 3.9.

Inference of inverse actions

For an improved approximation scheme for local distances, we also rely on the
inference of a family of actions nk such that sequences of motor commands
(mk, nk) do not yield any change of sensory inputs. This inference can be done
from Q̄ by looking for commands nk such that Q̄(mk, nk) = 0, and therefore
an approximation can be computed from Q̂ by minimizing for each k the
criterion:

∆k(β) = ||Q̂(mk, n)||2 = ||
∑

i∈I,j∈J

αiβjQ̄ij ||2
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where mk =
∑

i∈I αimi and n =
∑

j∈J βjmj . Predictors P̄ (nk) associated
with the corresponding motor commands nk are then learnt, to be used in the
scheme 3.9.

3.5.2 Results

Dimension reduction for a flat sensory manifold

To test the whole procedure, we consider first the case where the agent in a
2D picture world is limited to translational moves (Figure 3.5). The reason to
do so is that this should theoretically correspond to a case where the sensory
manifold is flat with respect to the predictor metric, and therefore geodesic
distances computed by the algorithm can be checked by embedding sensory
data in a two dimensional vector space using MDS.

Note, as already emphasized several times, that in this system there actu-
ally is local aliasing since sensory change resulting for instance from forward
translation cannot be predicted without errors from the content of the patch.
The algorithm however shows no excessive sensitivity to this underdetermi-
nation.

Fig. 3.5. The data is constituted with a grid of translated patches, whose coor-
dinates in the 2D-world are of the form {x0 + n, y0 + m} with n and m positive
integers. x0 and y0 are randomly chosen. The camera does not rotate at all. Right,
a sample of such patches is shown, each patch being translated slightly with re-
spect to its neighbors. Left, the output: the embedding of the data points, which
is two-dimensional since the only existing dimensions are vertical and horizontal
translations. The curving is a border effect, due to the small quantity of data. Our
algorithm successfully exhibits an approximatively square grid. Note that the algo-
rithm does not necessarily find axes corresponding to orthonormal translations.
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Comparison with Isomap

The previous check done, Figure 3.6 shows the effect of a linear modification
of sensory encoding. This naturally has a large impact on Isomap since this
alteration induces a change in the metric (hence of geodesic distances) that
Isomap aims to preserve in the embedding procedure. By comparison, our
method is by design independent of such alterations.

Fig. 3.6. Again, the camera producing the data does not rotate, and the grid of
patches is similar to the one in Fig. 3.1. Left, our algorithm is not affected and
outputs a regular embedding. Right, Isomap, tested with different radial parameters
(number of neighbors=4,5,7,8), is affected by the distortion introduced in the image.

Curved sensory manifold

To conclude, we consider the initial example where the agent can freely trans-
late and rotate (Figure 3.7). This will theoretically result in a sensory mani-
fold that is curved with respect to the transformation based metric, and the
MDS procedure cannot therefore avoid a fundamental distortion of distances.
Nonetheless, if we consider only a limited area of the sensory manifold then
distortions should be kept reasonnable (as in the case for maps of limited
areas of the earth).

This additionally allows us to check that the algorithm is indeed able to
learn by itself the difference between commuting and noncommuting motor
commands (i.e. flat and curved directions in the sensory manifold).
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Fig. 3.7. Data is obtained by the camera with a variation of the three parameters
(x, y, θ). For clarity, we represent only a subset of this data: points whose initial
coordinates in the 2D world are of type (i, j, α) where i and j are integers and
α = 15 or 60. The resulting embedding shows as expected the appearance of a
”millefeuilles”, where the vertical axis perfectly relates to the rotation angle and the
horizontal axis to x and y.

3.5.3 Related work

Non-trivial metrics on data

In recent work oriented towards MRI, [52] and [69] hint that classical methods
for dimensionality reduction produce parameters without intuitive meaning.
Starting with pictures of an object undergoing unknown deformations, they
aim at characterizing these deformations and tracing back the journey of
the object. They propose to introduce an appropriate distance measure in
Isomap using complex Gabor filters applied on image samples. Arguments
given for the use of such a distance measure however only revolve arround the
specific task of image processing, while we have tried to build a more general
perspective. It could be interesting to make the link with this approach, as
the metric based on Gabor filters actually turns out to be invariant.

In [70], it is shown how a discrete-valued auxiliary variable dependent on
the original data induces a statistical metric on these data (namely: Fisher dis-
tance between the conditional probabilities of the auxiliary variable). There
is an obvious similarity with the information bottleneck method [45]. This
auxiliary variable could however be argued to constitute an indirect way of
supervising these algorithms, as it is not clear to what they could correspond
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in the general framework of an embodied agent. Nonetheless, this is poten-
tially of considerable interest if considered for instance in interaction with the
communication system: linguistic interaction with a user may indeed provide
such auxiliary variables. This approach is therefore complementary to ours,
as we may envision the existence of several metrics on sensory data depending
on the task the agent is involved in: a sensorimotor metric for self insertion
in space and basic sensorimotor tasks, a side-information related metric for
tasks requiring to match sensory data with auxiliary data.

More generally, information theory, Bayesian frameworks, statistical con-
siderations on the input space also provide ways to build or improve a metric
(see for instance [71]) and define a distance relevant to the problem.

Lie groups on sensory data

[72] propose an algorithm able to estimate the generator matrix G of a one
dimensional Lie group, and already suggested that this could be the ground
for object recognition methods robust to change of viewpoint. Their work
is extended by Bengio et al. in [73] where they develop a method for non-
local manifold learning. Their unsupervised algorithm is designed to learn
and infer, even at a large scale, the transformation on which it is trained.
In our case such large scale predictions turned out to be unreliable, which is
the reason why we based our work on direct learning (rather than inference)
of predictors Q̄ij for action sequences. The reason for the unreliability is the
existence of a fundamental undetermination for sensory data evolution: in the
case of pictures this comes from the fact that incoming pixels on the border
of patches cannot be fully predicted from the content of the patch before the
move. [72] solves the question of large-scale predictions using an implicit cyclic
hypothesis (i.e. by assuming the signal to be periodic). Our work suggests a
new way to tackle (or actually obviate) this problem.

The idea of the Land survey lemma is implicit in previous work of ours
[74], and was already considered as a way to estimate the group structure
of compensable transformations for an agent-environment system, i.e. trans-
formation of the whole system leaving the agent’s sensory inputs invariant.
The most important difference with this work is that the notion of symmetry
group for the agent’s sensorimotor interactions presented here is more gen-
eral and realistic than that of compensable transformations. To temper this
improvement, it must be recalled however that we did not provide in this
more general context an algorithmic way to distinguish between the different
notions of locomotion depicted in section 3.4.1: it is only because we consid-
ered an example with no possible change in relative configuration that the
transformation based metric at the basis of the algorithm is invariant to the
symmetry group.
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Theory of invariants in artificial vision

The importance of the notion of invariance, and especially invariance to a
symmetry group, is a standard of artificial vision. Indeed, the problem of rec-
ognizing objects, whose shape undergoes a geometric viewing transformation,
often arises in machine vision tasks. For instance research done on struc-
ture from motion, i.e. reconstruction of three dimensional information from
sequences of two dimensional projections, makes extensive use of the math-
ematical theory of invariants [75]. Much work has also been devoted to the
development of multiscale geometric representations of shape which are in-
variant to a number of the typical viewing transformations in vision [76]. The
main difference between these approaches and ours, apart from taking the
perspective of cognitive science rather than that of artificial vision, is the
kind of objects manipulated. [75] abstract from images points of interest that
are represented as pair of viewfield coordinates, and [76] manipulate objects
such as planar curves. We try to address the issue of sensory processing in
the raw format in which sensory data are provided to the agent, without us-
ing an interpretation (e.g. in terms of geometric points or curves) of sensory
data (e.g. of pictures). Actually, our aim precisely is ultimately to come to an
interpretation of sensory data.

Algorithms for uninterpreted sensors and effectors

Much work has been devoted to the development of algorithms for embodied
agents that do not assume programmer’s knowledge of the agent body. For
instance in the domain of map learning, [77] present methods to learn in-
creasingly complex interfaces to control in space a robot whose sensorimotor
apparatus and environment are initially unknown. In the domain of develop-
mental robotics, more precisely of the aquisition of a body schema, [78] take
inspiration from earlier work to implement an algorithm aiming to learn its
body map by measuring statistical dependence between its various sensors.

The main difference between these approaches and ours is that the met-
rics used do not measure the same aspects of sensorimotor interactions: even
though spatial proximity of sensors presumably implies some form of statisti-
cal dependence between sensor outputs, the metric induced by the symmetry
group of system dynamics and the metric induced by sensors’ statistical de-
pendence [79] a priori measure two different things. It would be interesting to
further investigate the link between the two, but it seems at first glance that a
systematic link can only be expected between sensors’ statistical dependence
and topological sensor relationships, and not between sensors’ statistical de-
pendence and sensors’ spatial metrical relationships. As for side-information
metrics, it must be stressed that there is no reason to be exclusive about the
use of only one metric: depending on the task and objectives, different metrics
may be appropriate and therefore the approaches are complementary rather
than competing.
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There is an additional difference between the previous approaches and
ours: we deliberately take a holistic approach with respect to sensory inputs,
i.e. we do not make the assumption that individual coordinates of sensory data
are meaningful13 since this actually is an assumption about the format of the
sensory code. Consider for instance the case of color vision. The relevance of
tackling sensory processing from the viewpoint of each different kind of pho-
toreceptor is not clear: color information is an intrinsically multidimensional
object. Apart from possible changes in subsequent computational abilities, the
basis used by the agent’s sensory system to represent this color information
should not affect sensory abilities of the agent.

3.6 Conclusion

Many technical issues remain to be solved so as to implement the algorithm
robustly enough and efficiently enough for real robotic systems. It is no sur-
prise that the generality of the approach implies a large increase in computa-
tional load as compared to methods optimized for specific devices and tasks.
This is an artifical version of the altricial-precocial trade-off that biological
organisms have to face: adaptability versus time constraints in learning and
processing [80]. In the simple examples provided in section 3.5.2, dealing with
c × c patches and a actions requires estimating on the order of O(a2 · c4)
parameters (for instance to learn the Q̄ij matrices), which roughly requires
handling a learning dataset on the order of O(a2 · c2) patches. Operations of
linear algebra used to perform the estimation of predictors will then require
on the order of O(a2 · c6) elementary operations, based on the fact that the
complexity of matrix multiplication and inversion is at least cubic in the di-
mension of matrix entries [81]. Such a high price however results from the
requirement of designing an adaptive system with centralized computational
abilities, i.e. possibly implemented in a Turing machine. As for biological sys-
tems, the computational notion of complexity is not so clear, and one must be
cautious when trying to apply similar frameworks to understand the abilities
of biological systems and to conceive artificial agents mimicking such abilities.

It must also be stressed that an important aspect of the current approach
is to constrain the choice of a metric over sensory inputs corresponding to the
same relative configuration of the agent-environment system, without so far
addressing the point of a constraint across different relative configurations.
This is a critical point that calls for more theoretical work and is presumably
linked with the notion of objects, as a change of relative configuration occurs
in particular as a result of displacements of objects in the environment relative
to each other and relative to the agent.

13 While such an assumption is made when sensors are implicitly defined as coordi-
nates of sensory inputs.
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Beside the previous warnings, many interesting developments can be en-
visioned. In addition to displacements, a large variety of transformations on
sensory inputs could be considered. In the case of a visual system, blurring,
lighting, or focus are target examples, provided that the linear model 3.7
holds. The structure of transformations with respect to sequences of actions
will then be more complex than that of a displacement group, yielding new
criteria to distinguish between actions. The coordination of several metrics, as
mentioned in the overview of related work, is another possible line of develop-
ment. In particular this could be used to measure distances between sensory
inputs that cannot in any way result from agent actions: this would provide
a necessary complement to our work.

In conclusion, we have suggested that dimension reduction could be a first
step towards an unsupervised interfacing between an agent’s sensory system
and its cognitive function, therefore a first step towards an unsupervised self-
insertion of the agent in space. We started by giving a survey of standard ap-
proaches to dimensionality reduction, and noted their (unjustified) reliance on
an a priori metric on sensory inputs. We then proposed a general mathemati-
cal framework to describe an embodied agent and showed that this framework
suggested the use of specific metrics grounded on sensorimotor interactions.
We finally described an algorithm aiming at learning such metrics, and put
this algorithm to use on some simple examples.
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The ability to recognize and categorize entities in its environment is a vital
competence of any cognitive system. Reasoning about the current state of the
world, assessing consequences of possible actions, as well as planning future
episodes requires a concept of the roles that objects and places may possibly
play. For example, objects afford to be used in specific ways, and places are
usually devoted to certain activities. The ability to represent and infer these
roles, or, more generally, categories, from sensory observations of the world, is
an important constituent of a cognitive system’s perceptual processing (Sec-
tion 1.3 elaborates on this with a very visual example).

In the CoSy project, a substantial amount of work has been conducted on
the advancement of methods that recognize and categorize objects and places
by using different modalities, namely, vision, language, and laser range data.
Our progress contributes to our effort to build systems that evolve through
interaction with its environment in an ultimately live-long learning process.

While this chapter describes our contribution to modeling, learning and
representing of visual categories, Chapter 7 shows how to combine the vi-
sual information with other modalities in a multi-modal learning process (e.g.
speech/language as detailed in Chapter 8). Finally, Chapter 9 and 10 shows
how we integrated these concepts in a autonomous systems to understand
the implications of our progress in categorization on an interactive evolving
system.

4.1 Introduction

Recently there has been significant progress in visual class recognition ranging
from visual category modeling (e.g. [1]), learning (e.g. [2]), robustness (e.g. [3])
and scalability to more classes (e.g. [4]). Interestingly, there is a surprising di-
versity in the proposed approaches. E.g. the employed features representations
range from local to global and object representations range from generative
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to discriminant models. In the following we start with a discussion of the
most important design and paradigm choices highlighting the implied merits
and draw-backs. This leads to the conclusion, that no single paradigm alone
is powerful enough to deal with the implicit challenges of object categoriza-
tion. Instead we argue in this chapter that the object categorization problem
requires a wide variety of approaches. This chapter therefore summarizes var-
ious approaches that have been explored during the CoSy project. For each
of these approaches we will discuss the respective strengths and weakness
and will discuss how these approaches advance the state of the art in object
categorization.

Fig. 4.1. Illustration of some challenges encountered in visual categorization. We ob-
serve high intra-class variation and low inter-class variation. Observed effects occur
at local or global scale with respect to members of the same category or contrasted
to other categories.

Figure 4.1 illustrates one of the fundamental challenges in visual catego-
rization: Many object classes (such as dogs) have high intra-class variability
but may share similar features and appearance across different classes (e.g.
dogs, cows and horses). Such similarities then lead to low inter-class varia-
tion. This challenge taken together with other challenges related to object
categorization (robustness, viewpoint changes, partial occlusion, light condi-
tions, etc.) have lead to a wide variety of approaches. In the following we
discuss three of the most prominent design choices in more detail, namely
generative vs discriminative modeling, local vs. global object features, and
the importance of the learning paradigm.

Generative vs. Discriminative Paradigms:

There is a fundamental difference whether an approach models all that is com-
mon to all category members (intra-class variation as illustrated in Figure 4.1
by the dogs) or all that distinguishes themselves with respect to others (inter-
class variation as illustrated in Figure 4.1 by the other animals). Technically
speaking – in the generative paradigm – the object model represents all prop-
erties or object instances of an object class. In contrast – in the discriminative
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paradigm – the model retreats to a simpler mapping from the observed prop-
erties to the predicted category label (discriminant or conditional learning).
Both views have a multitude of benefits and drawbacks. As the generative
model of an object class is typically learned independently of other object
classes the generative paradigm lends itself to parallelism and incremental
learning. Generative methods also enable principled ways of handling missing
data (e.g. due to occlusion) while inference is typically computationally ex-
pensive. Discriminant models on the other hand are designed to capture the
difference between different categories which often leads to higher precision.
Typically, this comes at the price of a large training set including a substantial
amount of background data.

Local vs. Global Object Representation Paradigms:

Another important design choice for object category representation is the ap-
propriate level of locality used in the feature representation. Approaches range
from local interest point-based approaches (like the popular SIFT-feature over
edge-segments proposed by [5]) to fully global representations (like the global
HOG-representation proposed by [6]). On the one hand, local features can be
made robust to scale and rotation changes and therefore enable robustness
to partial occlusion. On the other hand, they require sophisticated models to
describe the geometric and topological structure of object classes. In contrast,
global feature descriptors inherently describe the geometric and topological
structure by describing the global appearance of an object. On the downside,
however, they do not expose the desired robustness to partial occlusion and
it becomes more difficult to generalize across-instance.

Different Learning Paradigms:

Over the years various approaches have been proposed for the recognition of
object categories often based on models learned directly from image data.
The approaches, however, vary greatly in the amount of supervision provided
for the training data. The types of annotation varies from pixel-level segmen-
tations, (e.g. [7]) over bounding-box annotations (e.g. [8]) and image level
annotation (e.g. [2, 9]) to unsupervised methods (e.g. [10, 11, 12]), which do
not even require the information which category is presented in which im-
age.While approaches using more supervision tend to require less training
data, there is a clear desire to use less supervision typically at the price to use
more unlabeled training data.

Central Role of Representation:

As motivated in Section 1.4.2, representation plays a central role in a cognitive
system. The way categories are stored, organized and related to each other
determines the capabilities to learn, evolve and therefore to interact of the
overall system. In Chapter 7 on multi-modal learning and in particular in our
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integration efforts in Chapter 9 and 10, we’ll detail how representation affects
the capabilities of the overall system.

The above discussion leads to the conclusion that no single combination of
these paradigms is powerful and versatile enough for the general problem of ob-
ject categorization. It is commonly believed that relying on a single paradigm
of addressing the category phenomenon won’t do justice to the overwhelming
diversity encountered in categorial perception. Throughout this chapter we
therefore promote learning-based approaches, that are capable to adapt to
the particularities of each categories. In this sense we have explored – during
the course of the CoSy-project – a variety of different object representation
integrating and advancing the state of the art for different of the above men-
tioned paradigms.

We perceive the representation of visual categories as a central element
of each vision system, as it influences scalability in the number of categories,
capability to evolve over time, addressable categories and it is the starting
point of categorial reference in the interplay with other components in an
integrated system. The following therefore presents the different approaches
explored both w.r.t. its underlying representations as well as w.r.t. the above
mentioned paradigms. In particular, we pursue this idea to progress towards
scalable representations in Section 4.2.1, representations for affordance-base
categorization in Section 4.2.2, representation by generative decompositions
in Section 4.3 and representation of dynamics in Section 4.4. To conclude this
introduction, we outline how these 4 directions progress over the previous
state-of-the-art in categorial perception.

4.1.1 Towards hierarchical scalable representations

As discussed above one of the important design choices is the locality of the
feature representations. The first approach described in section 4.2.1 aims to
bridge the gap between purely local to more global representations by auto-
matically learning a hierarchy from local to more global representations. Such
a hierarchical representations are believed to make approaches more scalable
and allow for successive evidence aggregation. The proposed hierarchical rep-
resentation is learned bootom-up and in an unsupervised fashion leading from
local to more global representations.

Also computational considerations suggest that matching should be per-
formed hierarchically, in order to gradually and coherently limit the otherwise
computationally prohibited search space [13, 14, 15, 16, 17, 18, 19, 20]. We
propose a novel approach to representing object categories within an index-
able, hierarchical compositional framework.

4.1.2 Towards Representations for affordance-based categorization

A second approach (Section 4.2.2) explores the possibility to represent objects
related to their visual affordances. In this case we explore and analyze a variety
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of local region descriptors in a generative object model that is trained in a
supervised fashion.

Most local region descriptors, such as the popular SIFT descriptor, ex-
plicitly encode local appearance, and have hence shown impressive results on
objects with sufficient local appearance statistics, such as cars and motorbikes
[2, 21]. However, for many object categories that might be important for in-
teractions between a cognitive agent and its environment, local appearance
might not be the most useful cue. Tools, cutlery, things in office and kitchen
environments, and other man-made artifacts seem to require features that
capture the respective shape and geometry rather than local appearance. In
particular, categorizing those objects according to supported functions and
affordances demands an explicit representation of geometric properties.

4.1.3 Representations and discovery of object classes by
generative decompositions

The third approach combines different paradigms ranging from unsupervised
learning of generative object models to supervised learning for discriminant
object detection. Object representations for categorization tasks should be ap-
plicable to a wide range of objects, scaleable to handle large numbers of object
classes, and at the same time learnable from a few training samples. While
such a scalable representation is still illusive today, it has been argued that
such a representation should have at least the following properties: it should
enable sharing of features [22], it should combine generative models with dis-
criminative models [23, 24] and it should combine both local and global as
well as appearance- and shape-based features [3]. Additionally, we argue that
such object representations should be applicable both for unsupervised learn-
ing (e.g. visual object discovery) as well as supervised training (e.g. object
detection). We achieve such a representation by learning a generative decom-
position of localized oriented gradients that exploit the co-occurence statistic
in the presented data. The obtain components range from local to global and
lend themselves to unsupervised learning learning as well as supervised state-
of-the-art detection.

4.1.4 Representations of object dynamics

An important type of object classes is articulated such as people and animals.
Therefore our fourth and last approach presented in this chapter considers the
challenging problem of modeling the dynamics of articulated objects. For this
we explore a generative object model that represents a person as the topol-
ogy of individual body parts. Furthermore a generative model is learned to
represent the dynamics of the human walking cycle. The aim is to improve de-
tection and tracking in cluttered scenes using a monocular, potentially moving
camera. Probably the most fundamental difficulty in detection and tracking
many people in cluttered scenes is that many people will be partially and also
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fully occluded for longer periods of times. Consequently, both the detection
of people in individual frames as well as the data-association between people
detections in different frames are highly challenging and ambiguous. The de-
veloped motion model lends to a more detailed interpretation of the observed
sequences.

4.2 Low-Level Features and Hierarchical Representation
Learning

4.2.1 Towards Scalable Representations for Visual Categorization

Motivation

Hierarchical representations can derive and organize the features at multiple
levels that build on top of each other by exploiting the sharability of features
among more complex compositions or objects themselves [25, 26, 27, 17]. This
endows them with high computational efficiency and expressive power that
surpasses the capabilities of flat representations. A number of hierarchical
recognition systems have been proposed and confirmed the success of such
representations in object categorization tasks [28, 29, 27, 16, 25, 30, 21, 31,
32, 33, 26]. However, an automatic construction of the visual hierarchy that
would scale well with the number of image categories (that are in nature in
the order of tens of thousands) is still an open issue.

We propose a novel approach to representing object categories within an
indexable, hierarchical compositional framework. We develop a bottom-up, sta-
tistical approach that makes use of simple atomic features, i.e. oriented edges,
to gradually learn more complex contour compositions. The learned library
of features, i.e. parts, is organized with accordance of principles of efficient
indexing which ensures that local retrieval of models during the online image
processing stage will run in a roughly constant time despite the exponential
increase in size along the hierarchical layers. The learned compositions can
then be combined into objects with minimal human supervision, whereby the
hierarchical sharability of features and the efficient indexability constraints
could be a step towards scalable representations of object categories.

We substantiate our choice of design principles proposed to devise a plau-
sible representation of object categories with respect to the shape modality:

Hierarchical compositionality. Compositionality refers to hierarchi-
cal representations defined in terms of parts and their spatial relations
where the hierarchically constructed entities are built from a relatively small
number of lower-level constituents [34]. Computational benefits of composi-
tionality in terms of storage, processing demands and the exponential ex-
pressive power have long been emphasized in the computer vision litera-
ture [18, 16, 35, 20, 36]. Since each hierarchical unit is shared among many
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more complex higher layer compositions, the computational cost is highly re-
duced compared to searching for each complex interpretation in isolation. In
addition, while the receptive field sizes increase with the level of hierarchy,
formed compositions are designed to respond to only smaller spatial subsets
in their receptive fields. This offers much higher robustness and faster process-
ing over the traditional neural networks approaches, which mainly integrate
over the complete receptive fields both spatially as well as all feature values
in the layer below.

A part of the biological evidence could potentially support such a line
of architecture [37, 38]. Additionally, attempts have been made to map the
mathematical theory onto the neuronal structure of the visual cortex [34].

Computational plausibility. Hierarchical representations do not nec-
essarily imply computational efficiency. Our main motivation for building a
hierarchical visual representation is to enable fast indexing and matching of
image features against hierarchically organized stored prototypes in order to
avoid the computationally prohibitive linear search in the number of higher-
level compositions and objects themselves [36, 13].

Statistics driven learning. Features and their higher level combinations
should be learned in an unsupervised manner (at least in the first stages of the
hierarchy) in order to avoid hand-labelling of massive image data as well as
to capture the regularities within the visual data as effectively and compactly
as possible [39, 40, 41, 19, 20]. Once the visual building blocks are learned,
learning of novel objects can proceed mainly in the higher hierarchical layers
and can thus operate fast and with no or minimal human supervision.

Robust and repeatable detection. To achieve robustness against noise
and clutter, the features comprising the individual hierarchical layers should
be manifested as models to enable a robust verification of the presence of their
underlying components [17, 13, 18]. Models should incorporate loose geometric
relations to achieve the spatial binding of features [41, 15], yet encode enough
flexibility to ensure repeatability and gain discrimination gradually – through
composition within the hierarchy.

Learning a Hierarchy of Parts (LHOP)

The compositional library of parts

Let Ln denote the n-th Layer of the hierarchical library. Parts within the
hierarchy are defined recursively in the following way. Each part in Ln codes
spatial relations between its constituent subparts from a layer below. Formally,
each composite part in Ln is characterized by a central subpart and a list of
remaining subparts with their positions relative to the center:

Pn
` =

(
Pn−1

central, {
(
Pn−1

j ,µj , Σj

)
}j

)
,

where µj = (xj , yj) denotes the relative position of subpart Pn−1
j , while Σj

denotes the variance of its position around (xj , yj).
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The hierarchy starts with a fixed L1 composed of a set of arbitrary filters.
Here we choose a set of Gabor filters that best respond to oriented edges. An
example of a L3 composition is depicted in Figure 4.2.

Fig. 4.2. Left: Example of a L3 composition. Middle: Indexing – evoking higher
level composite hypotheses. Right: Matching – verification of a composite library
part.

Hierarchical processing: Indexing and matching scheme

Each image is first processed with a fixed Layer 1, the procedure that differs
from the hierarchical processing further on. The hierarchical processing steps
are all general in its traversal from one layer to the next, thus described in its
general form.

Processing with Layer 1. For any given image, the process starts by
describing the image in terms of discrete points denoting local oriented edges.
This is done on every scale – each rescaled version of the original image (a
Gaussian pyramid with two scales per octave) is processed separately. First,
each image in the pyramid is filtered by 11× 11 Gabor filters. By extracting
local maxima of the Gabor energy function that are above a low threshold, an
image (on each scale) is transformed into a list of L1 parts; {π1

k}i. In general,
let πn

k stand for a realization of the Ln part Pn with a corresponding location
at which it was detected in an image; πn

k = {Pn, xk, yk} (here k denotes the
successive number of the found part).

Hierarchical processing. In order to find a higher level image interpre-
tation, the local neighborhoods around the detected Ln−1-parts are compared
against the composite, Ln-parts stored in the hierarchical library. Each part
πn−1

k = (Pn−1
k , xk, yk) in the image under consideration is subjected to the

indexing and matching procedure – efficient local search for higher level com-
positions.

The part Pn−1
k encoded in πn−1

k plays the role of the central part in only
a subset of all compositions at layer Ln of the library. This list is an internal
part of the library and can be accessed in constant time during the online
processing of images – the process referred to as indexing. The matching step
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demands comparing the local spatial neighborhood of πn−1
k against the al-

lowable (retrieved in the indexing step) prototypical compositions within the
hierarchical library. Matching of one such composition demands checking for
the presence of all subparts pertaining to the composition at hand at their
relative locations, (x, y), and positioned within the allowed variances, Σ, with
respect to the position of the central part πn−1

k . The indexing and matching
procedure is schematically depicted in Figure 4.2.

Unsupervised learning of part compositions

The basic idea behind the learning procedure is to extract statistically salient
compositions that encode spatial relations between the constituent parts from
the layer below. Each modeled relation between components allows also for
some displacement (variance) in spatial position.

The learning algorithm is in principle general – proceeding in the same
manner when building each additional layer. It will thus be described in its
general form.

The learning process consists of three stages, namely, (1) the local inhibi-
tion performed around each image feature (part), followed by (2) the statistical
updating of the so-called spatial maps that capture pairwise geometric rela-
tions between parts, and finally, (3) learning the higher order compositions
by tracking co-occurrence of spatial pairs. We must emphasize that each final
composition can have a varying number of subcomponents (the number can
be anything from 2 and larger).

Learning is performed by gathering statistics over a large body of natural
image data processed up to the last (learned) layer in the hierarchical library,
e.g. Ln−1. Each image is thus represented by a list of parts with corresponding
locations, {πn−1

k }k. A small local neighborhood around each πn−1
k will be

inspected in a two-stage process. The first, most crucial step aims to reduce
the unnecessary redundancy coded in neighboring parts, referred to as local
inhibition. Since each πn−1

k is an (n − 1)-th order composition, it is in fact
a set union of a subset of L1 image parts. Within the inhibition step we
remove all neighboring parts around πn−1

k that have a large set intersection
with respect to the L1 image parts. This step removes all features that code
a large portion of edge structure already coded by πn−1

k . In the next step,
learning is performed by tracking frequent co-occurrences of part types and
their relative locations.

The learning process commends by forming a set of all allowable pairs of
part identities. The list is accompanied by a set of empty matrices, where the
dimensions correspond to the spatial extent of the local neighborhoods. The
prepared set thus contains information of type: Cn

k,j := (Pn−1
k ,Pn−1

j ,Vk,j),
where Vk,j represents a local spatial voting space for the corresponding com-
bination of pairs of parts.

Structure of small neighborhoods in terms of part locations is inspected
around each part, πn−1

k . The philosophy of local receptive field processing
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is the following: the location of each part πn−1
j = (Pn−1

j , xj , yj) within the
neighborhood of and relative to πn−1

k will update the voting space Vk,j in Ck,j

accordingly:

x := cx+ xj − xk, y := cy + yj − yk

Vk,j(x, y) = Vk,j(x, y) + 1,

where (cx, cy) denotes the center of the spatial map Vk,j .
After all images are processed, we detect voting peaks in the learned spatial

maps Vk,j , and for each peak, a spatial surrounding area is formed – modeled
by a Gaussian distribution, (µj , Σj).

In the final step, the local image neighborhoods are checked once again
by projecting the learned spatial pairs and repeating the learning process by
increasing the number of subparts modeled in a composition (the reader is
referred to [20] for details) or by tracking the most frequent co-occurrences of
the projected spatial pairs.

The final selection of composite parts follows the indexibility constraint,
i.e., each part of the lower, (n − 1)-th Layer, must not index into too many
higher layer compositions. Thus the compositions acquired in the learning
procedure are sorted according to their decreasing probabilities and only a
number of statistically most salient compositions consequently define the next
layer. We set the upper bound to the order of 10 − 20 times the number of
parts in the previous, (n − 1)-th Layer, meaning that on average each part
in Ln−1 indexes into 10 to 20 composite parts in Ln. The thresholds used
are chosen to comply with the available computational resources and affect
only the number of finally selected parts and therefore the efficiency of the
representation.

Category-specific higher layers

Learning the lower-layer sharable parts in a category-independent way can
only get so far - the overall statistical significance drops, while the number
of parts reaches its critical value for learning. Thus, learning of higher layers
proceeds only on a subset of parts - the ones that are the most repeatable
in a specific category. Specifically, the learning of higher layers is performed
in images of individual categories, whereby the final categorical layer then
combines the most repeatable parts through the object center to form the
representation of a category.

Experimental results

We applied our method to a collection of 1500 images containing a number of
diverse categories (cars, faces, mugs, dogs, etc.). The learned compositional
hierarchy consisted of 160 parts on Layer 2 and 553 Layer 3 parts (a few exam-
ples from both layers are depicted in Fig. 4.3). The complete learning process
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took approximately 5 hours on one core of an Intel Core-2 CPU 2.4 Ghz com-
puter.

To put the proposed hierarchical concept in relation to other hierarchical
approaches as well as other categorization methods, which focus primarily on
shape information, the approach was tested on the Caltech 101 database [42].
The Caltech 101 dataset contains images of 101 different object categories
with the additional background category. The number of images varies from
31 to 800 per category, with the average image size of roughly 300×300 pixels.

Each image was processed on 3 different scales, spaced apart by
√

2. The
average processing times per image per layer obtained with our C++ imple-
mentation are reported in Table 4.1. Most of the processing time is spent
filtering an image with 6 Gabor filters (L1), which has not been optimized
for performance. The features were combined with a linear SVM for multi-
class classification. For this experiment we used 15 images for training and 15
images for testing, disjunct from the training set. The results, averaged over
8 random splits, are reported in Table 4.1 with classification rates of other
hierarchical approaches shown for comparison.

Classification was also tested by varying the number of training examples.
For testing, 50 examples were used for categories where this was possible and
less otherwise. The classification rate was normalized accordingly. In all cases,
the result was averaged over 8 random splits. The results are presented and
compared with other categorization methods in Table 4.1. We must emphasize
that the proposed model focuses on shape information only.

Layer 1

Layer 2 Layer 3

Fig. 4.3. L1 (fixed), and learned L2 and L3 parts (only a subset is shown) used in
the Caltech 101 experiments.

Discussion

We presented a novel approach to building a representation of object cate-
gories. The method learns a hierarchy of flexible compositions in an unsuper-
vised manner in lower, category-independent layers, while requiring minimal
supervision to learn higher, categorical layers.
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Table 4.1. Left top and right: Average classification rate (in percentage) on Caltech
101. Left bottom: Average processing times per layer per image.

Ntrain = 15 Ntrain = 30

Serre et al. [29] 44 /
Mutch et al. [43] 51 56
Ranzato et al. [33] / 54
Ommer et al. [26] / 61.3
Wolf et al. [44] 51.18 /
our method 60.5 66.5

Processing time per 300× 300 image
Layer 1 1.6 s
Layer 2 0.54 s
Layer 3 0.66 s

Fig. 4.4. Top left two images: learned 3−layer hierarchy for the Caltech experiment;
learned hierarchy for faces with compositional links shown. Examples of detections
of categories cars, cups, and faces, where the first three layers in the library are
common to all three categories.

Furthermore, the design of parts is incremental, where new categories can
be continuously added to the hierarchy. Since the hierarchy is built as an
efficient indexing machine, the system can computationally handle an expo-
nentially increasing number of parts with each additional layer. The results
show that only a small number of higher layer parts are needed to represent
individual categories, thus the proposed scheme would potentially allow for
an efficient representation of a large number of visual categories.
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(a)

(b)

(c)

Fig. 4.5. Example images from the TUD-Shape ((a), (b)), and TUD-Shape2 (c)
data sets, depicting the categories cup, fork, hammer, knife, mug, pan, pliers, pot,
saucepan, and scissors.

4.2.2 Representations for Functional and Affordance-Based
Categorization

Motivation

Recent work in object categorization often uses interest operators in con-
nection with local region descriptions to sparsely represent objects in im-
ages. Typically, local regions are sampled around interest points (e.g ., from
Harris-Laplace, Hessian-Laplace, or Salient Regions detectors) at characteris-
tic scales, and then described by local region descriptors. The resulting sparse
representation is then vector-quantized using a codebook of visual words, and
either used directly for recognition (bag-of-words approaches [45]), or enriched
by information about the spatial layout of feature occurences.

While these local feature-based representations have been successfully used
for the recognition of object classes with sufficient local appearance statistics,
they have rarely been employed in the context of functional or affordance-
based categorization of objects, where, intuitively, an object’s shape and ge-
ometry should be represented explicitly. Historically, the recognition of geo-
metric objects such as cups and tables has been an important focus of object
recognition [46]. In recent work however, it is largely underrepresented with
some notable exceptions [47, 48]. We therefore compare in [49], on a novel
data collection of 10 geometric object classes3 (see Figure 4.5), various shape-
based features with appearance-based descriptors, such as SIFT. The analysis
includes a direct comparison of feature statistics as well as results within
standard recognition frameworks, incorporating varying degrees of spatial in-
formation.

Appearance-Based vs. Shape-Based Features

We briefly introduce the features and interest point detectors used in our com-
parison. The shape-related features are k-Adjacent Segments [47], Geometric
3 http://www.mis.informatik.tu-darmstadt.de/data
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Blur [50], and Shape Context [51]; the appearance-based region descriptors
are SIFT [5] and GLOH [52]. As interest point detectors, we employ Harris-
Laplace [53], Hessian-Laplace [54], and Salient Regions [55].

k-Adjacent Segments (k-AS)

k-Adjacent Segments have been proposed as an extension to contour segment
networks, a graph-based method for template-matching hand-drawings to im-
age databases [56]. [47] demonstrates how k-AS can be incorporated into a
general object recognition framework. We extract k-AS features using the
original implementation4. First, edgels are detected via the Berkeley natural
boundary detector [57]. Second, neighboring edgels are chained, and further
linked to form L-, T- and higher-order junctions. Last, edgel-chains are re-
placed by straight line approximations (contour segments), and joined into
a global contour segment network for the image. A k-AS descriptor then de-
scribes the geometric layout of a group of k adjacent segments in that network
w.r.t. relative position, orientation, and length. The dimensionality of k-AS
features is n = 4 ∗ k − 2. For the typical choices of k ∈ {2, 3}, n is 6 or 10,
rendering k-AS a comparably low dimensional descriptor.

Local Region Descriptors

Geometric Blur(GB). We use the original implementation5 of the Geomet-
ric Blur [50] region descriptor from [58]. Geometric Blur first extracts c = 4
channels of oriented edge energy [59] to obtain a sparse signal S. In S, the
region centered at interest point location x0 is blurred with a spatially-varying
Gaussian kernel Gd to obtain the Geometric Blur Bx0(x) = S∗Gαx+β(x0−x).
Bx0(x) is then sub-sampled over all channels at n distinct locations in a cir-
cular grid. The final descriptor is the concatenation of all c × n samples.
Throughout all experiments, we use the standard values for α = 0.5, β = 1
and n = 51, resulting in a descriptor of length 204.

Shape Context(SC). Shape Context [51] is originally based on edge
information. For a given interest point location, it accumulates the relative
locations of nearby edge points in a coarse log-polar histogram. We compute
a histogram containing 9 spatial bins over 4 edge orientation channels. Bin
size increases w.r.t. distance from the interest point center. Note that this is
similar in spirit to spatially varying blur, but results in a smaller descriptor
(length 36).

SIFT. The Scale Invariant Feature Transform [5] descriptor is a 3D his-
togram over local gradient locations and orientations, weighted by gradient
magnitude. It uses 4× 4 location and 8 orientation bins, i.e., 128 in total.

GLOH. Gradient Location Orientation Histograms [52] is an extension of
the SIFT descriptor. It uses 17 bins for location and 16 bins for orientation in a

4 http://www.vision.ee.ethz.ch/˜ferrari/release-kas.tgz
5 http://www.cs.berkeley.edu/˜aberg/demos/gb demo.tar.gz
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histogram over a log-polar location grid, and reduces descriptor dimensionality
to 128 by PCA. We use the implementation6 of [52] for SC, SIFT and GLOH.
All descriptors are made invariant to in-plane rotation by aligning the region
to the dominant gradient direction before descriptor computation.

Interest Point Detectors

We compute local region descriptors based on detections of the following in-
terest point detectors: Harris-Laplace (HarLap) [54] is an extension to Har-
ris corners [60]. It selects corners at locations where a Laplacian attains an
extremum in scale-space. The Hessian-Laplace (HesLap) [54] detector re-
sponds to blob-like structures. It searches for local maxima of the Hessian
determinant, and selects a characteristic scale via the Laplacian as for Harris-
Laplace. The Salient Regions (SalReg) detector [55] identifies local image
regions that are non-predictable across scales by measuring entropy over lo-
cal intensity histograms. We use publicly available implementations for Har-
Lap/HesLap7, and SalReg8.

Feature Evaluation

We evaluate the combined performance of feature detectors and descriptors
at three different levels. First, we compute statistics over clusterings of lo-
cal feature descriptors (codebooks). Second, we represent objects by means of
occurrence statistics over codebook matches, and analyze classification perfor-
mance in a Bayesian framework. Third, we investigate the impact of gradually
adding location information to that object representation, by jointly boosting
localized histograms of codebook matches over all object categories.

Cluster Precision

We follow the argumentation of [61] and base our evaluation on a mid-level
representation of image features common to many computer vision techniques.
In particular, we analyze the statistics of clusterings of feature descriptors.
In order to quantify how well a clustering of feature descriptors reflects the
separation of object classes, we introduce a refinement to cluster precision [61].
Intuitively, we want to measure to what extent features of a given class are
grouped together by clustering. High scores should be obtained by big clusters
with features from many instances of a single object class, and low scores
by small clusters with few features, but from multiple classes. In a second
experiment, we evaluate the generalization capabilities of a given feature type
over an unseen test set. Features are extracted from an independent set of
images, and matched against a codebook built from training images. For each

6 http://www.robots.ox.ac.uk/˜vgg/research/affine/descriptors.html
7 http://www.robots.ox.ac.uk/˜vgg/research/affine/detectors.html
8 http://www.robots.ox.ac.uk/˜timork/salscale.html
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test feature belonging to class a, we determine the precision PCa
over all

matched clusters with respect to class a. The average precision over all classes
is called matching precision.

Results. We measure cluster precision for 9 different compression ratios
(#Features/#Clusters) over codebooks generated from 200 training images
(see Figures 4.6 (a) to (c)). We observe that cluster precision changes substan-
tially if we vary detectors for a given descriptor, while it remains relatively
stable over varying descriptors for a given detector. Appearance-based (SIFT,
GLOH) and shape-based descriptors (GB, SC) do not show great differences
in cluster precision. Both perform comparably well. k-AS are worst, but still
comparable to DoG-SIFT. We report that cluster precision results transfer to
large extents to matching precision over previously unseen data, but omit the
plots for brevity.

Näıve Bayes

The second level of our evaluation represents objects in terms of occurrence
statistics (counts of nearest-neighbor matches) over codebook entries and
trains a multi-class-classifier on a training set of such representations. We use
an analogous approach to Multinomial Näıve Bayes [62] for text classifica-
tion, and model the posterior distribution of an object class, given occurrence
statistics over a codebook, as a multinomial distribution.

Results. We measure classification accuracy over fixed numbers of clusters
from n = 50 to 1600, increasing by powers of 2 (see Figures 4.6 (d) to (f)).
Dependent on the detector, n = 1600 corresponds to compression ratios of
9 (HarLap), 52 (HesLap), 21 (SalReg), 5 (DoG), 5 (2-AS) and 16 (3-AS).
For each feature type, we train a Näıve Bayes classifier on a training set of
200 images (20 per category), and test on an independent test set of 100
images (10 per category). The differentiation between descriptors with fixed
detectors is more pronounced for Näıve Bayes than for cluster precision. In
particular, appearance-based features lead on average. GB and SC perform
on a comparable level to SIFT and GLOH, but only for individual detectors
(SalReg for GB, HesLap for SC). k-AS exhibit relatively weak discriminative
power for Näıve Bayes classification. SC offers a good compromise between
strong (GB) and weak (k-AS) discrimination.

Localized Bag-of-Words

We measure the impact of adding location information in terms of classifica-
tion accuracy in a Joint Boosting [63] framework. The object representation
on the third level of our evaluation is based on histograms of feature occur-
rences over a codebook, and inspired by [56]. We divide a rectangular image
region into a grid of cells. For each cell, a local histogram over soft-matched
codebook entries is computed, and concatenated to form the object represen-
tation. A Joint Boosting algorithm is trained from object representations of
a set of training images using a fixed number of boosting rounds, and tested
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against an independent set of test images. We use decision stumps [63] over
histogram bins as weak classifiers for boosting. By varying the number of grid
cells g, we regulate the tradeoff between rich feature statistics (small g) and
more accurate localization (large g).

Results. We measure classification accuracy as for Näıve Bayes for varying
numbers of grid cells g ∈ {1, 4, 9}. We assume known bounding boxes for train-
ing and test, and use them to anchor histogram grids. We fix the number of
clusters to n = 200, and obtain histograms of length g×n ∈ {200, 800, 1800}.
While for TUD-Shape, boosting over localized bag-of-words lifts the discrim-
inant power of all feature types to a comparable level for g = 9, shape-based
features win on TUD-Shape2 (see Figures 4.6 (g) to (i)): HesLap-GB and
rotation invariant 2-AS are best (42% respectively 44% accuracy). The best
performing SIFT and GLOH combinations obtain 33% (HesLap-SIFT) and
31% (HesLap-GLOH). HarLap-SC obtains 35%.
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Fig. 4.6. First row: cluster precision, second row: näıve Bayes classification accuracy,
third row: localized BOW classification accuracy for SIFT, GB, and k-AS. SIFT-plots
include the best GLOH and SC curves.
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Discussion

Local shape- and appearance-based features do not show great differences
in terms of feature statistics over our shape-based data set. On average, the
choice of detector is more important on average than the choice of descrip-
tor. Hessian-Laplace with SIFT and GLOH is best on average. Shape-based
features (Geometric Blur, k-Adjacent Segments) perform mostly worse than
appearance-based ones for classification based on simple occurrence statistics.
In particular, k-AS capture generic local shape properties rather than discrim-
inant information for an object category. They hence benefit more from added
location information than appearance-based features, and can even overtake
appearance-based features on shape-based data. We make use of this result
in Section 7.5, where we demonstrate how to incorporate k-AS features into a
framework for the detection of functional object categories based on learned
affordance cues.

4.3 Mid-Level Representation & Detection

4.3.1 Towards Adaptive Representations

The main focus of this section is therefore a new object representation that
aims to combine the above mentioned properties to make a step towards more
flexible and adaptive object representations applicable to a wide range of ob-
jects and suited both for unsupervised as well as supervised learning. There-
fore, we propose a novel approach that allows to learn a low-dimensional
representation of object classes by building a generative decomposition of
objects. These learned decompositions of objects contain both local appear-
ance features as well as global silhouette features shared across object classes.
This generative model of objects is directly applicable to unsupervised learn-
ing tasks such as visual object class discovery. Second, we combine the low-
dimensional and generative decomposition of objects with a discriminative
learning framework to enable supervised training and competitive object class
detection. Third, we provide empirical evidence that shows the properties of
the approach (local vs. global features, feature sharing, unsupervised vs. su-
pervised learning) and compares the approach with the state-of-the-art. In-
terestingly, the approach outperforms both unsupervised techniques as well
as supervised techniques on various tasks on common databases.

4.3.2 Learning of Generative Decompositions

In this section we describe our approach to decomposition of multiple vi-
sual categories by combining dense gradient representations and topic mod-
els. Starting from the image, we first present our data representation. Then
we describe how we apply the topic model to this representation and provide
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w684 . . . w692

Fig. 4.7. Dense gradient histogram representation. The loupe
shows the 9 possible edge orientation of the histogram bins that
are interpreted as words.

visualizations and insights for the obtained model as well as a quantitative
evaluation on an unsupervised learning task. Inspired by [6], we compute gra-
dients on each color channel of the images and use the maximum response to
obtain a grid of histograms that overlays the image. Each histogram in the
grid has 9 orientation bins equally spaced from 0◦ to 180◦ to represent the
unsigned gradient orientation. An example of such an encoding is visualized
in Figure 4.3.2. In each cell, the 9 possible edge orientations associated with
the orientation bins are displayed by short lines. The grayscale value encodes
the accumulated gradient magnitude in each bin. The size of the cells in the
grid is 8×8 pixels.

As the following topic models operate on discrete word counts, we nor-
malize the histograms to have a constant sum of discrete entries. We decided
not to compute a redundant coding like the blocks in the HOG descriptor [6]
as we believe that the introduced non-linearities by local normalization would
hinder the fitting of the probabilistic model.

Topic Models

To define a generative process for our data representation, we employ proba-
bilistic topic models [64, 65, 66] which were originally motivated in the con-
text of text analysis. As it is common habit we adopt the terminology of
this domain. In the following, a document d refers to a sequence of words
(w1, w2, . . . , wNd

), where each wi is one word occurrence. The underlying idea
of these models is to regard each document as a mixture of topics. This means
that each word wi of the total Nd words in document d is generated by first
sampling a topic zi from a multinomial topic distribution P (z) and then sam-
pling a word from a multinomial topic-word distribution P (w|z). Therefore
the word probabilities for the combined model are:

P (wi) =
T∑

j=1

P (wi|zi = j)P (zi = j) (4.1)

where T is the number of topics and P (wi|zi = j) as well as P (zi = j) are
unobserved . According to the notation of [66], we will abbreviate



154 Fritz et al.

D
NdT

β φ(z) w

z

θ(d)α

Fig. 4.8. LDA model as formulated by [66].

θ(d): topic distribution P (z) for document d
φ(j): topic-word distribution P (wi|z = j) for topic j

The particular topic models differ on the one hand in which additional hy-
perparameters/priors they introduce and on the other hand in how inference
and parameter estimation is performed. We will discuss the Latent Dirichlet
Allocation model [65] in some more detail focusing on the version presented
in [66] that uses Gibbs sampling for inference and estimation. The graphical
representation of this model is depicted in Figure 4.8. It visualizes the process
that generates a total of D documents d, where each document has Nd words.
Above we already described how each word wi of a particular document is
generated. In the full model, there are 2 additional hyperparameters, α and
β, which place symmetric dirichlet priors on the topic distribution of each doc-
ument θ(d) and the topic-word distributions φ(j) respectively. As the setting
for α and β is common to all documents, these act as forces that impose global
tendencies on these distributions. Intuitively, the prior α for the topic distri-
bution θ favors co-activation (sharing) of multiple topics for each document
for values larger than 1, whereas smaller values result in sparser topic distribu-
tion - ultimately having single topics explaining whole documents (clustering).
Consequently, the sparseness of the topic-word distribution φ(j) is affected by
this choice. The second parameter β, has a direct smoothing effect on the
topic distributions.

For more details on the models, inference and estimation, we refer to [65]
and [67]. The idea behind the employed Gibbs sampling procedure is that all
topic assignments zi are initialized (typically randomly) and then iteratively
updated in a random order. To perform such a single update, a topic is drawn
from the conditional distribution P (zi|Ω \ zi) and assigned to zi, where Ω \ zi

denotes all observed and unobserved variables but zi. This is repeated for a
fixed number of iterations.
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Fig. 4.9. First row: example topics that were learned by the proposed approach
across categories and viewpoints for the 10 classes of the PASCAL’06 data. Below
first row: training images that activated the topic above most. The topics model
local structures, line segments as well as silhouette-like structures. The topics are
distinctive enough to separate several category members and even view-points. On
the other hand they are general enough to be shared across categories and view-
points.

To extend our findings to the detection task that we are aiming for in
Section 4.3.4, we extract our representation on the multi-category, multi-view
PASCAL’06 dataset [68], in order to obtain a decomposition that is shared
across categories.

In the first row of Figure 4.9 13 of 100 topic distributions are visualized
that were trained on the bounding box annotations of the training and valida-
tion data of the PASCAL’06 challenge. The rows below display the examples
that activated this particular topic most. We observe that the topics capture
different levels of objects, ranging from global silhouettes (car rear in column
10 and side view in column 13) over localized parts (legs in column 3, bicycle
frame in column 8 and bicycle wheels in column 12) to line segments and cor-
ners (corner in column 1 and line segments in column 2 and 4) . The model
discovers distinctive parts that even separate several examples of different
categories and their viewpoints although no such information was available
to the system during training. Importantly, we can see that other topics like
those that got activated on legs are shared across several categories, which is
a desirable property of a compact decomposition in order to be scalable [22].

4.3.3 Generative/Discriminative Hybrid Model for Detection

Based on these promising results, we describes a complete system for super-
vised multi-category detection that leverages the learned representation.
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Combining Generative and Discriminant Models

Recently, the combinations of generative approaches with discriminative ones
have shown to be very effective [23, 24]. The idea is that generative models
can easily incorporate prior information to support learning from small sam-
ples, have increased robustness to noise and generally have more principled
ways of dealing with missing data. Discriminative models on the other hand
have shown to give superior performance for well posed learning tasks and a
sufficient number of training examples. We also follow this idea and comple-
ment the generative topic model by a discriminative SVM classifier with an
RBF kernel [69]. In particular we train an SVM to discriminate between the
topic distributions θ(d) which are inferred for images containing the category
of interest and others that do not contain these. By doing so, we seek to profit
from the above mentioned benefits of the generative model combined with the
discriminative classifier.

Sliding Window Approach to Detection

As proposed in [6] a sliding window approach can be done efficiently in this
setting if the sliding window is always shifted by exactly one cell in x or y
direction. In this case, the gradient histograms of the cell grid are computed
once and for each sliding window the relevant sub grid is used.

4.3.4 Results on Visual Category Detection

We evaluate our approach on the competition 3 of the PASCAL challenge
2006 [68] that poses a challenging detection task as 10 visual categories are to
be detected from multiple viewpoints over a large scale range. Many images
in training and test suffer from degradations due to occlusion, bad lighting
conditions and show high variability in object appearance and background
clutter.

We outperform all other competitors in the 3 categories bicycle, bus and
car by improving the state-of-the-art [68] on this dataset by 5.75%, 9.14%
and 5.67% in average precision respectively. In particular we surpass the fully
global approach [6] that our method was motived by. Compared to [70] we
improve on bicycles and bus only by 0.65% and 0.93%, but again significantly
on cars with 8.87%. However, in contrast to [70] we do not use the viewpoint
annotations to train our approach. For the other categories, we perform about
average, but also showed some inferior results on the highly articulated cate-
gories. We are currently investigating means to make the approach less rigid
and carry over the good results from the first 3 categories to the other ones.

For a more detailed analysis in different settings that show the merits of
this approach supervised as well as unsupervised setting in comparison to
local, global and shape-based approaches we refer to [71].
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Fig. 4.10. Results on the PASCAL VOC challenge 2006. Precision-Recall curves
and example detections.

4.3.5 Discussion

This section described an approach to learn generative decomposition of visual
categories from data that yield and effective representation for unsupervised
as well as supervised categorization tasks. We argue that the flexibility and
adaptivity we obtain through this learning-based approach results in the ob-
served performance improvements over traditional, hand-crafted feature rep-
resentations.

Additionally the learned decompositions add a certain structure to the
observed objects and puts object into relation to each other. This is highly
interesting to obtain object part reference and share knowledge across the
observed object instances. In this sense, our model offers a high-level of intro-
spection, that can be leveraged in tutor-based learning setting.

To overcome the limitations due to the rigid nature of the underlying
coding, we currently investigate how to augment the approach with a defor-
mation model to add more flexibility. However, it is yet unclear how to obtain
a beneficial tradeoff between invariance and discriptiveness that results in an
improved performance of the system. Progress in this direction would enable
the system to generalize across more complex deviations in shape and appear-
ance.

4.4 High-Level Representations and Dynamic Models

An important type of object classes is articulated such as people and ani-
mals. We study the issues associated to modeling of these articulated objects
classes by addressing the task of tracking people in cluttered environments. To
achieve reliable extraction of people-tracks as well as data-association across
long periods of occlusion, the proposed approach combines recent advances
in people detection with the power of dynamical models for tracking. Rather
than to simply determine the position and scale of a person as is common for
state-of-the-art people detectors [6, 72], we also extract the position and artic-
ulation of the limbs. This allows us to use a more powerful dynamical model
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that extends people detection to the problem of reliably extracting people-
tracklets – people detections consistent over a small number of frames. In
particular, we use a hierarchical Gaussian process latent variable model (hG-
PLVM) [73] to model the dynamics of the individual limbs. As we will show in
the experiments this enables us to detect people more reliably than it would
be possible from single frames alone. We combine this with a hidden Markov
model (HMM) that allows to extend the people-tracklets, which cover only
a small number of frames at a time, to possibly longer people-tracks. These
people-tracks identify individuals over longer sequences of consecutive frames
when that is appropriate, such as between major occlusion events. Tracking
people over even longer periods of time is then achieved by associating people-
tracks across potentially long periods of occlusion using both the dynamical
model and an extracted appearance model, which allows identifying specific
individuals throughout the sequence.

4.4.1 Appearance model for single-frame detection and pose
estimation

Following the general idea of part-based object detection, we formulate the
problem of locating an object from a specific class in a test image as search
of the modes of the posterior probability distribution p(L|E) of the object
configuration L given the image evidence E [74].

In our model, the configuration is described as L = {xo,x1, . . . ,xN}, where
xo is the position of the object center and its scale, and xi is the position and
scale of part i. The image evidence, which here is defined as a set of local
features observed in the test image, will be denoted as E = {eapp

k , epos
k |k =

1, . . . ,K}, where eapp
k is an appearance descriptor, and epos

k is the position and
scale of the local image feature with index k. We will denote the combination
of position, scale, and appearance of a local feature as ek = (eapp

k , epos
k ).

Assuming that positions of object parts are independent of each other
given person’s position xo and articulation a, it follows that

p(L|a,E) ≈ p(xo)
∏

i

p(xi|a,E)p(xi|xo, a). (4.2)

If we assume that a particular image feature ek belongs to part i of an object
instance in the image with probability α, then it holds that

p(xi|a,E) = c0 + c1
∑
ek

p(xi|a, ek) +O(α2), (4.3)

where c0 and c1 depend only on the image features E [75]. If α is sufficiently
small, which is true for street scenes in which a particular person usually
represents only a small portion of the image, we obtain

p(L|a,E) ≈
∏

i

p(xi|xo, a)

[
β +

∑
ek

p(xi|a, ek)

]
, (4.4)
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where β can be seen as a regularizer for the evidence obtained from the indi-
vidual image features, and we have additionally assumed uniform p(xo).

As is common in models based on local feature representations, we intro-
duce an object-specific codebook denoted as C = {cj |j = 1, . . . , J}. The part
posterior with respect to a single image feature is computed by marginaliza-
tion over the codebook entries:

p(xi|a, ek) =
∑
cj

p(xi|a, cj , e
pos
k )p(cj |eapp

k ). (4.5)

p(cj |eapp
k ) is discrete distribution over codebooks based on a Gaussian

similarity measure, and p(xi|a, cj , e
pos
k ) is learned from training data.

4.4.2 Representing the dynamics of the human walking cycles with
latent variable model

People-Tracking-by-Detection and People-Detection-by-Tracking - CVPR 2008 8
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Fig. 4.11. Representation of articulations in the latent space.

In order to integrate the evidence from several subsequence frames, it is
necessary to incorporate prior knowledge about plausible human motions into
the recognition framework. Such prior knowledge can be expressed in the form
of prior distribution on the sequences of possible configurations of the person.
Modelling such prior directly is difficult due to the high dimensionality of
the space of pose sequences. Instead, several authors [76, 77, 78] have argued
and shown that a low-dimensional representation is sufficient to approximate
the pose dynamics. In the following we describe a Gaussian process latent
variable model (GPLVM) which we use to obtain such a low-dimensional
representation and discuss how it can be applied to reliable people detections
in image sequences.

Let Y = [y1,y2, . . . ,ym]T be a sequence of D-dimensional observations
(here describing the relative joint angles of body limbs). GPLVMs model the
D-dimensional observation space as the output of D Gaussian processes with
an input space of dimensionality q, where q < D. Each observation yi is
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associated with a q-dimensional latent point zi. The likelihood of the obser-
vation sequence Y given the latent sequence Z = [z1, z2, . . . , zm]T and model
parameters θ is given by [79]:

p(Y|Z, θ) =
D∏

i=1

N (Y:,i|0,Kz), (4.6)

where Y:,i is the vector of values of feature i across all observations, and Kz is
the covariance matrix with elements given by a covariance function k(zi, zj).
In this paper we use a squared exponential covariance function augmented by
Gaussian white noise.

For a given Y we can find the positions of the latent points Z along with
the model parameters θ by maximizing their likelihood from Eq. (4.6).

In addition to the low-dimensional latent representation of the data,
GPLVMs provide a probabilistic mapping from the latent space to the ob-
servation space. One possibility to define a dynamic model in the latent space
is to place a suitable prior on the elements of Z. Such a prior can be given
by a Gaussian process with time as input variable [73]. The structure of
this prior is shown on the Fig. 4.11. Given the sequence of points in time,
T = [t1, t2, . . . , tm]T at which the observations Y were made, the prior over
Z is given by

p(Z|T) =
q∏

i=1

N (Z:,i|0,KT) (4.7)

where KT is the covariance matrix of the time points. The covariance function
in the time space can again be taken as squared exponential, which ensures
smoothness of the trajectories.

We now combine this prior with the likelihood from Eq. (4.6), and maxi-
mize w.r.t. Z and θ. Fig. 4.11 shows the 2 dimensional latent space obtained
by applying this model to 11 walking sequences of different subjects, each
containing one complete walking cycle. Walking cycles in each sequence are
manually aligned so that we can interpret the frame number in each sequence
as phase of the walking cycle. This hierarchical approach to GPLVM dynam-
ics has several advantages over the auto-regressive prior proposed in [77]. In
particular, it allows us to evaluate the likelihood of a sequence of poses, even if
the poses occurred at unequally spaced time intervals. This arises, e.g ., when
the subject was occluded or not detected for several frames. Additionally, for
a given pose the model allows us to hypothesize both successive and previous
poses, which we use to produce good initial hypotheses for the whole image
sequence from a few good detections.

4.4.3 Robust detection and tracking of people in image sequences

The person detector which we have described in Sec. 4.4.1 provides hypothe-
ses for position, scale, and body articulation in single frames based on the
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Fig. 4.12. Detection and tracking of multiple people on “TUD-Crossing” dataset.

detection of individual body parts or limbs. To further improve the detec-
tion performance in image sequences it is desirable to incorporate temporal
consistency among subsequent frames. In contrast to frequently used motion
model based on position and velocity of the person, we propose to use a more
expressive kinematic limb model thereby leveraging the articulated tracking
literature (e.g . [80, 81, 82, 76, 83, 78]).

Given the image evidence E = [E1, E2, . . . , Em]T in a sequence of m subse-
quent frames, we would like to recover the positions Xo∗ = [xo∗

1 ,x
o∗
2 , . . . ,x

o∗
m ]T

of the person as well as the configurations of the limbs in each frame
Y∗ = [y∗1,y

∗
2, . . . ,y

∗
m]T with y∗j denoting the recovered limb orientations in

the j-th frame. Assuming independence of the detections in each frame, the
posterior factorizes as:

p(Y∗,Xo∗|E) ∝ p(Y∗)p(Xo∗)p(E|Y∗,Xo∗) (4.8)

∝ p(Y∗)p(Xo∗)
m∏

j=1

p(Ej |y∗j ,xo∗
j ).

p(Ej |y∗j ,xo∗
j ) is the likelihood of the image evidence Ej , and is given by the

detection model described in the previous section. p(Xo∗) corresponds to a
prior of human body speed, which we model as a broad Gaussian and p(Y∗)
is given by the Gaussian process latent variable model.

Given limb likelihoods and the hGPLVM prior, we can maximize Eq. (4.8)
to find the best pose sequence. This is equivalent to jointly solving the inverse
kinematics in each frame of the sequence under soft constraints given by limb
likelihoods and is similar to [84], except that in our case hints about limb
positions are provided by a person detector instead of being manually given
by the user. If we denote the training observations, their latent representation
and model parameters by M = [Y,T,Z,θ], the probability of the unknown
pose sequence Y∗, its latent representation Z∗, and the person positions Xo∗
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is given by

p(Y∗,Xo∗,Z∗|M, E,T∗) ∝ (4.9)
p(E|Y∗,Xo∗)p(Y∗|Z∗,M)p(Z∗|T∗,M)p(Xo∗).

The first term is the detection likelihood from single-frame detections (see
Eq. (4.8)). The second term is given by

p(Y∗|Z∗,M) =
D∏

i=1

p(Y∗:,i|Z∗,Y:,i,Z), (4.10)

where p(Y∗:,i|Z∗,Y:,i,Z) is a Gaussian process prediction of the pose sequence
given a sequence of latent positions. The third term is given by the dynamics
prior on the latent space:

p(Z∗|T∗,M) =
q∏

i=1

p(Z∗:,i|T∗,Z:,i,T). (4.11)

In our formulation, detecting people in a series of m frames therefore corre-
sponds to finding pose sequences Y∗ and people positions Xo∗ that maximize
Eq. (4.9). The gradients of the second and third terms in 4.9 can be com-
puted analytically, while we use a finite difference approximation for gradient
of p(Y∗|F ). Subsequently the local maxima can be found using any of the
standard non-linear optimization methods using positions and poses of the
person estimated by the single-frame detector as initialization.

Given people hypothesis jointly computed using evidence accumulated over
several subsequent frames we can compute longer people tracks by considering
these hypothesis as states in the hidden Markov model and computing their
optimal sequence with Viterbi algorithm (see [85] for details). Fig. 4.12 shows
several frames from a street sequence with multiple people, in which our sys-
tem can detect and track most of the people in spite of reoccuring parial and
full occlusions.

4.5 Outlook & Discussion

We have argued that that no single combination of these paradigms is pow-
erful and versatile enough for the general problem of object categorization.
It is commonly believed that relying on a single paradigm of addressing the
category phenomenon won’t do justice to the overwhelming diversity encoun-
tered in categorial perception. In the previous sections we have motivated and
demonstrated the merits of learning-based approaches that integrate different
paradigms of representing visual categories.

A hierarchical approach has been presented that learns a representation
that aggregates evidence on multiple levels. Local features have been evalu-
ated to reach beyond purely visual categories. An approach to learning gener-
ative decompositions was developed to bridge across different representations
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paradigms from local to global. Finally, a even more high-level view on the
data was proposed that manages to address and represented dynamics of ob-
jects like pedestrians in a learning based manner.

Despite the integration of different views and approaches to the phenomena
of visual categories, we are aware of the limitations, that still have to be
overcome. Although the shown approach manage to add flexibility and range
over larger portion of the design space than previous approaches did, they
still address particular limitations of previous approaches and yet have not
integrated all our lessons learnt into one single approach.

A common theme in our approaches is to fit statistical models to the ob-
served data, which use little to no supervision to reconstruct the unobserved
hidden structure in the data. This leads to higher-level representations which
we successfully use to solve more complex tasks such as multi-viewpoint mod-
eling and temporal modeling. While hierarchical statistical models have been
used for a long time, many of your results are founded on the more recent
success of robustly learning such complex model with minimal intervention.

To sum up, we want to emphasize the importance these learning-based
approaches have for moving towards a larger number of addressable cate-
gories. We contributed to achieving the desired adaptivity and flexibility, we
believe to be a key ingredient for scalable vision system for object categoriza-
tion. Although there are still unresolved computational as well as conceptional
challenges, we are confident that the shown improvements on learning of hi-
erarchies, features and dynamics will help us to reach this goal.

Ultimately, the way categories are stored, organized and related to each
other determines the capabilities to learn, evolve and therefore to interact of
the overall system. In Chapter 7 on multi-modal learning and in particular in
our integration efforts in Chapter 9 and 10, we elaborate on how representation
affects the capabilities of the overall system.
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5.1 Introduction

A cornerstone for robotic assistants is their understanding of the space they
are to be operating in: an environment built by people for people to live and
work in. The research questions we are interested in in this chapter concern
spatial understanding, and its connection to acting and interacting in indoor
environments. Comparing the way robots typically perceive and represent the
world with findings from cognitive psychology about how humans do it, it is
evident that there is a large discrepancy. If robots are to understand humans
and vice versa, robots need to make use of the same concepts to refer to things
and phenomena as a person would do. Bridging the gap between human and
robot spatial representations is thus of paramount importance.

A spatial knowledge representation for robotic assistants must address
the issues of human-robot communication. However, it must also provide a
basis for spatial reasoning and efficient planning. Finally, it must ensure safe
and reliable navigation control. Only then can robots be deployed in semi-
structured environments, such as offices, where they have to interact with
humans in everyday situations.

In order to meet the aforementioned requirements, i.e. robust robot con-
trol and human-like conceptualization, in CoSy, we adopted a spatial repre-
sentation that contains maps at different levels of abstraction. This stepwise
abstraction from raw sensory input not only produces maps that are suitable
for reliable robot navigation, but also yields a level of representation that is
similar to a human conceptualization of spatial organization. Furthermore,
this model provides a richer semantic view of an environment that permits
the robot to do spatial categorization rather than only instantiation.

This approach is at the heart of the Explorer demonstrator (cf. Chap-
ter 10), which is a mobile robot capable of creating a conceptual spatial map
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of an indoor environment. In the present chapter, we describe how we use
multi-modal sensory input provided by a laser range finder and a camera in
order to build more and more abstract spatial representations.

5.1.1 Related Work

Research in spatial representations for mobile robots has yielded different
multi-layered environment models. Vasudevan et al. [1] suggest a hierarchical
probabilistic representation of space based on objects. The work by Galindo et
al. [2] presents an approach containing two parallel hierarchies, spatial and
conceptual, connected through anchoring. Inference about places is based on
objects found in them. Furthermore, the Hybrid Spatial Semantic Hierarchy
(HSSH), introduced by Beeson et al. [3], allows a mobile robot to describe the
world using different representations, each with its own ontology.

Other different cognitively inspired approaches to robot navigation con-
vey route descriptions from a technically näıve user to a mobile robot. These
approaches need not necessarily rely on an exact global self-localization, but
rather require the execution of a sequence of strictly local, well-defined be-
haviors in order to iteratively reach a target position. Kuipers [4] presents the
Spatial Semantic Hierarchy (SSH). Alternatively, the Route Graph model is
introduced by Krieg-Brückner et al. [5]. Both theories propose a cognitively
inspired multi-layered representation of the map in the head, which is at the
same time suitable for robot navigation.

Additionally, several approaches on mobile robotics extend metric maps of
indoor environments with semantic information. The work by Diosi et al. [6]
creates a metric map through a guided tour. The map is then segmented
according to the labels given by the instructor. Martinez Mozos et al. [7] ex-
tract a topological semantic map from a metric one using supervised learning.
Alternatively, Friedman et al. [8] use Voronoi Random Fields for extracting
the topologies. Although these works use range measurements as main input
data, other sensors have been used for similar tasks. Torralba et al. [9] use
processed images to distinguish between different place categories in the envi-
ronment. Pronobis et al. [10] also use vision to recognize the different places
that form an indoor environment. Finally, the combination of different sen-
sory modalities can improve the recognition, as shown in Rottmann et al. [11]
and Pronobis et al. [12]. More detailed review of different approaches to place
classification can be found in Section 5.8.

The multi-layered representation presented in this chapter differs from the
previous work primarily in the level of integration achieved. First, each of the
layers of the representation advances the state of the art in its corresponding
area. Second, the advanced techniques are combined into a single, coherent
model, representing the world at various levels of abstraction (e.g. metric,
topological, semantic, conceptual) based on information coming from multi-
ple sources (vision, range sensors, verbal cues etc.). In particular, the model
integrates the approaches of [7] and [12] for the semantic classification of places
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with visual object search algorithms [13] and the metric mapping based on
the M-Space representation [14]. Moreover, the representation is designed for
human-robot interaction and the models generated using the aforementioned
techniques are combined with a common-sense ontology of an indoor environ-
ment. This bridges the gap in spatial understanding between the robot and
humans and allows to include information extracted from verbal cues into the
representation.

5.1.2 Outline

The rest of this chapter is organized as follows. First, we highlight the back-
ground for the research on spatial representations for mobile robots (Sec-
tion 5.2). Then, we provide an overview of our spatial model (Section 5.3)
and describe each of the levels of representation in detail (Sections 5.4–5.6).
Finally, we present the algorithms used to augment the representation with
semantic object and place information (Sections 5.7 and 5.8, respectively)
and report results of performed experiments (Section 5.9). We conclude the
chapter with a brief summary in Section 5.10.

5.2 Background

An approach to endowing autonomous robots with a human-like conceptual-
ization of space inherently needs to take into account research in sensor-based
mapping and localization for robots as well as findings about human spatial
cognition.

Research in cognitive psychology addresses the inherently qualitative na-
ture of human spatial knowledge. In accordance with experimental studies,
it is nowadays generally assumed that humans adopt a partially hierarchical
representation of spatial organization [15, 16]. The basic units of such a qual-
itative spatial representation are topological regions [17], which correspond
to more or less clearly bounded spatial areas. The borders may be defined
physically, perceptually, or may be purely subjective to the human. It has
been shown that even in natural environments without any clear physical or
perceptual boundaries, humans decompose space into topological hierarchies
by clustering salient landmarks [18].

Aside from the functionality of the cognitive map, another relevant ques-
tion from cognitive science is how people categorize spatial structures. Cat-
egories determine how people can interact with, and linguistically refer to
entities in the world. Basic-level categories represent the most appropriate
name for a thing or an abstract concept. The basic-level category of a referent
is assumed to provide enough information to establish equivalence with other
members of the class, while distinguishing it from non-members [19, 20]. We
draw from these notions when categorizing the spatial areas in the robot’s
conceptual map. We are specifically concerned with determining appropriate
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properties that allow us to meaningfully refer to spatial entities in a situated
dialogue between the robot and its user.

5.3 Overview of the Spatial Model

This section gives an overview of the multi-layered conceptual spatial model
adopted in the CoSy project. The model forms a basis for spatial understand-
ing, reasoning, navigation, and human-robot interaction in the integrated
robotic system. In this framework, the space is modeled at different levels
of abstraction that range from low-level metric maps for robot localization
and navigation to a conceptual layer that provides a human-like space decom-
position and categorization. An illustration of the model and the main levels
of representation is presented in Figure 5.1.

The lower layers of the model are derived from sensory input. These layers
combine a metrical, line-based representation of spatial structure modeling oc-
cupied space, and a navigation graph of virtual markers modeling free space.
Different methods are used to gradually construct more abstract representa-
tions. On higher levels, we regard topological regions and spatially situated
objects as the primitive entities of spatial conceptualization. The robot must
be able to assign human concepts to such spatial entities in order to meaning-
fully act in, and talk about, an environment. Many places in indoor environ-
ments are designed in a way that makes their structure, general appearance,
and spatial layout afford specific actions; corridors and staircases are exam-
ples of this. Other places afford more complex actions provided by objects that
are located there. For instance, the concept of a living room applies to rooms
that are suited for resting. Having a rest, in turn, can be afforded by certain
objects, such as couches or TV sets. The representation allows for combin-
ing cues provided by the basic geometrical shape, general visual appearance,
perceived objects, and possibly situated dialogue to provide reliable semantic
descriptions of space.

The rest of this section provides an overview of each of the layers of the
spatial representation.

5.3.1 Metric Map

The lowest level of the spatial model is represented by a metric map. The
map encodes spatial boundaries in the environment using lines as basic spatial
primitives and supports self-localization of the robot. It is anchored to a metric
world co-ordinate system, which is also used as a basis for the higher level
representations. The positions of lines as well as of a robot on the metric map
are established and maintained by a module for Simultaneous Localization
and Mapping (SLAM) [14]. Section 5.4 gives more details about the applied
SLAM algorithm and other approaches that have been investigated.
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Fig. 5.1. The multi-layered structure of the conceptual spatial model.

In comparison to a representation based on an occupancy grid [21], the line-
based map does not directly provide a description of the free space but rather
of the surfaces in the environment that can be described by lines. However,
since the global co-ordinate system of the metric map is purely internal to
the robot and humans are not able to easily evaluate quantitative spatial
descriptions, the metric map alone is not sufficient to support human-robot
dialogues.
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5.3.2 Navigation Map

The navigation map provides the next layer of representation, which estab-
lishes a model of free space and its connectivity, i.e. reachability. It is based on
the notion of a roadmap of virtual free-space markers as described in [22, 23]
and implemented as a graph of nodes that are anchored to the metric map. As
the robot navigates through the environment, a marker or navigation node is
dropped whenever the robot has traveled a certain distance from the closest
existing node. Nodes are connected following the order in which they were
visited. More information about the navigation graph can be found in Sec-
tion 5.5.

It is also in the navigation graph that the spatial representation is aug-
mented with semantic information about the environment. First, the semantic
category of a place is extracted using a place classification algorithm [12] and
stored in the nodes. Doors detected in the environment are represented as
doorway nodes and added to the graph. Finally, objects detected by an object
search component [13] are also stored on this level of the map. Section 5.7 and
Section 5.8 present the algorithms used to detect objects and extract semantic
place information from the geometry and appearance of the environment.

5.3.3 Topological Map

The navigation map provides a basis for further, topological abstractions.
A topological map consisting of connected areas is built by segmenting the
navigation graph into interconnected sets of nodes separated by recognized
doors (doorway nodes). This layer of abstraction corresponds to human-like
qualitative segmentation of an indoor space into distinct regions (e.g. rooms).
On this level, semantic place information extracted and accumulated over
entire regions is evaluated to determine appropriate semantic categories for
areas in the topological graph. More information about this process can be
found in Section 5.5.

5.3.4 Conceptual Map

On the highest level of abstraction, the system is endowed with a concep-
tual map. The conceptual map builds up a further interpretation of spatial
organization. The topological areas together with their place categories form
the basic spatial entities. A description logic-based reasoner is used to infer
more fine-grained semantic information for the areas. The reasoner integrates
knowledge about areas and observed objects with a common-sense ontology
of an indoor environment. This ontology represents a taxonomy of areas and
objects and the relations between objects and areas. Since there is a strong
connection between typical objects found in an area and the semantic cate-
gory of the area, this layer can also be used to constrain expectations about
which objects are likely to be observed, given that the basic-level concept
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of an area is known (for example through a situated dialogue with a human
user). Section 5.6 provides more details about the conceptual map.

5.4 Metric Mapping

This section gives details about the metric mapping algorithms that were
investigated in CoSy and used to maintain the metric representation in the
spatial model. Metric maps can be represented in many ways. The two most
common approaches are based on occupancy grids [24, 25, 26, 27, 28, 29] and
features [30, 31, 32, 33, 14]. Occupancy grids discretize the world into cells.
Each grid cell holds a value representing the probability that the correspond-
ing area in the environment is occupied. Feature-based maps on the other
hand abstract the sensor data into a set of features. In a structured envi-
ronment – of which most office environments are examples – lines, corners
and edges are common features. The features can be parameterized by, for
instance, their color, length, width, position, etc. One of the main advantages
of this type of representation is that it requires very few assumptions about
the world, whereas one has to settle on a set of features to parameterize the
map beforehand.

Mapping (building a model of the environment) and localization (find-
ing the position in the environment) are often treated as two separate prob-
lems. Maps were made assuming that the position is known and the position
is calculated given a map. However, for an autonomous agent that explores
an unknown environment these two task are intrinsically linked, and form a
chicken-and-egg problem; to perform mapping one needs the position and to
perform position one needs the map. This leads to Simultaneous Localization
and Mapping (SLAM) which has been a thriving research area for more than
a decade.

In this chapter we will focus on feature-based representations. A feature-
based map can in general be written

M = {fj | j = 1, . . . ,M}, (5.1)

where fj is a feature and M is the number of features in the map.

5.4.1 M-Space

A number of different types of features have been used for mapping. Depend-
ing on the type of application the model of the environment is 2D or 3D. For
most indoor applications a 2D representation is used; navigation in cluttered
environments often requires a 3D representation. When taking the step out-
doors the world is less structured and it becomes increasingly likely that the
ground is not flat which also calls for a 3D model.

To motivate the work with the so called M-Space representation, let us
first consider how to represent a line segment. Such a line segment could
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for example offer a 2D abstraction of a wall in an indoor environment. Four
parameters are needed to fully specify the line segment. On a real robot, the
sensors may not be able to detect its end points; even if the end points are
within the range of the sensors they are often hard to detect due to occlusions.
This implies that a measurement typically only constrains the position of the
sensor to a certain distance and relative angle with respect to the wall. In
other words, all dimensions of a wall are typically not constrained by one
single measurement.

There are a number of ways to represent a line segment. To name a few;
slope and intersection (y = kyx + my), end points, distance and direction
(infinite line [34]), center point, length and orientation. All of these suffer one
or more problems, some of which are addressed by the so called SP-model [35].

A characteristic property of SP-model is that each feature element has
its own local reference frame. The frame of reference is chosen with the axes
along the directions of symmetry. A line, for example, has the x-axis along
the direction of the line. A plane will have a normal that coincides with the
z-axis. The main advantage of using a local frame is that the description of the
uncertainty can be made independent of the global position of the features.
This avoids lever-arm effects that can result when for example using direction
and orientation to represent a line. The local frames also help to make frame
transformations and differentiations thereof more standardized. Another key
concept in the SP-model is the so called binding matrix, B. The binding
matrix is a row-selection matrix. The self-binding matrix selects the DOFs
that are not part of the motion symmetry, i.e. the DOFs of a feature that are
constrained and have probabilistic information attached to them. The binding
matrices offer a machinery for making partial observations of a feature. This
is useful, for example, when observing a single point on a line. A limitation
with the SP-model is that one has to attach a frame to all features. For some
types, such as lines, it is difficult to model the extent, e.g. the length, in a
probabilistic way within the SP-model framework. In [36], the length of lines
is estimated and modeled but it relies on always detecting both end points at
the same time and making a direct measurement of the length. An indirect
measurement is not possible as the origin of the reference frame cannot be
observed, not being attached to anything observable, but just defined to be
in the middle of the line.

The so called M-Space representation builds on the SP-model4. It also
attaches a local frame to each feature element and allows for a generic treat-
ment of many types of features. The measurement subspace, or M-space, is
an abstraction of the measured subspace of the feature space that reflects
symmetries and constraints. The idea is that the features are parameterized
to fully specify their location and extent (the feature space) but that they can
be initialized in a subspace corresponding to the information provided by the
sensors.

4 For a detailed description see [14] from which this text is derived.
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For example, when representing a line segment the extent is accommodated
for in the representation even though only the distance to and the orientation
of the line is known initially. We cannot represent the uncertainty with regard
to changes in the coordinates along the length of the line by a Gaussian
distribution. However, the uncertainty regarding changes perpendicular to the
line and regarding the orientation can be approximated by a Gaussian. Let
δxp denote the M-space corresponding to a small change in feature coordinates
δxf . Here the subscript, p, stands for small perturbations in the M-space. The
actual values of the M-space coordinates, xp, are never needed or considered.
It is only the changes to them that enter into the estimates. These changes
are used to make adjustments to the feature coordinates xf . The uncertainty
estimate is an estimate of the distribution of δxp values around a mean of
zero. The adjustments to the feature coordinates are made to maintain this
zero-mean. No re-centering step like in the SP-model is required with this
view of the uncertainty. The uncertainty is defined in a frame attached to the
feature and can be projected into the global frame using the current global
coordinates of the feature. The statistics are represented in an analytic way
rather than in the strict geometric sense of the SP-model. In most cases, the
differences are in the second order corrections to the covariances.

The relation between the feature space coordinates and the M-space co-
ordinates is defined by a projection matrix, B(xf ), similar to the binding
matrix in the SP-model. The projection matrix relates small changes δxp to
small changes δxf . An important difference to the binding matrix is that the
projection matrix is a function of the individual feature and changes with
time. The rather involved re-centering step in the SP-model is replaced by
re-evaluating the projection matrices.

A common issue in feature-based SLAM is that one cannot initialize a
feature after the first observation. A single observation typically does not
contain enough information to do so reliably. Among the reasons behind this
we find for example

• The entire feature is not detected at once.
– In the case of a line segment, the end points might not have been

detected if the line is partially occluded or long.
– When using monocular vision, only the bearing to the feature can be

initialized from a single image.
• Measurements are noisy. Even though a feature is fully observed it is good

practice to get a second opinion from new measurement data to reject false
measurements.

The M-space representation offers a solution to these problems by allow-
ing the M-space dimensionality to change over time. Features are typically
initialized with zero M-space dimensions and with time, as more information
is gathered, more dimensions will be added. Consider mapping a wall as a line
segment. The life cycle of the line segment might be

1. First detection: feature initialized with 0 M-space dimensions.
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Fig. 5.2. A few stable features are identified and used to define the location of
landmarks. The rest of the features are used to improve the matching/recognition
of these.

2. Re-observed N times: the wall’s existence and quality are confirmed. The
distance and orientation of the wall added to the M-space.

3. Start point detected: M-space dimensionality goes up to 3
4. End point detected: the feature reaches full dimensionality of 4.

The importance of the ability to let the dimensions of a feature grow over time
is well illustrated by a horizontal line feature observed by a camera. A single
image does not contain information to pinpoint the location of a feature. The
assumption that the line feature is horizontal implies that a single observation
will be enough to provide information about the relative orientation of the
robot. That is, even if the robot moves parallel under the line and is unable
to use triangulation to fix the position of the line in space the observations of
the line can help reduce the angular uncertainty of the robot. This is useful
in, for example, a corridor where the motion often is parallel to the linear
structures found in the ceiling.

5.4.2 Single Camera Bearing Only SLAM

Range sensors such as laser scanners are still the most common sensors for
systems that perform mapping and localization in settings where robustness is
key e.g. in industrial applications. However, cameras are becoming increasingly
interesting as the performance keeps increasing while the price keeps going
down due to the large demand from the consumer market e.g. for mobile
phones. One of the main advantages of a camera over a range sensor is that
the information that it provides is so much richer and not limited to a few
hundred distance measurements typically lying in a plane. The hard part is
to get the information out from the image.

There is a rich literature on single camera bearing-only SLAM. Most of
these use point features extracted from the image to define landmarks in the
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map [37, 38]. Given standard feature detectors such as SIFT [39], there can be
several hundreds of features and thus potential landmarks per frame. A single
SIFT descriptor is not discriminative enough in itself, especially in man-made
environments where structures like corners give raise to many SIFT points
with very similar descriptors. When used for object recognition [39] it is a
combination of descriptors extracted from the object that provide the dis-
criminative strength. This idea is used in the vSLAM approach [40] where
the SIFT points are used to recognize places. In [41], we present a frame-
work where a few stable (over time and in space) SIFT features are identified
and used as landmarks (location features). The rest of the SIFT features are
used to strengthen the matching of features (recognition features). This is
illustrated in Figure 5.2. When matching against a landmark, the matching
is performed not only with the feature defining the position of the landmark
but also the rest of the feature extracted from the two frames. This greatly
improves the robustness of the matching.

5.4.3 Using Visual Attention for SLAM

Choosing useful landmarks which are easy to track, stable over several frames,
and easily re-detectable when returning to a previously visited location is
important in order to get a visual SLAM system working. Getting few but
good, rather than many and bad landmarks reduces the issue of complexity.
In [42, 43, 44], we suggest the application of a biologically motivated attention
system [45] to find salient regions in images. Attention systems are designed
to favor regions with a high uniqueness such as a red fire extinguisher on a
white wall. Such regions are especially useful for visual SLAM because they
are discriminative by definition and easy to track and re-detect. We show that
salient regions have a considerably higher repeatability than Harris-Laplacians
and SIFT key-points. Active gaze control is also used and has been shown
to enhance the performance over using a statically mounted camera. The
strategy to steer the camera consists of three behaviors: a tracking behavior
identifies the most promising landmarks and prevents them from leaving the
field of view. A re-detection behavior actively searches for expected landmarks
to support loop-closing. Finally, an exploration behavior investigates regions
with no landmarks, leading to a more uniform distribution of landmarks. The
advantage of the active gaze control is to obtain more informative landmarks
(e.g. with a better baseline), a faster loop closing, and a better distribution
of landmarks in the environment. Figure 5.3 shows the difference in the robot
pose uncertainty when driving the same trajectory with active camera control
and without. This example illustrates that the active camera control allows the
robot to reduce the uncertainty by seeing landmarks that it could otherwise
not have seen. For more details please refer to [43, 44].
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Fig. 5.3. A comparison of the robot pose uncertainty with camera control (active)
or without (passive).

5.4.4 Visual Scans

One of the more popular and successful ways to do metric mapping is to
use scan matching [46, 47, 29]. In a feature-based setting the scan can be
considered to be a feature which is defined by the scan distances themselves.
Building the map boils down to finding the position from which the scans
were acquired in such a way that the laser scans align and for a consistent
map.

In [48] we present an idea to use so called visual scans in much the same
way as laser scans are used in scan matching. Using a stereo camera, a 3D
point cloud is calculated by extracting and matching SIFT features in each
image. This 3D point cloud forms the visual scan. Aside from the position,
each point also has a descriptor saying something about the appearance which
can be used for matching.

The map is defined by a number of reference scans. A reference scan is
added when there is not enough overlap between the current visual scan and
any of the other visual scans. The advantage of this representation is that it
gives a very rich description of the environment (a dense point cloud which
can have hundreds or even thousands of points) while the estimation problem
only needs to deal with the parameters defining the position of the sensor
(3 parameters in 2D and 6 in 3D, compared to 3N with N points treated
independently). An example is shown in Figure 5.4
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Fig. 5.4. A map with 126 visual reference scans. Together these scans contain 8333
points. This shows how the visual scans help define a dense representation at the
same time as providing a low-dimensional estimation problem.

5.5 Navigation and Topological Maps

Above the bottom layer – the metric map – the spatial model contains the
navigation and topological maps. As explained above, the metric map en-
codes boundaries in the environment and is used to ensure safe and reliable
navigation and obstacle avoidance. In contrast, the navigation and topolog-
ical layers encode more abstract information about the space accessible to
the robot, particularly important from the functional point of view. This in-
formation is encoded in the form of graph-like structures in which the links
represent connectivity between spatial entities at different spatial scales. The
graph constituting the navigation map consists of nodes representing small
unbounded free space regions in the environment. The topological represen-
tation, in its turn, models the indoor environment in terms of larger bounded
areas connected by detected doors.

The representations play two main roles in the system. First, they dis-
cretize the continuous free space into a finite number of spatial units. These
units are then used for tasks such as planning or interaction with the robot.
For example, the high level task “go to the office”, can be translated to the
low level action “go to the closest navigation node attached to the topological
node representing the office”. If this position is occupied the robot can choose
to go to the next navigation node. Discretization of space drastically reduces
the number of combinations that have to be considered during the planning
process.

The second important function of the navigation and topological repre-
sentations is preserving additional information about the surroundings. Here,
semantic information about places extracted from the sensory input is accu-
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Fig. 5.5. An example of a navigation map overlayed on a metric map. The free space
navigation nodes are represented by circles and are assigned to different topological
areas based on the separation established by the doorway nodes. The colors of
the nodes indicate the functional category of the areas as recognized by a place
classification algorithm.

mulated and stored together with navigation and topological nodes. Moreover,
information about objects found in the environment is tied to nodes in the
navigation graph. This is used to link the representations with the conceptual
map and allows to refer to places in terms of their functional category or de-
tected objects. As an example, the order “go to the TV”, can be processed
and translated into “got to the closest node from which you saw the TV”.

The rest of this section focuses on the process of generating the naviga-
tion and topological representations based on the information encoded in the
metric map and additional cues extracted from the sensory input.

5.5.1 Building the Navigation Graph

The navigation map provides the first discretization of the continuous space
described by the model. It is represented in the form of a graph built as the
robot explores the environment and is based on the notion of a roadmap of
virtual free space markers [22, 23]. A free space navigation node is dropped
whenever the robot has traveled a certain distance from the closest existing
node (approximately 1 meter). Each node is anchored to the metric map
and is assigned (x, y) co-ordinates. Nodes are connected following the order in
which they were generated. This order is given by the trajectory that the robot
follows during the map acquisition process. The final graph serves for planning
and autonomous navigation in the already visited part of the environment.
An example of a navigation graph overlayed on a metric map is presented



5 Semantic Modelling of Space 183

in Figure 5.5. This simple representation proved to be very powerful during
real-world experiments with the integrated system.

As the robot navigates through the environment, additional information
about the surroundings collected on the way is assigned to the closest navi-
gation nodes. Moreover, special doorway nodes are added to the navigation
graph at the points where doors are detected in the environment (see Fig-
ure 5.5). As explained below, these nodes play an important role in building
the spatial model.

5.5.2 Space Segmentation and Topological Graph

The structure of indoor environments allows for introducing larger scale and
more abstract representations than the navigation graph. In such environ-
ments a room is an important concept. Different rooms can be associated
with different owners and functionalities. Moreover, rooms are spatial enti-
ties commonly referred to in the natural language. The ability to segment
space into rooms becomes crucial for an artificial mobile cognitive system.
Therefore, as another layer, the spatial model builds a topological graph con-
sisting of areas and links which represents rooms in the environment and their
connectivity.

The structure of the topological graph is built based on the assumption
that the transition between two areas happens through a door. This creates a
human-like qualitative segmentation of an indoor space into distinct regions. A
door detection algorithm is used to generate doorway nodes in the navigation
graph whenever the robot passes through a narrow opening. The width of the
opening is selected so that it matches typical doorways in the environment.
Information about the door opening, such as width and orientation, is stored
along with the detected position of the doorway in the doorway node. The
doorway nodes are used to segment the navigation graph and assign navigation
nodes to areas in the topological graph.

More complex door models such as those in [49, 50] can be used for more
robust door detection. However, such models put additional constraints on
how doors have to look to be recognized. The only assumption in the model
described here is that the door is a narrow opening which the robot passes
through. No assumptions are made regarding the door leaf (e.g. swinging or
sliding) or special structure around the door. This can be beneficial for a
robot that has to operate in different environments. An alternative would be
to use a learning approach, such as in [51], where both visual features and the
motion of the door are taken into account.

5.5.3 Adding Object Information

Objects and landmarks play an important role in understanding spatial struc-
ture. They are important cues that often determine the actions that can be
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performed in a particular area. Moreover, objects are nameable features com-
monly used in describing spatial locations. For this reason, visual search algo-
rithms are used in the system to perform autonomous exploration and detec-
tion of objects typically found in indoor environments. Detailed information
about the algorithms applied for this purpose can be found in Section 5.7.

The presented spatial model incorporates information about objects. This
information is later used by the last conceptual layer. First, however, the
objects must be tied to their spatial locations. This is the role of the object
nodes which are connected with the navigation nodes of the navigation graph.
The object nodes store information about the type of the recognized object
and its metric location. The nodes are then linked to the closest navigation
node.

5.5.4 Adding Semantic Place Information

Many places in an indoor environment can be characterized by semantic cate-
gories corresponding to their inherent functionality. Rooms constitute a good
example as they can be categorized as offices, kitchens, meeting rooms etc.
However, semantic descriptions can also be assigned to smaller regions such as
a printer area in a corridor. The semantic place category is usually reflected
in the objects located in that place, but also in the general appearance and
geometrical layout.

One of the roles of the navigation nodes and topological areas in the spa-
tial model is to store semantic information about the places to which they
correspond. This information is used to link the lower layers modeling spa-
tially allocated regions with the spatial concepts of the conceptual layer. A
specialized component performing multi-modal place classification is used to
extract semantic descriptions from the sensory input of a robot. Visual and
laser range sensory data acquired in an environment are analyzed and com-
pared to place models in order to produce beliefs about the place categories. In
the simplest case, the component can be used to distinguish between two ba-
sic place categories: a corridor or a room (e.g. based on the clutteredness and
geometric layout). Further specialization can be performed in the conceptual
layer based on object information or situated dialogue. However, more spe-
cific place categories can also be recognized directly by the place classification
system. More information about this process can be found in Section 5.8.

As will be shown through experiments in Section 5.9, the place classifica-
tion system is able to classify a place with high accuracy given a single data
sample (e.g. one image and laser scan) corresponding to only one viewpoint.
However, in this case, the task is to provide a reliable and stable label for the
whole region covered by a navigation node or a topological area. Since the
sensors employed are not omnidirectional, it is necessary to accumulate and
fuse the incoming information. However, the data that the robot gathers are
not evenly spread over different viewpoints. On the contrary, in many cases
the sensors receive a continuous stream of non-informative data (e.g. when the
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Fig. 5.6. Generating semantic labels for navigation nodes and topological areas
using multi-modal place classification.

robot is parked close to a wall blocking the view). The system must be able
to deal with such problems as temporary lack of informative cues, long-term
occlusions or large variability affecting certain viewpoints.

For this reason, the place information produced by the place classification
algorithm is accumulated over time and space as presented in Figure 5.6. For
each multi-sensory data sample, place classification provides a set of beliefs
encoded as a vector of real-valued outputs (see Section 5.8 for details). The
confidence of the final decision is also measured and provided by the clas-
sification component. The beliefs are fused using a confidence-based spatio-
temporal accumulation algorithm. The algorithm relies on information about
the current position on the navigation and topological map provided by the
localization and mapping system. The spatio-temporal accumulation process
is performed within the region covered by the current node and area. When
the robot moves to a different node, the collected information is used to up-
date the semantic label attached to the map and saved as a future prior. When
the robot enters a location which was already explored, the previously stored
beliefs are loaded and can be refined by further exploration.

The principle behind the confidence-based spatio-temporal accumulation
algorithm is illustrated in Figure 5.7. As the robot explores the environment,
it moves with a varying speed. The robot has information about its own move-
ment provided by the wheel encoders (odometry). As errors accumulate over
time, this information can only be used to estimate relative movement rather
than absolute position. Although the accurate metric information could be
used instead, odometry is sufficient for our application. The spatio-temporal
accumulation process creates a sparse histogram along the robot pose trajec-
tory described by the metric position (x, y) and heading (θ). The size of the
histogram bins is adjusted so that each bin roughly corresponds to a single
viewpoint. Then, as the robot moves, the beliefs about the current semantic
category accumulate within the bins. An average of the outputs is calculated
in a manner similar to the Discriminative Accumulation Scheme (DAS, [10])
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Fig. 5.7. Illustration of the spatio-temporal accumulation process. As the robot
explores the environment, the beliefs collected on the way accumulate over time
within the bin corresponding to the current pose (x, y, θ) and over space in different
bins.

used in the framework of cue integration. This is what we call the temporal
accumulation. It prevents a single viewpoint from becoming dominant due
to long-term observation. Since each viewpoint observed by the robot will
correspond to a different bin, performing accumulation across the bins (this
time spatially) allows for generating the final outputs to which each viewpoint
contributes equally. In order to exclude most of the misclassifications before
they get accumulated, the decisions are filtered based on the confidence value
provided by the place classification component. Finally, the best hypothesis
is calculated. It is assigned to the navigation node and topological area rep-
resenting the spatial region over which the accumulation was performed.

5.6 Conceptual Map

The conceptual map provides the link between the low-level maps and the
communication system used for situated human-robot dialogue by grounding
linguistic expressions in representations of spatial entities, such as instances of
rooms or objects. It is also in this layer that knowledge about the environment
stemming from other modalities, such as object recognition and dialogue, is
anchored to the metric and topological maps.

Based on the work by Zender [52], our system is endowed with a common-
sense OWL ontology of an indoor environment (see Figure 5.8) that describes
taxonomies (is-a relations) of room types and typical objects found therein
through has-a relations. These conceptual taxonomies have been handcrafted
and cannot be changed online. However, instances of the concepts are added
to the ontology during run-time. Through fusion of acquired and asserted
knowledge gathered in an interactive map acquisition process [53] and through
the use of the innate conceptual knowledge, a reasoner can infer information
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Fig. 5.8. Illustration of a part of the commonsense ontology of an indoor office
environment. Solid arrows denote the taxonomical is-a relation.

about the world that is neither given verbally nor actively perceived. This
way linguistic references to spatial areas can be generated.

Acquired Knowledge

While the robot moves around constructing the metric and topological maps,
our system derives higher-level knowledge from the information in these lay-
ers. Each topological area, for instance, is represented in the conceptual map
as an ontological instance of the type Area. Furthermore, as soon as reliable
information about the semantic classification of an area is available, this is re-
flected in the conceptual map by assigning the area’s instance a more specific
type. Information about recognized objects stemming from the vision subsys-
tem is also represented in the conceptual map. Whenever a new object in the
environment is recognized, a new instance of the object’s type, e.g. Couch, is
added to the ontology. Moreover, the object’s instance and the instance of the
area where the object is located are related via the hasObject relation. This
process is shown in Figure 5.1.

Asserted Knowledge

During a guided tour with the robot, the user typically names areas and
certain objects that he or she believes to be relevant for the robot. Typical
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assertions in a guided tour include “You are in the corridor,” or “This is the
charging station.” Any such assertion is stored in the conceptual map, either
by specifying the type of the current area or by creating a new object instance
of the asserted type and linking it to the area instance with the hasObject
relation.

Innate Conceptual Knowledge

We have handcrafted an ontology (Figure 5.8) that models conceptual com-
monsense knowledge about an indoor office environment. On the top level of
the conceptual taxonomy, there are the two base concepts Area and Object.
Area can be further partitioned into Room or Corridor. The basic-level sub-
concepts of Room are characterized by the instances of Object that are found
there, as represented by the hasObject relation.

Inferred Knowledge

Based on the knowledge representation in the ontology, our system uses a de-
scription logic-based reasoning software that allows us to move beyond a pure
labeling of areas. Combining and evaluating acquired and asserted knowledge
within the context of the innate conceptual ontology, the reasoner can infer
more specific categories for known areas. For example, combining the acquired
information that a given topological area is classified as a room and contains a
couch with the innate conceptual knowledge given in our commonsense ontol-
ogy, it can be inferred that this area can be categorized as being an instance
of LivingRoom. Conversely, if an area is classified as a corridor and the user
shows the robot a charging station in that area, no further inference can be
drawn. The most specific category the area instantiates will still be Corridor.

Our method allows for multiple possible classifications of any area because
the main purpose of the reasoning mechanisms in our system is to facilitate
human-robot interaction. The way people refer to the same room can differ
from situation to situation and from speaker to speaker, as reported by Topp et
al. [54]. For example, what one speaker prefers to call the kitchen might be
referred to as the recreation room by another person. Since our aim is to be
able to resolve all such possible referring expressions, our method supports
ambiguous classifications of areas.

5.7 Object Detection and Recognition

In this section, we discuss how the robot can use active vision for perceiving
objects and landmarks in the environment. The process is active in that it is
based on active search, primed by interpretations established at other levels of
spatial representation. Active vision provides information about objects in the
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environment. It covers object recognition and determines object pose relative
to the world coordinate system adopted by the metric layer in which all other
representations are grounded.

The rest of this section gives details about the approach adopted in CoSy
for object search and localization (Section 5.7.1) and presents results of an
experiment evaluating different methods for object distance estimation (Sec-
tion 5.7.2).

5.7.1 Object Search and Localization

In our early work [55], the search for objects was performed while exploring the
environment to cover space or when guided by the user. This is not sufficient.
The user is able to show the robot all objects, but this is a tedious task and
does not have the right level of autonomy expected from an autonomous agent.
When object search runs in parallel with exploration, it is driven by the laser
scanner which has a 180◦ field of view compared to the camera having about
a fourth of that. This means that the camera is not guaranteed to see all parts
of the environment.

View planning as a research area is well established. The so called art
gallery problem [56] is defined as finding a minimal set of viewpoints from
which all the parts of the environment can be observed. This problem is akin
to the problem of planning for finding objects in the environment. The main
difference is that one also needs to take into account the limitations of the
observer, i.e. the camera. One of the most important limitations comes from
the finite resolution of the camera and the fact that objects have different
sizes. Even if a small object is in the field of view it will not be detected
if the camera is too far away. Similarly, a large object can typically not be
detected if the camera is too close. A system taking these constraints into
account is presented in [57, 13]. This system uses a combination of a visual
attention mechanism in the form of the RFCH algorithm [58], camera zoom
and SIFT recognition [39] for finding the objects. View planning is carried
out by selecting views from the nodes in the navigation graph. Briefly, when
searching for objects the system first analyzes the map of the environment
and performs the view planning. The robot then visits each view point and
performs the visual search. The visual attention mechanism tells the systems
what parts of the image to investigate further and the system does so by
zooming in, thus gathering more pixels from the potential object. When the
object is close, SIFT recognition is used to verify the identity of the object.
The distance to the object is estimated from visual cues. The distance is used
to control the zooming and to estimate the position of the object.

This method relies on the visual attention system not to produce too many
views to investigate further. In [59] a method for accumulating over time the
available visual evidence for the presence of objects was investigated. This
would allow the object recognition algorithm to run in parallel to the ex-
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Fig. 5.9. An example of a planned path for object search. In this example, one of
the nodes is not used in the plan.

ploration and could also handle object detection/recognition algorithms that
provide information that is too weak to act on immediately.

The input to the view planning is, besides the objects to search for, a grid
representation of the world and a navigation graph. The grid resolution is
0.5m [13]. The grid cells represent possible object locations, and the plan is
constructed such that each grid cell is observed from a distance appropriate
for each object. Figure 5.9 shows an example of a plan from the view planning.
There may be several views associated with a node corresponding to different
viewing directions.

To represent an object for recognition, the system uses one segmented
image of each object in a close-up view. Two examples of training images are
shown in Figure 5.10. To be able to plan for detecting the objects and to
determine the distance to a detected object, the real world and image size of
the object are also stored in the object database.

As a consequence of using a single view for each object, the system can
only recognize the object from one side. Using a multi-view representation of
the object is a natural extension to this work.

In [60], the distance estimate used to determine zoom levels was based
directly on the robot’s laser sensor. However, the distance provided by the
laser is often misleading, as Figure 5.11 shows: the laser sensor is placed about
30cm above the floor and if an object is not at that height, the estimate may
be wrong. The approach works only for objects that are placed on the floor
or are located close to walls (for example, in a bookshelf). If the distance
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Fig. 5.10. Two of the training images (coffee machine and rice package) provided
to the robot beforehand to learn the appearance of the objects.

Fig. 5.11. Distance estimation provided by the laser may not be reliable: instead
of the distance to the object on the table, the distance to the shelf is measured.

estimate is wrong, the final zoom may either not be sufficient to make the
object occupy enough of the image, or otherwise may be too large causing
only a small part of the object to be seen. Furthermore, even if the object
is recognized, its estimated position might be inaccurate. To address these
issues, we have looked at two alternative ways for distance estimation.

Using the Vote Matrix

Using the RFCH vote matrix for distance estimation consists of measuring
how many cells are part of the object and treating the area they occupy in the
image as an approximation of the object’s size. Here, cells are considered to be
associated with a hypothesis if their degree of match is above the threshold and
if there is an 8-connected path to the hypothesis with cells of monotonically
increasing value. Only the strongest hypothesis and its associated 8-connected
cells are taken into account, because it is likely to be the most reliable.

Given the object’s actual size stored in the training database, the distance
is then computed as:

D =
Wreal

Wim

2Dvote

tan
(α

2

)
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where D stands for the estimated distance (meters); Wreal , for the real width
of the object (meters); Wim , for the width in pixels of the camera image;
Dvote , for the width in pixels of the bounding box of the cells associated with
a hypothesis and α, the horizontal viewing angle. This procedure is fast and
approximate, but sufficiently accurate to allow the object search algorithm to
assign a valid zoom.

Using SIFT

SIFT produces a scale parameter for each key point extracted. For each
matched pair of key points in the training and recognition image, the quotient
of the keys’ scale parameter gives an estimate of their relative apparent size
and hence their distance, according to:

D =
Wreal

Wim

2Wtr

Str

Sreal

tan
(α

2

)
where Str denotes the scale of the point extracted from the training image;
Sreal , the scale of the point extracted from the recognition image, and Wtr ,
the width of the object in the training image in pixels.

As mismatched key point pairs can produce incorrect scale parameters,
the final estimate of the object distance is taken as the median of the distance
estimates from all matches. Experiments indicate that an adequate estimate is
obtained given 10 or more SIFT matches. With 4 matches or more a passable
rough estimate is typically obtained (within about 30%). If there are fewer
than 4 matches, the result is likely to be very poor (most likely based on some
other structure than the object) and is not used.

The drawback of the above method is that extracting SIFT features from
an image is computationally expensive, and using it to guide the zoom process
may take too long to be feasible. Another problem is the number of SIFT
features required to obtain a robust estimation; when the object is small in
the image (i.e. resolved by few pixels), it is unlikely that enough matches will
be available.

5.7.2 Object Distance Estimation

Figure 5.12 presents the results of distance estimation using RFCH and SIFT
without magnification, performed on five different test objects. As expected,
performance deteriorates for both methods at long range, due to the decreased
size of the object in the image, and for RFCH also partly to the discretization
of the vote cells.

It is notable that the values obtained through both methods tend towards
the low end. The reason for this are mainly outliers, erroneously assigned val-
ues of 0.5–1m, caused by large background structures being mistaken for a
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(a) RFCH distance estimates

(b) SIFT distance estimates

Fig. 5.12. Distance estimation results; all objects. Top image RFCH, bottom SIFT.
Boxes signify one standard deviation about the average for each distance; lines
signify the most extreme values.

close-up object. Compared to RFCH, SIFT exhibits a far more accurate and
dependable estimate at short range. However, its quality rapidly deteriorates
at longer distances, as can be seen by inspecting the average value of the es-
timates beyond 2.5m in Figure 12(b). This is because a certain level of detail
is needed to extract SIFT keys. In contrast, RFCH, though most reliable at
medium ranges (as demonstrated by the standard deviations in Figure 12(a)),
retains the ability at long range to provide very rough approximations, gen-
erally adequate for the purpose of selecting a zoom level for the next step.
For the final distance estimate, it should be pointed out that SIFT is used –
but the magnification of the image will correspond to shifting the diagram in
Figure 12(b) into the 0.5m–1m region where the method is most effective.

Figure 5.13 highlights the differences between RFCH and SIFT in distance
estimation. Here, for each test image, the absolute error of the distance esti-
mate is compared between the two methods and the percentage of cases where
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Fig. 5.13. Proportion of instances in which RFCH and SIFT provide the best
estimate.

each of the methods gives better estimate is plotted. The graph shows that
RFCH becomes more reliable at 2m range or above.

5.8 Place Classification

This section presents a multi-modal place classification algorithm able to iden-
tify places and recognize semantic place categories. The method effectively
utilizes information from different robotic sensors by fusing multiple visual
cues and laser range data [12]. The presented approach was used for real-time
semantic labeling of the spatial entities represented by the conceptual spatial
model.

Place classification, as considered in this section, can be described as a su-
pervised pattern recognition problem of assigning a region in an environment
to one of predefined place classes based on multi-modal sensory input and
a set of place models. First, the place models are build from a collection of
labeled data samples acquired in places belonging to the modeled classes. The
models store intrinsic visual and geometric properties of the classes. Then, the
algorithm is presented with data samples acquired in one of the same places
or in a novel place belonging to one of the same categories, possibly under
different conditions and after some time (where the time range goes from some
minutes to several months). The goal is to classify correctly as much of the
sensory data samples as possible.

The ability to classify places based on their visual and geometric properties
is an important competence for a mobile cognitive agent in two fundamen-
tal scenarios. First, place classification can be used to recognize previously
visited places. In this scenario, place classification becomes a key element of
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topological and hybrid localization systems, providing them with means for
global localization and loop closing [61, 62, 12]. Second, place classification
can be used to assign novel places to semantic categories, and thus augment
space representations with semantic information [9, 7, 63]. In both cases, this
is a challenging classification problem due to large variability and dynamics
of real-world environments. First, viewpoint variations cause the sensors to
capture different aspects of the same place, which often can only be learned
if enough training data are provided. Moreover, real-world environments are
usually dynamic and their appearance changes over time. The recognition sys-
tem must be robust to variations introduced by changing illumination (e.g.
during sunny days and at night) and due to human activity (people might
appear in the images, objects and furniture can be relocated).

Place classification is a widely researched topic. Purely geometric solutions
based on laser range data have proven to be successful for certain tasks [7,
64, 61]. However, the limitations of such solutions inspired many researchers
to turn towards vision which nowadays is becoming tractable in real-time
applications. The proposed methods employed either perspective [9, 65, 66, 10,
62] or omnidirectional cameras [67, 68, 69, 70]. The main differences between
the approaches relate to the way the scene is perceived. Several approaches
employ local features, computed from distinct parts of an image [66, 69, 70].
Other use global features, derived from the whole image [67, 68, 9]. Recently,
several authors observed that robustness and efficiency can be improved by
combining information provided by different visual cues [10, 62] or different
sensors, such as a camera and a laser range finder [11, 71, 12].

The algorithm presented here is able to perform robust place classification
under different types of variations that occur in indoor environments over a
span of time of several months. The method relies on robust descriptors [72, 39,
7] and discriminative classifiers [73, 74] known for their superior generalization
abilities. The reliability is further improved by integrating multiple cues and
modalities. The system uses different types of visual information provided by
global and local image descriptors and geometric cues derived from laser range
scans. The cues are combined using a high-level cue integration scheme that
learns how to optimally weight each cue [12]. The system is able to measure
its own level of confidence and fuse information over time and space in order
to provide a reliable decision. Finally, in case of dynamic environments, where
the long-term variability cannot be handled by the generalization abilities of
the algorithm, the internal representation can be incrementally updated to
maintain a stable performance as proposed in [75].

The rest of this section motivates the choice of modalities (Section 5.8.1),
provides an overview of the architecture of the place classification system (Sec-
tion 5.8.2) and gives details about the algorithms used to extract and classify
the geometric and visual cues (Section 5.8.3 and Section 5.8.4). Then, the
method used for cue integration is described in Section 5.8.5. The section con-
cludes with a discussion on the need for adaptive models for place classification
in dynamic environments (Section 5.8.6). All the algorithms were experimen-
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tally evaluated on robotic platforms operating in realistic environments. The
experiments and obtained results are presented in Section Section 5.9.

5.8.1 Multiple Cues and Modalities for Place Classification

Nowadays, robots are usually equipped with several sensors, typically a laser
range finder and a camera (or cameras), providing both geometrical and vi-
sual information about the environment. The ability to effectively integrate
multiple cues, possibly extracted from multiple sensory modalities, becomes
an important feature of a place classification system. First of all, as each sen-
sor usually captures a different aspect of the environment, using multiple cues
allows for obtaining more descriptive representation. A laser range scanner
can be a valuable source of geometrical information, while vision is neces-
sary if a robot requires a notion of human-like appearance-based concepts.
Good descriptive and discriminative abilities along with robustness are the
two crucial features of a place classification system with a great influence on
its overall performance. The visual sensor is an irreplaceable source of distinc-
tive information about a place. However, this information tends to be noisy
and difficult to analyze due to the susceptibility to variations introduced by
changing illumination and everyday activities in the environment. At the same
time, laser range finders provide much more stable and robust geometric cues.
These cues, however, are unable to uniquely represent the properties of dif-
ferent places. This leads to the problem of perceptual aliasing [76]. Clearly,
each modality has its own characteristics. Interestingly, the weaknesses of one
often correspond to the strengths of the other.

It is important to note that even alternative interpretations of the informa-
tion obtained by the same sensor can be valuable. In this work we concentrate
on two different types of visual cues based on global and local image features.
Global features are derived from the whole image and thus can capture gen-
eral properties of the whole scene. In contrast, local features are computed
locally, from distinct parts of an image. This makes them much more robust
to occlusions and viewpoint variations, but requires a costly matching process
in order to find feature correspondences.

The different properties of the cues result in different performance and er-
ror patterns on the place classification task. This is illustrated in Figure 5.14
which shows distributions of errors made by three single-cue place classifica-
tion algorithms for five different place classes (see Section 5.9.1 for details). It
is apparent that each of the cues makes errors according to a different pattern.
The cue integration scheme should exploit this fact in order to increase the
overall performance. The experimental results reported in Section 5.9.2 show
that the performance of a place classification system can indeed be boosted by
combining the stability of geometrical solutions with the versatility of different
visual cues.
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Fig. 5.14. Distributions of errors made by three single-cue place classification algo-
rithms for five different place classes (1pO - one person office, CR - corridor, 2pO -
two persons office, KT - kitchen, PR - printer area). Bright colors indicate the classes
most often confused with the actual class. The diagonal elements were removed.

Fig. 5.15. Architecture of the multi-modal place classification system.

5.8.2 Architecture of the Place Classification System

The architecture of the place classification system described in this section is
illustrated in Figure 5.15. The system relies on two visual cues corresponding
to two different types of image features (local based on the SIFT descriptor [39]
and global based on the Composed Receptive Field Histograms [72]) as well
as simple geometrical cues extracted from laser range scans [7]. The cues are
processed independently. For each cue, there is a separate path in the system
which consists of two main building blocks: a feature extractor and a classifier.
Each classifier produces a set of outputs indicating its soft decision for all
place classes. These outputs can be used directly to obtain the final decision
separately for each cue. In cases when several cues are available, the single-cue
outputs are combined using a high-level discriminative accumulation scheme
producing integrated outputs from which the final decision is derived. As was
described in Section 5.5.4, the integrated outputs can be accumulated over
time and space if the system is used on a mobile platform. Since each of the



198 Pronobis et al.

Fig. 5.16. An occupancy grid map built on the ground floor of the building 52 at
the University of Freiburg. Some natural divisions can be extracted from this map
e.g. corresponding to rooms, doorways and a corridor.

cues is treated independently, the system can decide to acquire and process
additional information only when necessary e.g. only in difficult cases. This
scheme is referred to as Confidence-based Cue Integration [10].

5.8.3 Laser-based Place Classification

This section presents our approach to place classification based on geometric
features extracted from laser range data. Many places in indoor environments
can be distinguished due to their different structure. This structure can be
unique for an instance of a place, but can also be characteristic for a whole
semantic place category. For example, the bounding box of a corridor is usu-
ally longer than that of rooms or hallways. At the same time, rooms are
typically smaller than hallways, and also more cluttered than corridors and
hallways. As an example, Figure 5.16 shows a typical hand-labeled division of
an environment into three categories of places.

As illustrated in Figure 5.15, the place classification algorithm first extracts
a set of simple geometrical features from the scan acquired by the range sensor.
Figure 5.17 shows an example of a scan taken by a mobile robot in a corridor.
Each feature is represented by a numerical value computed from the beams
of the scan or from a polygon representing the covered area. Single features
alone are not sufficient for reliable places classification. Here, the AdaBoost
algorithm is used to boost the simple features into a strong classifier. As
is shown in Section 5.9.1, different classification algorithms, such as Support
Vector Machines [73], can also be used to successfully derive a place class from
the geometrical features. A brief description of the features and the AdaBoost
algorithm is given below.
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Fig. 5.17. A range scan covering the complete 360o field of view acquired by a
mobile robot in a corridor.

Fig. 5.18. A decision list built for K classes using binary classifiers. The output of
each binary classifier is the probability zk that the classified example belongs to the
k-th class.

Classification Using AdaBoost

The AdaBoost algorithm, introduced in [74], is one of the most popular boost-
ing algorithms. This algorithm takes as an input a training set of positive and
negative examples. On each round, AdaBoost calls a weak learning algorithm
repeatedly to select a weak hypothesis. The key idea is to maintain a weight
distribution over the training examples. This distribution indicates the im-
portance of the examples at the beginning of the training process and later
is controlled by the algorithm. Below, a modified version of the original al-
gorithm is described which outputs a confidence value for each positive and
negative classification [77].

The original AdaBoost algorithm was designed for binary classification
problems. However, to label places in the environment, we need the ability
to handle multiple classes. One way to construct a multi-class classifier is to
arrange several binary classifiers into a decision list. Each element of such a
list represents one binary classifier which determines if an example belongs
to one specific class. In addition, each binary classifier outputs a confidence
value C+

k for a positive classification of its class k. Figure 5.18 illustrates the
structure of the probabilistic decision list.
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In the decision list, each test example is fed into the first binary classifier,
which outputs a confidence value C+

1 for a positive classification. Then the
example is passed to the next binary classifier. This process is repeated until
the last element in the list. The complete output of the decision list is repre-
sented by a histogram z. In this histogram, the k-th bin stores the probability
that the classified location belongs to the k-th class according to the sequence
of classifiers in the decision list. This probability can be computed as follows:

zk = C+
k

k−1∏
j=1

(1− C+
j ), (5.2)

where the confidence value for the last K-th bin is equal to 1. In the multi-
cue framework, these probability values are used as the outputs which are
integrated by the cue integration function (see Figure 5.15).

One important question in the context of a sequential classifiers is the
order in which the individual binary classifiers are arranged. A good strategy
is to order the classifiers in increasing order according to their training error
rate. Compared to the optimal order, the classifier generated by this heuristic
performed only 1.3% worse on average for an application with several classes
demonstrated in [78]. In several cases, the sequence generated by this heuristic
turned out to be the optimal one.

Simple Features from Sensor Range Data

Let’s assume that the mobile robot is equipped with a range sensor covering
the 360o field of view. Each laser observation z = {b0, ..., bM−1} contains a set
of beams bi. Each beam bi consists of a tuple (αi, di) where αi is the angle
of the beam relative to the robot and di is the length of the beam. Each
training example for the AdaBoost algorithm is just one observation z and its
classification y. Thus, the set of training examples is given as

E = {(zi, yi) | yi ∈ Y = {Room,Corridor, . . .}} . (5.3)

In this approach, each laser observation is represented by a set of simple
geometric features expressed using single real values. All features are rotation-
ally invariant to make the classification dependent only on the (x, y)-position
of the robot and not of its orientation. Most of the features are standard geo-
metrical characteristics often used in shape analysis and pattern recognition.
We define a feature f as a function that takes as argument one observation
and returns a real value: f : Z → <, where Z is the set of all possible ob-
servations. Figure 5.19 shows graphically some of these features used. The
complete list of features, together with their mathematical definition, can be
found in [77].

Common configurations on real mobile robots have only one laser scanner
covering the 180o in front of the robot. In these cases the values correspond-
ing to the rear laser scan can be set to zero. A more advanced solution is
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Fig. 5.19. Examples of features generated from laser range data, namely the average
distance between two consecutive beams, the perimeter of the area covered by a scan,
and the mayor axis of the ellipse that approximates the polygon described by the
scan. Here, the laser beams cover a 360o field of view.

to maintain a local map around the robot. This local map can be updated
during the movements of the robot, and then used to simulate the rear laser
beams [77]. This approximation have shown good results in several indoor
experiments [7, 63].

5.8.4 Vision-based Place Classification

This section describes the visual place classification algorithms proposed
in [12] that constitute the two paths of the vision-based channel in the multi-
modal system presented in Figure 5.15. Each of the paths is built around a
Support Vector Machine (SVM) classifier [79] and a different type of visual
feature, global or local, extracted from the same image frame (see Section 5.8.1
for the distinction between the feature types). The global features are repre-
sented using a rich global descriptor, Composed Receptive Field Histograms
(CRFH, [72]). The local features are based on the Scale Invariant Feature
Transform (SIFT, [39]). Both have already been proved successful in the do-
main of vision-based localization [10, 37, 66].

The rest of the section describes the feature extraction algorithms and
sketches the theory behind SVMs which will also form a basis for the cue
integration scheme presented in Section 5.8.5.

Global Visual Features: Composed Receptive Field Histograms

CRFH is a multi-dimensional statistical representation of the occurrence of
responses of several image descriptors applied to the image. This idea is illus-
trated in Figure 5.20. Each dimension corresponds to one descriptor and the
cells of the histogram count the pixels sharing similar responses of all descrip-
tors. This approach allows to capture various properties of the image as well as
relations that occur between them. We tested a wide variety of combinations
of image descriptors with several scale levels. On the basis of an evaluation of
performance and computational cost, we build the histograms from either first
order or second order Gaussian derivative filters applied to the illumination
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Fig. 5.20. The process of generating multi-dimensional receptive field histograms
shown on the example of the first-order derivatives computed at the same scale t = 4
from the illumination channel.

channel at two scales. This resulted in either 4- or 6-dimensional histograms.
Multi-dimensional histograms can grow extremely fast if the number of dimen-
sions grows. However, most of the cells are usually empty [72]. Storing only
those that are non-zero allows for reducing the amount of required memory
and performing operations such as histogram accumulation and comparison
efficiently.

In case of SVMs, special care must be taken in choosing an appropriate
kernel function which acts as a similarity measure between the feature vectors.
In this work, the χ2 kernel [80] was used for the CRFH descriptors. The χ2

kernel belongs to the family of exponential kernels, and is given by

K(x,y) = exp
{
−γχ2(x,y)

}
, χ2(x,y) =

∑
i

||xi − yi||2

||xi + yi||
. (5.4)

Local Features: Scale Invariant Feature Transform

The process of local feature extraction consists of two stages: interest point
detection and description. The interest point detector identifies a set of char-
acteristic points in the image that could be re-detected even in spite of various
transformations. The role of the descriptor is to extract robust features from
the local patches located at the detected points. Here, we used the scale,
rotation, and affine invariant interest point detector based on the difference-
of-Gaussians (DoG) operator [81] and the SIFT descriptor [39]. Figure 5.21
presents local patches located at the interest points detected in three typical
images acquired in an indoor environment.

In case of local features, the similarity between two images is measured
by solving the correspondence problem. Thus, in order to couple the local
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Fig. 5.21. Local patches at the interest points detected in three typical images
acquired in an indoor environment. The size of the patches illustrate the scale at
which the points were detected.

descriptors with the SVMs, the match kernel proposed in [82] was used. The
match kernel is given by

K(Lh,Lk) =
1
nh

nh∑
jh=1

max
jk=1,...,nk

{
Kl(L

jh

h ,L
jk

k )
}
, (5.5)

where Lh,Lk are local feature sets and Ljh

h ,L
jk

k are two single local features.
The sum is always calculated over the smaller set of local features and only
some fixed amount of best matches is considered in order to exclude outliers.
The local feature similarity kernel Kl can be any Mercer kernel. Here, the
RBF kernel based on the Euclidean distance was used for the SIFT features:

Kl(L
jh

h ,L
jk

k ) = exp
{
−γ||Ljh

h −Ljk

k ||
2
}
. (5.6)

Support Vector Machines

Support Vector Machines are a binary discriminative classifier known for their
superior generalization abilities. Consider the problem of separating the set
of labeled training data (x1, y1), (x2, y2), . . . , (xn, yn) into two classes, where
xi ∈ <N is a feature vector and yi ∈ {−1,+1} its class label. Assuming
that the two classes can be separated by a hyperplane in some Hilbert space
H, then the optimal separating hyperplane is the one which has maximum
distance to the closest points in the training set resulting in a discriminant
function

f(x) =
n∑

i=1

αiyiK(xi,x) + b. (5.7)

The classification result is then given by the sign of f(x). The values of αi

and b are found by solving a constrained minimization problem, which can
be done efficiently using the SMO algorithm [83]. Most of the αi’s take the
value of zero; those xi with nonzero αi are the “support vectors”. In cases
where the two classes are non-separable, the optimization is formulated in
such a way that the classification error is minimized and the final solution
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remains identical. The mapping between the input space and the usually high
dimensional feature space H is done using kernels K(xi,x).

The extension of SVM to multi-class problems can be done in several ways.
Three different approaches were used in this work:

1. Standard one-against-all (OaA) strategy. If M is the number of classes,
M SVMs are trained, each separating a single class from all other classes.
The decision is then based on the distance of the classified sample to each
hyperplane, and the sample is assigned to the class corresponding to the
hyperplane for which the distance is largest.

2. Modified one-against-all strategy. In [10], a modified version of the OaA
principle was proposed. The authors suggested to use distances to pre-
computed average distances of training samples to the hyperplanes (sepa-
rately for each of the classes), instead of the distances to the hyperplanes
directly. In this case, the sample is assigned to the class corresponding to
the hyperplane for which the distance is smallest. Experiments presented
in this paper and in [10] show that in many applications this approach
outperforms the standard OaA technique.

3. One-against-one (OaO) strategy. In this case, M(M − 1)/2 two-class ma-
chines are trained for each pair of classes. The final decision can then
be taken in different ways, based on the M(M − 1)/2 outputs. A pop-
ular choice is to consider as output of each classifier the class label and
count votes for each class; the test image is then assigned to the class that
received more votes.

In each of the aforementioned cases, the classified sample is processed by
a set of binary classifiers. Each of these classifiers produces a value of the
discriminant function as defined by Eq. (5.7). In the multi-cue framework,
these values are used as the outputs which are integrated by the cue integration
function (see Figure 5.15).

Support Vector Machines do not provide any out-of-the-box solution for
estimating the confidence of the decision; however, it is possible to derive
confidence information and hypotheses ranking from the distances between
the samples and the hyperplanes. In order to estimate the confidence of the
decision provided by the single-cue place classification algorithms and both
confidence estimates and the hypotheses ranking for the final decision of the
multi-modal place classification system, we used the distance-based confidence
estimation method proposed in [10].

5.8.5 Discriminative Cue Integration

This section describes the SVM-based Discriminative Accumulation Scheme
(SVM-DAS) algorithm [12]. The algorithm is used to integrate cues from one
or multiple modalities in the place classification system presented in Fig-
ure 5.15.
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Various cue integration methods have been proposed in the robotics and
machine learning community [71, 84, 10, 85, 86, 87]. These approaches can be
described according to various criteria. For instance, [88] suggest to classify
them into two main groups, weak coupling and strong coupling. Assuming that
each cue is used as input of a different classifier, weak coupling is when the
output of two or more independent classifiers are combined. Strong coupling
is instead when the output of one classifier is affected by the output of another
classifier, so that their outputs are no longer independent. Another possible
classification is into low level and high level integration methods, where the
emphasis is on the level at which integration happens. We call low level in-
tegration methods those algorithms where cues are combined together at the
feature level, and then used as input to a single classifier [87, 71]. Another
strategy is to keep the cues separated and to integrate the outputs of indi-
vidual classifiers, each trained on a different cue [85, 84, 12]. We call such
algorithms high level integration methods, of which voting is the most pop-
ular [89]. These techniques are more robust with respect to noisy cues or
sensory channels. Moreover, they allow to divide the learning problem into
several smaller sub-problems. Additionally, not all cues need always be used
and the algorithm can decide on the number of cues that should be extracted
for each particular classification task [10].

SVM-DAS is a technique performing weak coupling, high level, non-linear
cue integration. For each cue, the method requires training a separate classifier
which provides a set of outputs encoding the relation of the classified sample
to the place models for the particular cue. The integration is performed by
feeding the outputs to a Support Vector Machine. Compared to previous high-
level discriminative accumulation methods [84, 10], SVM-DAS gives several
advantages. First, it accumulates cues with a more complex, possibly non-
linear function, by using the SVM framework and kernels. Such approach
makes it possible to integrate outputs of different classifiers such as SVM and
AdaBoost. Moreover, it learns the weights for each cue very efficiently from the
training data, therefore making it possible to accumulate large numbers of cues
without computational problems. At the same time, SVM-DAS preserves the
important property of the previous methods to perform correct classification
even when each of the single cues gives misleading information.

Suppose, there are P cues and therefore, P single-cue classifiers. Each
classifies a single cue Tp(I), where p = 1 . . . P , extracted from the sensory
input I. Then, each classifier produces a set of outputs {Op

h(Tp(I))}Hp

h=1, where
Hp defines the number of outputs for the p-th cue. The outputs are used as an
input to an SVM, and the parameters of the integration function are learned
during the optimization process, for instance using the SMO algorithm [83]
(see Section 5.8.4 for a brief overview of the theory behind SVMs). This gives
raise to the following integration function of SVM-DAS:

OΣP
g (I) =

n∑
i=1

αg
i yiK(Oi,O) + bg, g = 1, . . . , G,
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where K is the kernel function and O is a vector containing all the outputs
for all cues:

O =
[
{O1

h(T1(I))}H1
h=1, . . . , {O

P
h (TP (I))}HP

h=1

]
.

The parameters yi, α
g
i , b

g and the support vectors Oi are inferred from the
training data either directly or efficiently during the optimization process.
The number of the final outputs G and the way of obtaining the final decision
depends on the multi-class extension used with SVM-DAS. We tested the one-
against-all extension, for which G = M , and the one-against-one extension,
for which G = M(M − 1)/2, where M is the number of classes. In both cases,
we observed a very similar performance.

In case of SVM-DAS, the nonlinearity is given by the choice of the kernel
function, thus in the case of the linear kernel the method is linear. For the
experiments reported in this section, we used the non-linear RBF (Gaussian)
kernel given by

K(x,y) = exp
{
−γ||x− y||2

}
. (5.8)

5.8.6 Adaptive Place Classification

In most cases, the place classification systems are trained off-line or once they
are trained the representation remains static. However, in the real, dynamic
world, learning cannot be a single act. It is simply not possible to create
a static model which could explain all the variability observed over time.
Continuous information acquisition and exchange, coupled with an ongoing
learning process, is necessary to provide the system with a valid world rep-
resentation and preserve stable performance. In artificial autonomous agents
constrained by limited resources, continuous learning must be performed in
an incremental fashion. It is not feasible to rebuild the internal model from
scratch every time new information arrives; neither is it possible to store all
the previously acquired data for that purpose. The model must be updated
and the updating process must have certain properties. First, the knowledge
representation must remain compact and free from redundancy to fit into the
limited memory and maintain a fixed computational complexity. Second, the
model cannot grow forever even though new information is constantly arriv-
ing. The updating process should be able to gradually filter out unnecessary
information.

Here, we focus on the scenario in which incremental learning is applied
to place models in order to provide adaptability to different types of varia-
tions observed in real-world environments. As the experiments described in
Section 5.9.2 show, the multi-modal place classification system presented in
this chapter is able to cope with illumination and pose changes as well as
short-term dynamic variations. Moreover, since it relies on multiple sensors,
it can deliver satisfactory results despite dynamic variations that occurred
during the period of around 6 months. Still, this variability is clearly affecting
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the performance of the system. As it is not possible to predict a priori how
the environment is going to change, the only possible long-term strategy is
to update the representation over time, learning incrementally from the new
data recorded during use.

To experimentally verify the usefulness of adaptive models for place clas-
sification, we implemented and tested the memory-controlled approximate
incremental extension of the SVM algorithm proposed in [90]. Approximate
techniques [91, 92, 90] seem to be better suited for our problem because, at
each incremental step, they discard non-informative training vectors, thus re-
ducing the memory requirements. Other methods, such as [93, 94], instead
require storing in memory all the training data. The basic principle behind
the memory-controlled method is to combine the fixed-partition incremental
extension [92] with an algorithm for controlling the memory growth [95]. Ev-
ery time a new batch of data becomes available for the learning algorithm,
the knowledge stored in previously built model in the form of support vectors
is combined with the incoming data and used to train a new model. Then, a
support vector reduction algorithm is applied to the model, which filters out
redundant information by eliminating those vectors that can be expressed by
a linear combination of the others. This permits keeping the model compact
and provides the algorithm with forgetting capabilities. For more details, the
reader is referred to [90, 75]. The results of the experimental evaluation of the
method on place classification data are presented in Section 5.9.3.

5.9 Experiments with Place Classification

This section describes several series of experiments we conducted to evaluate
the performance of the place classification algorithms presented in Section 5.8
on both uni-modal and multi-modal data. First, we performed experiments
with single-cue place models to verify their properties and test their robust-
ness to different types of variations e.g. introduced by illumination changes
and long-term human activity (Section 5.9.1). Then, the evaluation was re-
peated for systems based on different combinations of cues and modalities to
see if the robustness can be improved by cue integration (Section 5.9.2). In
the next experiment, we took a different approach and tried to tackle long
term variability by using adaptive place models (Section 5.9.3). Finally, we
combined multi-modal place classification with a localization and mapping
component implementing the first three layers of the spatial model and run
an experiment where the task was to build a representation of a novel indoor
environment (Section 5.9.4).

5.9.1 Single-cue Place Classification

This section reports results of two experiments performed using single-cue
place classification systems. The aim of the first experiment was to test the
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Fig. 5.22. Trajectory followed by the robot during acquisition of the training data
for the room vs. corridor classification experiment. Labels were attached to the data
based on the position of the robot and are marked on the plot using different colors.

ability of a system relying purely on laser range data to perform classification
of places in a typical office environment into two classes: a corridor and a
room. The second experiment aimed at evaluating robustness of various cues
on the place classification task despite substantial variability that occurred in
a realistic indoor environment over the period of several months.

Semantic Place Classification Using Laser Range Data

As explained in Section 5.5.4, providing even basic semantic descriptions, such
as a room or a corridor, for regions of space can enhance functionality of a
mobile cognitive agent operating in an indoor environment and interacting
with a user. In such a scenario, the robot is often facing the user which affects
the information captured using the laser range sensor. In order to provide
reliable classification during these experiments, we used the approach based
on the simple geometric features and the AdaBoost classifier presented in
Section 5.8.3. We simulated the rear-view laser scanner by ray-tracing in the
local obstacle map. Then, the simulated and the real scans were used together
as a 360o laser range finder.

In order to test the method, we used data acquired along trajectories of
the robot being driven through rooms and corridors found on two different
floors of the CAS/CVAP laboratory at the Royal Institute of Technology in
Stockholm, Sweden. To train the classifier, we used the scans acquired on
the 6th floor along the trajectory shown in Figure 5.22. The robot was then
moved to the 7th floor of the same building, which contains a similar structure.
On this floor, we classified two different trajectories established in opposite
directions. The classification rates for all the poses of the robot during its
movement ranged from 93.18% to 96.8%. A more extensive set of experiments
using these approach is shown in [77].

Single-cue Place Classification under Large Variability

In this experiment, we tested the robustness of four different single-cue place
classification algorithms to different types of variations, such as those in-
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troduced by changing illumination or human activity over a long period of
time [12]. We evaluated performance of two SVM models trained on global
visual features (CRFH, Section 5.8.4) and local visual features (SIFT, Sec-
tion 5.8.4) as well as SVM and AdaBoost models trained on the laser range
cues (here referred to as L-AB and L-SVM, Section 5.8.3). The design of these
experiments was partially based on findings from our previous work on visual
place classification [65]. A video presenting the setup, experimental procedure
and visualization of the results for the original experiments described in [65]
can be found in [96].

The evaluation was performed on the IDOL2 database [97, 75]. The
database comprises 24 labeled sequences of images at the resolution of 320x240
pixels synchronized with laser scans and odometry data acquired using two
mobile robot platforms (PeopleBot and PowerBot) over a time span of 6
months. The acquisition was performed in a five room subsection of a larger
office environment, selected in such way that each of the five rooms repre-
sented a different functional area: a one-person office (1pO), a two-persons
office (2pO), a kitchen (KT), a corridor (CR), and a printer area (PR). Ex-
ample pictures showing interiors of the rooms are presented in Figure 5.23.
The appearance of the rooms was captured under three different illumination
conditions: in cloudy weather, in sunny weather, and at night. The robots
were manually driven through each of the five rooms while continuously ac-
quiring images and laser scans at a rate of 5fps. The acquisition process was
conducted in two phases. Two sequences were acquired using each robot for
each type of illumination conditions over the time span of more than two
weeks, and another two sequences for each setting were recorded 6 months
later. Thus, the sequences captured variability introduced not only by illu-
mination but also natural activities in the environment (presence/absence of
people, furniture/objects relocated etc.). It is important to note that, even for
sequences acquired within a short time span under similar illumination condi-
tions, variations still exist from everyday activities and viewpoint differences
during acquisition. The captured variability is illustrated in Figure 5.23. More
detailed information about the database can be found in [98].

We conducted two sets of experiments for each cue on 12 data sequences
from the IDOL2 database acquired with the PowerBot (additional experi-
ments can be found in [12]). For each single experiment, we trained the models
on one sequence and tested on another. The first set consisted of 12 experi-
ments, performed on different combinations of training and test data acquired
closely in time and under similar illumination conditions. Then, we increased
the complexity of the problem and performed experiments on 24 pairs of
training and test sets, obtained 6 months from each other and under different
illumination settings. As a measure of performance we used the percentage
of properly classified samples (classification rate) calculated separately for
each of the rooms and then averaged with equal weights independently of the
number of samples acquired in each room.
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(a) Variations introduced by illumination

Corridor One-person office Two-persons office

(b) Variations observed over time

One-person office Kitchen Printer area

(c) Remaining rooms (at night)

Fig. 5.23. Examples of pictures taken from the IDOL2 database showing the in-
teriors of the rooms, variations observed over time and caused by activity in the
environment as well as introduced by changing illumination.
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Fig. 5.24. Results of the experiments evaluating performance of four single-cue
place classification systems and systems based on several combinations of multiple
cues.

In each experiment, we evaluated the performance of all four types of
models: CRFH, SIFT, L-AB, and L-SVM. For SVM, we tried the three multi-
class extensions described in Section 5.8.4. The results are presented in Fig-
ure 5.24a,b (the first four bar groups). First, the results for the three different
multi-class extensions are in agreement with [10] - for single cues, the modi-
fied one-against-all algorithm gives the best performance independently of the
modality on which the classifier was trained. Second, we see that under stable
conditions, the vision-based methods outperform the systems based on laser
range cues (95.1% for CRFH and 92.5% for L-SVM). It is also apparent that
the variations that occurred over the long period of time pose a challenge for
both modalities. In this case, vision also suffers from the large variations in
illumination which do not affect the geometric cues. Furthermore, we can see
that there is a significant difference in performance between the two laser-
based solutions in favor of the SVM-based method.

A detailed analysis of the distribution of errors made by all the SVM-
based models can be found in Figure 5.14 and Section 5.8.1. The fact that
there are large discrepancies between the error patterns indicates that effective
cue integration might result in increased performance.

5.9.2 Combining Multiple Cues and Modalities

The experiments described in this section were designed to evaluate perfor-
mance of the SVM-DAS cue integration scheme and multi-cue place classifica-
tion system presented in Section 5.8 and [12]. Since SVM-DAS performs high
level cue integration, separate models must be trained for each of the com-
bined cues. In this case, we used the models obtained during the single-cue
experiments presented in the previous section. Moreover, we used the same
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Cues (Primary cue) Percentage of test samples

CRFH + SIFT 29.5±22.1

CRFH + L-SVM 32.7±20.3

SIFT + L-SVM 33.3±22.4

SIFT + CRFH + L-SVM 40.8±21.9

Table 5.1. Average percentages (with standard deviations) of test samples for which
all cues had to be used in order to retain the maximal recognition rate.

experimental setup, so that the results can be easily compared. A detailed
description of all the experiments performed can be found in [12].

We tested the integration method with several combinations of different
cues and modalities. The results are reported in Figure 5.24a,b (the last 5 bar
groups). First, we combined the two visual cues. We see that the robustness
of a purely visual recognition system can be greatly improved by integrating
different types of cues, in this case local and global. This can be observed
especially for the experiment where the algorithms had to tackle the largest
variability. Despite that, the error distributions in Figure 5.14 indicate that
we should expect largest gain when different modalities are combined. As we
can see from Figure 5.24 this is indeed the case. By combining one visual cue
and one laser range cue (e.g. CRFH + L-SVM), we exploit the descriptive
power of vision in case of stable illumination conditions and the invariance of
geometrical features to the visual noise. Moreover, if the computational cost
is not an issue, the performance can be further improved by using both visual
cues instead of just one. To test the ability of SVM-DAS to integrate outputs
of different classifiers, we combined the SVM models trained on visual cues
with AdaBoost model based on geometrical features (L-AB). The method
obtained a large improvement in comparison to each of the individual cues.
For instance, the recognition rate increased by 12.2% on average in the most
difficult case.

Although it is clear that the performance can be significantly improved by
using multiple cues, each of the cues introduces additional computational cost.
This cost can be significantly reduced by taking the approach presented in [10]
which combines confidence estimation methods with high level cue integration.
Since, in most cases, decisions based on only one cue are correct, the system
could decide to use additional sources of information only when necessary i.e.
when the decision based on a single cue is not confident enough. Table 5.1
presents the results of applying the method to the experiments presented in
this section. We see that, in general, the decision can be based on the fastest
cue (marked with bold font in Table 5.1) and the maximal performance can
be retained despite using additional cues only in approximately 35% of cases.
Additional cues will be used more often when the variability is large, and
rarely for less difficult cases.
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Fig. 5.25. Average results of the experiments with adaptive place classification: the
number of support vectors stored in the model after each step and the classification
rates obtained by testing the models after every fifth step with all the available test
sets. The training and test sets marked with the same indices were acquired under
similar conditions.

5.9.3 Adaptive Place Classification

This section gives an overview of the experimental evaluation of an adap-
tive place classification model presented in [75]. The experiments were based
on the IDOL2 database described in Section 5.9.1 and focused on the abil-
ity of the algorithm to adapt to long-term variations. We used the memory-
controlled incremental SVM algorithm for training the place models and the
visual global features (CRFH) to represent the sensory data. Preliminary ex-
periments showed that the behavior of the algorithm was very similar for the
local features.

We considered a case where the algorithm needed to incrementally gain
robustness to variations introduced by changing illumination and human ac-
tivities, while at the same time using its adaptation ability to handle long-
time changes in the environment. We first trained the system on three image
sequences from the database acquired at roughly the same time but under
different illumination conditions. Then, we repeated the same training proce-
dure on sequences acquired 6 months later. In order to increase the number of
incremental steps and differentiate the amount of new information introduced
by each set of data, each sequence was again divided into five subsequences.
Thus, in total, there were 30 incremental steps. Since the IDOL2 database
consists of pairs of sequences acquired under roughly similar conditions, each
training sequence has a corresponding one which could be used for testing.
As a measure of performance we used the percentage of properly classified
samples (classification rate) averaged over all the rooms.

The experiment was repeated 12 times for different orderings of training
sequences and we compared the results of the incremental method to the batch
SVM algorithm. Figure 5.25a shows the average amounts of support vectors
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stored in the models at each incremental step for both methods. Figure 5.25b
reports the classification rate measured every fifth step (every time the system
completes learning a whole sequence) for the incremental technique. In order
to emphasize the need for adaptation as well as to visualize how the learning
process affects the performance on the past test data, the figure shows recog-
nition rates for all testing sets used throughout the experiment. By observing
the rates for a classifier trained on the first sequence only, we see that the sys-
tem achieves best performance on a test set acquired under similar conditions.
The classification rate is significantly lower for other test sets especially for
images acquired 6 months later, even under similar illumination conditions. At
the same time, the performance greatly improves when incremental learning
is performed on new batches of data. The classification rate decreases for the
old test sets; at the same time, the size of the model tends to stabilize and the
incremental model is much more compact than the one produced by the batch
method. The results presented provide clear evidence of the capability of the
discriminative methods to perform incremental learning for vision-based place
classification, and their adaptability to variations in the environment.

5.9.4 Semantic Labeling of Space

We performed a real-time experiment to test the multi-modal place classifica-
tion system together with other components implementing the multi-layered
spatial model on a mobile robot platform. The experiment was performed
during working hours in a typical office environment. Following the findings
of the off-line experiments described in Section 5.9.2, we built the multi-modal
place classification system based on visual and laser range cues integrated us-
ing SVM-DAS. For efficiency reasons, we used only global features (CRFH)
for the vision channel. The system was implemented in the CAST (The CoSy
Architecture Schema Toolkit, see Chapter 2) framework and run on a stan-
dard 2.5GHz dual-core laptop. The whole experiment was videotaped and a
video presenting the setup, experimental procedure and visualization of the
results can be found in [99].

The experiment was performed in the building of the School of Computer
Science at the University of Birmingham, United Kingdom. The interior of
the building consists of several office environments located on three floors. For
our experiments, we selected three semantic categories of rooms that could
be found in the building: a corridor, an office and a meeting room. In order
to train the system, and build place models for these three classes, we first
performed acquisition of training data in different parts of the building. To
build the model of an office, we acquired data in three different offices: Aaron’s
office (1st floor), Robert’s office (1st floor) and Richard’s office (ground floor).
To create a representation of the corridor class, we recorded data in 2 corridors,
one on the ground floor and one on the 1st floor. The acquisition was performed
at night. Finally, to train the model of a meeting room, we used an instance
on the 2nd floor. The meeting room belonged to the part of the environment
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Aaron’s office (night, place class: office) Richard’s office (night, place class: office)

Robert’s office (night, place class: office) Meeting room (cloudy)

Corridor 1st floor (night, class: corridor) Corridor ground floor (night, class: corridor)

(a) Samples from the data sequences used to train the models of place classes.

Nick’s office (sunny) Jeremy’s office (sunny)

Corridor 2nd floor (sunny) Meeting room (sunny)

(b) Samples acquired during the test run.

Fig. 5.26. Examples of images and laser scans (synchronized) taken from the data
sequences used for training the models of place classes (a) and acquired during the
test run (b) in each of the rooms considered during the semantic labeling experiment.
The figure illustrates the within-category variations for corridors and offices as well
as other types of variability observed for each place class.
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where later we conducted the final test. The robot was manually driven around
each room and data samples were recorded at the rate of 5 fps. In case of
the meeting room, the 1st floor corridor as well as Aaron’s and Richard’s
offices, the acquisition was repeated twice. Examples of images and laser scans
acquired in each of the rooms can be found in Figure 5.26a.

We trained the place models separately for each modality on a dataset
created from one data sequence recorded in each of the rooms. Since one of
the advantages of SVM-DAS is the ability to infer the integration function
from the training data, after training the models, we trained the integration
scheme. We used the additional data sequences acquired in some of the rooms
and trained SVM-DAS on the outputs of the uni-modal models tested on these
data.

Three days after the training data were collected, we performed a real-time
experiment in the lab on the 2nd floor in the same building. The experiment
was conducted during the day during sunny weather. The part of the environ-
ment that was explored by the robot consisted of 2 offices (Nick’s office and
Jeremy’s office), a corridor and a meeting room. The interiors of the rooms
and the influence of illumination can be seen in the images in Figure 5.26b. An
automatically generated map of the environment is presented in Figure 5.5.

During the experiment, the task of the robot was to build a multi-layered
spatial representation of the environment and semantically label the naviga-
tion graph nodes and areas. The only knowledge given to the robot before
the experiment consisted of the models of the three place classes: “office”,
“corridor” and “meeting room”. The robot started in Nick’s office, and was
manually driven through the corridor to Jeremy’s office. Then, it was taken
to the meeting room where the autonomous exploration mode was turned on.
The robot used a frontier-based algorithm based on [100]. After the meeting
room was explored, the robot was manually driven back to the Nick’s office
where the experiment finished. The semantic labeling process was running
on-line and the place classification was performed approximately at the rate
of 5 times per second. The final semantic map build during the run is shown
in Figure 5.5. We can see that the system correctly labeled all the areas in
the environment.

The fact that the data were stored allowed for detailed performance anal-
ysis of the place classification system, similar to the one presented in Sec-
tion 5.9.2. The results are displayed in Figure 5.27. When we look at the
overall classification rate for all the data samples in the test sequence, we see
that vision significantly outperformed laser in this experiment (66% vs. 84%).
Still, the performance of the system was boosted by additional 8% compared
to vision alone when the two modalities were integrated. The gain is even
more apparent if we look at the detailed results for each of the classes (the
first three charts in Figure 5.27). We see that the modalities achieved differ-
ent performance, but also different error patterns, for each class. Clearly, the
system based on laser range data is a very good corridor detector. On the
other hand, vision was able to distinguish between the offices and the meet-
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Fig. 5.27. Place classification results obtained on the dataset recorded during the
test run. The first three bar charts show the results separately for each place class:
“corridor”, “meeting room” and “office”. The charts show the percentage of the
samples that were properly classified (most left bars marked with thick lines), but
also how the misclassifications were distributed. The chart on the right presents the
percentage of properly classified samples during the whole run.

ing room almost perfectly. Finally, the integrated system always achieved the
performance of the more reliable modality and for two out of three classes
outperformed the uni-modal systems.

5.10 Summary

We set out to create a spatial representation that would help to bridge the gap
between how humans and robots represent space to facilitate interaction and
support spatial reasoning. In part supported by findings in cognitive psychol-
ogy and also inspired by such work as by Kuipers [4], we proposed a layered
spatial model.

At the lowest level, our representation consists of a metric map that sup-
ports navigation and localization. This chapter presented a number of different
approaches to how this metric map can be represented and implemented. In
the integrated system, the so called M-Space feature representation [14] was
used with laser range data. Much of the CoSy research on metric mapping
concentrated on investigating methods for a vision-only strategy. This is also
where most of the contributions to science in the area of metric mapping are
found [48, 41, 14, 44]. However, since the metric map is the foundation of the
spatial model and is fundamental for proper functioning of the entire system,
reliability had to take priority. The framework used has however been tested
in vision-only setups as described in [41, 14].

The navigation map was designed to provide a way of representing the
free space in the model. As it provides coarse discretization of space it limits
the state space of the path planning tasks and is also extremely useful for
storing semantic information. While not a new idea, the navigation graph has
been shown in this research to be a powerful representation that supports
tasks beyond pure path planning for which it was originally designed [23].
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One of the avenues for future work is to investigate how information about
the appearance of a place (e.g. detected objects, visual features extracted
from a scene or metric place descriptors) can be used to not only introduce
semantics into the model, but also support localization. A model that captures
the graphical nature of the navigation layer and contains place descriptors
and coarse metric information seems like a good candidate for such a joint
representation.

The navigation and topological maps allow to segment space into topolog-
ical regions and associate semantic place information with those regions. A
purely geometric method was investigated for categorizing places into rooms
and corridors [7]. The experiment showed that the method is able to gener-
ate models valid even across different environments. In parallel, research was
conducted on vision-based place classification. Extensive experiments demon-
strated that places can be recognized and categorized reliably even using a
perspective camera with limited field of view and in presence of different types
of visual variations [10]. These two novel strands of work were integrated into
a joint, multi-modal framework in [12]. This framework was used for semantic
place categorization within the integrated system.

The conceptual map corresponds to the highest level of abstraction in the
model and provides the link between the spatial model and the communi-
cation system used for situated human-robot dialogue. It grounds linguistic
expressions in representations of spatial entities, such as instances of rooms or
objects. The conceptual also allowed us to derive new knowledge from partial
knowledge and a common sense ontology.

Each of the layers in the spatial model plays an important role in the
system, providing a basis for different pieces of its functionality. Each layer also
advances the state of the art in its corresponding area. As a whole, the model
constitutes a versatile, but also coherent spatial representation. Compared to
the work by Kuipers [4] our work uses a supervised paradigm and is focused
on human-robot interaction. In fact, as will be explained in more detail in
Chapter 10, the way we acquire the spatial model is in itself an example
of human-robot interaction. This allows knowledge to be exchanged between
robot and human during the mapping process which paves the way for a
shared representation of space.

As clearly demonstrated in Section 5.9, the integration of information from
many different cues and sensory modalities helps to improve the performance
and comprehension of space. In a similar way, the layered spatial model pro-
vides the means for integrating information across different levels of abstrac-
tions. Chapter 10 will explain how the rest of the system interacts with the
spatial model in the context of the Explorer scenario system.
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6.1 Introduction

The capacity for planful behavior is one of the major characteristics of an
intelligent agent. When acting in realistic environments, however, reasoning
about how to achieve one’s goals is complicated significantly, both by the
limited perceptions of the agent and the high dynamics of the environment,
especially when other intelligent agents are present. Fortunately, when act-
ing continuously in such an environment, agents can actively try to reduce
their uncertainties, for example by deliberative exploration, cooperation with
others, and monitoring of failures.

In this chapter, we will present representations and techniques developed
in the CoSy project for continual planning, acting, and failure detection in
dynamic domains with multiple human and artificial agents. These meth-
ods intelligently interleave planning, communicating, acting and execution
monitoring, thereby avoiding consideration of all possible contingencies and
detecting failures as early as possible.

We have used these methods successfully in our implemented robot sys-
tems. The robots thus created are able to pursue long-term goals intelligently
and autonomously, to react to failures and exogenous changes dynamically
and to proactively interact with each others and with humans. See Chapters
9 and 10 for more detailed descriptions of continual planning in the robot
scenarios.

Continual Planning

Practical cognitive agents, e.g. robots acting in the real world, are faced with
environments that make planning particularly hard: usually, an agent has only
very limited knowledge about the current state of the world, mainly because its
sensing capabilities are limited. Worse, other agents (including “nature” itself)
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may change the world without the agent noticing, such that its former knowl-
edge about the world may even become incorrect. In such highly dynamic,
partially observable, multiagent environments it is practically impossible to
take all possible contingencies into account in advance; the corresponding AI
Planning problems, e.g . conformant, contingent or probabilistic planning, are
highly intractable.

Fortunately, in many environments an alternative planning approach is
possible: Instead of considering many possible futures in advance, an agent
may execute parts of its plan in order to gather additional information, thereby
reducing the number of possible contingencies that it has to take into account
for the remaining planning. This technique of interleaving planning, plan ex-
ecution and execution monitoring is called Continual Planning (CP)3. CP is
often advocated as a practical approach to planning in dynamic or incom-
pletely known domains, but has not been investigated in much detail in the
literature. In particular, the following questions must be answered by any CP
approach: If the agent does not have a complete plan when it starts acting,
how can it nevertheless behave in a goal-directed manner? How can the agent
decide which parts of the problems solving process it should postpone? Do
CP agents plan their later replanning and if so, how? What is the role of
knowledge-gathering actions in CP? In this chapter, we present a new princi-
pled approach to CP that tries to answer these questions.

Our approach is based on the idea of active knowledge-gathering : instead
of planning for possible contingencies, agents try to learn more about the state
of the world directly. In order to enable agents to reason about how they can
gather additional knowledge it is necessary to explicitly model the agents’
beliefs as well as their sensing capabilities as part of their formal planning
domain. Agents can then plan how to extend their knowledge.

For realistic planning problems it is infeasible to branch over the possible
outcomes of sensing actions and to generate a plan for all possible contingen-
cies in advance. Instead, we want to emulate human situated problem solving,
and enable the planner to postpone decisions to the moment where the actual
perception has been made. In other words, we want to “hide” potential con-
ditional subplans until the agent has enough information to plan concretely.
For this purpose, we introduce the concept of assertions. Assertions are a
special kind of action specified in the planning domain. In contrast to normal
actions assertions cannot be directly executed. Instead, the domain designer
asserts that the effects of the assertion can be achieved by a subplan if its
preconditions are satisfied. In contrast to the similar concept of methods in
Hierarchical Tasks Networks (HTNs), no decompositions need to be specified
for assertions; this is done by the planner itself in in later planning phases.

3 The term continuous planning is also often used to describe this form of planning.
We prefer the term Continual Planning, since it refers to a repeatedly interrupted
and partially postponed planning process rather than a permanently ongoing one.
See the survey by desJardins et al. for additional reasons [1] .
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Failure Detection and Monitoring

For robotic systems deployed to realistic environments, it cannot be assumed
that the sensors and actuators are perfectly reliable in the sense that their
input always corresponds to the expected input and that there is no malfunc-
tion of the sensors or actuators. Such situations, however, cannot always be
dealt with on the abstract level of the planning system—which may realize
that an action has failed but which typically has too little insight into the
lower-level processes to be able to infer the cause of the failure in order to
react appropriately. For this reason, we have studied the failure detection and
monitoring problem also on the lower system level, closer to perception and
actuation. The monitoring system on this level, which is described in Sec. 6.4,
provides (symbolic) status information about processes and low-level tasks to
the planner.

We follow the probabilistic state estimation approach to failure detection
and describe the system to be monitored as a dynamic Bayesian network [2].
Particle filtering [3] is then applied in conjunction with learned proposal dis-
tributions for inference. As we show in experiments with a real robot, learning
proposal distributions for failure modes from previous experience or in simu-
lation has the potential of drastically increasing the robustness of the detector
while at the same time reducing the number of samples required.

As a visual motivation for the general approach and as a test bed for eval-
uation, we consider (a) localizing an autonomous, wheeled robot relative to a
known environment, (b) detecting collisions with (unseen, movable) obstacles
online and (c) estimating their physical properties (e.g., location and weight)
such that they can be dealt with safely. Our system does not require additional
hardware such as inertial sensors or bumper rings.

Continual Collaborative Planning

Dealing with limited knowledge, execution failures and other uncontrollable
changes is generally important for planning in dynamic environments, but be-
comes even more important in multiagent environments. Since other agents
are the major source of dynamics in such environments, uncertainty can be
greatly reduced by monitoring their behaviour and, in particular, by com-
municating with them. However, CP in multiagent environments raises ad-
ditional questions: How does the concept of interleaving planning, execution
and monitoring generalise to the multiagent cases of collaborative planning
and synchronised execution? Which role does communication play there? Are
there fundamental differences between action planning and communication
planning? This chapter sheds some light on these questions by proposing
the concept of Collaborative Continual Planning (CCP). We show how CCP
agents can behave more successfully than non-collaborative agents in dynamic
environments.

Since Continual Planning approaches can only be tested in environments
where agents can actually interleave planning, execution and sensing, we have
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developed MAPSIM, a software environment that can automatically gener-
ate multiagent simulations from planning domains. In other words, MAPSIM
interprets a planning domain description as an executable model of the en-
vironment in which agents can perceive, plan, act and engage in dialogues
for task-orientated collaboration. While MAPSIM was developed to investi-
gate the approach to continual planning presented her, it can also be used for
evaluating agents that use different (continual) planning methods.

Since CCP switches between planning, execution and communication as
necessary, it is particularly suited to domains where communicative and phys-
ical actions must be interleaved in order to act successfully. In such domains,
the continual update of the agents’ goals during CCP forms the basis of
our approach to mixed-initiative situated dialogue. Indeed, in the CoSy robot
demonstrators (see Chapters 9 and 10) CCP is used for high-level pragmatic
reasoning in Human-Robot Interaction, i.e. for reasoning about the role com-
municative actions play in a plan to achieve the overall, non-communicative
goals of the agent. Thus, CCP complements the specific techniques for situated
dialogue that will be presented in Chapter 8.

6.2 The Multiagent Planning Language MAPL

Planning in dynamic multiagent (MA) environments means reasoning about
the environment, about (mutual) beliefs, perceptual capabilities and the pos-
sible physical and communicative actions of oneself and of others. All of these
elements can be modeled in the multiagent planning language MAPL that we
have developed. In this section, we introduce MAPL informally and discuss
its suitability for building cognitive systems; formal definitions can be found
elsewhere [4].

MAPL is a multiagent variant of PDDL, the de facto standard language
for classical planning [5]. One important extension in MAPL is the use of
multi-valued state variables (MVSVs) instead of propositions. For example, a
state variable color(ball) would have exactly one of its possible domain values
red, yellow, or blue compared to the three semantically unrelated propositions
(color ball red), (color ball yellow), (color ball blue), all or none of which
could be true in a given STRIPS state. MVSVs have been used successfully in
classical planning in recent years [6], but they also provide distinctive benefits
when used for multiagent planning. In particular, we can use MVSVs to model
knowledge and ignorance of agents: If no value is known for a state variable
it is unknown (contrast this with the closed world assumption of classical
planning where what is not known to be true is false). This concept can also
extended to beliefs about other agents’ beliefs and mutual beliefs which are
modeled by so-called belief state variables.

In our robot systems (see Chapters 9 and 10), MAPL state descriptions
are used to maintain a representation of the robot’s knowledge in a form that
is suitable for long-term and cross-component planning and execution. The
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Binding subarchitecture (cf. Chapter 2) fuses information into a representation
that uses multi-valued features, too, and thus can easily translated into (and
back from) MAPL.

MAPL actions are similar to those of PDDL. In MAPL, every action
has a controlling agent who will execute the action and, in particular, con-
trols when this will happen. Agents are fully autonomous when executing
actions, i.e. there is no external synchronization or scheduling component. As
a consequence an action will only be executed if, in addition to its precondi-
tions being satisfied, the controlling agent knows that they hold. Implicitly,
all MAPL actions are extended with such knowledge preconditions. Simi-
larly, there are implicit commitment preconditions, intuitively describing
the fact that another agent will only execute actions if he has agreed to do so.

A MAPL domain can define three different ways to affect the beliefs of
agents (necessary, e.g . in order to satisfy knowledge preconditions): Sensing,
copresence (joint sensing) and communication. All three are MAPL actions
that have knowledge effects. Sensor models describe the circumstances in
which the current value of a state variable can be perceived. Copresence
models are multiagent sensor models that induce mutual belief about the
perceived state variable. Informally, agents are copresent when they are in a
common situation where they do not only perceive the same things but also
each other. Individual and joint sensing are important for multiagent systems
because they help avoiding communication: An agent does not need to ask for
what he senses himself, and he does not need to verbalize what he knows to be
perceived by the other agents as well. Communicative acts come in two forms:
as declarative statements, i.e. actions that (similarly to sensory actions)
can change the belief state of another agent in specific circumstances, or as
requests which correspond to questions and commands. Requests do not have
to be modeled explicitly in the MAPL domain, but automatically generated
during CCP; this is discussed in the next section.

Similarly to other planning languages, MAPL (in its current form) de-
scribes actions in a purely qualitative way: no costs or probabilities are asso-
ciated with them. This permits the use of performant planning techniques—
however, it prohibits the representation of additional, quantitative informa-
tion that might be available. This is of particular importance for sensor models
where most qualitative action effects are unknown until execution, while some
quantitative information might be available and helpful for selecting the right
operators, e.g. the reliability of a sensory action or its expected information
gain. For a specific model of planning for visual processing with quantitative
information, see the POMDP formalisation and planning approach presented
in Chapter 2.

MAPL goals correspond to PDDL goal formulae. However, MAPL has two
additional goal-like constructs: Temporary subgoals (TSGs) are manda-
tory, but not necessarily permanent goals, i.e. they must be satisfied by the
plan at some point, but may be violated in the final state. Assertions, on
the other hand, describe optional “landmarks”, i.e. TSGs that may helpful in
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achieving specific effects in later phases of the continual planning processes,
which cannot be fully planned for yet because of missing information [7, 4].
Assertions will be described in more detail in Section 6.3.

MAPL plans differ from PDDL plans in being only partially ordered. This
is inevitable since we assume that there is no central executive which could
guarantee a totally ordered execution. We use the term asynchronous plans
since MAPL plans also allow for concurrent occurrence of actions. An asyn-
chronous plan that guarantees that the implied knowledge preconditions will
be satisfied during execution (e.g . by explicitly naming the perceptions to be
made and speech acts to be used) is called self-synchronizing plan because
it “explains” how the agents can coordinate their behavior during execution.

6.3 Continual Planning

The term “Continual Planner” is often used simply to describe a system that
replans in light of state changes which have rendered its previous plan invalid,
i.e. a systes that does execution monitoring and replanning. While these are
indeed important aspects of any continual planning approach, many such sys-
tems will only start acting when they have found a complete plan. In other
words, while the execution process can be interrupted, planning is monolithic.

In this chapter, we argue for an extended notion of continual planning
where agents can suspend the planning process and start acting. For example,
in the Explorer scenario (see Chapter 10) it is crucial that the robot can
physically move to another room before it can make detailed plans about how
to achieve its given task there.

But when and why should agents suspend planning? How can they act
purposefully when they have not finished planning yet? And when will they
resume planning again? We will answer these questions in this section. The key
idea of our approach is that agents will deliberately postpone those parts of
their planning process that concern currently indeterminable contingencies.
However, postponing subproblem resolution will only be allowed if instead
they engage in active information gathering. This ensures that, as soon as the
additional knowledge is available, the planning process can be resumed and
the plan can be further refined.

6.3.1 Assertions

In Continual Planning, we want to allow the planning agent to deliberately
postpone parts of its planning to later phases in the plan-execution-monitoring
cycle when it has gathered more information. In other words, we want to
“hide” a conditional subplan until the agent has enough information to resolve
the contingency. For this purpose, we introduce the concept of assertions.
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Assertions are virtual MAPL actions that a planner can reason about and
include in a plan as usual, but that can never be executed. The name “as-
sertion” comes from the role these actions play for continual planning: they
assert that, once their precondition will have been achieved, their effects will
be achievable, too – although not by executing the assertion, but by means
of a new plan. Therefore, when during plan execution an assertion actually
becomes executable, it is expanded, i.e. a new planning phase is triggered.
In this planning phase the planner can make use of the information gained
during the last execution phase and can replace the assertion with concrete,
executable actions. In fact, a planner need not even wait to expand an asser-
tion until it is executable. It is sufficient that a specific subset of preconditions
of the assertion is satisfied in the current state to inform the planner that re-
planning is now possible. These special preconditions are called the replanning
conditions. Formally we define assertions as follows:

Definition 1. An assertion is an event e with a distinguished, non-empty
set of preconditions repl(e) ⊆ pre(e), called the replanning conditions. Precon-
ditions p 6∈ repl(e) are called the ordinary preconditions of e. If repl(e) = ∅,
then e is an ordinary action. We denote the set of assertions with Eass ⊆ E.

When the replanning condition of an assertion has been satisfied, it can
be expanded, i.e. it can be replaced by a subplan that achieves the asserted
effects.

Definition 2. An assertion e is expandable in a state s if repl(e) ⊆ s. For
a plan P , an assertion e ∈ P is said to be permanently expandable in a
state s if e is expandable in s and there is no event e′ ∈ P with e′ ≺ e that
threatens any replanning condition c ∈ repl(e).

Usually, assertions that become expandable during the execution of a plan
P will also be permanently expandable. However, sometimes a replan con-
dition is only satisfied temporarily. For example, an agent may know that
another agent will soon destroy it. In such a case, it will not make sense yet
to devise a concrete plan for the assertion. Therefore, the semantics of plans
with assertions (or assertional plans) will rest on permanently expandable
assertions.

The power of assertions for Continual Planning results from the following
change in the semantics of plans:

Definition 3. The state res(s,P) resulting from the symbolic execution of
an an assertional plan P in the current state s is defined as follows:

If any assertion e ∈ P is permanently expandable in s, then res(s, P ) is
undefined. Otherwise, res(s, P ) is defined as res(s, PTO) where PTO is an
arbitrary total order of P .

If res(s, P ) is defined for some state s and plan P , we say that P is valid
in s.
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This definition describes how assertions will trigger a new planning phase:
as soon as they are permanently expandable, they will render an otherwise
valid plan obsolete, thereby forcing the continual planner to switch back into
planning mode.

Def. 3 makes an important distinction that is not present in other planning
formalisms: it distinguishes between the current state s and the projected
future states res(s, P ). In particular, replanning conditions work as normal
action preconditions as long as long as they do not hold in s. When, however,
the plan has been executed until the point where an assertion is actually
permanently expandable in s, the semantics of assertions changes and they
will trigger replanning.

This unusual semantics induces an interesting interplay between planning
and execution: Assertions will first enable the planner to find a plan and start
its execution. Later, however, the same assertions will render the plan obsolete
again and force the planner to switch back into planning mode. This process
will be specified in detail by Alg. 2 in next section.

Note that all directly executable actions in a valid plan P , i.e. those events
e ∈ P whose preconditions are satisfied in the current state s, can never be
assertions (otherwise their replanning conditions would be satisfied, too, and
the plan would no longer be valid). This is important, because it means that
when an agent selects an action to execute among the ones currently enabled
in the plan, it can never be an assertion. Thus, assertions are completely
virtual actions that only appear in plans, but never in execution.

In summary, assertions are virtual actions that can be used to enable
planning for active, goal-directed information gathering. Instead of branching
on possible perceptions, assertions help to deliberately postpone contingency
resolution until the missing information is available. Thus, assertions not only
abstract from subproblems in a plan (in a way similar to hierarchical task
networks; cf. Sec. 6.10), but additionally lead to a temporal decomposition of
the planning process. The next section shows, how this is accomplished in a
planning algorithm.

6.3.2 Assertional Planning

Basically, Continual Planning consists of three interleaved phases:

1. (Re-)planning in order to determine how to achieve the current goals from
the current state

2. Plan execution
3. Perception of self-induced or exogenous changes to the world

A continual planning agent that tightly integrates these phases is described
in Alg. 1. Execution and monitoring of expected changes are particularly
interdependent. Therefore Alg. 1 has only two major subprocesses, which are
detailed in Algs. 2 and 3. In Section 6.7 we will further extend this model
with collaborative capabilities.



6 Planning and Failure Detection 235

Algorithm 1 Continual Planning Agent(S,G)
P = ∅
while S 6⊇ G do

P = MonitoringAndReplanning(S, G, P )
if P = ∅ then

return “cannot achieve goal G”

(S, P ) = ExecutionAndStateEstimation(S, P )
return “goal reached”

Alg. 2 shows how a new planning phase is triggered: Step (1) describes
plan monitoring, i.e. checking whether a changed current state or an expand-
able assertion makes the current plan invalid. If this is the case, Alg. 2 first
determines the prefix of the asynchronous plan that is still executable (step 2),
then extends it with a newly planned suffix. Note that since a multiagent plan
is only partially ordered, the “obsolete suffix” consists only of those actions
that causally rely on preconditions that have become unachievable. Of course,
simple replanning is also possible if plan stability is not an issue. However, es-
pecially in collaborative settings where agents need to reach agreement over
their plans, breaking plan stability is costly since it may lead to asynchronous
backtracking, i.e. plan revision recursively concerning other agents [8].

Algorithm 2 MonitoringAndReplanning(S,G, P )
if res(S, P ) 6⊇ G or any assertion e ∈ P is permanently expandable then (1)

E = E \{e ∈ Eass | repl(e) ⊆ S}
P ′ = RemoveObsoleteSuffix(P) (2)
P ′′ = Planner(E, res(S, P ′), G) (3)
P = concat(P ′, P ′′) (4)

return P

In order to exploit the power of state-of-the-art planning systems, step (3)
of Alg. 2 uses calls to an unspecified classical planner Planner (supporting
the STRIPS subset of PDDL) as a subroutine. In order to allow this modular-
isation and still be compliant with the semantics of plans with assertions, the
algorithm removes all expandable assertions from the set of possible events
before calling the Planner subroutine. However, it may be more convenient
to modify the planner (as we have done in our implementation) so that it
assures itself that expandable assertions are not included in a plan. Since
most modern non-temporal planners produce totally-ordered plans, the gen-
erated must be converted to asynchronous plans. We use a straightforward
algorithm for doing this that adds new actions to an asynchronous plans as
early as possible but making sure that no conflict arise. Cf. Bäckström’s work
for a discussion of several variants of this approach [9].
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Algorithm 3 ExecutionAndStateEstimation(S, P )
e = choose a first level event from P
S′ = app(S, e) (1)
exp = ExpectedPerceptions(S′, Esense) (2)
if agt(e) = self then

execute(e) (3)
perc = GetSensorData() (4)
if perc ⊇ exp then (5)

remove e from P
S = Fuse(S′, perc) (6)
return (S,P)

Alg. 3 describes the execution phase of Continual Planning: First, it non-
deterministically chooses an event e on the initial level of the plan, i.e. one
whose preconditions are satisfied in the current state. Note that, due to Def. 3,
e can not be an assertion. Steps (1-2) first compute the state and perceptions
expected as a result of executing event e. If the planning agent is also the
executing agent, he will execute e (step 3), otherwise the agent will do nothing
but try to observe e.

Steps (4-5) try to match the expected results with the real perceptions
after executing e. This is also the case if the planning agent was not the
executing agent of e, but wants to determine if another agent has executed e.
Note that by not removing e from the plan until its occurrence is perceived
the CP algorithm enters a waiting loop: Alg. 3 will be executed repeatedly
until Alg. 2 detects that external events have made P invalid. Step (6) tries to
estimate the next state by fusing old knowledge, new perceptions and expected
changes (that might not have been observable, but predicted by e). Basically,
Fuse applies those expected effects that do not contradict perc. Contradiction
is defined in terms of mutually exclusive state variable assignments.

(:action move_A

:agent (?a - agent)

:parameters (?to - location)

:variables (?from - location ?d - door)

:replan (KIF ?a (doorstate ?d))

:precondition (and (pos ?a : ?from)

(entrance ?d ?from) (entrance ?d ?to))

:effect (pos ?a : ?to))

Fig. 6.1. Assertion for planning movements between rooms that ignore the state of
doors until perceived during execution.
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An example

Consider a scenario in which a robot has to explore an apartment, i.e. it must
enter all rooms at least once. The robot has a map of the apartment, but does
not know which of the doors between adjacent rooms are open. It can sense the
state of all doors in a room as soon as it enters it (this is specified by a MAPL
sensor model). A contingent plan for this scenario modelled as a tree where
each possible perception during plan execution spawns a new plan branch
could result in a number of branches exponential in the number of doors in the
worst case (depending on the layout of the map) [10, 11]. This is due to the fact
that, while a contingent planning algorithm will reason about future sensing,
it cannot actively try to reduce uncertainty by actually executing sensing
actions. In contrast, this kind of active information gathering is encouraged by
the assertion move a shown in Fig. 6.1. Note that this assertion requires only
that the robot knows whether a door is open or not, i.e. (KIF ?a (doorstate
?d)) or, formally, doorstate(?d)?a

KIF = >. However, in order to satisfy this
condition, the robot will have to plan a sense-door sensing action which,
when executed, will provide the robot with the information really needed, i.e.
the real value of doorstate(?d)?a, which it can then use in the next planning
phase to concretise its plan for exploring the appartment.

6.4 Probabilistic Monitoring of Dynamic Processes

In this section, we introduce our approach to monitoring low-level processes in
the robotic system. This provides the basis for robustly verifying and refuting
assertions made by the planning system and it provides (symbolic) status
information about processes and low-level tasks to the planner allowing it to
react appropriately.

In our approach, the system to be monitored is modelled as a dynamic
Bayesian network (DBN) [2] and its state is estimated sequentially using
sampling-based estimators in conjunction with learned sampling functions.
As the main contribution, which goes beyond the application to the process
monitoring task, we present a novel way of improving the generation of state
samples in particle filters. This step has to be performed frequently and it has
a major influence on the efficiency and robustness of the filter. Specifically,
we show how Gaussian processes (GPs), that is, a state-of-the-art Bayesian
approach to regression and classification, can be used to incorporate prior
knowledge into the state estimation process.

DBNs are widely used to model the dynamic behavior of artifical and natu-
ral systems. In a DBN, the variables of interest are indexed by time and related
to one another using conditional probability distributions (CPDs), which in
general span multiple time frames to describe the dynamics. The result is a
(typically sparse) network of local dependencies for which efficient learning
and inference mechanisms have been developed. A particularly flexible and,
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thus, often-used inference technique are the so called particle filters (PFs).
They represent the state of the system by a finite set of weighted samples
and perform inference by updating the sample set iteratively using the DBN
structure, the conditional models, and the set of observed (thus constant)
variables.

Our primary goal is to improve the generation of state samples in the
particle filter algorithm [3], which is a step that has to be performed fre-
quently and that has a major influence on the efficiency and robustness of the
filter. In particular, we consider data-driven sampling, i.e. the generation of
state hypotheses at locations that are most promising given the latest sensor
measurements. Our major contribution is, that the sampling policy is learned
from past experience, using Gaussian process (GP) regression for continuous
state variables and classification for discrete ones. Given the GPs ability to
also estimate the uncertainty of its predictions, we can derive a sound way
of integrating these informed proposals into the particle filter framework. As
a result, the estimation process is more robust since the sampling density is
higher in the important parts of the state space while it is also more efficient
because less samples are “wasted” in unlikely regions.

As a running example and test-bed for our approach, we consider the
problem of online failure detection and recovery for a mobile robot. Concretely,
we face the task of (a) localizing an autonomous, wheeled robot relative to
an environment, (b) to detect collisions with (unseen and movable) obstacles
online and (c) to estimate their physical parameters such that they can be
dealt with safely.

In the following, we first formalize the sequential state estimation problem
and describe how to solve it using particle filters. We then introduce the
concept of Gaussian process proposals and specifically focus on the mobile
robot localization and collision detection problem outlined above.

6.4.1 Sequential State Estimation

One of the fundamental problems in robotics and engineering is to estimate
the state of a system given a sequence of acquired sensor measurements and
action commands that have been executed. In order to perform this task
sequentially, i.e. in an iterative way whenever new information is available,
the system is typically modeled using a dynamic Bayesian network. Assuming
a discretization of time—either by modeling iterations of equal duration or by
taking the finite set of measurement and action events—, there is a finite set of
time-indexed variables that has to be modeled. The DBN factorizes the joint
posterior over these variables to a (typically sparse) network of dependent
variables and their corresponding conditional probability distributions. Here,
these ’local models’ can be limited to a certain time frame or they can span
several to model the behavior of the system over time.
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Fig. 6.2. DBN for the mobile robot domain.

Mobile Robot Localization

In the case of mobile robot localization, for instance, the (dynamic) state of
the system is the three-dimensional pose st = xt = (xt, yt, θt) of the robot rela-
tive to its environment. Additional variables include the sensor measurements
z1:t as well as the action commands u0:t−1 that have been issued—w.l.o.g. as-
suming time-synchronous state, action, and measurement variables for ease of
notation. A typical DBN for such a system is composed of a prior distribution
over poses p(s0), a transition model p(st+1|st, ut) and an observation model
p(zt|st). Figure 6.2 shows how these CPDs are connected to yield the typical
DBN for state estimation problems. It can be read from the graph, that each
variable is independent from all others given its direct predecessors (see [2] for
a general discussion of graphical models). Given the modeled independence
assumptions, the state posterior can be formulated recursively as

p(st | z1:t, u0:t−1) =
∫
p(st | st−1, zt, ut−1) p(st−1 | z0:t−1, u0:t−2) dst−1 (6.1)

∝ p(zt | st)︸ ︷︷ ︸
obs. model

∫
p(st | st−1, ut−1)︸ ︷︷ ︸

transition model

p(st−1 | z0:t−1, u0:t−2)︸ ︷︷ ︸
recursive term

dst−1 .

In order to achieve a tractable approximation of this equation, one has to make
additional assumptions about the distributions involved. Important classes of
such approximations include

Discrete filters (DF) where the state space is discretized—typically using a
regular grid—which turns the integral in the equation above into a sum
over possible predecessor states,

Kalman filters (KF) for which the distributions over states p(st| . . .) and the
observation model are assumed Gaussian and the transition model is lin-
ear, the extended Kalman filter (EKF) for which the assumption of lin-
earity is relaxed, and

Particle filters (PF) which represent the distributions over states by a weighted
set of state hypotheses which are manipulated individually according to
the transition and observation models.

Particle filters are flexible in terms of distributions that can be represented,
they are easy to implement, and they can convert heuristics into provably
correct algorithms through the concept of proposal distributions (see Chapter 5
in [2]).
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6.4.2 Particle Filters for Nonparametric Bayesian Filtering

Particle filters seek to approximate the integral in Eq. (6.1) using Monte Carlo
integration. Concretely, they represent distributions over states p(st| . . .) by
sets of weighted samples Xt = {〈s[i]t , w

[i]
t 〉}n

i=1. Starting from a prior distri-
bution X0 ∼ p(s0), the particle set is updated sequentially by executing the
following steps in each iteration:

1. Sampling (or motion update): The next generation of particles {s[i]t } is
obtained from the generation {s[i]t−1} by sampling from a proposal distri-
bution π.

2. Importance Weighting (or observation update): Importance weights w[i]
t

are assigned to the individual particles according to

w
[i]
t =

p(s[i]1:t | z1:t, u1:t)

π(s[i]1:t | z1:t, u1:t)
∝
p(zt | s[i]t )p(s[i]t | s[i]t−1, ut)

π(st | s[i]1:t−1, z1:t, u1:t)
· w[i]

t−1 (6.2)

The weights account for the fact that the proposal distribution π is in
general not equal to the target distribution of successor states. It can be
shown that for all proposal functions π with p(x) > 0 ⇒ π(x) > 0 and
the weight update (6.2), the PF algorithm is guaranteed to approximate
the correct posterior [3].

3. Resampling: Particles are drawn with replacement proportional to their
importance weight.

In the special case of π ≡ p(st|st−1, ut), that is if sampling is performed ac-
cording to the transition model, the relationship between Eq. (6.1) and the
filtering procedure can directly be seen and the recursive weight update (6.2)
simplify to a multiplication of all particle weights with the respective obser-
vation likelihoods p(zt|s[i]t ). For a formal derivation of the particle filtering
principle, see for example [12] or [3]. Note that resampling exchanges ’likeli-
hoods’ by ’frequencies’ without altering the represented distribution. In the
limit of infinitively many and densely-sampled particles, the representation of
a distribution by non-constant importance weights is equivalent to the one
where all weights are equal, but the particle density varies accordingly. Thus,
the purpose of the resampling step is to distribute more particles to the prob-
able areas of the state space and less to the improbable ones.

The robustness and efficiency of particle filters strongly depends on the
proposal distribution π that is used to sample the new state hypotheses in
the sampling step. If the proposal distribution differs too much from the true
posterior, there is a high risk of filter divergence. On the other hand, if π is
too flat (e.g., uniform in the extreme case) many particles are wasted.

In the following section, we extend the mobile robot DBN to also include a
discrete failure mode variable and additional continuous variables for the fail-
ure’s parameters. As this increases the dimensionality of the state space and
also adds highly unlikely transitions (failures occur only rarely), the transition
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Fig. 6.3. Extended DBN to also include the discrete failure mode f and the con-
tinuous failure parameters o. With st = (ft, ot, xt), we denote the entire state of the
system to highlight the relation to the standard model depicted in Fig. 6.2.

model becomes a sub-optimal choice as proposal distribution. For this reason,
we then introduce an informed proposal distribution, which utilizes informa-
tion about the failure mode contained in the most recent sensor measurement
to yield better pose estimates.

6.4.3 Modeling the Influence of Failures using Hybrid DBNs

In realistic environments there typically exist external influences that can
cause drastic changes to the behavior of a dynamic system. Consider for ex-
ample a mobile robot colliding with an undetected obstacle while executing a
motion command. Such situations can be modeled by extending the DBN by a
discrete failure mode variable ft and additionally continuous failure-dependent
state variables ot (see Fig. 6.3). With st = (ft, ot, xt), we denote the entire
state of the system to highlight the relation to the standard model depicted in
Fig. 6.2. We assume the commonly used constant failure rate model (see [13]),
in which failure events do not depend on the other state variables, but rather
occur according to an individually specified prior distribution. Since the ob-
servations are independent of the failure state (ft, ot) given the pose xt of the
robot, the observation model remains p(zt | st). The state transition model
can be factorized as p(xt, ft, ot | xt−1, ft−1, ot−1, ut−1) =

p(ft | ft−1)︸ ︷︷ ︸
failure event model

· p(ot | ft, xt−1, ot−1)︸ ︷︷ ︸
failure parameter model

· p(xt | ot, xt−1, ut−1)︸ ︷︷ ︸
transition model

. (6.3)

Note that this is a direct translation of the graphical model depicted in Fig. 6.3
and that we denote with st = (ft, ot, xt) the state of the system including
failure variables and the pose of the robot.

The constant failure rate model states that failure events are distributed
exponentially depending on a failure rate parameter λ, i.e.
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p(ft) = 1− e−λ·(t−t̃) , (6.4)

where t̃ denotes the time of the last failure event. For such a model, the mean
time between failures becomes MTBF = 1

λ . For realistic failure rates λ, this
model results in extremely low failure probabilities per filter iteration. Assume,
for example, a mean time of 30 minutes between collisions of a service robot
with unseen obstacles. This implies λ = 1

1800s = 0.0005 and with a filter
frequency of δt = 0.1 seconds yields a failure probability of p(ft | ¬ft−1) ≈
0.000056 within one iteration. For such a small value, just one of 20, 000
particles would be sampled to a failure mode on average, if the transition
model was used directly as proposal distribution for this variables. Thus, one
would either need an extremely large particle set or would risk that failures
remain undetected. This problem is amplified by the fact that not only the
discrete failure mode has to be sampled, but also the unknown continuous
failure parameters. Since in general, there is no prior knowledge about the
parameters of randomly occurring failures, we assume a uniform distribution

p(ot | ft, xt−1, ot−1) = U[omin,omax](ot) (6.5)

over a certain interval. Note that this model applies only to the case where
the system transitions into a failure state. The evolution of failure parameters
within a failure state is typically governed by a much more peaked distribution
similar to the motion model of the robot. In Section 6.6, we describe our model
for the evolution of collision parameters based on rigid body dynamics. This
model is able to track collisions sufficiently accurate, if the initial collision
parameters have been estimated well enough. To achieve this, we introduce an
informed proposal distribution in the next section, which utilizes information
about the failure mode contained in the most recent sensor measurement.

6.5 Gaussian Processes Proposals for Failure Events

If system models containing states with extremely low a-priori probabilities
are to be estimated using particle filters, it is obvious that the state transi-
tion model should not be employed as the proposal distribution directly (see
the numerical example in the previous section). To address the problem of
low sampling probabilities for important parts of the state space, [14] intro-
duced the risk sensitive particle filter (RSPF) that incorporates a learned risk
function to force the filter into less likely but important states. While this ap-
proach ensures a reasonable amount of samples in the important failure modes,
it cannot adapt to the specific situation the robot is in when the sampling
decision is made. In contrast, we propose to use learned proposal distributions
that provide informed guesses about what the states with higher a-posterior
probabilities are.
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6.5.1 Data-driven Proposal Distributions

In sequential importance sampling [15], an arbitrary proposal distribution
can be used to sample the relevant areas of the state space as long as (a)
all possible states have a non-zero possibility of being chosen and (b) the
importance weights of the particles are adjusted appropriately. Proposal dis-
tributions that depend on the most recent sensor measurements or on features
extracted by separate algorithms are typically denoted as data-driven propos-
als or detector-mediated proposals [16]. Such proposals aim at approximating
the optimal proposal p(st | st−1, zt, ut−1) which includes the most current
sensor measurement zt. It can be shown [2] that such a fully informed pro-
posal minimizes the variance of the importance weights making it the optimal
choice.

Assuming that the proposal π(st | st−1, zt, ut−1) in the failure detec-
tion scenario also factorizes according to our transition model (6.6), i.e.,
π(xt, ft, ot | xt−1, ft−1, ot−1, ut−1) =

πf (ft | ft−1)︸ ︷︷ ︸
failure event proposal

· πo(ot | ft, xt−1, ot−1)︸ ︷︷ ︸
failure parameter proposal

·π(xt | ot, xt−1, ut−1)︸ ︷︷ ︸
state proposal

, (6.6)

then the weight for particle i at time t becomes

w
[i]
t =

p(s[i]1:t | z1:t)
π(s[i]1:t | z1:t)

=
p(zt | s[i]1:t, z1:t−1) p(s

[i]
1:t | z1:t−1)

p(zt | z1:t−1)︸ ︷︷ ︸
=:1/η

π(s[i]1:t | z1:t)

= η ·
p(zt | s[i]t ) p(s[i]t | s[i]t−1)

π(s[i]t | s[i]1:t−1, z1:t)
·
p(s[i]1:t−1 | z1:t−1)

π(s[i]1:t−1 | z1:t−1)︸ ︷︷ ︸
=w

[i]
t−1

= η · w[i]
t−1 · p(zt | s[i]t ) ·

p(x[i]
t | o[i]t , x

[i]
t−1)

π(x[i]
t | s[i]1:t−1, z

[i]
1:t)

·

p(f [i]
t | f [i]

t−1)

πf (f [i]
t | s[i]1:t−1, z

[i]
1:t)

·
p(o[i]t | f [i]

t , x
[i]
t−1, o

[i]
t−1)

πo(o
[i]
t | s[i]1:t−1, z

[i]
1:t)

. (6.7)

Here, we left out the control variables u for brevity. The normalizing factor
η is constant for all particles i. πf denotes the proposal for the failure event
and πo the one for the failure parameters.

We now propose to learn πf and πo from data. Formally, the task is to
learn a mapping from a feature vector Ft extracted from 〈s[i]1:t−1, z

[i]
1:t)〉 to the

variables ft and ot. Any feature vector Ft as well as any learned models πf

and πo can be used as a proposal as long as the assumptions

• πf (f | Ft) 6= 0 for all f with p(f | s1:t, z1:t−1) 6= 0
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• πo(o | ft, Ft) 6= 0 for all o with p(o | s1:t, z1:t−1) 6= 0.

hold, which means that all possible failure states are assigned a non-zero prob-
ability of being chosen. Visually speaking, Equation 6.7 states that after each
filter iteration, the particle weights have to be multiplied with the current
observation likelihood p(zt | s[i]t ) and with two correction terms for the two
learned proposal distributions. To calculate these correction terms for a spe-
cific sample s[i]t , we divide the probabilities defined in Equations 6.4 and 6.5
by the likelihoods according to which the state variables f [i]

t and o
[i]
t have

been drawn from πf and πo. Another precondition for the learned propos-
als therefore is the availability of likelihoods for sampled values. As we will
see in the next section, Gaussian processes always ensure the non-zero prob-
ability assumptions, can easily be sampled from, and provide the transition
probabilities needed for the weight correction described above.

6.5.2 Learning Sampling Models from Data

A major benefit of using Gaussian processes for learning and representing
πf and πo is that by the availability of predictive uncertainties, the learned
proposal distributions can directly be used in the sampling-based estimation
scheme. The estimated state variables can be sampled directly from the Gaus-
sian Processes. In the classification as well as the regression case.

In our concrete scenario, we found that the discrepancy between the cur-
rent motion estimate (velocity and heading) w.r.t. an additional source (e.g.
a laser scan-matcher or an inertial sensor) provides a good feature for learn-
ing proposals for the hidden failure states. Concretely, we take the extracted
features Ft as input vectors x and failure parameters ot as targets y. Given
a training set of such quantities and a properly chosen covariance function
k, we can compute the predictive distribution πo(ot | ft, Ft) := N (µ, σ2) as
detailed, for example, in [17]. This (normal) distribution naturally meets the
requirements for proposal distributions named in the previous section. It can
be sampled from directly, it supplies the likelihoods of sampled values, it has
an infinite support, and it therefore only assigns non-zero likelihoods.

An important aspect that has been left out so far is the choice of covariance
function and how its parameters can be set. The covariance function plays
an important role in the Gaussian process framework as it represents the
prior knowledge about the underlying function g. By changing its form and
parameters, one can control the generalization behavior and smoothness of
the predictor. A common choice of covariance function (see [18]) that is also
used in this work is

k(x,x′) := a0 + v0 · exp

(
−1

2

m∑
d=1

wd(xd − x′d)
2

)
with a constant component and a nonlinear, stationary term, which depends
only on the distance between input points. The parameters of the covariance
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Fig. 6.4. The collision event training set, in which two feature values are mapped
to class instances (top left), the learned class probabilities πf (Ft) using Gaussian
process classification (top right). The learned regression model for the collision pa-
rameters visualized by a cut through the two-dimensional pdf that maps velocity
deviations to contact points for a collision (bottom).

function are called hyperparameters of the Gaussian process. They can either
be fixed by maximizing the likelihood of the given data points or, for fully
Bayesian treatment, can be integrated over using parameter-specific prior dis-
tributions. For our experiments reported in Section 6.6, we employed the latter
strategy with Gamma priors on the hyperparameters. We set these priors to
favor smooth regression functions to avoid overfitting to the training data.
The analytically intractable integration over the hyperparameters is approxi-
mated using Markov Chain sampling and the prediction results are cached on
a fine-grained grid.

Binary classification problems can consistently be modeled in this frame-
work by including for every binary target ti a real-valued latent variable li,
such that

p(ti = 1) =
1

1 + e−li
, (6.8)

which is known as the logistic model that links class probabilities to real val-
ues, see [19]. The latent variables can now be given a Gaussian process prior as
in the regression setting and predictions of class probabilities can be performed
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by predicting the corresponding latent variables and evaluating Equation 6.8.
For the failure detection problem, we again use feature vectors Ft as inputs
and binary failure labels ft as targets. The predicted class probabilities for
new features then directly define the failure event proposal πf (ft | Ft).

6.5.3 Predicting Collision Events and Parameters

As discussed in Section 6.4.3, typical failure rates result in extremely low
failure event probabilities. We therefore propose to train a Gaussian process
classifier πf for predicting failure events online. The learning task can be
simplified by not taking the raw sensor measurements and state variables as
inputs to the learner directly, but choosing lower dimensional features of these
instead. In our failure detection setting, where we aim at detecting collisions
with unseen obstacles

In this section, we apply the sequential failure detection approach de-
scribed above to the problem of collision detection for mobile robots under
noisy sensor measurements and without additional hardware like bumpers or
inertial sensors. For learning the collision event proposal and the proposal for
the contact point of the robot with the obstacle, we achieve excellent results
with simple features based on the rotational and the translational velocity
of the robot. Thus, we use as input to the Gaussian process classifier the
two-dimensional feature vector Ft = (∆vt,∆vr), where ∆vt is the difference
between the translational velocity estimated by the particle filter and the one
estimated by local laser scan matching. Furthermore, ∆vr is the difference
of the rotational velocities respectively. A training set of 500 automatically
labeled trajectories was generated by simulating random collisions with dif-
ferent obstacles using the 3D simulator Gazebo [20]. The top left diagram in
Fig. 6.4 shows the gathered data points, the middle diagram in the same figure
shows the learned class probabilities depending on the two velocity differences
described above. As can be seen from the left diagram, ∆vt is negative for
nearly all “collision” data points, which corresponds to the fact that the robot
is slowed down when a collision occurs. The data points for “no collision” are
spread widely and do not separate well from the “collision” data points due
to noisy sensor measurements and imperfect labeling of the collision events.
This makes the classification problem a hard one. It should be stressed, that
we use this classifier as a proposal distribution for collisions rather than as
a collision detector directly, because the features are too ambiguous to allow
for perfect instantaneous classification. Experiments with a real robot (see
Section 6.6) showed that this yields high detection rates with a low number
of false alarms.

Given a collision event, the continuous collision parameters o have to be
estimated to simulate the effects on the system and to continue the tracking
process. Since the task is not to fully track the pushed obstacle over time,
a simple model that abstracts from the obstacle’s geometry and exact pose
has proven sufficient to describe the effects on the robot. A collision with an
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unseen obstacle is represented by the obstacle mass m and the contact point
c on the front of the robot. Therefore, the collision parameters are o = (m, c).
We learn the proposal distribution πo(ot|Ft) for the parameters ot using the
same velocity-based features and simulated training set as described above
and the Gaussian process regression technique. The lower diagram of Fig. 6.4
depicts a cut through the learned 2-dimensional distribution for the collision
parameter c, which is the contact point of the obstacle on the front of the
robot. The point of contact is measured in meters from the center of the
robot’s front to the right. It can be seen from the diagram that unexpected
clockwise rotations (∆vr < 0) of the robot are mapped to positive values for
the contact point, which corresponds to a collision on the righthand side of
the robot.

6.6 Implementation of Sensor-level Monitoring

Our failure detection system described in the has previous two sections has
been implemented on a real robot and was tested in an office environment.
Before presenting experimental results, we describe the motion model we im-
plemented for our localization system. The most widely used motion model
for mobile robots is based on the wheel encoder measurements (see [12]). This
information, rather than the actual control command, is taken as control in-
put ut−1, which under normal circumstances results in accurate predictions
of the performed movement. Under the influence of failures like collisions or
wheel slip, however, the motion of the wheels is not consistent with the whole
robot’s motion any more. A more appropriate model for such situations that
still is efficient enough to be evaluated online is based on simple rigid body dy-
namics (see [21]). We model the robot as a rigid body in the (two-dimensional)
plane, represented by a set of constant values and the variable state vector
xt = (posx, posy, posθ, velt, velr) which includes the translational velocity velt
and the rotational velocity velr. In each filter iteration, the wheel thrusts are
calculated from the actual velocity command that was sent to the motors.
From this, the next state vector is computed by numerical simulation us-
ing the physical relationships between forces, acceleration, and speed. Due to
space limitations, we refer to [22] for details about rigid body physics. With
this model, collisions with another rigid object at a given point of contact
can be simulated using the same type of physical abstraction, namely com-
puting the impulse, the resulting forces, and ultimately the influence on the
robot’s state vector. At the same time, this model describes how the point of
contact between the robot and the obstacle changes over time and therefore
defines the transition model for failure parameters of Equation 6.6. From our
experience, this physical model achieves the best balance between accuracy
and efficiency. Simpler models fail to handle important test cases while more
complex models have too many free parameters to be evaluated in real time.
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Fig. 6.5. Results of our experimental evaluation with a real robot colliding with un-
detected obstacles. Left: Two correctly detected collisions (triangles), the estimated
trajectory (solid line), and the ground truth (dotted). Middle: Average deviation of
the estimated trajectory from the ground truth in meters for a varying number of
particles. Right: Estimation details around a correctly detected collision including
the manually labeled true collision event. One filter iteration corresponds to 0.1
seconds.

6.6.1 Evaluation

To quantitatively evaluate the usefulness of our approach to failure detection,
we compared it to a particle filter that implements the same process model
with the standard uninformed proposals described in Section 6.4. The param-
eters of the standard filter were optimized for best tracking performance and
failure detection rates to ensure comparability. We recorded data by manually
steering the robot through the environment and arranged for two collisions,
one with boxes of milk and the other one with a box of lemonade bottles.
Both obstacles were placed at arbitrary positions and the obstacle heights
were too low for the laser sensor to detect them. The left plot in Fig. 6.5 de-
picts a typical test run, in which our system successfully tracked the pose of
the robot and detected the two collisions. On the recorded data set, we tested
our improved particle filter with Gaussian process proposals (GP-PF) as well
as the standard particle filter (Std PF) for different parameter settings. Each
filter was executed 50 times for each parameter setting.

Figure 6.6 gives the failure detection performance of the different filters.
The detection rate is defined as the number of correctly identified failures
relative to the full number. The false positives rate is the amount of false
alarms relative to the number of detections. The ground truth collision events
were manually entered and a collision was counted as correctly detected, when
the marginal failure likelihood exceeded a threshold Θ after a maximum of
six filter iterations (0.6 seconds) after the true failure event. The threshold Θ
was optimized independently for each filter to ensure unbiased comparison.

The middle diagram in Fig. 6.5 gives the average deviation of the tracked
poses of the robot compared to the ground truth trajectory. The ground truth
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Fig. 6.6. Detection results with the optimized standard particle filter (STD-PF)
and our approach that uses Gaussian process proposals (GP-PF).

trajectory was computed using a scan matcher. The results visualized in this
diagram show that our system stays around ten centimeters closer to the true
trajectory and produces less variance in these estimates than the standard
approach. This is mainly due to the fact that the failure parameter (here, the
point of contact with the obstacle) is estimated more accurately. To give an
impression about the accuracy with which our filter estimates the point of
contact and thereby the path of the robot, one failure event is depicted in
detail in the diagram of Figure 6.7. It can be seen, that the estimated failure
likelihood increases shortly after the labeled failure event and that the heading
angle of the robot is correctly estimated.

The detection rates as well as the tracking results show that learned Gaus-
sian process proposals can indeed increase the reliability and efficiency of
online state estimation approaches. The time requirements for the improved
particle filter are around 10% to 15% higher than for the standard implemen-
tation without Gaussian process proposals. Nevertheless, the implemented
system with 200 particles still processes one minute of recorded data in less
than 23 seconds on a PC with a 2800 MHz CPU.

6.7 Continual Collaborative Planning

In the previous sections, we have considered the dynamics of the world out-
side the agent mainly as a source of unforeseeable, uncontrollable events that
require careful monitoring, failure diagnosis and, possibly, replanning. How-
ever, quite often the dynamics of an environment is due to other agents. In
this case, an agent may, instead of just trying to react to their actions, try to
actively interact with these agents to learn more about the current world state
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Fig. 6.7. Measurements and filter estimates during a typical collision event. Between
iteration 90 and 95, the robot hits an undetected obstacle.

or even negotiate future plans with them. Such proactive multiagent planning
is similar in spirit to the techniques for active infomation gathering presented
in the earlier sections of this chapter.

For Continual Collaborative Planning (CCP) we must incorporate the Con-
tinual Planning algorithm (Algs. 2 and 3) into a distributed algorithm that
allows communication between agents. The basic CCP algorithm is shown
in Alg. 4. As is customary in Distributed Systems, the current state of the
algorithm depends on the messages received from other agents [23].

As long as no message is sent or received the basic Continual Planning
algorithm is executed as discussed above. However, during his individual CP
process the agent may now also ask others to achieve subgoals. This arises
naturally whenever an agent devises a plan that includes actions by another
agent. Instead of executing such an action himself, the planning agent must
send an appropriate request to the other agent. The planning agent will keep
a whitelist for requests that have been accepted and a blacklist for those which
have been denied.

To incorporate the generation of speech acts into continual planning, we
slightly extend Alg. 3 to Alg. 5. The only visible changes occur in steps 4-
5 in which requests are determined and communicated. Note, however, that
already step (3), i.e. the execution of a planned action, may refer to a commu-
nicative action. For example, MAPL domains generally define tell-val actions,
i.e. actions for informing another agent about a state variable value. If an
agent receives such a speech act (step 4 of Alg. 4) it adds this information to
its knowledge base, i.e. CCP assumes the sincerity of other agents.

The specific request is computed by the function SelectBestRequest
in steps 4 of Alg. 5. This is a black-box function whose realisation may differ
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Algorithm 4 CCP Agent(S,G)
P = ∅
Received no message:

if S satisfies G do
return “goal reached”

P = MonitoringAndReplanning(S, G, P )
if P = ∅ then

return “cannot achieve goal G”
(S, P ) = ExecutionAndStateEstimation(S, P )

Received request(e) from agent a:
sg = TranslateRequestToGoal(e) (1)
P = MonitoringAndReplanning(S, sg, ∅) (2)
if P = ∅ then

send “cannot execute request e” to a
else

send “accept request e” to a
add sg to G as temporary subgoal (3)

Received (tell-val vx) from agent a:
add v = x to S (4)

Received “cannot execute request e” from agent a:
add e to blacklist (5)

Received “accept request e” from agent a:
add e to whitelist (6)

Algorithm 5 ExecutionAndStateEstimation(S, P )
e = choose a first level event from P
S′ = app(S, e) (1)
exp = ExpectedPerceptions(S′, Esense) (2)
if agt(e) = self then

execute(e) (3)
else

e′ = SelectBestRequest(e, P, blacklist,whitelist) (4)
send request(e′) to agt(e) (5)

perc = GetSensorData() (6)
if perc ⊇ exp then (7)

remove e from P
S = Fuse(S′, perc) (8)
return (S,P)

between CCP implementations and applications. SelectBestRequest can
take into account the whitelist and blacklist to determine requests that have
not already been accepted or refused or which would be subsumed by such
earlier requests.
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SelectBestRequest also takes into account not only the event in ques-
tion itself, but also its context in the agent’s plan: If the plan contains several
actions by another agent, i.e. a whole subplan, it is often best not to request
execution of the actions individually, but to ask for the achievement of its end
result. This will give the executing agent the liberty to find the best way to
combine execution of the request with its individual goals. In other situations
or applications, in contrast, it might be crucial for the requesting agent that
its original plan is executed as precisely as possible.

Since the decision about the most appropriate request is highly dependent
on the domain of application and, in particular, the form of cooperativity
among agents, the general CCP framework does not commit to a specific
algorithm for SelectBestRequest. Our standard implementation uses a
simple algorithm that determines the maximal asynchronous subplan of P
that uses only one specific agent. Then SelectBestRequest will request
all actions on the final level of this plan. However, we are currently investi-
gating variants that determine where it is reasonable to “outsource” larger
subproblems to groups of other agents.

CCP process flow.

CCP agents are first and foremost individual CP agents. Collaboration among
agents arises only when one CP agent includes actions by another agent into
his plan, i.e. when it wants to be helped. Whether collaboration is generally
desirable or only a last resort largely depends on the domain of application:
sometimes collaboration can raise a plan’s utility dramatically, e.g . because
of concurrent execution, but often the need for synchronisation and negotia-
tion outweighs these advantages. We abstract from this issue here and assume
an appropriate cost model that Planner can exploit exists for each plan-
ning domain, e.g . one that assigns additional costs to actions intended to be
performed by other agents.

When an agent receives a request to perform an action, it first translates
this request to a new subgoal (step 1 of Alg. 4). If the request corresponds
directly to a grounded MAPL action, the subgoal is determined by the effects
of this action. However, we want to allow for other forms of requests, too; in
particular we want to be able to model requests posed by human users, e.g .
during Human-Robot-Interaction. The reason for translating such requests
to goals is twofold: What matters to the requesting agent is usually not the
exact action, but the end result achieved, i.e. the achievement of a goal or of
a precondition for a subsequent action of the requesting agent.4 Additionally,
4 This is also where assertions play a central role again. By referring to an assertion

in a request, an agent a can ask another agent b for some behaviour even without
knowing what b knows about the current situation, i.e. a does not need to reason
about the abstraction level of b’s ensuing continual planning process. Instead, b
translates the request to a goal corresponding to the effects of the assertion and
will then use the requested assertion, another one or none at all, depending on
its own degree of knowledge.
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agents may want to use referring expressions in their requests, because they
cannot make an unique name assumption for objects they talk about. This
is of particular importance when interaction happens in natural language,
e.g . in Human-Robot-Interaction. Referring expressions can be modelled as
constraints on the goal state to achieve [24]. The translation process has been
described in our previous work [24]. In a nutshell, it maps a request to the
effect of the corresponding operator scheme. If referring expressions are used,
a more complex formula describing the constraints on the operator parameters
is produced.

In the basic form of CCP described here, agents will check whether they
can achieve the new subgoal (step 2 of Alg. 4) and, if possible, are always
willing to adopt it (step 3). If the request is conflicting with their previous
goals, they will reject it. The requesting agent will then add this request to
a blacklist which is taken into consideration when requests are chosen again
(step 4 of Alg. 5).

In practice often a more complex strategy of subgoal acceptance will be
necessary. For instance, we have experimented with fixed and dynamic hierar-
chies among agents where higher-ranking agents will not accept requests from
lower-ranking ones. Evaluating the resulting CCP variants is an important
topic for future work. Our aim in this book, however, is to introduce CCP
as a general framework for collaborative planning; we therefore restrict our
attention to the setting with maximal cooperativity among agents.

Temporary subgoals

A request is adopted as a temporary subgoal (step 3 of Alg. 4), i.e. the agent
commits to achieving it at some point during the CCP run, but it need not
necessarily stay true later on. Temporary subgoals (TSG) are not first-class
constructs in MAPL; instead we exploit the fact that new goals and actions
can be added to the planning domain on-the-fly during CP. Essentially, for
each TSG sg a unique constant csg is generated and (achieved csg) is added
to G as a conjunct. Then an artificial action (achieve csg) is created whose
precondition is sg. Since only (achieve csg) can achieve (achieved csg) this en-
forces the planner to satisfy the precondition, i.e. sg. However, once (achieved
csg) has been made true sg can become false again without preventing G from
becoming satisfied. Thus sg is only enforced to be temporarily true.

Requests and TSGs add another important element to CCP: just as the
beliefs of an agent are continually revised during the CP process, the use of
TSGs lead to continual goal revision. Although Alg. 4 only adds new TSGs to
G, we can in practice remove TSGs that are already satisfied from G. During
CCP, agents thus try to achieve continually expanding and shrinking goal sets.
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6.8 MAPSIM

Plan execution and plan monitoring are essential parts of Continual Planning
algorithms. Therefore continual planning must, in contrast to classical plan-
ning, be implemented and tested in some sort of “reality”. Providing such a
reality, e.g . a simulation, is not a trivial task. Being able to provide realities
in a domain-independent way, such that continual planning can be evaluated
for arbitrary planning domains, is even harder. This might be a reason for
the comparatively few systematic approaches to continual planning in the
literature (cf. Sec. 6.10).

For evaluating CCP across varied MAPL domains and scenarios, we have
developed a simulation testbed for multiagent planning, called MAPSIM.
MAPSIM is a simulation generator that automatically transforms MAPL do-
mains into multiagent simulations. MAPSIM parses and analyses a MAPL
domain and turns it into perception, action, and communication models for
CCP agents. During the simulation, MAPSIM maintains and updates the
global world state and it uses the sensor models to compute individual and
joint perceptions of agents. In other words, MAPSIM interprets the planning
domain as an executable model of the environment. Thus, MAPSIM allows
designers of DCP algorithms to evaluate their approaches on various domains
with minimal effort.

Agents interact with MAPSIM by sending commands that directly de-
rived from MAPL actions selected for execution during CCP. The simulator
then executes the action, i.e. it checks the preconditions and applies effects
as specified in the MAPL domain. If the controlling agent of a command is
not identical to the agent who sent it to the simulator this is interpreted
as a request which, of course, is not directly executed but passed on to the
corresponding agent. MAPSIM also accepts some specific commands for ac-
knowledging subgoal acceptance and subgoal achievement. When a command
corresponds to a speech act, it is “heard” by the addressees, i.e. its effects
are added to the beliefs of the addressees. In short, MAPSIM allows agents
to directly implement Alg. 4 without having to care about the internals of of
the “world” they are acting in. However, MAPSIM does not enforce the use
of CCP. Agents can use arbitrary deliberative or reactive methods to deter-
mine their behaviour and their reactions to requests. We believe that this can
make MAPSIM a valuable evaluation tool even when a (distributed) continual
planning algorithm is used that differs significantly from CCP.

Interaction is very common during CCP runs in MAPSIM: agents plan
and execute speech acts in order to gather information, negotiate requests
and ensure self-synchronised plan execution by informing each other about
state changes. Thus, CCP can be regarded not only as multiagent planning
approach, but also as a model of collaborative, situated dialogue. Fig. 6.8
shows parts of one such interaction in a scenario where one agent, Anne,
wants another, R2D2, to bring her coffee. Since it is hard to study dialogue
behaviour in different variants of CCP based only on the logging format shown
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Fig. 6.8. A MAPSIM interaction in the Household domain.

MAPSIM run starts. There are 2 agents: Anne and R2D2.
(1) Anne: request R2D2 ’give R2D2 coffee Anne’.
(2) R2D2: accept request ’give R2D2 coffee Anne’.
(3) R2D2: request Anne ’tell val Anne R2D2 pos(coffee)’.
(4) Anne: execute ’tell val Anne R2D2 pos(coffee)’.
(5) R2D2: ack achieved ’tell val Anne R2D2 pos(coffee)’.
(6) ...

in Fig. 6.8, we have extended MAPSIM with a verbalisation module, called
the reporter. The reporter observes all physical and communicative events in
the simulation and verbalises them in English. All dialogues shown in the
remainder of the chapter are unaltered outputs of this module. Fig. 6.9 shows
the beginning of the MAPSIM run of Fig. 6.8 using the reporter.

Fig. 6.9. Verbalisation of the interaction of Fig. 6.8 by the MAPSIM reporter agent.

MAPSIM run starts. There are 2 agents: Anne and R2D2.
(1) Anne: ”Please bring me the coffee, R2D2.”
(2) R2D2: ”Okay.”
(3) R2D2: ”Where is the coffee, Anne?”
(4) Anne: ”The coffee is in the kitchen.”
(5) R2D2: ”Thanks, Anne.”
(6) ...

The reporter is a simple template engine that first determines an appro-
priate pattern depending on the command type currently executed, then re-
cursively replaces templates with concrete arguments until a template-free
sentence is generated. Base values for arguments are generated directly from
analysing the MAPL domain. For example, operator names are assumed to di-
rectly correspond to verbs. Standard templates can be overridden by domain-
specific patterns, but, surprisingly, this is often not even necessary to gener-
ate fairly natural English phrases. While, compared to “real” natural-language
processing systems, this is a simplistic approach with obvious limits, the mini-
mal effort needed to give MAPSIM basic linguistic capabilities is a noteworthy
indication of the similarity between the MAPL representation and language.

Currently, dialogues are only verbalised by the reporter; the “real” com-
munication between agents is performed as direct update of mental states
as described by the MAPL speech acts. See Sec. 7.4.6 for a discussion of
how agents can be enabled to communicate completely in a natural language,
thereby enabling human-in-the-loop collaboration and dialogues.
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MAPSIM is implemented in Python. The generic planner currently used
by the CCP agents is a modified version of Axioms-FF [25] that prevents the
use of assertions enabled in the current state, as required by definition3 and
allows to express belief introspection with derived predicates. To enable the
use of a classical PDDL planner like FF, MAPL is first compiled to PDDL:
induced state variables are explicitly generated; speech acts that use state
variables as parameters in MAPL are translated to a specific PDDL action
for each such state variable; derived predicates for introspection of belief state
variables are added to the PDDL domain; and MVSVs are translated to PDDL
propositions.

6.9 Situated Dialogue as Continual Collaborative
Planning

In this section, we will explain the use of CCP for scenarios that interleave
planning, acting and sensing as well as action and interaction between multi-
ple agents, i.e. for scenarios where agents engage in situated dialogue [26, 27].
In this chapter, we use examples from MAPSIM to discuss planning of in-
teractions. However, the same approach has been used for interaction plan-
ning in our integrated robot systems (see Chapters 9 and 10). There, CCP
is integrated with a specialised component for situated dialogue processing,
presented in Chapter 8. CCP is used for high-level pragmatic reasoning, i.e.
for planning how and why to use communication for achieving a (possibly
non-communicative) goal. Linguistic situation-appropriate realisation of the
planned “verbal behaviour”, as well as the situation-aware interpretation of
speech acts by other agents, are handled by the specialised dialogue compo-
nent.

Figs. 6.10, 6.11, and 6.12 show situated dialogues between MAPSIM agents
in different MAPL domains, generated using the CCP algorithm and auto-
matically verbalised by the MAPSIM reporter. This shows how, due to the
domain independence of both the CCP algorithm and the MAPSIM imple-
mentation, it is easily possible to evaluate different CCP variants and dialogue
strategies across different domains and scenarios.

It is important to realize that none of the sample runs shows the execution
of a single multiagent plan, but a series of plans, devised, partly executed and
revised several times according to Alg. 4.

In Fig. 6.10 the necessity for collaboration stems from the fact that only
MrChips can move to the kitchen to get coffee, but only MrData can open
the kitchen door. At the beginning, both agents have different goals: MrData
wants to have coffee and MrChips wants to be at MrData’s service. Basically,
this is a master-slave scenario; however, since both agents have individual
goals, incidentally it is MrChips that takes the initiative. MrChips’ original
goal is very simple: he wants to achieve (has-goal MrChips). This goal is
directly achieved by step 1 and 2 of the dialogue. However, step 2 already is
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Fig. 6.10. Mixed-initiative dialogue between two artificial agents in MAPSIM
(Household domain).

MAPSIM run starts. There are 2 agents: MrChips and MrData.
(1) MrChips: ”What can I do for you, MrData?”
(2) MrData: ”Please bring me the coffee, MrChips!”
(3) MrChips: ”Where is the coffee, MrData?”
(4) MrData: ”The coffee is in the kitchen, MrChips!”
(5) MrChips: ”Please open the kitchen door, MrData!”
(6) MrData opens the kitchen door.
(7) MrChips moves to the kitchen.
(8) MrChips takes the coffee.
(9) MrChips moves to the livingroom.

(10) MrChips: ”I have the coffee, MrData!”
(11) MrChips: ”Please take the coffee, MrData!”
(12) MrData takes the coffee.
(13) MrData: ”Thanks for the coffee, MrChips!”
MAPSIM terminates successfully.

a request by MrData that provides MrChips with a new temporary subgoal
that he will try to achieve during the rest of the dialogue.

To see why and how MrData generated this request, consider MrData’s
individual planning process: knowing that the coffee is in the kitchen, he
can generate a plan that involves MrChips going to the kitchen and bringing
back the coffee. Alg. 4 uses the function SelectBestRequest to determine
the appropriate subgoal that MrData will request MrChips to achieve. Our
standard implementation uses a simple algorithm FindIndividualSubplan
(omitted from this chapter) that determines the largest subplan of P that
uses only one specific agent. Then SelectBestRequest chooses an action
on the final level of this plan as the best request. In our example, MrChips
can directly ask for the last action in his plan, namely MrData giving him the
coffee.

The strategy of requesting long-term effects rather than immediately pos-
sible actions is also exemplified in Fig. 6.11. Its main advantage is that it
abstracts from the level of detail on which the individual agents can plan
(due to the differences in their knowledge). In Fig. 6.11, the “Boss” agent
may not know whether the preconditions for the “put” action are already sat-
isfied, i.e. his own plan may have included knowledge-gathering actions and
assertions. However, by asking for the expected result, he gives the robot the
opportunity to find its own appropriate solution.

In the household scenario, MrChips adopts the new goal to provide Mr-
Data with coffee (according to step 3 of Alg. 4). However, since he does not
know where the coffee is his next plan must resort to a fairly abstract as-
sertion, (fetch-A MrChips coffee), that completely hides the position of the
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(1) Boss: ”Please put obj1 on obj2, Robot.”
(2) Robot picks up obj1.
(3) Robot puts obj1 on obj2.

Fig. 6.11. Long-term request in the object manipulation domain.

target object as well as the possible complex planning necessary to reach that
position. Although very abstract, the assertion guides MrChips’ planning by
means of its replanning condition (KIF MrChips (pos coffee)) which, in words,
says that in order to fetch the coffee he must at least find out where it is. This
leads to the following multiagen plan by MrChips. Here, MrChips takes the
initiative again by asking MrData about where the coffee is:

MrChips: request MrData ’tell val MrData MrChips pos(coffee)’
MrData: execute ’tell val MrData MrChips pos(coffee)’
MrChips: execute ’fetch-A MrChips coffee’
MrChips: execute ’give MrChips MrData coffee’

Alg. 2 declares MrChips’ plan as valid, so Alg. 3 executes the first action:
MrChips requests MrData to tell him the position of the coffee. The domain-
specific verbalisation template maps a request for telling the value of state
variable pos to the wh-question “where?” as shown in step 3 of the Fig. 6.10.

Note that in the further course of the dialogue both agents switch seam-
lessly between communicative and physical actions. However, unnecessary ver-
balisation of action effects is avoided, because both agents also reason about
their mutual perceptions. For example, MrData does not verbalise having
opened the door, because in his plan he can apply a sensor model for MrChips,
thereby deducing that MrChips will perceive the opening of the door him-
self. In this manner, CCP both enforces knowledge preconditions, but also
avoids unnecessary communication about them. In many applications, how-
ever, communication is necessary for grounding the collaborative process or
simply acknowledging understanding [28]. Fig. 6.12 shows an example (from
a Search and Rescue planning domain) where CCP was run with enforced ac-
knowledgements upon subgoal adoption and achievement. Especially in those
Collaborative Planning environments that include both artificial and human
agents such acknowledgements are crucial.

6.10 Related Work

This work integrates ideas from several subfields of AI, in particular Classical
and Distributed Planning, Multiagent Systems, Epistemic Logic, and Reason-
ing about Actions and Change.

Planning in dynamic, incompletely known domains can be modelled as a
conformant, contingent or probabilistic planning task. All of These approaches
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(1) Ambulance: ”Please extinguish house1, Firebrigade.”
(2) Firebrigade: ”Okay.”
(3) Firebrigade refills watertank.
(4) Firebrigade extinguishes house1.
(5) Ambulance: ”Thanks for extinguishing house1, Firebrigade.”

Fig. 6.12. Acknowledgements for subgoal adoption and achievement.

compute conditional plans or policies for possible contingencies such that the
agent can react adequately when faced with them. Unfortunately, this in-
creased flexibility comes at the cost of being computationally much harder
than classical planning [29, 30]. Thus, these approaches scale badly in dy-
namic multiagent environments with large numbers of unobservable features
and exogenous events. Therefore, Continual Planning is often advocated as
a practical approach to planning in such environments [31]. In practice, this
often amounts to not more than repeatedly switching between planning and
execution. Previous work that more tightly integrates planning, monitoring,
execution and information gathering includes [32, 33, 34, 35, 36]. Similarly
to our work, these approaches explicitly model knowledge and knowledge-
gathering actions. Instead of the concept of assertions which enables us to
postpone parts of the planning process, yet reason about its outcomes, these
approaches use runtime variables to represent unknown sensing results. Run-
time values can be used as action parameters in the remainder of plan and thus
allow for reasoning about unknown future knowledge, although this reasoning
is heavily limited because nothing is known about the variable beside the fact
that has been sensed. Because of the limitations of runtime variables, MAPL
does not yet support them. Instead, our use of MVSVs enables a planner to
non-deterministically guess one of the possible value of the MVSVs domain if
this is desired by the domain modeller.

Our asynchronous plans are similar to Boutilier and Brafman’s [37] multi-
actuator plans. They model interacting effects of concurrent actions by spe-
cific kinds of conditional effects of the individual agents. A plan must provide
simultaneity constraints ensuring that the interaction really takes place as
planned. The authors assume that an external synchronisation mechanism
will ensure that during execution the constraints are met by the agents. Cox
and Durfee’s [38] and Clement’s [39] coordination algorithms provide such
mechanisms. Our approach, however, rests on the assumption that executing
agents are truly autonomous and there is no external instance to synchronise
them. Therefore it must allow agents to synchronise plan execution on their
own. This is achieved by explicitly including the knowledge and perceptions
necessary for coordinated execution into the plans of agents. Since only plans
that include these information are valid multiagent plans, the planning algo-
rithm itself can (and is forced to) ensure synchronised execution. It is worth
studying, however, how special-purpose coordination algorithms like those of
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Cox or Clement could be integrated with our Continual Planning approach,
thereby potentially simplifying the actual planning process.

Planning with sensing actions has often been described in the planning
literature [40, 41, 42, 10, 43]. To our knowledge, none of these models extends
planning for sensing to the concept of copresence [44]. Copresence has been
much discussed in literature on pragmatics, e.g. by Clark and colleagues [45].
To our knowledge, ours is the first work that allows agents to explicitly reason
about copresence in order to self-coordinate multiagent plan execution without
explicit communication.

The explicit inclusion of beliefs and mutual beliefs in our planning ap-
proach follows BDI models of multiagent planning, e.g . the SharedPlans model
of Grosz and Kraus [46] that describes the role of (mutual) beliefs as neces-
sary conditions for planful MA behaviour. Our formalism and implementation
does not cover all aspects of these models (yet); in particular, we do not model
intentions explicitly (yet). However, by explicitly modelling perception and
copresence, our approach complements existing BDI approaches to MA plans,
since it can explain how knowledge conditions for joint behaviour can be
achieved during plan execution.

The need for Distributed Continual Planning (DCP), i.e. Continual Plan-
ning in multiagent settings, was pronounced clearly by desJardins and col-
leagues in [1]. Most work within this field is based on hierarchical represen-
tations of multiagent plans [47, 48, 49, 50, 51]. Indeed, the expansion of as-
sertions is similar to the decomposition of HTN schemata [52, 53, 54]. In our
approach, however, the abstraction hierarchy need not be explicitly given by
the domain designer, but is resolved by the planner itself. Also the purpose
of the abstraction is different from HTN planning: while HTN decomposi-
tions embody knowledge about how to solve subtasks, assertions essentially
represent a way to postpone parts of the planning process. Thus Continual
Planning with assertions produces a series of non-hierarchical plans, whereas
HTN produces one abstraction hierarchy. Note also that while it has been
proposed in textbooks that HTN planners may leave parts of the plan hierar-
chy unexpanded until a plan has been partially executed, we are not aware of
work that describes how exactly an HTN planner should make such decisions.

Our CCP approach to dialogue is close in spirit to existing frameworks
for collaborative dialogue, in particular the one of Lochbaum [55]. In contrast
to other approaches to dialogue planning that use formal state descriptions
mainly for the specification and validation of the computational approaches,
e.g . [28, 56, 57], we directly reason on the formal logical representations of
the agents’ beliefs (i.e. the MAPL states). In this respect, our work mostly
resembles Sadek’s approach to dialogue planning [58]. Due to our use of a
general-purpose planning method, other approaches can deal with more elab-
orate linguistic phenomena. However, CCP seems to be able to explain prag-
matic aspects of a dialogue better (or at least more explicitly) than other
approaches, because of the inherently causal reasoning underlying all dialogue
created. In particular, CCP is suited for situated dialogue planning, because
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the generated dialogues directly depend on the agent’s knowledge about the
current situation and its physical actions in the world.

Common approaches to failure detection are model-based, that is, they
involve reasoning about potential failures based on an explicit system model
describing the structural and behavioral properties of the system. This has
been approached (a) from within the AI community using symbolic reasoning
with a focus on large systems with many interacting components and (b)
from the control theory community concentrating on fewer components with
complex dynamics and higher noise levels. Most of the established approaches
found in the literature have originally been designed for discrete, static, and
noise-free domains. More recently, they have typically been extended to also
handle continuous variables—if just by discretizing the space—and to respect
the dynamic and uncertain nature of the processes. It is, nevertheless, common
agreement that open questions in this area include the handling of noise,
diagnosis of hybrid systems, and model building without excessive human
engineering.

The close coupling between a system and its environment makes it hard in
general to detect abnormal behavior using instantaneous statistical tests only
without tracking possible failure modes over time [59]. This is especially the
case for mobile systems, such as service robots. By modeling faults as special
states in a (typically hybrid) state space model, any state estimation technique
can—in principle—be used for estimating their posterior likelihoods given a
sequence of observations. Approaches found most often in the FDI literature
include multi-hypothesis tracking [60, 61], single model tracking [62], or one
step look-ahead particle filtering [63]. In particle filter based approaches to
fault diagnosis, the system is typically modeled by a non-linear Markov jump
process [64] or a dynamic mixture of linear processes [63]. Verma et al. [65]
introduce the variable resolution particle filter for failure detection. Their ap-
proach is similar to ours in that they build an abstraction hierarchy of system
models. They model the robot as a hybrid system with discrete modes of
operation and corresponding continuous state variables. They assume that
the probabilities of failure modes can be estimated from the state tracking
performance of their associated system models. As described in Sec. 6.4, we
also approach the problem using sequential state estimation in hybrid models
and—in contrast to previous work—apply Gaussian process learning for sam-
pling the failure mode more efficiently and robustly based on prior experience.

Approaches that deal with the time efficiency of particle filters include [66]
in which real-time constraints are considered for single system models or tech-
niques in which a Rao-Blackwellized particle filter is used to coordinate mul-
tiple models for tracking moving objects [67]. Related work addressing the
efficiency of particle filtering also includes the regularized particle filter [68]
and the Parzen particle filter [69]. Early references to the general idea in-
clude [70], in which the authors propose to exchange the delta-Dirac kernels
of a particle filters for Gaussian kernels in order to estimate fixed system
parameters and dynamic state variables jointly.
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6.11 Conclusion

Acting deliberatively is hard in realistic dynamic environments that cognitive
agents can only partially observe and influence. For all practical purposes,
deliberation must be combined with reactive behaviour that takes newly per-
ceived changes into account quickly. Often, however, dynamic environments
demand an even more proactive behaviour: agents must actively try to gather
new or reconfirm outdated information before they can determine appropriate
solutions to their problems. To that end, they must be able to reason about
how and when to extend or update their knowledge, and then plan their own
cycle of planning, acting and replanning.

In this chapter, we have investigated the interplay between planning, act-
ing and behaviour monitoring in dynamic multiagent environments. We have
introduced several theoretical and practical tools that can be used for building
practical cognitive agents for such environments:

The Multiagent Planning Language MAPL Intelligent agents
in dynamic multiagent environments must be able to explicitly reason about
their own and others’ sensory and communicative capabilities, their beliefs and
mutual beliefs, and about the necessary conditions for joint behaviour. Most
formal languages for AI Planning, notably the de facto standard PDDL, do
not permit this. We have therefore developed the Multiagent Planning Lan-
guage MAPL that extends PDDL and thus also enables extending existing
planning methods for multiagent planning. MAPL plans can freely interleave
physical action, sensing and communication, and thus forms the basis for our
CP and CCP algorithms. In particular, MAPL plans guarantee that during
execution all agents are provided (by perception or communication) with the
necessary knowledge to autonomously, i.e. without a central scheduler or syn-
chronisation component, execute their parts of a MA plan.

Continual Planning with Assertions We have developed a new
algorithmic framework for continual planning, i.e. integrated planning, plan
execution, and plan monitoring. Previous approaches to continual planning
have mostly regarded it as just a case of replanning in light of new infor-
mation. However, such a purely reactive approach is insufficient in dynamic
environments where knowledge is limited from the start. Such environments
demand more proactive behaviour: agents must actively try to gather new (or
reconfirm outdated) information before they can determine appropriate solu-
tions to their problems. To that end, they must be able to reason about how
and when to extend or update their knowledge, and then plan their own cycle
of planning, acting and replanning. In CoSy, we have introduced a principled
approach for this kind of continual planning. Based on the novel concept of
assertions agents can decide autonomously which parts of of planning prob-
lem they can already solve in detail and for which they must gather additional
information.

Failure Detection and Robust Monitoring To be able to check
assertions and to reason about the outcome of actions, the robot requires the
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ability to monitor lower-level dynamic processes. We developed a novel ap-
proach to process-monitoring based on particle filtering that enables one to
use prior knowledge about failure modes learned from experience or in simu-
lation. We derived a general framework for integrating learned failure models
into algorithms for sequential state estimation. The system was implemented,
tested, and demonstrated on the task of online collision detection for a mobile
robot.

Continual Collaborative Planning Other agents are the major
source of exogenous change in most dynamic environments. However, their
presence is not only a source of uncertainty, but can also be exploited: by
interacting with others, an agent can reduce its uncertainty about the present
and constrain possible contingencies in the future effectively. Again, sharing
information and negotiating plans with others is a continual process that is in-
terleaved with physical action (e.g. to enable communication in the first place)
and sensing (e.g. to establish a context for situated references). Therefore, we
have extended our continual planning approach to Continual Collaborative
Planning (CCP), which integrates planning, acting, sensing and communica-
tion. During CCP, agents will not only continually update their beliefs, but
also revise their goals as a result of negotiations with other agents. This leads
to particularly dynamic collaborative behaviour.

The Multiagent Planning Simulator MAPSIM Continual plan-
ning approaches can only be tested in environments where agents can actually
interleave planning, execution and sensing. The CoSy demonstration scenar-
ios provide realistic settings for such an evalutation; however, we also wanted
to provide a generic way to evaluate CCP and other distributed continual
planning approaches across a wide range of multiagent planning domains and
problems. We have therefore developed MAPSIM, a software environment
that can automatically generate MA simulations from MAPL domains. In
other words, MAPSIM interprets a formal MAPL domain as an executable
model of the environment in which agents can perceive, plan, act and engage
in negotiations for task-orientated collaboration.

Situated Dialogue as Continual Collaborative Planning When
several agents are situated in a common environment they usually interact
physically as well as verbally. Verbal interaction in such environments, i.e.
situated dialogue, both reflects the past and influences the future physical
behaviour of the agents. Thus situated dialogue can often be regarded as
continual collaborative planning. Interestingly, the role of communication in
CCP is twofold: A dialogue move can be part of the collaborative planning
process; however, it is also the execution of a communicative action and,
just like the execution of a physical action, it changes the “world” in ways
that may lead to previously unforeseen changes in plans and, consequently,
additional interactions. Since goals and plans of agents are continually revised,
dialogues generated by CCP naturally include mixed-initiative subdialogues
and interleaved physical and communicative actions, as exemplified in the
CoSy demonstrator systems.
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Continual Planning in a Complex Cognitive Architecture Large
cognitive systems, e.g. the CoSy demonstrators that are built on the CAST
architecture and include many substantially different subarchitectures, do not
only act in dynamic environments, but can themselves be considered complex
multiagent systems. We have therefore applied CCP not only for planning
interactions with humans or other robots, but also for planning internal pro-
cesses flows of a cognitive system. Each of the “agents”, i.e. the subarchitec-
tures, in such a system can provide a plethora of information. One important
realisation made while integrating our continual planner into the CAST ar-
chitecture was that the abundance of information potentially available to the
planner is obstructive to its success. Instead, what is needed is a demand-
driven way to provide information to the planner. Again, this need turns out
to be a need that can be satisfied by a continual planning approach: by includ-
ing less information in the state initially given to the planner, but extending
it with meta-level and self-referential knowledge (e.g. knowledge about which
subarchitecture may have or may provide additional knowledge), the continual
planner can determine on its own which information it additionally requires
for solving a problem. This may go as far as the planner requiring more de-
tailed information about the planning ontology or the planning operators, all
during the continual planning process.

Summary During the CoSy project, we have developed a new frame-
work for proactive continual planning and execution monitoring. The frame-
work has been successfully used in simulation as well as in complex robot
systems (c.f . Chapters 9 and 10) for a variety of tasks ranging from monitor-
ing hardware failures to engaging in human-robot dialogues. We believe that
our approach of encouraging information gathering on all levels of a cognitive
architecture is a significant step towards building agents that show intelli-
gent proactive, yet robust behaviour, i.e. agents that can rightfully be called
autonomous.
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7.1 Introduction

The main topic of this chapter is learning, more specifically, multimodal learn-
ing.

In biological systems, learning occurs in various forms and at various de-
velopmental stages facilitating adaptation to the ever changing environment.
Learning is also one of the most fundamental capabilities of an artificial cogni-
tive system, thus significant efforts have been dedicated in CoSy to researching
a variety of issues related to it.

Learning involves numerous deep problems that stretch far beyond straight-
forward applications of current statistical methods. In particular, learning
should take place in a rich interaction of an artificial cognitive system with
the environment or with a human (tutor) exploiting multiple modalities to ar-
rive at new concepts and/or extend the current ontologies or merely to adapt
to different circumstances.

One of the main topics which was addressed within the CoSy project was
the selection of appropriate representations that allow for their efficient cre-
ation and modification as the new data is acquired, and the levels and types of
supervision that guide the learning processes. In this context, the exploitation
of multiple modalities is crucial as they provide means for robust and efficient
learning that is not possible within a single modality. For example, the data
of one modality may act as a means of supervision for learning within another
modality, or, through a simple dialogue inherent ambiguities present in a vi-
sual signal can be resolved. Similarly, an artificial cognitive system can learn
important insights into how the environment is structured, including causal
relations, by observing activities or exercising certain actions.



270 Skočaj et al.

Therefore, the learning we are addressing in this chapter involves informa-
tion from multiple modalities. One modality helps another modality by pro-
viding additional information, i.e., one modality supervises another modality.
In Sections 7.2 and 7.3, we address the multimodal learning in the context of
interaction between the visual and communication modalities. The PlayMate
system we have developed has the capability of relating the visual informa-
tion and the information obtained through the communication subsystem. In
this way, the learning of visual concepts can be supervised by language. In
Sections 7.4 and 7.5, the pure visual information is interacting with the infor-
mation produced by performing certain actions (pushing, grasping). Broadly
speaking we can view visual information and the information obtained from
actions as two separate sub-modalities. In this view, sections 7.4 and 7.5 ad-
dress interaction between the visual sub-modality and the action sub-modality.
Again, visual cues are learnt that could not have been learnt without having
access to information from different origins (sub-modalities). Note that in the
literature, the multimodal learning, as defined here, is also frequently referred
to as cross-modal learning. Both terms emphasize the interaction between dif-
ferent modalities during the learning process and are often used interchange-
ably; so they are in this book.

In terms of the levels of supervision, a variety of different modes have been
applied, ranging from fully supervised, weakly supervised, to unsupervised. As
for the types of supervision they were achieved through dialogues, perception
of affordance cues and exploratory strategies. The approaches presented in
Sections 7.2 and 7.3 focus on analysing different levels of supervision, which
is achieved through a dialogue with a human teacher. The integrated system
we have developed facilitates such kind of research and provides means for
applying different learning strategies in an interactive learning settings.

The remainder of the chapter contains four sections which address the
issues mentioned above in different contexts.

Section 7.2 presents an interactive framework for continuous learning of
visual concepts. The main goal that was set is to learn associations between
automatically extracted visual features and words describing the scene (visual
attributes and spatial relations) in a user friendly, natural, open-ended, and
continuous manner. The system facilitates interactive learning of basic visual
concepts in a dialogue with a human tutor. The learning can be performed
with different levels of supervision. The developed framework also supports
unlearning, which enables recovery from any errors accumulated in the learned
models. The entire learning process is fully integrated with other parts of the
system that provide information needed by the learner and use the informa-
tion produced by the learner. The entire system thus provides visual input
and enables verbal and non-verbal communication with a tutor facilitating
continuous and interactive cross-modal learning.

In Section 7.3, crossmodal learning of visual categories is performed in a
way that combines supervised and unsupervised training methods. While su-
pervised methods tend to produce more accurate results, unsupervised meth-
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ods are highly attractive due to their potential to use masses of unlabeled
training data. The proposed novel method uses unsupervised training to ob-
tain visual groupings of objects and a cross-modal learning scheme to over-
come the inherent limitations of purely unsupervised training. The method
uses a unified and scale-invariant object representation by Scale-Invariant Pat-
terns (SIPs) that allows us to handle labeled as well as unlabeled information
in a coherent way. One of the potential settings is to learn object category
models from many unlabeled observations and a few dialogue interactions
that can be ambiguous or even erroneous. Initial experiments demonstrate
the ability of the system to learn meaningful generalizations across objects
already from a few dialogue interactions.

Section 7.4 addresses supervised-learning of human actions and activities.
A cognitive robot that interacts with humans needs not only to detect mo-
tion patterns, but also to put them in the context of understanding human
intention. Towards this goal, a new representation of intentional actions has
been proposed, which models the causal relations between hand motion, ob-
ject states, and the effects of actions. It has been shown, by reproducing a key
result from the literature on action learning in children, that the proposed rep-
resentation has properties in common with action learning in humans. Human
movement analysis has also been put in the context of activity understand-
ing. This extension allows the robot to relate the concept of objects to the
situations that the agent tends to perform certain kinds of actions, and also
to learn about the reliability of a class of execution styles.

Section 7.5 addresses multimodal learning in the context of an embodied
cognitive agent. In this study, the challenge of functional object categorization
is approached from a completely different angle. Namely, the functional cate-
gory representations are acquired by observing few prototypical human-object
interactions rather than explicitly modeling physical object properties. Nat-
urally, the set of functional categories that the system’s local feature-based
vision module is able to represent is restricted to those that are characterized
by distinct visual features, e.g., the bent shape of a mug handle suggests how
to grasp the mug in a specific way. Such distinct visual features are termed
affordance cues, and the functional object category detection is based on the
recognition of these cues. The results are reported for the detection of two
functional object categories learned by the system, which demonstrate their
generalization capabilities across and beyond basic level categories. In fact,
it is shown that the system supports the interpretation of these categories as
composite functional ones.

7.2 Continuous learning framework

7.2.1 Introduction

An important characteristic of a system that operates in a real-life environ-
ment is the ability to expand its current knowledge. The system has to create
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and extend concepts by observing the environment – and has to do so contin-
uously, in a life-long manner. An integral part of such a continuous learning
system is a method for incremental updating of previously learned represen-
tations, which has to fulfill several requirements: (i) the learning algorithm
should be able to update the current representations (and create new ones
if necessary), (ii) it should not require access to old (previously processed)
original data, (iii) the representations should be kept compact; they should
allow improving the information content while not requiring an increase of
memory requirements with each observation, and (iv) the computational ef-
fort needed for a single update should not depend on the amount of previously
observed data. Furthermore, models should allow for error-recovery (unlearn-
ing) in cases when erroneous information gets incorporated into them. The
learning process should thus create, extend, update, delete, and modify mod-
els of real-world concepts in a continuous, life-long manner, while still keeping
the representations of the environment compact and efficient.

In this subsection we present an algorithm that satisfies these requirements
when learning associations between low-level visual features and higher-level
concepts. In particular, we address the problem of continuous learning of visual
properties (such as colour or shape) and spatial relations4(such as ‘to the
left of’ or ‘far away’). The main goal is to find associations between words
describing these concepts and simple visual features extracted from images.

We tackle this problem by using a continuous learning paradigm in a cross-
modal interaction between the system and the tutor. This interaction plays a
crucial role in the entire learning process, since the tutor provides very reli-
able information about the scenes in question. This information can also be
inferred by the system itself, reducing the need for tutor supervision, how-
ever also increasing the risk of false updates and degradation of the current
knowledge. In this section we introduce and analyse several different learning
modes requiring different levels of tutor supervision.

In our setting, the inputs in the learning process are partial descriptions of
the scene; descriptions of the objects and relationships between them. An ob-
ject can be labeled with several concept labels (e.g., object A can be ‘yellow’
and ‘round’ and positioned ‘in the middle’ of the image and ‘to the left of’
object B). These descriptions serve as learning examples. There are no nega-
tive examples (e.g., the information that ‘yellow’ is not ‘red’ is not provided).
Therefore, the algorithm should build reconstructive representations without
relying on discriminative information, which would discriminate between dif-
ferent classes (i.e., concepts) [1].

Similar problems have often been addressed by researchers from various
fields, from psychology, to computational linguistics, artificial intelligence, and
computer as well as cognitive vision. Our problem is closely related to the sym-
bol grounding problem [2], which has been very often addressed by a plethora

4 In the current implementation we only address a simplified geometrical aspect of
spatial relations, without considering functional aspect and context.
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of researchers [3, 4, 5, 6, 7, 8, 9]. Our work is closely related to that of Roy
[5, 6], in that our framework focuses on learning qualitative linguistic descrip-
tions of visual object properties and scene descriptions. His system in [5] was
designed to learn word forms and visual attributes from speech and video
recordings, and subsequently, he extended this work for generating spoken
descriptions of scenes [6]. Several papers have also been published addressing
online learning, particularly with regard to object recognition [10, 11, 12].
In our system, however, we utilize, in a unified framework, continuous online
learning of qualitative object properties and spatial relations in a setting with
no negative examples where every sample can be labelled with multiple con-
cept labels. Furthermore, our system facilitates unlearning and error-recovery
as well. The system is completely integrated in a robot that on one hand pro-
vides useful multimodal information for the learning subsystem, and on the
second hand, uses the knowledge and information provided by the learning
subsystem to accomplish given tasks.

Fig. 7.1 shows a sample dialogue between the tutor and the system, which
indicates the process of learning of object visual properties (colour, size, and
shape). The tutor is describing the scene and verifying the state of the robot’s
knowledge by posing questions. The robot also asks the tutor when presented
with an object whose visual properties it does not recognise. This example
shows how the system can extend its knowledge in a dialogue with the tutor.
This is one of our motivating scripts for the PlayMate scenario.

’H: This is a blue, large, and square object.’
’R: OK.’
...
’H: What do you see?’
’R: I don’t know this object.’
’H: It is green, small, and triangular.’
’R: OK.’
...
’H: What do you see?’
’R: I see a small and square object.’
’H: Yes, that’s correct.’
’R: OK.’
...
’H: What do you see?’
’R:I see a green object. I think it is also large.’
’H: Yes, that’s correct.’
’R: OK.’
’H: It is also rectangular.’
’R: OK.’

...
’R: I don’t know this object. What is it like?’
’H: It is blue, small, and rectangular.’
’R: OK.’
...
’R: Is this object large?’
’H: Yes, that’s correct.’
’R: OK.’
’H: It is also yellow and circular.’
’R: OK.’
...
’R: Is this object red?’
’H: No, it is not red.’
’R: OK.’
’H: It is yellow.’
’R: OK.’
...
’H: What do you see?’
’R: I see a red, small, and triangular object.’

Fig. 7.1. An example dialogue between the tutor (H) and the system (R).

The integration aspect of the PlayMate is described in Chapter 9, while
in this section we focus on the problem of learning. We first present dif-
ferent modes of learning requiring different levels of human interaction and
then introduce the main incremental learning algorithm and the underlaying
techniques for managing reconstructive representations. We then present the
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evaluation of the proposed methods. Finally, we summarize and discuss some
open issues.

7.2.2 Different modes of learning

The interaction between a tutor and an artificial cognitive system plays an
important role in a continuous learning framework. In this subsection we define
several learning modes which alter the behaviour of the system and require
different levels of tutor involvement.

When implementing a continuous learning mechanism, two main issues
have to be addressed. Firstly, the representation, which is used for modeling
the observed world, has to allow for updates when presented with newly ac-
quired information, considering the requirements described in Section 7.2.1.
Secondly, a crucial issue is the quality of the updating, which highly depends
on the correctness of the interpretation of the current visual input. With this
in mind, several learning strategies can be used, ranging from completely su-
pervised to completely unsupervised. Here we discuss three such strategies:

• Tutor-driven approach (TD). The correct interpretation of the visual
input is always correctly given by the tutor.

• Tutor-supervised approach (TS). The system tries to interpret the
visual input. If it succeeds to do this reliably, it updates the current model,
otherwise asks the tutor for the correct interpretation.

• Exploratory approach (EX ). The system updates the model with the
automatically obtained interpretation of the visual input. No intervention
from the tutor is provided.

We further divide tutor-supervised learning into two sub-approaches:

• Conservative approach (TSc). The system asks the tutor for the cor-
rect interpretation of the visual input whenever it is not completely sure
that its interpretation is correct.

• Liberal approach (TSl). The system relies on its recognition capabilities
and asks the tutor only when its recognition is very unreliable.

Similarly, we also allow for conservative and liberal exploratory sub-app-
roaches (EXc, EXl).

It is obvious that the system is supposed to have a certain level of self-
understanding; it should be able to estimate whether its current knowledge
suffices to interpret the current scene, or it should ask a tutor for help. There-
fore, it should have a recognition capability, i.e., the ability to interpret the
visual input to some extent. And even more importantly, the system should
be able to evaluate the reliability of this recognition process.

To formalise the above descriptions, let us assume that the recognition
algorithm is able to provide information about the reliability of the recogni-
tion by giving one of the following five answers when asked to confirm the
interpretation of the visual scene (e.g., the question may be: “Is this object
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circular?”): ‘yes’ (YES), ‘probably yes’ (PY), ‘probably no’ (PN), ‘no’ (NO),
and ‘don’t know’ (DK). Table 7.1 presents actions that are taken after an
answer is obtained from the recognition process. The system can either ask
the tutor for the correct interpretation of the scene (or the tutor provides it
without being asked), update the model with its interpretation, or do noth-
ing. As it is stated in Table 7.1, the system can communicate with the tutor
all of the time (TD learning), often (TSc), occasionally (TSl) or even never
(EX learning). This communication is only initiated by the tutor in the tutor-
driven approach, while in other approaches the dialogue and/or the learning
process is initiated by the system itself.

Table 7.1. Update table.

YES PY PN NO DK

TD ask ask ask ask ask
TSc update ask ask / ask
TSl update update / / ask
EXc update / / / /
EXl update update / / /

To speed up the initial phase of the learning process and to enable devel-
opment of consistent basic concepts, one could start with mainly tutor-driven
learning with many user interactions. These concepts would then be used for
updating with limited help from the user in tutor-driven or even exploratory
manner.

7.2.3 Learning algorithm

There are two major parts of the interactive learning framework discussed in
this section. The first part is the update algorithm, which continually updates
the representations of the visual concepts. The second is the recognition algo-
rithm, which, using the representations, can produce quantitative answers to
the queries from the user.

Our system does not have a priori access to the negative examples of the
learnt concepts. Furthermore, we allow multiple concept labels for each in-
put instance, which generally prohibits the update algorithm to exploit the
discriminative information to improve the concepts. For those reasons, the
update algorithm builds and maintains reconstructive representations of the
observed visual features in a form of generative models. Each visual concept
is associated with a visual feature which best models the observed visual data
according to two criteria: consistency and specificity. The algorithm automat-
ically determines which of the extracted visual features are consistent over all
observations of the same visual concept; at the same time, the features also
have to be specific for that particular concept.
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The learning algorithm thus selects from a set of one-dimensional features5

the feature whose values are most consistent and specific over all of the ob-
served images representing the same visual concept (e.g., all images of large
objects, or circular objects, or pairs of objects far apart etc.). Note that this
process is performed incrementally, considering the current image (or a very
recent set of images) and only the learnt representations of the concepts with-
out accessing the previously processed images. For the purposes of establish-
ing the concept-feature associations, the distribution each feature is initially
modelled by a simple generative model for each concept separately. In our
implementations, a single Gaussian is used for such simple generative model.
These models (Gaussians) are then continually updated as new observations
arrive. After each observation, the algorithm associates each concept with a
single feature. Once an association with a particular feature is established, an
additional, more detailed generative model is created for that feature. It is
initialized by the simple model of that feature and then updated to a more
accurate and complex one as new observations arrive. In our implementations
we use kernel density estimates (KDE) for the detailed generative models,
which will be described in more detail in the next subsection. After more
and more observations arrive, it may turn out that some other feature agrees
better with a given concept than the one to which it was initially associated.
In that event, the concept-feature association is reset to a new feature and
the generative model for the concept is reinitialized. The algorithm fulfills the
consistency and specificity criteria by associating a concept with a feature
whose generative model for that concept is most distinctive from the genera-
tive models of the other concepts. To measure the distinctiveness we require
a measure of distance between the generative models. In our implementations
we used the Hellinger distance [13] since it is a metric and returns the dis-
tance value on a constrained interval between zero and one, which makes it
convenient for interpretation how much two distributions are similar (in con-
trast to Kullback-Liebler divergence). Therefore an analytic Hellinger distance
was applied to evaluate distance between single Gaussians (simple generative
models) and a numerical generalization of the Hellinger distance for the more
detailed generative models (see, eg., [14]).

In the recognition stage, the algorithm first extracts feature vectors from
the visual data and evaluates it against every concept (i.e., its generative
model). For each concept, the algorithm returns a value between zero and one,
which reflects the confidence that the observation agrees with that concept.
Since our generative models, as we will see later, are in fact probability density
functions (pdf), the confidence is evaluated as the integral over the feature
values whose probability is smaller than that of the observed value. This
result is then quantized and transformed into a form which is suitable for

5 These features may be, for example, the median hue value of an object, area of
segmented region, coordinates of the object center, distance between two objects,
etc.
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communication with the human operator, or into a form which is appropriate
for any other particular mode of continuous learning presented in the previous
subsection.

In online algorithms like the one presented in this section, the noise in the
input data has a detrimental effect on the learnt representations. In an online
semi-autonomous and exploratory framework discussed here, this problem is
even more pronounced. If, for example, the recognition algorithm fails at some
point to correctly interpret the visual scene and overestimates the reliability of
its recognition, the generative models of the concepts tend to degrade and the
performance of the system will typically decrease severely. However, since the
system interacts with a human user, the user can help the system to recover
from the errors through interaction, by, e.g., indicating to a system that its
belief about a certain concept is wrong. This unlearning is a crucial element
of the learning system since it affects the choice of the generative models used
to model the concepts – apart from allowing learning from positive examples,
these generative models have to support learning from negative examples as
well. This latter process is what is called unlearning. In the following section
we discuss a particular form of the generative models which are used in our
implementations and allow flexible learning from positive, as well as from the
negative examples.

7.2.4 Reconstructive representations for interactive/online
learning

A popular approach to building a generative model from the observed data
is to estimate the underlying probability density function (pdf), which gen-
erated the data. In particular, Gaussian Mixture Models (GMM) have been
shown to approximate well probability density functions which may even be
far from Gaussian [15]. Standard approaches to GMM estimation include
Parzen estimators [15, 16, 17, 18], expectation-maximization-based (EM) al-
gorithms [19, 20, 21], and variational-Bayes methods [22, 23], to name a few.
However, extending the above techniques to online estimation is nontrivial,
since they require all the data in advance. Most of the recent solutions for
online estimation thus either impose temporal constraints on the incoming
data [24, 25], assume a known prior over the model parameters [26], assume
each observed sample is approximated by a single Gaussian with a known
covariance [27], or assume the modes of the underlying pdf are well separated
and Gaussian [28]. Recently, Kristan et al. [29, 14] have developed a frame-
work for online estimation of the GMMs, which can be viewed as an online
extension of the batch kernel density estimation [15], (OKDE). Among the
existing approaches to online estimation of mixture models, OKDE makes
the least assumptions about the incoming data and the shape of the approxi-
mated distributions. As a marked contrast to existing approaches, this is the
only framework which also allows refining a GMM generative model from the
negative examples through the process of unlearning. In this section we will
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briefly overview the learning/unlearning methodologies of the OKDE; for a
detailed treatment, however, the reader is referred to [29, 14].

The online estimation in OKDE from positive observations proceeds as
follows. A Gaussian kernel is assigned to each new observed sample and added
to the existing mixture model. The variance of the kernel is determined using
an online extension of the plug-in rule [15] for the bandwidth estimation.
To maintain a low complexity, the mixture model is compressed from time
to time into an equivalent mixture with a smaller number of components.
This is achieved by iterating between a reduction step and an optimization
step. The reduction step uses a reduced-set density estimation [30] to remove
components from the mixture and the optimization step applies a Levenberg-
Marquardt optimization to minimize the error between the original mixture
model and its compressed equivalent. In this way, the OKDE produces a
variable-bandwidth kernel density estimate of the underlying distribution with
a low complexity.

Figure 7.2 shows results of an experiment in which a set of samples was
sampled from a reference distribution which was a mixture of a uniform
and a Gaussian distribution. These samples were then used one at a time
in OKDE to approximate the reference pdf. For comparison, Figure 7.2 also
shows the results for two standard batch kernel-density estimators: an optimal
and a suboptimal. The optimal estimator used the solve-the-equation plug-in
method [31] to estimate the kernels, while the suboptimal estimator used the
Silverman’s rule-of-thumb ([15], page 60). In terms of the integrated squared
error (ISE) between the approximation an the underlying reference distribu-
tion, the OKDE outperformed the suboptimal batch KDE, and approached
the accuracy of the optimal batch KDE (Figure 7.2b). Note from Figure 7.2c
that the complexity of the mixture model produced by the OKDE remains
low even after many samples have been observed, while the complexity of the
mixtures produced by the optimal and the suboptimal KDE increases linearly
with the number of samples.

As we have mentioned in the previous section, being able to learn from
all-positive examples is not flexible enough for continuous learning in cog-
nitive agents. Indeed, in a noisy environment, false examples will often get
accidentally incorporated into the estimated mixture model and a mechanism
for unlearning is required to remove them from the model. We will illustrate
the unlearning framework of OKDE with an example of interactive learning
of the concept of a red color (Figure 7.3); for the details the reader is referred
to [14]. Assume that we present a robot with an object to which we refer
as a red fork (see Figure 7.3a). The concept of a red color is constructed in
form of a mixture model pred(x) (Figure 7.3b) from the sampled hue values
(green dots in Figure 7.3a). By backprojecting pred(x) to the original image,
we obtain the belief map in Figure 7.3c. Note that high beliefs are assigned to
the color of the fork’s handle and even higher to the color of its head. This is
because the right-most mode in the pred(x) (Figure 7.3e) corresponds to the
hue values from the forks yellow head. The agent would thus wrongly believe
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Fig. 7.2. Comparison between approximations of a pdf using the OKDE and
two batch KDE methods. Approximations after observing 1000 samples (a). The
ISE between the approximations and the reference model (b), and the number of
components in the approximations (c), w.r.t. the number of samples. Results of the
OKDE, the suboptimal batch KDE and the optimal batch KDE are shown in red
full lines, blue dotted lines and green dashed lines, respectively. The reference pdf
is depicted in (a) by black dash-dotted line.

that the yellow as well as the red hues make up the concept of the red color.
To rectify this, we then present a yellow ball (Figure 7.3b) and say that its
color is yellow and NOT red. As before, hue values are sampled from the
ball and another mixture model, a negative example, pyell(x) is constructed
(Figure 7.3f). The complement of this negative example pyell(x) (Figure 7.3g)
can now be considered as an additional positive example, which assigns a low
probability to those values which are likely to present the negative examples.
Assuming that pyell(x) is independent from pred(x), the complement is fused
with pred(x) by multiplication to yield a refined model p̂red(x). The refined
p̂red(x), after an additional compression step, is shown in Figure 7.3h. Note
that the mode corresponding to the yellow color has been attenuated, which
is verified in the resulting belief image (Figure 7.3d). We see that now only
the pixels on the fork’s handle are believed to correspond the concept of the
red color. This shows the flexibility of learning with OKDE: The agent was
able to learn the concept of a red color from a highly ambiguous data under
supervision in only two steps of interaction.

7.2.5 Experimental results

The system presented in this section was primarily designed to work in in-
teraction with a user and it forms a part of the PlayMate system. Fig. 7.1
shows a sample dialogue between the tutor and the system. The first part
of the dialogue took place in the tutor-driven learning mode, when the tu-
tor was teaching the system about the objects in the scene, while the second
part of the dialogue took place using the tutor-supervised modes of learning,
when the system took the initiative and asked the tutor for clarification when
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Fig. 7.3. Hue values are sampled from (a) to initialize the mixture model pred(x)
(e). The mixture pyell(x) built from the hue values of a yellow ball (b) is shown
in (f). The complement of pyell(x) is shown in (g) and the unlearnt compressed
model p̂red(x) is shown in (h). The belief images corresponding to pred(x) before and
after unlearning, (e) and (h), are shown in (c) and (d), respectively. White colors
correspond to high beliefs, while dark colors correspond to low beliefs. The mixtures
in (b,d,f) are show in bright (red) lines, while their components are depicted in black
lines.

needed. Additional examples and more detailed description of architectural
issues are described in Chapter 9.

To comprehensively analyse the proposed learning modes, we have also
built a simulation experimental setup. We performed experiments on images
with known ground truth, and simulated the answers of the tutor. In this way
extensive tests could be automatically performed and a reliable evaluation of
the proposed methods were obtained. In the following we only briefly present
the results; the detailed descriptions of the experiments can be found in [32,
33, 34, 29].

First, we present the results on learning visual attributes of objects. Ba-
sic shapes of various different colours and sizes were selected as test objects.
Some of them are depicted in Fig. 7.4(a). We considered three visual attributes
(colour, size and shape), and ten values of these visual attributes altogether
(red, green, blue, yellow; small, large; square, circular, triangular, and rectan-
gular). The main goal was to find associations between these attribute values
and six extracted features (like the median of the hue over all pixels in the
segmented region, or the area of this region, etc).

We incrementally updated the representations with the training images
using different learning strategies. At each step, we evaluated the current
knowledge by recognising the visual properties of test images. The evaluation
measure we used is recognition score, which rewards successful recognition
(true positives and true negatives) and penalises incorrectly recognised visual
properties (false positives and false negatives).

The results (the curves of the evolution of the recognition score through
time) are presented in Fig. 7.4(c), while Fig. 7.4(d) plots the frequency of
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communication between the system and the user, i.e. how often the user is
required to provide information.

All the different learning strategies presented in subsection 7.2.2 were
tested. It can be seen that Tutor driven learning (TD) performs best and
yields almost perfect recognition results. However, in this case the user has
to completely describe the object at every learning step. Tutor-supervised
learning (TSc, TSl) proved to be quite successful as well (in the beginning
the system does not have a lot of knowledge, which would enable reliable au-
tonomous recognition, so the first 10 training images were added in a tutor
driven mode). Tutor supervised learning required significantly less interaction
with the tutor; the average number of questions drops to app. 2 in the con-
servative and even to almost 0 in the liberal case. The exploratory approach
(EXc, EXl), which does not involve interaction with the tutor, does not im-
prove the model. So, as expected, there is a trade-off between the quality of
the results and the autonomy of the system.

Exactly the same system was also used for learning simple spatial relations.
We only changed the features that were to be extracted from the image (posi-
tion of the object centers in the scene, distance between the objects, etc.). Us-
ing five such features, the learning framework was able to learn eleven spatial
relationships (like ’to the left of’, ’far from’, or ’near’). The correctly assigned
associations, along with the previously learned visual attributes, enabled the
automatic detection of objects and the production of scene descriptions such
as those presented in Fig. 7.4(b).

Next, we present the results of the experiment performed on a set of ev-
eryday objects (some of them are depicted in Fig.7.5(a)).

Fig. 7.5(b) shows the evolution of the overall accuracy of the concept
recognition, which increases by adding new samples (green line). The growth
of the accuracy is very rapid at the beginning when new models of newly
introduced concepts are being added, but still remains positive even after all
models are formed due to refinement of the corresponding representations.
Fig. 7.5(c) plots the average number of Gaussian components in the KDE
models. One can observe that after a while this number does not grow any
more, thus the model size remains limited. The models do not improve by
increasing their complexity, but rather due to refinement of the underlying
representations.

To demonstrate the unlearning algorithm, we incorrectly labeled every 10-
th training sample in the first half of the incremental learning process. As a
result, the underlaying KDE representations were corrupted and modelled also
the feature values, which were not supposed to be encompassed. Therefore,
the recognition results degraded (red line in Fig. 7.5(b)). However, by applying
unlearning to the corrupted representations, they were successfully corrected,
which resulted in a significant improvement of the recognition performance
(blue line). The recognition results after unlearning were very similar to those
obtained in an error free learning process.
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A

B

A is yellow, small, and circular.
B is blue, large, and square.
A is on the left.
A is near.
B is on the right.
B is far away.
A is to the left of B.
A is closer than B.
A is far from B.
B is to the right of A.
B is further away than A.
B is far from A.
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Fig. 7.4. (a) Input shapes. (b) Automatically generated scene description. (c)
Recognition score. (d) Frequency of communication.

These results are further demonstrated on one particular example. Figs. 7.5(d-
i) depict the evolution of the underlying KDE model of the feature ‘Hue’,
which was associated with the concept ’Blue’, over time. It shows how the
initially simple model improves through time Figs. 7.5(d-f). It also shows the
efficiency of the compression algorithm; the compressed model (Figs 7.5(g))
resembles the original one (Fig. 7.5(f)) at a very high degree of accuracy. Fi-
nally, Figs. 7.5(h,i) demonstrate the performance of the unlearning algorithm,
which was able to undo the noise introduced into the model.

7.2.6 Discussion and outlook

It this section we presented an interactive framework for continuous learning of
visual concepts. The main goal is to learn associations between automatically
extracted visual features and words describing the scene (visual attributes,
spatial relations) in a user friendly, natural, open-ended, and continuous man-
ner. The system facilitates interactive learning of basic visual concepts in a
dialogue with a human tutor. The learning can be performed on different lev-
els of supervision. The developed framework also supports unlearning, which
enables recovery from the errors accumulated in the learned models.

In the previous subsection the methods proposed were evaluated in isola-
tion by explicitly providing the ground truth information, which is supposed to
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Fig. 7.5. Learning of basic object properties: (a) Seven everyday objects from the
database. Results of incremental learning: (b) evolution of accuracy through time
for incremental learning on correct data (green line), on partially incorrect data (red
line), and after unlearning (blue line), (c) average number of components through
time. Evolution of one KDE model representing the object property ‘blue’ through
time: model after (d) 15, (e) 85, and (f) 120 added training samples. (g) Compressed
final model. (h) Final model learned with incorrect labels. (i) Model after unlearning.

be provided by other parts of a cognitive system setup. However, these meth-
ods are fully integrated in the overall system based on CAST, and play an
integral role of the PlayMate system. Other parts of the system thus provide
information needed by the learner (e.g., linguistic input) and use the infor-
mation produced by the learner (e.g., recognition results). The entire system
thus provides visual input and enables verbal and non-verbal communication
with a tutor facilitating continuous, and interactive cross-modal learning.

The continuous learning framework we have developed is able to learn
basic visual concepts (like colours, shapes and spatial relations). A natural
extension of this system would be to make it fully scalable to enable it to learn
more complex concepts and hierarchies of concepts. Furthermore, the system
could also consider other modalities in a larger part as well. A very interesting
research issue is introspection and detection of ignorance, and planning of new
actions that the system should undertake to gather the knowledge which would
be used to fill these gaps. This is a prerequisite for more efficient exploratory
learning, which would require minimal supervision of a human tutor. The
current framework and the overall system we have developed is a solid base
for such research and may serve as a good starting point and a tool in further
investigations and development.
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Fig. 7.6. System overview.

7.3 Cross-modal learning of visual categories

Section 4.1 already outlined a rough topology of existing work on visual cat-
egorization. One axis along which such methods can be aligned is how they
are trained and which level of supervision they require. Interestingly, most
today’s object categorization methods use either supervised or unsupervised
training methods. While supervised methods tend to produce more accurate
results, unsupervised methods are highly attractive due to their potential
to use far more and unlabeled training data. This section proposes a novel
method that uses unsupervised training to obtain visual groupings of objects
and a cross-modal learning scheme to overcome inherent limitations of purely
unsupervised training. The method uses a unified and scale-invariant object
representation by Scale-Invariant Patterns (SIPs) that allows us to handle la-
beled as well as unlabeled information in a coherent way. One of the potential
settings is to learn object category models from many unlabeled observations
and a few dialogue interactions that can be ambiguous or even erroneous.
First experiments demonstrate the ability of the system to learn meaningful
generalizations across objects from only a few dialogue interactions.

System overview.

Figure 7.6 shows an overview of the presented system, which is tighly re-
lated to the structure of this section. Section 7.3.1 describes how the vision
system represents the visual input. This representation allows for an unsu-
pervised visual grouping step as described in Section 7.3.3. To overcome the
inherent limitations of unsupervised as well as fully supervised approaches,
we describe how we combine different levels of supervision in Section 7.3.3.
Section 7.3.4 describes the language system that parses an utterance to a log-
ical form. Section 7.3.5 explains the spatial reasoning processes that associate
the expressions with the visual observation. Finally we present two scenarios,
in which the system successfully resolved ambiguous information and even
recovered from erroneous beliefs.
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Fig. 7.7. The scale-invariant representation we use is derived from the common bag-
of-words representation. Recently a spatial resolution was added to each bin. We im-
prove the robustness of these type of representations by adding a scale-normalization
step yet retaining the spatial information which yields what we call a Scale-Invariant
Pattern (SIP). The figure visualizes how local featuers (blue dots) are entered in a
spatially discretized histogram.

7.3.1 Object Representation by Scale-Invariant Patterns

In this section we describe how we encode visual patterns and objects as what
we call Scale-Invariant Pattern (SIP). SIPs are a key ingredient in our systems
as they provide an embedding of visual patterns and objects into a vector space
that facilitates clustering and recognition in a cheap yet effective manner.
First, we describe the low-level feature description we base our representation
on and then derive the actual representation.

When a new image is grabbed from the camera, SIFT descriptors [35]
are extracted at Hessian-Laplace interest points [36]. While there exists a
wide range of interest point and descriptor combinations, we opted for this
particular combination based on evaluations on different categorization tasks
[37]. Following a common philosophy in the field to visual categorization [38,
39, 40, 41, 42, 43], we first generate a visual codebook based on clustering of
detected features. In our experiments we use a codebook with 1000 entries
obtained by k-means clustering.

Based on this feature representation we derive one of the important in-
gredients of our system: the Scale-Invariant Pattern (SIP) representation.
This representation is the basis not only for discovering objects in the scene,
but also for visual grouping and object categorization. We adapt the scale-
invariant representation from [43] which already has shown its versatility in
weakly-supervised learning and ranking tasks. As visualized in Figure 7.7, this
representation can be seen as a extension of the bag-of-words representation
[38] by adding two spatial dimensions to each bin [41]. In order to obtain a
scale-invariant representation, the feature positions (posx, posy) are normal-
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Fig. 7.8. Visual grouping of objects by clustering.

ized with respect to the center of the pattern (cx, cy):

(pos′x, pos
′
y) =

(
posx − cx

σ
,
posy − cy

σ

)
(7.1)

where σ is the detected scale of the feature. For efficiency, we store these pat-
terns as sparse vectors Ψ . The sparsity of the SIPs is one key to the efficiency
we are aiming for while still maintaining a descriptive representation of the
visual input.

7.3.2 Data-Driven Visual Grouping

Similarily to [44], we use an agglomerative clustering scheme (average link-
age) to group object instances in an unsupervised manner. The objects are
represented as SIPs (Sec. 7.3.1) which we will denote as sparse vectors Ψ in
the following formulas. As described before we normalize these to unit length
and we use the scalar-product to measure similarity between these objects.
We prefer to use agglomerative clustering over k-means as we do not want to
specify the number of visual clusters apriori. The threshold required for the
agglomerative clustering scheme is set empirically to a constant value for all
our experiments. Figure 7.8 visualizes the clusters C1 to CN obtained by our
system given the observed objects displayed on the left. Although there are
some confusions, we observe a good generalization across category instances.
In order to obtain representatives ΨCl

for each cluster Cl, we compute a
weighted sum of the observed patterns Ψk:

ΨCl
=
∑

k

p(Cl|Ψk)Ψk (7.2)

In our implementation, we have chosen to use hard assignment of the SIPs to
the clusters which renders the probability p(Cl|Ψk) of assigning pattern Ψk to
cluster Cl binary.

7.3.3 Combining Unsupervised and Supervised Learning

In this section, we present a model for visual category recognition that com-
bines different levels of supervision in a joint model. The key ingredient is
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the SIP representation from Secion 7.3.1, which we use throughout. The last
section formulated an unsupervised grouping process using this common rep-
resentation.

Supervised Categorization

To provide basic functionality for our system, we describe how supervised
categorization is implemented. Similarly to clustering in Section 7.3.2, we
model each category Ai by a single representative ΨS

Ai
(superscript S denotes

the supervised model). This is done by summing over all training patterns
available for that category

ΨS
Ai

=
∑

j∈SAi

Ψj , (7.3)

where SAi denotes the indices of the SIPs that are labeled with category Ai

in a supervised manner (e.g. ”This is a bottle”).

Incorporating Semi-Supervision and Unsupervised Information in one
consistent Framework

We formulate the fusion of information obtained from supervised to unsuper-
vised sources as an extension of the supervised case by assuming uncertainty
about the correct labeling of the clusters Cl and their representatives ΨCl

from the unsupervised visual grouping step (Sec. 7.3.2):

ΨAi
= ΨS

Ai︸︷︷︸
supervised

+
∑

l

p(Ai|Cl)

unsupervised︷︸︸︷
ΨCl︸ ︷︷ ︸

semi-supervised

(7.4)

p(Ai|Cj) encodes the belief that cluster Cl contains instances of category Ai.
How this probability is computed from a few interactions and updated by
associating spatial expression with visual observations is described in Section
7.3.5.

To perform classification in the supervised and semi-supervised case, we
evaluate the proposed model ΨAi

as well as ΨS
Ai

for an observed SIP Ψ̄ by
using histogram intersection. Intuitively, the intersection measures to which
percentage the model explains the observation, which we interpret as the prob-
ability of belonging to the same class. In order to make models and observa-
tions comparable we normalize both to one. Bayes’ rule is applied afterwards
to obtain the model posterior:

p(Ψ̄ |ΨAi
) =

∑
min(Ψ̄ ,ΨAi

) (7.5)

p(ΨAi
|Ψ̄) =

p(Ψ̄ |ΨAi)p(ΨAi)∑
A p(Ψ̄ |ΨAi

)p(ΨAi
)

(7.6)
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p(ΨAi
) is the category prior, which we assume to be uniform. We decide for

the category label with the highest posterior:

Âi = argmax
Ai

p(ΨAi
|Ψ̄) (7.7)

7.3.4 Language System

In human-assisted visual learning, a human tutor provides the system with
descriptions of the current visual scene. To relate these descriptions to the
visual input, the system constructs a representation of the meaning of an ut-
terance. While this section outlines the language system and how it interfaces
with the other components in this cross-modal learning task, a more detailed
description is postponed to Capter 8 in the context of the full dialogue system.

For this analysis of the utterances that accompany the visually perceived
scenes, we use a Combinatory Categorial Grammar[45] parser6. The parser
uses a CCG grammar to relate the syntactic structure of an utterance to the
propositional meaning it expresses. Meaning is represented as an ontologically
richly sorted, relational structure similar to a description logic formula [46],
which makes it possible to use ontologies to mediate between linguistically
expressed meaning, and the categories formed in the visual system. Using the
hierarchical structure of ontologies, and the possibility to perform ontologi-
cal inference over instances on these ontologies, provides a more general and
better scalable approach to ”visual grounding” of language than provided by
the string-based approach proposed in e.g. [47], or previous ontology-based
approaches such as [48, 49].

In our scenario, utterances are typically predicative copulative sentences
in indicative mood (i.e. ”X is Y”), which assert that a given predication (”Y”)
holds for the subject of the sentence (”X”). In our examples, the predication
consists of a phrase that encodes a spatial relation (e.g. ”left of the bottle”
or ”below the apple”). In the logical form, the subject is represented as the
<Restr> of the state description that is denoted by the utterance, whereas
the predication is represented as <Scope>.

We can thus easily derive the spatial configuration asserted in an utter-
ance from its logical form representation. The following example shows such
a logical form that is the result of the parsing process of the utterance ”the
mobile is left of the bottle”:

@b1:state(be ^

<Mood>ind ^

<Restr>(m1:thing ^ mobile ^

<Delimitation>unique ^

<Number>sg ^

<Quantification>specific_singular) ^

<Scope>(l1:region ^ left ^

6 http://openccg.sourceforge.net

http://openccg.sourceforge.net
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<Plane>horizontal ^

<Positioning>static ^

<Dir:Anchor>(b2:thing ^ bottle ^

<Delimitation>unique ^

<Number>sg ^

<Owner-of>+ ^

<Quantification>specific_singular)))

For entering utterances into the system, we connect the parser with a speech
recognizer as well as a keyboard interface. In the experiments, we mostly use
the keyboard interface as well as scripted input for larger evaluations.

7.3.5 Scene Reasoning

Modeling spatial relations as perceived by the human is a challenge in it-
self, as issues like reference frame and context have to be handled appropri-
ately in situated dialogue systems [50]. Considering the scenarios and main
focus of this section, we restricted ourselves to modeling four basic spatial
relations R ∈ {”leftof”, ”rightof”, ”above”, ”below”}. We employ triangular
shaped distributions p(pos(Ψi),pos(Ψj)|R) defined in 2d image coordinates,
where objects are referenced by their patterns Ψi and pos(Ψi) denotes their
position in image coordinates. Although these distributions are represented
as non-parametric kernel densities which lend themselves to online updating,
we don’t explore this option here and keep them fixed as pre-defined in the
experiments.

Spatial Reasoning.

We formulate the association of a spatial expression E extracted from an
utterance (see Sec. 7.3.4) with two patterns Ψi and Ψj with positions pos(Ψi)
and pos(Ψj) observed in scene Sk, as the problem of finding the most likely
pair P̂i,j of patterns: P̂ (k)

i,j = argmaxPi,j
p(Pi,j |E,Sk),where

p(Pi,j |E,Sk) = p(Ψi, Ψj ,pos(Ψi),pos(Ψj)|E,Sk)
= p(Ψi|E,Sk) p(Ψj |E,Sk) p(pos(Ψi),pos(Ψj)|E,Sk), (7.8)

with

p(Ψ |E,Sk) =
∑

h

p(Ψ |Ah)p(Ah|E,Sk). (7.9)

As we don’t model a complete category system yet, leave out contextual effects
and assume certainty about the expression E referring to the categories Ae1

and Ae2 and the relation R, the equation simplifies to

p(Pi,j |E,Sk) = p(Ψi|Ae1)p(Ψj |Ae2)p(pos(Ψi),pos(Ψj)|R) (7.10)
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Finally, we insert the visual model from Eq. 7.4 to obtain a computational
model:

p(Pi,j |E,Sk) = p(Ψi|Ψe1)p(Ψj |Ψe2)p(pos(Ψi),pos(Ψj)|R) (7.11)

This formulation facilitates incorporating information and belief from previous
interactions as well as learning from scratch. If no information about the visual
categories is available p(Ψi|Ψe1) and p(Ψj |Ψe2) become uninformative and the
system relies only on its notion of spatial relations p(pos(Ψi),pos(Ψj)|R). This
can lead to wrong associations. In the next section we present an example and
show that the system can successfully deal with this issue.

7.3.6 Label Propagation and Conflict Resolution

In the following, we describe two scenarios, that show the capabilities of our
system to propagate information, resolve ambiguities and recover from errors.

Scenario 1 - Label forward propagation.

In the first scenario, one annotated example each for banana and mobile is
presented to the system. Then the system observes the scene as shown in
the screenshot in Figure 9(a) and the utterance ”the can is above the mo-
bile” is parsed. The red lines visualize the observed relations between objects
in the scene. Very unlikely ones have already been pruned away by the sys-
tem. By generalizing across category instances, system identifies ”mobile” and
”banana” correctly (with probabilities 0.69 and 0.66 respectively) while eval-
uating ”mobile” model for the banana results in a low probability of 0.15.
Consequently the most likely relation is inferred correctly and displayed in
light green. A model for the category ”can” is created and the observed mo-
bile is added to the existing model for ”mobile”. In fact, the figure shows the
state in which the acquired ”can” model is already used for detection. The can
is detected correctly, but also the bottle gets a high score for the ”can” model,
as it’s the best explanation given the learned categories (banana, mobile, can).

Scenario 2 - Label backward propagation.

In the second scenario, we show how the system can recover from erroneous
beliefs and update its models accordingly. The system starts without any
knowledge about visual categories. Figures 7.9 (b) show a screenshot dis-
playing the scene as observed by the system, which is accompanied by the
utterance ”the can is above the mobile”. Using the same visualization as in
the previous scenario, it can be seen in the left image that the most likely
relation inferred by the system is wrong. Now we provide the system with
supervised knowledge of the visual categories bottle and pen. Revisiting the
scene in memory, the object probabilities get updated and the belief about
the associated relation gets changed to the correct one as shown in the right
image.
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(a) (b)

(c)

Fig. 7.9. (a) shows an example scenario for propagation of labels from known
categories to unknown ones. (b) and (c) Show a scenario where the system updates
associations (light green) to recover form an incorrect belief

7.4 Learning complex actions

7.4.1 Introduction

In this section, we describe the development of an action analysis system for
a cognitive robot. Our goal is to make the robot aware of the activities that
occur in its environment so that it can react in an intelligent manner. This
scenario has a different set of requirements from typical video analysis ap-
plications. Detecting and labeling motion patterns in videos is not sufficient
and the robot needs to reason about the intention of the agent and the func-
tional specification of the concepts of objects and situations. A more suitable
representation is hence required in order to solve these cognitive tasks. We
propose a novel action representation that addresses these issues based on the
following principles.

Psychologically realistic modelling of intentional actions

A general approach to inferring the intention of an agent is to match the
observed motion patterns against a set of typical behaviours known to the ob-
server. The challenge here is to account for uncommon motion patterns. Hu-
man observers will first try to account for the variation by drawing additional
evidence from the scene to check if something could have forced the agent to
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perform the action in a different manner. When the collected evidence fails to
account for the uncommon movement, the inference is that the agent actually
intended to perform the action in a different manner. In order to achieve this
kind of reasoning in a robot, we propose to model intentional actions using
a factorized hidden Markov model (FMM). By explicitly modelling the cor-
relation between hand movements, object states and environmental context,
FMM allows the robot to quickly generate an alternative explanation for un-
common hand movement, which is exactly the kind of reasoning we perform
in almost any everyday event.

Integrating probabilistic action rules with Markov networks

In order to put object manipulation in the context of human activities, we
propose to upgrade probabilistic action rules to model the correlation between
the motion patterns, the properties of actions, its start situations and the ac-
tion outcomes with probability distributions. These rules allows for functional
specification of concepts that enable the robot to reason about the concept
of objects (or situations) on which (or in which) the agent tends to perform
certain kinds of actions, and the class of execution styles that lead to the
action being executed successfully.

The remainder of this section proceeds as follows. We first describe our rep-
resentation of actions and behaviours in Section 7.4.2. Inference and learning
algorithms are discussed in Sections 7.4.3 and 7.4.4. Section 7.4.5 summarizes
our experiment results, and we conclude in Section 7.4.6.

7.4.2 Action representation

Let us consider a toy domain of color and shape games. In this domain, the
agent sits near a table on top of which two colored flags are placed, one on
the right and the other on the left. A colored geometrical shape (circular or
squared) is then placed in front of the agent. In the color game, the agent
moves the shape to the flag that has the same color as the shape. In the shape
game, the agent moves the circular shape to the left flag and the squared shape
to the right flag. In general, the object manipulation/movement varies from
trial to trial, and may not be observed in its entirety. The agent may need to
reach around an obstacle, or may fail to push the shape because the object
surface is slippery. In order to infer the agent’s intention, the observer therefore
needs to take into account the surrounding context and make hypotheses
about things that are ambiguous. Below, we present our action representation
that supports these kinds of reasoning. We first describe our representation
of object manipulation/movement using a hierarchical model, as shown in
Fig. 7.10. We then describe how to put these movements in the context of
game playing.
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(a) (b)

Fig. 7.10. (a) System Overview, (b) Factorized HMM

Factorized, hidden Markov models

A complex manipulation consists of a sequence of simple actions, (e.g., “reach
for the colored shape”, “push the color shape to the left flag”) as shown in
Fig. 7.10 (a). Each simple action is associated with a goal (g), which is the
desired pose of the target object. A common approach to modelling these
motion sequences is based on hidden Markov models (HMM) [51, 52], where
an action corresponds to a node in the HMM. Associated with a HMM node
is a joint distribution of motion features that characterize the action. These
motion features are computed at time t as Et = {fh, fo}, where fh denote
hand motion features and fo denote the features of object motion and pose.

In [53], we argue that reasoning about intentions is more realistically mod-
elled by a factorized hidden Markov model (FMM), where we take a viewpoint
of Markov Decision Process (MDP) [54]. In FMM, an action node is factored
into hand maneuver (h) and object state (o), which are associated with fh

and fo respectively. The links between h, o, and g inside the rectangular box
on the left of Fig. 7.10 (a) represent the fact that the agent who aims to
achieve gi = g1 chooses ht at time t based on ot−1, such that ot−1 transforms
into ot after the execution. This repeats until g1 has been achieved (i.e., until
ot−1 becomes similar to g1). The agent then aims for another goal (e.g. g2).
In Fig. 7.10 (b), an upper triangle node in Fig. 7.10 (a) is expanded to show
that the value of gt is conditioned on the value of the et node, which checks
whether ot−1 has satisfied the current goal. We note that we use the triangle
nodes g1 and g2 in Fig. 7.10 (a) instead of expanding them because the goals
have not evolved during the execution.
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Probabilistic action rules

In the game scenario, the evolution of the agent’s behavior will depend on
the situation that the agent is in. If the agent is playing a color game, the
following might occur: “get the shape”, “push the shape to the flag that has
the same color as the shape”, then “remove the shape”. If we represent each
of these steps by a rule that maps the initial state to the outcome state, action
recognition can be reduced a constraint satisfaction problem, where the most
likely sequence of actions is the one that satisfies the most constraints (as
imposed by the rules). However, executing these actions may not lead to the
expected outcomes. The agent may fail to push the shape because the shape
is made of slippery material. A robot may execute “pick-and-place” more
successfully than “pushing”, where as it may be the other way around for a
young child who has not mastered grasping. Reasoning about actions therefore
depends on the situations. In order to handle the stochastic nature of an
action, we represent an action by a probabilistic action rule that allows us to
associate the transition dynamics of world states with probability distributions
P (s′|s, a), where s, s′ ∈ S (a world state described in terms of visual properties
and relational features) and a ∈ A (a set of actions). A typical probabilistic
action rule a(x̄) that involves a set of objects x̄ has the form:

∀x̄.Ψ(x̄) ∧ a(x̄) → • p1 Ψ ′1(x̄)
· · · · · ·
pn Ψ ′n(x̄)

(7.12)

where Ψ(x̄) is the state before (antecedent) executing the action, and Ψ ′i(x̄)
is a possible outcome which is associated with a probability pi, subject to a
constraint that

∑
i=0,...,n pi = 1. By default each rule has an empty outcome

(no change) that represents action failure and noise. We say that a rule covers
a state Γ (C) and action a(C) if there exists a substitution σ mapping the
variables in x̄ to C.

In [55], P. Domingos et al. represent actions by probabilistic logic rules,
which correlate (action) outcome states to the action properties specified in
the antecedent. Our probabilistic rules upgrade their logic rules by integrating
information about action processes into the rules, which enables the observer
to make inferences about the kinds of execution styles the agent tends to per-
form, and the situations in which they are likely to succeed. We can restructure
the terms in the antecedent into three groups: deictic references, action
context (AC), and outcome context (OC). Each deictic reference consists
of a variable Vi and restriction ρi which is a set of features that define Vi with
respect to the variables x̄ in the action, as well as to the other Vj such that
j < i. In order to determine that an example is covered by a rule, we must
ensure that these deictic variables can be resolved. Action context consists
of features that condition the decision to act using a. These features impose
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restrictions on the properties of deictic variables; e.g. the types of objects,
their colors and shapes. Outcome context consists of features that may cause
variations in the outcome of the action rule. The following is an example of
an action rule that describes an agent playing a color game. The rule contains
three deictic variables: X (a geometrical shape), A (an agent) and Y (a flag).
It also contains a restriction that X is located at the area R0 (front) of A.
The AC part of the rule contains two features. The first represents the fact
that there is no color variation between X and Y (i.e., they are of similar
color). The second feature contains information that is provided by another
modality (e.g., speech), which states that A is engaged in a color game. The
OC and Outcome parts indicate that the agent pushes X to the front (R0)
of the flag Y with a success rate of 80%.

playColor(X) : {X : shape(X)
A : agent(A), at(X, A.R0)
Y : flag(Y )}

: AC → colorV ariation(X, Y, 0), engageIn(A, colorgame)
: OC → manipulatedWith(X, push)

:
Outcome → 0.8 : at(X, Y.R0)

0.2 : nochange

7.4.3 Inference

Given a set of action rules ri, i ∈ {0, ..., R}, the system can make inferences
about unknown parameters by computing their likelihood from the observa-
tion. For example, in the game scenario, we can make inference about which
game the agent is playing by comparing the likelihood of ri = playColor(X)
and rj = playShape(X).

Computing the likelihood of action rules

For each rule ri, we obtain a set of possible substitutions, each of which maps
the deictic references of the rule to the objects in the scene. For substitution
σs, the rule ri is instantiated by substituting all variables that appear in the
rule according to σs. We then compute the joint probability of the terms in
AC to obtain P (AC) (i.e. the likelihood of the precondition(s) of the rule).
If P (AC) is larger than a threshold δ, we say that the rule can be instanti-
ated with σs. For the instantiated rule, we verify that the agent executes the
action according to the type of manipulation that would lead to the results
specified in Outcome. This is done by matching the observed motion patterns
with the appropriate FMM (factorized HMM). In our case, the manipulation
type and outcome state specified in the OC and Outcome parts of the rule
provide a template for creating this FMM. For playColor(X), an FMM of
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type “push X to Y.RO” is created. At time T , the system can check if the
action rule has been completed, by computing P (Outcome) in the same way
that it computes P (AC). If the agent has not completed the action, we can
compute the likelihood of the rule as P (AC)P (OC), where P (OC) is the like-
lihood of the FMM. The outcome can then be predicted with the likelihood
of P (AC)P (OC) ∗ 0.8.

Computing the likelihood of FMMs

As shown in Fig. 7.10 (a), object manipulation may consist of multiple actions.
Since we only consider goal-based actions, let us represent an action i by
gi ∈ G, where G is the set of m actions known to the observer. To “push
X to Y.RO”, the agent may first reach for the object X (goal-based action
gi), then push it to Y.R0 (gj), and retract the hand (gk). This behaviour is
encoded in a FMM by am×m transition matrix Ω that models the probability
distributions over the transitions between actions. Below, we first discuss the
computation of P (gi

0:t|E0:t), or the likelihood of action i being observed from
time frames 0 to t. We then discuss the computation of the likelihood of action
sequences based on Ω. Let E0:t be {E0, E1, . . . , Et}, where Et = (fh, fo)t. As
described in detail in [53, 56], we compute P (gi

0:t|E0:t) using Eq. 7.13.

P (gi
0:T |E0:T ) = P (gi

0:T )P (E0|o0)

TY
t=1

X
ht=hu∈n(h)

P (Et|ht)P (Et|ot)

P (ot|ot−1ht)P (ht|ot−1, g
i
t)

(7.13)

We characterize action i by the hand maneuver types hu ∈ Hi that are
conditioned on the states of object ov ∈ Oi as illustrated in Fig. 7.10 (b).
In Eq. 7.13, the product of probabilities after

∑
is the likelihood that the

agent is performing action i by executing a maneuver type hu in response to
the observed state of object at time t. Assuming that the state transition is
deterministic, we only combine the likelihood of object state P (Et|ot) with
P (ht|ot−1, g

i
t) and the likelihood of the hand maneuver P (Et|ht). The com-

bined probability is then propagated to the next time frame. The likelihood
of action i therefore gradually increases when the observed hand maneuver
matches the expectation, otherwise it decreases.

For a multi-step manipulation p (fmmp), we characterize the transi-
tion patterns among m actions by a transition matrix Ω, where the el-
ement at row i and column j corresponds to ωij = P (gt = i|gt−1 =
j, et−1 = 1). We can then derive the most likely sequence of actions from
E0:T subject to Ω. This is done by searching for ti, tj , ...tk that maximizes
P (gi

0:tig
j
ti+1:tj ...g

k
tk′+1:T

|E0:ti:tj :...:T , Ω), where gi
0:ti means action i (i.e. gi) oc-

curs from t = 0 to t = ti, and k′ is the action that occurs prior to k. From
Fig. 7.10 (b), this can be computed as follow:
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P (gi
0:tig

j

ti+1:tj ...gk
tk′+1:T

|E0:ti:tj :...:T , Ω) = P (gi
0:ti |E0:ti)P (eti = 1|Eti)ωji

P (gj

ti+1:tj |Eti+1:tj )P (etj = 1|Etj )...ωkk′P (gk
tk′+1:T

|Etk′+1:T )
(7.14)

We compute P (gj
ti+1:tj |Eti+1:tj ) using Eq. 7.13 and P (etj = 1|Etj ) is the

probability of the goal state of gj being true at time tj . The computation
complexity of Eq. 7.14 (for short, we call this P (fmmp)) can be exponential
in time frame T , because ti, tj , .., tk can take any value from 0 to T . In [57],
we present a variant of Viterbi’s algorithm that efficiently computes Eq. 7.14
in linear time. Putting this into the context of action rule recognition, we let
P (OC) = P (fmmp) for the rule that has p specified in the OC part. If the
observed actions match the pattern of fmmp, P (fmmp) will be high, which
increases P (AC)P (OC) accordingly.

7.4.4 Learning

In order to compute Eq. 7.13, we need the models for hand maneuvers
P (hu|E), object states P (ov|E) and the policy for choosing hand maneuvers
P (hu|ov, gi). In [53, 56] we present a supervised learning algorithm for these
models. The user provides a set of segmented training video sequences, from
which fh and fo are computed. Most discriminative features are then selected
and clustered into groups based on a co-occurrence criteria. A classifier for
hu is then learned for each group of hand movement features (and similarly
for ov) based on the Bayes’ assumption that all selected features f are inde-
pendent given hu. Finally, a noisy-OR generative causal network with links
from ov (cause nodes) to hu (evidence nodes) is learned, and P (hu|ov, gi) is
computed from the causal power associated with the links of this network, as
shown in [58].

For a multi-step manipulation p, we need to learn Ω that is associated with
the goal state of each step. In [57], we present an iterative algorithm similar
to the learning algorithm in HMMs for learning Ω from a training data set
Q, where each q ∈ Q contains a single demonstration of behaviour. In HMMs
the probability of a transition from one state to another is learned, whereas
in our case, the probability of a transition from one goal state to another also
depends on the kinds of movements that are associated with the goal states.
In other words, the probability of “push X to Y then retract the hand” is
different from “pick up X and move it to Y then retract the hand”.

7.4.5 Experiments

In this section we present experimental results to test the performance of our
FMM models.

Psychologically realistic modelling of intentional actionsSimilar to our modelling of the correlation between (h, o, g), it has been shown
by psychological experiments that a human infant appears to maintain a rep-
resentation of actions that relate goal states, actions, and situation constraints
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a) Habituation 1 b) Habituation 2 c) Test 1 d) Test 2

Fig. 7.11. The experimental events to test the understanding of goal-directed ac-
tions by one-year old infants.

to one another via the rationality principle. In [59], infants were separated into
two groups. Infants in the first group were habituated to events depicted in
Fig. 7.11 (a) (“jumping over an obstacle”), while those in the second group
were habituated to events depicted in Fig. 7.11 (b) (“jumping over nothing”).
After habituation, they were shown events in Figures 7.11 (c) and (d), and the
looking time was measured. The results have shown that on average the infants
habituated to Fig. 7.11 (a) spent almost 5 seconds longer looking at Fig. 7.11
(c) than Fig. 7.11 (d). In contrast, the infants habituated to Fig. 7.11 (b)
spent equal amount of time (around 1 sec difference) looking at Figures 7.11
(c) and (d). To the infants in the second group, “jumping over nothing” is
quickly associated with the intention of the executor, whereas to the infants
in the first group, the movement contradicts their expectation. In [53, 56], we
have repeated this experiment by training two FMM-based action models to
represent the two groups of infants, and use −log(P (gi|E1:T ) as a measure
of the degree of surprise on observing the test sequence E1:T . Our results
show that by taking into account the correlation between environmental con-
text and hand movements, our action model has common properties with the
action learning in human infants.

Recognition of complex actions

We have validated our complex action recognition approach on three types
of action sequences. In a “putting” sequence, the agent puts a new object
in front of itself. In a “getting” sequence, the agent moves an object that is
already in the scene in front of it. In a “scrubbing” sequence, the agent scrubs
(or pretends to scrub) a surface by pushing and pulling the object. We asked
a user to perform each behaviour five times and use them to learn the transi-
tion matrices described in Section 7.4.4. In each trial, we changed the initial
location of the object and the direction of scrubbing. In order to evaluate the
learned behaviours, we collect two test videos of each behaviour. We segment
actions in the videos, and compute the likelihood of each behaviour using
Eq. 7.14. We compared the most likely behaviour with the ground-truth and
obtained a 83.33% detection rate (i.e., five out of six behaviours are correctly
detected). The failure occurs in one of the “putting” videos, which is caused
by errors in object tracking.
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Based on our probabilistic action rules, we have put these manipulation
patterns in the context of color and shape games (Section 7.4.2). We tested our
inference mechanism by asking a user to play color and shape games five times
each. At the beginning of some trials, we put the left flag to the right and vice
versa, and choose a different colored shape to play with. At the end of the trial,
we compute the log ratio of P (AC)P (Outcome) of the two rules to determine
which game the agent has played. During the trials where P (Outcome) is
low, we compute, at each time frame, the log ratio of P (AC)P (OC) of the
two rules instead. We have obtained 100% accuracy at the end of all trials.
During the trial, the performance has dropped to 78.57% due to tracking noise
and the ambiguity in the detection of motion patterns (e.g., when the hand
pauses). While being less reliable, reasoning about movement provides useful
information for learning about failure.

7.4.6 Conclusion

In this section, we have proposed an integration of factorized hidden Markov
models (FMMs) into probabilistic action rules as a representation of human
behaviours. This integration allows us to reason about motion patterns as
part of understanding about human intentions, as well as to relate functional
concepts of an object to its properties. Our action learning and recognition
system (ALRS) can be embedded into a reasoning apparatus of any intelligent
system that requires information about the behaviour of agents. In the CoSy
project, we embedded ALRS into a robotic system and used it to represent and
reason about object manipulation during a game activity. Such information
is then used by a planner to plan the robot’s actions. We believe that our
probabilistic action rules are also suitable for representing both the robot’s
and the agent’s actions. Having a common representation would allow the
robot to ground the action models to their own actions, and to bootstrap the
models and acquire models that are specific to its configuration.

7.5 Functional object class detection based on learned
affordance cues

In recent years, computer vision has made tremendous progress in the field
of object category detection. Diverse approaches based on local features, such
as simple bag-of-words methods [38] have shown impressive results for the
detection of a variety of different objects. More recently, adding spatial infor-
mation has resulted in a boost in performance [41], and combining different
cues has even further pushed the limits. One of the driving forces behind
object category detection is a widely-adopted collection of publicly available
data sets [60, 61], which is considered an important instrument for measur-
ing and comparing the detection performance of different methods. The basis
for comparison is given by a set of rather abstract, basic level categories [62].
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These categories are grounded in cognitive psychology, and category instances
typically share characteristic visual properties.
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Fig. 7.12. Basic level (left) vs. functional (right) object categories.

In the context of embodied cognitive agents, however, different criteria
for the formation of categories seem more appropriate. Ideally, an embodied,
cognitive agent (an autonomous robot, e.g .), would be capable of categorizing
and detecting objects according to potential uses, and w.r.t. their utility in
performing a certain task. This functional definition of object categories is
related to the notion of affordances pioneered by [63].

Figure 7.12 exemplifies the differentiation between functional and basic
level categories, and highlights the following two key properties: 1) functional
categories may generalize across and beyond basic level categories (both a
mug and a watering-can are handle-graspable, and so is a hammer), and 2)
basic level categories can be recovered as composite functional categories (a
mug is both handle-graspable, sidewall-graspable, and can be poured from).

7.5.1 Related Work

Attempts to detect objects according to functional categories date back to the
early days of computer vision. [64] was among the first to suggest functional
characterizations of objects as consequences of basic geometric properties. [65]
pioneered a body of work on functional categorization of CAD-inspired face-
vertex object descriptions by geometric reasoning, and was later extended by
visual input for recognizing primitive shapes from range images of idealistic
scenes [66]. [67] introduced an explicit mapping between geometric and corre-
sponding functional primitives and relations, again restricted to a small class
of parametric shapes. [68] added force feedback for distinguishing among dif-
ferent tools that afford piercing other objects. Only recently, [69] stepped into
the direction of more realistic settings, recognizing previously unseen, real
world objects, but specifically tailored towards grasp point prediction. The
approach is based on training a logistic regression model on annotated syn-
thetic images, combining 2D filter responses with 3D range data in a dense,
multi-scale image representation.

In [70], we approach the challenge of functional object categorization from
a completely different angle. First, we build our system on robust and well-
established grounds in the field of object recognition, applicable to real-world
images of cluttered scenes. We explore the capabilities of a widely adopted de-
tection framework, based on a suitable geometric local feature representation.



7 Multi-modal Learning 301

Second, we choose to acquire functional category representations by observ-
ing few prototypical human-object interactions rather than explicitly model-
ing physical object properties. Naturally, the set of functional categories that
our local feature-based vision system will be able to represent is restricted
to those that are characterized by distinct visual features. As an example,
consider the bent shape of a mug handle, which suggests to grasp the mug
in a specific way. We call such distinct visual features affordance cues, and
base our system for functional object category detection on the recognition of
these cues. We report first results for the detection of two functional object
categories learned by our system, and demonstrate their generalization ca-
pabilities across and beyond basic level categories. We show that our system
supports the interpretation of these categories as composite functional ones.

7.5.2 Affordance Cue Acquisition

Given an observed human-object interaction featuring a single affordance cue
(a video sequence plus tutor guidance), the purpose of the affordance cue
acquisition sub-system is to obtain a visual feature-based representation of
that cue. It proceeds by first estimating an accurate per-pixel segmentation of
the interaction region (the region where tutor and object pixels overlap during
interaction), and then extracting features in a local neighborhood around that
region. Tutor guidance informs the system about the beginning and the end
of an interaction. Figure 7.5.2 gives an overview of affordance cue acquisition,
which is detailed in the following.
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Fig. 7.13. Affordance cue acquisition overview.

Foreground/Background Segmentation and Skin Labeling

We employ the Background Cut [71] algorithm for foreground/background
segmentation, combining global and local Gaussian mixture color models
with a data-dependent discontinuity penalty in a Conditional Random Field
model [72]. In order to distinguish human tutor and manipulated object,
we apply a likelihood ratio test on all pixels labeled as foreground by fore-
ground/background segmentation. We build the ratio between the likelihood
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of a pixel originating from object color and the corresponding likelihood for
skin color, using a pre-trained skin color model [73]. Figure 7.5.2 includes an
example labeling (black denotes background, white object, and gray skin).

Region Matching

We determine the interaction region as the set of object pixels that has been
occluded by the human tutor in the course of an interaction. We identify those
pixels by choosing two frames from the interaction sequence, i) one during the
interaction, and ii) one after (but with the object still visible). Then, the set
of occluded object pixels is computed as the intersection of all skin-labeled
pixels of frame i) with all object-labeled pixels of frame ii), transformed in
order to equalize object pose differences between the two frames. The trans-
formation is obtained by estimating the homography between frames i) and
ii), using RANSAC. Initial point-to-point correspondences are established by
Robust Nearest-Neighbor Matching of SIFT descriptors [74] on Harris-Laplace
interest points [75].

Feature Extraction

Our representation of affordance cues is based on geometric local features
called k-Adjacent Segments (k-AS) [76], and justified by the results of our
evaluation of local features presented in Section 4.2.2. k-Adjacent Segments
had initially been proposed in the context of shape-matching line drawings
to real images [77]. k-AS detect distinct edge segments in an image, form
groups of k such segments, and then encode their relative geometric layout
in a low dimensional, scale-invariant shape descriptor. In our experiments,
we consistently use k = 2, since 2-AS features have shown a good discrim-
ination/repeatability tradeoff [78]. We augment the groups returned by the
2-AS detector by additional pairs of edge segments according to perceptual
grouping criteria in the spirit of [79].

7.5.3 Functional Object Category Detection

A variant of the Implicit Shape Model (ISM) [80] serves as the basis for our
functional object category detection system. We extend the original model in
order to allow for independent training of several different affordance cues, and
flexible combination for detecting composite functional categories. Figure 7.14
gives an overview of the ISM. Training an ISM for an affordance cue amounts
to matching acquired affordance cue features to a previously built codebook,
and storing the relative position (x, y) and size (scale) of the object w.r.t. the
feature occurrence along with matched codebook entries. For detecting an af-
fordance cue in a previously unseen image, all features in a test image are again
matched to the codebook. For every matched codebook entry, each stored fea-
ture occurrence probabilistically votes for a hypothesized object position in
a generalized three-dimensional Hough voting space (x, y, scale). The modes
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Fig. 7.14. Implicit Shape Model Overview.

of the resulting vote distribution constitute hypotheses on possible affordance
cue positions and scales, enabling edge-level localization by back-projecting
the corresponding features into the image plane (see Figure 7.16).

7.5.4 Experiments

We report qualitative results for the detection performance of our system on
a subset of the ETHZ Shape Classes data set [77], and a series of images from
the PlayMate scenario.

The handle-graspable category.

We begin by giving results for the handle-graspable functional category (rows
(a) to (c) of Figure 7.16), learned from affordance cue features of single images
given in column (1). We observe that the models learned from either of the
three mugs perform comparably well in detecting handle-like structures in
the given test images, despite apparent appearance differences between the
objects used for training and testing, and considerable background clutter.

Row (d) highlights the generalization of a handle-graspable model learned
from mug (1)(c) over other object categories such as coffee pot, vase, and
electric water jug. Image (5)(d) indicates the limitations of our approach.
While the detector mistakenly fires on a circular sign in the background (false
positive), it misses an obvious handle-graspable affordance cue on the white
Thermos bottle (false negative). While the false positive can be explained by
the limited information encoded by the 2-AS features, the false negative may
be attributed to predominant background structures.



304 Skočaj et al.

The sidewall-graspable category.

Rows (e) and (f) of Figure 7.16 show the detection results for a second
category, sidewall-graspable, again learned from single images. In row (e),
a model has been learned from a bottle, and from a mug in row (f). The
sidewall-graspable detector exhibits remarkable performance in the detection
of sidewall-like structures in cluttered images, although it is slightly more sus-
ceptible to false positives than the handle-graspable detector, again due to the
limitations of the employed features (see (e)(5)).

The handle-graspable/sidewall-graspable category.

We now combine both handle-graspable and sidewall-graspable affordance cues
by training two independent ISM models, one for each cue, and joining their
predictions for detection. In fact, the combination of both cues improves the
detection performance of our system (example detections are given in row
(g)). In particular, the sidewall-graspable affordance cue compensates for in-
accuracies in the localization of handle-graspable features. By back-projecting
features, the joint detector is able to to distinguish and accurately localize
both of the two affordance cues, shown in yellow (handle-graspable) and red
(sidewall-graspable).

Grasping.

Figure 7.15 depicts an attempt to grasp a jug at its handle by a robot arm
mounted onto our agent, after the system has acquired the corresponding af-
fordance cue. Although actual grasping fails due to limited visual servoing
capabilities, the agent manages to touch the jug at the correct position. We
applied affordance cue acquisition independently for two cameras of a cali-
brated stereo rig, and obtained 3D coordinates by triangulation.

Michael Stark - TU DarmstadtCoSy Review 2007 6
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Fig. 7.15. Binocular affordance cue acquisition and resulting grasping attempt.

7.6 Conclusion and outlook

In this chapter we have explored several issues related to multi-modal learning
for recognition and interaction of cognitive agent with its environment. In



7 Multi-modal Learning 305

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(1) (2) (3) (4) (5)

Fig. 7.16. Example detections. Each row corresponds to a single experiment, unless
otherwise stated. For each row (a) to (g), columns (2) to (5) give example detections
for a system that has been trained solely on the highlighted affordance cue features
in column (1). Line segments are plotted in yellow, and pairs selected as 2-AS feature
are connected by a blue line. Row (d) continues example detections of row (c), and
row (g) depicts detections from a system trained on affordance cue features (1)(a)
and (1)(f). Back-projected edges from the handle-graspable detector are plotted in
yellow, those from the sidewall-graspable detector in red.
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particular we have focused on (1) representations for different modalities,
(2) levels of supervision in interactive learning, (3) exploitation of different
modalities to improve learning and recognition, and (4) learning in embodied
agent.

In Section 7.2 we have considered the problem of online, open-ended, learn-
ing of visual concepts. The goal was to learn associations between low-level
visual features such as color, shape and spatial relations and the words describ-
ing the scene. Therefore, the developed system associates words, descriptions
of the scene provided by the tutor, with the representations of the low-level
visual features. Four general requirements for an open-ended learning system
were defined and generative models called the online Kernel Density Estimates
were explored in the context of online learning. The learning framework was
embedded into the PlayMate system, within which we have studied different
levels of supervision in tutor-agent learning: tutor driven, tutor supervised and
explorative approach. Not surprisingly, experiments have shown that, with the
tutor-driven learning, the robot achieved an almost perfect recognition score.
However, this came at a cost of tutor’s constant involvement – at each learning
step, the tutor had to describe the visual input (e.g., image with objects) com-
pletely and without errors. In tutor-supervised learning, the robot would ask
for the tutor’s assistance only when it could not recognize the visual input
with sufficient confidence. When unaware of its ignorance, the robot would
often incorrectly recognize the visual data and then incorrectly learn (up-
date its representations) from that. The incorrect updates of representations
would eventually lead to the robot’s reduced confidence about the recogni-
tion/classification of visual data. At that point the robot would start asking
the tutor about the visual data more frequently and the tutor would provide
the correct information through which the robot’s representations would be
corrected. Thus in a tutor-supervised framework, the tutor would act as a
loose feedback control loop for the robot’s learning. While the robot’s recog-
nition ability would decrease a bit in comparison to the tutor-driven learning,
the tutor-supervised learning required significantly less interaction with the
tutor and made the robot more autonomous in two ways: in the initiative to
learn as well as in the initiative to engage verbal communication with the tutor
when asking for clarification of the observed scene. The explorative approach,
which did not involve any interaction with the tutor, produced the poorest re-
sults. This clearly indicates a trade-off between the quality of the results and
the autonomy of the system – a learning autonomous system which knows
too little and passively observes the environment, is likely to correctly learn
only little or nothing. These results indicate a need for the system’s ability to
introspect, be more aware of its ignorance and plan ways to interact with the
environment as a prerequisite for more efficient and exploratory learning.

A combination of supervised and unsupervised learning was also explored
in Section 7.3 where a tutor-driven approach to cross-modal learning was
treated probabilistically. Visual categories were encoded through a scale-
invariant object representation called Scale-Invariant Patterns (SIPs). This
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representation allowed a coherent handling of labelled as well as unlabelled
information. An important feature of SIPs is that they provide an embedding
of visual patterns and objects into a vector space that facilitates clustering
and recognition in an effective manner, which accounts for some of the gen-
eral requirements for the open-ended learning system, which were defined in
Section 7.2. The spatial relations (”left of”, ”right of”, ”below”, ”above”) be-
tween objects were encoded a priori using triangular distributions which were
modelled using Kernel-Density Estimates. We then considered a problem of
learning an object category models from many unlabelled observations and
a small number of dialogue interactions with the tutor. We allowed the in-
formation provided by the tutor to be at least ambiguous or even erroneous.
Experiments have shown that the robot was able to generate meaningful gen-
eralizations across objects already from a few dialogue interactions. Since the
process of learning was posed probabilistically, the uncertainty about cate-
gories was contained within distributions. During learning, the robot was thus
able to propagate information, resolve ambiguities as well as recover from the
errors. These results substantiate the findings about the tutor-driven learning
discussed in Section 7.2.

Sections 7.2 and 7.3 indicate that for successful learning, constant tutor
involvement is not required, however, the robot does require means of active
interaction with the tutor or the environment to resolve ambiguities and to
recover from errors. Since a natural way for the tutor to communicate with
the robot is through actions (e.g., moving a hand and pointing to the objects,
pushing objects), the robot does not only have to detect motion patterns, but
has also be able to put them in the context of understanding human inten-
tion. This issue was addressed in Section 7.4, where learning of human actions
and activities was studied in the context of tutor-driven learning. Intentional
actions were presented by modelling the causal relations between the hand
motion, object states, and the effects of actions, which were presented using
factorized hidden Markov models. The particular representations, the prob-
abilistic action rules, allowed the robot to reason about motion patterns as
part of understanding about human intentions, as well as to relate functional
concepts of an object to its properties. The developed action learning and
recognition system was used within the PlayMate scenario to represent and
reason about object manipulation during a human-computer interaction. The
action recognition approach was validated on several action sequences. It has
been shown, by reproducing a key result from the literature on action learn-
ing in children, that the proposed representation has properties that at least
on some level of abstraction resemble action learning in humans. We believe
that the developed probabilistic action rules are also suitable for representing
both the robot’s and the agent’s actions. An attractive property of having a
common representation would allow the robot to ground the action models
to its own actions, and to bootstrap the models and acquire models that are
specific to its embodiment.
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A multi-modal learning in the context of embodied cognitive agent was
addressed in Section 7.5. Ideally, an embodied, cognitive agent (e.g., an au-
tonomous robot), would be capable of categorizing and detecting objects ac-
cording to potential uses, and w.r.t. their utility in performing a certain task.
In Section 7.5 we have therefore addressed learning of functional object cate-
gories from the perspective of state-of-the-art object detection. The functional
category representations were acquired by observing prototypical interactions
of a human with an object. In contrast to Section 7.4, where the aim was
to translate the visual motion patterns into intentional actions, here the goal
of observing an interaction was to characterize distinct visual features which
determine a functional category of an object. For example, a human would
grasp a mug by the handle, which would suggest that the bent shape of the
handle characterizes the mug’s functional category. Such distinct visual fea-
tures are termed affordance cues, and the functional object category detection
is thus based on the recognition of these cues. The detection system was built
on robust and well established techniques of object recognition, applicable to
real-world images of cluttered scenes. We have explored the capabilities of
a widely adopted detection framework, based on a suitable geometric local
feature representation. The functional object category detection was based on
the Implicit Shape Model, which was extended to allow for independent train-
ing of several different affordance cues, and flexible combination for detecting
composite functional categories. A result was an approach for tutor-driven ac-
quisition, learning, and recognition of affordance cues in real-world, cluttered
images. The approach was successfully applied to the task of functional-object
detection from a cluttered scene. Clearly, the currently explored methodology
is limited by the 2D nature of the used local features, however, it demonstrated
another view of cross-modal learning thorough tutor interaction.

To summarize, in this chapter we have addressed several issues related to
cross-modal learning, including the extent of tutor’s involvement, relations
between human actions and intentions, and the problem of online open-ended
learning. In our quest to study these problems we have proposed different
solutions, whose strength we have substantiated with extensive experiments.
However, several open questions still remain. One is the scalability of the
approaches—how to structure the complexity of the concepts? Is there a nat-
ural hierarchy of concepts that can lead to an increasing number of layered
abstractions and sophistication? At which levels should different modalities
interact and form associations? How to apply the proposed learning strategies
to such representations? Can we improve the robustness of learning through
combination of reconstructive and discriminative models of representation?
An important research issue is also the question how can an artificial cogni-
tive system perform introspection and detection of ignorance, which would
subsequently lead to planning and execution of new actions that would help
the system to gather information to fill these knowledge gaps. However, such
capabilities, which represent a necessary prerequisite for more efficient ex-
ploratory learning, possibly with a minimal supervision of a human tutor, can
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only be researched, explored, and tested within an integrated artificial cogni-
tive system for which the CoSy project provided an essential initial theoretical
and experimental substrate.
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34. D. Skočaj, M. Kristan, A. Leonardis, Continuous learning of simple visual con-
cepts using incremental kernel density estimation, in: International Conference
on Computer Vision Theory and Applications, Funchal, Madeira, Portugal,
2008, pp. 598–604.
URL http://cognitivesystems.org/CoSyBook/chap7.asp#skocajVISAPP08

http://cognitivesystems.org/CoSyBook/chap7.asp#kristanCVWW08
http://cognitivesystems.org/CoSyBook/chap7.asp#kristanCVWW08
http://cognitivesystems.org/CoSyBook/chap7.asp#kristanCVWW08
http://cognitivesystems.org/CoSyBook/chap7.asp#skocajICVS07
http://cognitivesystems.org/CoSyBook/chap7.asp#skocajICVS07
http://cognitivesystems.org/CoSyBook/chap7.asp#skocajCVWW07
http://cognitivesystems.org/CoSyBook/chap7.asp#skocajCVWW07
http://cognitivesystems.org/CoSyBook/chap7.asp#skocajCVWW07
http://cognitivesystems.org/CoSyBook/chap7.asp#skocajVISAPP08
http://cognitivesystems.org/CoSyBook/chap7.asp#skocajVISAPP08
http://cognitivesystems.org/CoSyBook/chap7.asp#skocajVISAPP08


7 Multi-modal Learning 311

35. D. Lowe, Object recognition from local scale invariant features, in: ICCV’99,
1999.

36. K. Mikolajczyk, C. Schmid, A performance evaluation of local descriptors, in:
CVPR’03, 2003.

37. K. Mikolajczyk, B. Leibe, B. Schiele, Local features for object class recognition,
in: ICCV’05, Beijing, China, 2005.

38. G. Csurka, C. Dance, L. Fan, J. Willarnowski, C. Bray, Visual categorization
with bags of keypoints, in: SLCV, 2004.

39. B. Leibe, E. Seemann, B. Schiele, Pedestrian detection in crowded scenes, in:
CVPR’05, San Diego, CA, USA, 2005.

40. J. Sivic, B. C. Russell, A. A. Efros, A. Zisserman, W. T. Freeman, Discovering
objects and their locations in images, in: ICCV’05, Beijing, China, 2005.

41. S. Lazebnik, C. Schmid, J. Ponce, Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories, in: CVPR’06, 2006, pp. 2169–
2178.

42. A. Agarwal, B. Triggs, Hyperfeatures - multilevel local coding for visual recog-
nition, in: ECCV’06, Springer, 2006.

43. M. Fritz, B. Schiele, Towards unsupervised discovery of visual categories, in:
DAGM’06, Berlin, Germany, 2006.

44. K. Grauman, T. Darrell, Unsupervised learning of categories from sets of par-
tially matching image features, in: CVPR’06, IEEE Computer Society, Wash-
ington, DC, USA, 2006, pp. 19–25.

45. J. Baldridge, G.-J. M. Kruijff, Multi-modal combinatory categorial grammar,
in: EACL ’03, Morristown, NJ, USA, 2003.

46. J. Baldridge, G.-J. M. Kruijff, Coupling ccg and hybrid logic dependency se-
mantics, in: ACL ’02, Morristown, NJ, USA, 2001.

47. D. Roy, Learning words and syntax for a scene description task, Computer
Speech and Language 16 (3).

48. G.-J. M. Kruijff, J. D. Kelleher, G. Berginc, A. Leonardis, Structural descrip-
tions in Human-Assisted robot visual learning, in: Proceedings of 1st Annual
Conference on Human-Robot Interaction, 2006.

49. G.-J. M. Kruijff, J. D. Kelleher, N. Hawes, Information fusion for visual reference
resolution in dynamic situated dialogue, in: PIT 2006, Kloster Irsee, Germany,
2006.

50. J. Kelleher, G.-J. Kruijff, F. Costello, Proximity in context: an empirically
grounded computational model of proximity for processing topological spatial
expression, in: Coling-ACL ’06, Sydney Australia, 2006.

51. M. Brand, N. Oliver, A. Pentland, Coupled hidden markov models for com-
plex action recognition, in: IEEE Proceedings of Computer Vision and Pattern
Recognition, Puerto Rico, USA, 1997.

52. C. Wren, A. Pentland, Dynamic modeling of human motion, in: Proceedings
of the Third IEEE International Conference on Automatic Face and Gesture
Recognition, Nara, Japan, 1998.

53. S. Hongeng, J. Wyatt, Learning causality and intention in human actions,
in: Proceedings of IEEE-RAS International Conference on Humanoid Robots,
Genoa, France, 2006.
URL http://cognitivesystems.org/CoSyBook/chap7.asp#hong06

54. R. S. Sutton, A. G. Barto, Reinforcement learning : An introduction, MIT Press,
Cambridge, Massachusetts, 1998.

http://cognitivesystems.org/CoSyBook/chap7.asp#hong06
http://cognitivesystems.org/CoSyBook/chap7.asp#hong06
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8.1 Introduction

In CoSy, our robots were to be able to interact with human. These interactions
served to help the robot learn more about its environment, or to plan and carry
out actions. For a robot to make sense of such dialogues, it needs to understand
how a dialogue can relate to, and refer to, “the world” – local visuo-spatial
scenes, as in the Playmate scenario (9), or the spatial organization of an indoor
environment in the Explorer scenario (10).

This is not a trivial problem. Language presents a powerful system to
express meaning. Also, perception provides a cognitive system with rich ex-
periences of the world. The fundamental problem for (situated) dialogue pro-
cessing is how to relate linguistically expressed meanings to these experiences.
If we look at this problem from the viewpoint of dialogue as a means of com-
munication, then we can pose first of all the following two requirements. Any
solution needs to be efficient, to allow a cognitive system to respond in a
timely fashion, and effective, so that the system arrives at those meanings
which are indeed likely to be correct in the given ”context.”

But, as a communication channel, or rather an information channel, spo-
ken dialogue poses further requirements than just efficiency and effectiveness.
Spoken input is typically noisy, with utterances in a spoken dialogue often
being incomplete, or grammatically incorrect. We may only be able to con-
struct partial representations of a meaning for an utterance. Furthermore,
if we consider meaning to be about something, i.e. about a ”referent” in a
dialogue- or situated context, then this partiality goes beyond the boundary
of a single utterance as meaning in a dialogue is typically contributed to such
a referent over several utterances. A solution to modeling meaning in situ-
ated dialogue thus needs to allow for a gradual resolution and construction of
meaning representations, (with the possibility to ”postpone” the resolution
of ambiguities), and provide for meaning to persist over utterances, i.e. over
the course of a dialogue. Finally, these requirements are based on a view of
meaning being referential to a context, i.e. a dialogue context and a situated
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context. Meaning representations will need to indicate, and represent, this
referentiality : how they purport to refer, and to what.

There exist several approaches to deal with each one, or several, of these
issues. Roy & Reiter present a comprehensive overview of existing approaches
to relating language and the world (up to 2005) in [1], and identify several
important issues very similar to the requirements we raised above. One of the
earliest systems which connected built utterance analyses to a visual world
was Winograd’s SHRDLU [2]. SHRDLU built linguistic analyses in an incre-
mental, “left-to-right” fashion, and connected those to visuo-spatial represen-
tations of local scenes to help prune analyses. Among more recent approaches,
the most developed are those by Gorniak & Roy, and Steels et al. Gorniak &
Roy [3, 4] present an approach in which utterance meaning is probabilistically
mapped to visual and spatial aspects of objects in the current scene. Recently,
they have extended their approach to include action-affordances [5]. Their fo-
cus has primarily been on the aspect of how to relate language and information
about the world, just like SHRDLU and the work by Steels et al [6, 7, 8].
The latter have developed an approach where the connection between word
meaning and percepts is modeled as a semiotic network, in which abstract
categories mediate between language and the visual world. Although many
of these approaches use some form of incremental processing to gradually
construct utterance meaning, connecting meanings to the social and physi-
cal context as they are construed, the (im)possibility to connect alternative
meanings does not feed back into the incremental process to prune inviable
analyses. This is where Scheutz et al [9, 10] take matters a step further. They
present an approach for incremental utterance processing in which the analy-
ses are referentially interpreted, and pruned if it is impossible to connect them
in the situated contexts referred to.

The approach we describe in this chapter primarily advances on the above
by addressing the requirements we raised earlier in a systematically integrated
fashion. We postulate bi-directionality hypothesis, a close coupling between
how a cognitive system processes situated dialogue, and how it processes and
represents experiences associated with a situated context to which dialogue
refers. The purpose of this coupling is for these different modalities to inter-
change and interconnect information, to help guide processing. (Such a close
coupling is inspired by how humans appear to process visually situated dia-
logue, see e.g. [11, 12, 13, 14].) More specifically, based on this hypothesis we
address the requirements as follows.

Gradual construction Utterance meanings are constructed incrementally,
using Combinatory Categorial Grammar [15, 16]. Meaning is represented
as an ontologically richly sorted, relational structure (using a decidable
fragment of modal logic, [17, 18, 19, 20]). The ontological sorting is used
as a mediating basis for binding linguistic content to content in other
modalities, including visuo-spatial scenes, spatial maps, and actions ([21,
22, 23] and Chapters 2 and 7). In comparison to approaches as mentioned
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above we thus extend category-based mediation (the ”what” dimension)
with a spatio-temporal dimension of interpretation (the ”where/when”
and ”how”) covering several levels of spatial organization. In our approach
we are not restricted only to visuo-spatial information about the currently
perceivable scene.

Referentiality The propositional meaning of an utterance is complemented
with information on how that meaning is presented as referring to a
larger context. Such referentiality is established directly, based on forms of
anaphoric or deictic references, or more indirectly using a basic form of in-
formation structure (see Section 8.4). Structured discourse representation
models [24] are used to model dialogue context, and represent referential-
ity. These models are complemented with a temporal representation of
how referred-to events can be related ([25, 23], Chapter 6). Dedicated al-
gorithms are used to resolve linguistic references to situated contexts such
as visuo-spatial scenes (collection of visuo-spatial information on Binding
working memory, [26]) and large-scale spatial organization [27] (subset of
relevant locations in a map, see Section 8.5).

Persistence The dialogue context model provides a persistent basis for main-
taining how linguistic content has been resolved to content in a situated
context. Structures relating different linguistic references to a specific ref-
erent can be combined to determine how information about that referent
has been communicated over the course of a dialogue (see e.g. [28], and
Chapter 7 for use in visual learning).

Efficiency & Effectiveness Based on information about the current situ-
ated context (whether local, or at a larger scale, cf. also Section 8.5), and
the current dialogue context, incremental comprehension of spoken utter-
ances can prune unlikely word- and meaning-hypotheses. (In comparison,
Scheutz et al only guide parsing.) The result is a combined performance
of speech recognition and parsing of close to 90% correct interpretations
of free speech on our domains (against a base-line performance of 68%).

Bi-directionality has a fundamental impact on how we conceive of lin-
guistic meaning and its processing. Linguistic meaning arises as a reflection
of how a cognitive system experiences, and structures its knowledge of, the
world [29, 30]. Processing meaning is based on a continuous interchange of
information between functions involved in computing aspects of meaning, be
those functions related to experience or dialogue. The resulting view on mod-
ularity implies dialogue processing to be more like a “permeable glass box”
than the traditional “black box.” Interconnectivity is based on a model akin
to pass-by-reference, to allow different functions to keep track of how content
changes over time. Adopting this hypothesis, we show in this chapter how
integration with information about situated contexts helps us to achieve bet-
ter robust processing of spoken, situated dialogue processing on the Playmate
and Explorer domains than if no situated information would have been used.
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An overview of the chapter is as follows. In Section 8.2 we briefly discuss
observations that have been made on how humans appear to process situ-
ated dialogue. These observations have in part inspired the functionality we
consider in our approach. Then, Section 8.3 we first discuss the basics for con-
textualized language processing, showing how bi-directionality influences first
of all the design of the processes and representations we adopt. We continue in
Section 8.4 with looking into dialogues about what the robot can see, connect-
ing dialogue meaning with an understanding of local visuo-spatial scenes. We
discuss how we can talk about those scenes, for example when a human tries
to teach the robot more about the objects it sees, and how bi-directionality
helps focusing speech recognition, utterance analysis, reference resolution, and
producing references to objects. The Explorer scenario provides us with a set-
ting in which we go beyond the current scene, often discussing places we can
visit, or where we can find objects in the world. Important is that we do not
need to be in those places to discuss them. In Section 8.5 we present how
we can go beyond the current situated context, and use information about
the larger world around the robot to talk about other places. One interesting
challenge bi-directionality helps addressing is in resolving and producing ref-
erences to such places. Finally, in Section 8.6 we take meaning beyond having
mostly a referential, indexical nature. We look into how particularly speech
acts like questions and commands express intentionality , and how we canintentionality

relate that to processes for motivation and planning. Bi-directionality enters
the dialogue processing picture again by indicating which potential utterance
interpretations correspond to possible plans, and which ones do not.

8.2 Background

Language provides us with virtually unlimited ways in which we can com-
municate meaning. This, of course, raises the question of how precisely we
can then understand an utterance as we hear it. Empirical studies in vari-
ous branches of psycholinguistics and cognitive neuroscience have investigated
what information listeners use when trying to understand spoken utterances
which are about visual scenes. An important observation across these stud-
ies is that interpretation in context plays a crucial role in the comprehension
of utterance as it unfolds [11]. Following [13] we can identify two important
dimensions of the interaction between the purely linguistic, dialogue context,
and the situated context. One is the temporal dimension. The ways our vi-
sual attention are guided appear to be timed closely with how we proceed
with understanding an utterance. In empirical studies we can witness this by
for example eye movements. The second is the information dimension. This
indicates that listeners not only use linguistic information during utterance
comprehension, but also scene understanding and ”world knowledge.” Below
we discuss aspects of these dimensions in more detail.
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8.2.1 Multi-level integration in language processing

Until the early 1990s, an often-adopted model of language comprehension was
that of a modular, stage-like process. On this model, a language user would
sequentially construct each level of linguistic comprehension – from auditory
recognition all the way to pragmatic, discourse-level interpretation. As [31] ob-
serve, two hypotheses followed from this view. One hypothesis is that people
first construct a local, context-independent representation of the communi-
cated meaning. Only once this meaning has been completely constructed, it
is interpreted against the preceding dialogue context (if any). Secondly, and
related, is the hypothesis that dialogue context-related processing only enters
the process of language comprehension at a relatively late stage.

Opposing these hypotheses is the view that language comprehension is
an incremental process. In such a process, each level of linguistic analysis is
performed in parallel. Every new word is related to representations of the pre-
ceding input, across several levels – with the possibility for using the interpre-
tation of a word at one level to co-constrain its interpretation at other levels.
(This may result in ambiguities to be resolved only at a later point.) A natural
prediction that follows from this view is that interpretation against dialogue
context can in principle affect utterance comprehension as the utterance is
incrementally analyzed, assisting in restricting the potential for grammatical
forms of ambiguity. [32, 11] phrased this as a principle of parsimony : those
grammatical analyses are selected that for their reference resolution impose
the least presuppositional requirements on a dialogue context.

Since then, various studies have investigated further possible effects of di-
alogue context during utterance comprehension. Methodologically, psycholin-
guistic studies have primarily investigated the effects of dialogue context by
measuring saccadic eye movements in a visual scene, based on the hypothesis
that eye movements can be used as indications of underlying cognitive pro-
cesses [33, 34]. Alternatively, cognitive neuroscience-based studies use event-
related brain potentials (ERPs) to measure the nature and time course of the
effects of dialogue context on human sentence comprehension [35].

Both lines of study have found that lexical, semantic and discourse-level in-
tegrative effects occur in a closely time-locked fashion, starting already at the
phoneme or sub-word level; see [36], and [37, 31, 38]. Particularly, a range of
dialogue-level integrative effects have observed. Referential binding has been
shown to play a role in the constraining various types of local syntactic ambi-
guities, like garden path-constructions [32, 11, 39], and relative clauses [40, 41];
[42, 37, 31]. These effects primarily concern a disambiguation of already built
structures. Integrating semantic and dialogue-level information during utter-
ance comprehension also has important anticipatory effects. [43, 44]; [45] ob-
serve how contextual information influences what lexical meanings can be an-
ticipated, priming phonological understanding and lexical access. Contextual
information can even override disprefered lexical meaning [46].
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Anticipatory effects indicate that utterance comprehension is thus not only
an incremental process of constructing and then disambiguating. Anticipa-
tion enables context-dependent phonological recognition, lexical retrieval, and
syntactic construction - without there being a need to generate and test all
combinatory possible constructions. Incrementality and anticipation based on
multi-level integration appears to give rise to a process in which comprehen-
sion arises through a convergence based on constraining and co-activation.
Dialogue context and the interpretative contexts which are delineated during
utterance comprehension converge to become functionally identical [31]. As a
result, ambiguity need not even arise, or is at least being much more limited
a priori through context.

An important issue in all of the above remains of course the degree to
which integrative effects indeed should commit to a certain understanding.
Garden path sentences are a good example. They show that overcommitment
risks the need for re-interpretation – an issue for cognitive control [47, 48, 49].

8.2.2 Language processing and situational experience

We already noted before that humans integrate linguistic and non-linguistic
information when processing an utterance. Below we discuss studies which
investigate how categorical and contextual information from situation aware-
ness can effect utterance comprehension. These studies use eye-trackers to
monitor where people look at in a scene, and when.

[50] present a study revealing that listeners focus their attention on objects
before these objects are referred to in the utterance. For example, consider
a scene with a cat, a mouse, and a piece of cheese. When someone hears
”The cat chases the mouse”, her gaze already moves to the mouse in the
scene before she has actually heard that word; similarly for ”The mouse eats
the cheese.” Knowing that cats typically chase mice (not cheese), and that
the argument structure of chase reflects this, the listener expects that the
next object to be mentioned will be the mouse, and directs gaze to that
object. We thus see an anticipatory effect arising from the online integration of
lexico-semantic information (verbal argument structure), situational context
(the present objects, and the reported action), and categorical knowledge
(prototypical object-action relations).

Not only world knowledge can influence online utterance comprehension,
also scene understanding can. For example, consider the situation in Fig-
ure 8.1. [33] show that, once the listener has heard ”Put the apple on the
towel ...” she faces the ambiguity of whether to put the (lone) apple onto the
(empty) towel, or to take the apple that is on the towel and put it somewhere
else. The ambiguity is revealed as visual search in the scene. Only once she
has heard the continuation ”... into the box” this ambiguity can be resolved.
Interestingly, in [33] the listener cannot directly manipulate the objects. If this
is possible (cf. Figure 8.1), [51] show that also reachability plays a role in com-
prehending the utterance. Because only one apple is reachable, this is taken
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Fig. 8.1. Put, apple, towel, box

as the preferred referent, and as such receives the attention. This underlines
the effect physical embodiment may have on language comprehension.

Scene understanding also concerns the temporal projection towards pos-
sible future events [52]. [12, 53] show how such projection can also affect
utterance comprehension. These studies used a scene with a table, and beside
it a glass and a bottle of wine. Investigated was where listeners look when
they hear ”The woman will put the glass on the table. Then, she will pick up
the wine, and pour it carefully into the glass.” It turns out that after hearing
the ”pouring” phrase, listeners look at the table, not the glass. Listeners thus
explicitly project the result of the picking action into the scene, imagining the
scene in which the glass is on the table.

These studies reveal that the interaction between vision and language is
not direct, but mediated [12]. Categorical understanding plays an important
role in the sensorimotoric grounding of language. This is further underlined by
studies like [54, 55], following up on the idea of category systems as mediat-
ing between perceptual modalities and language [56, 57]. These studies show
how categorical understanding gives rise to expectations based on affordances,
influencing comprehension of spatial or temporal aspects of action verbs.

In conversational dialogue [14, 58] gaze has been shown to be automatically
aligned in simple collaborative interaction. The time intervals between eye-
fixations during production and comprehension of a referring expression are
shorter than in monologue. This is further evidence for the relevance of visual
common ground of interlocutors and how that accelerates the activation of
jointly relevant concepts.

8.3 Talking

What does it take to make a robot talk? Specifically, what does it take to
make a robot process situated dialogue?

In the context of CoSy, for a robot to talk it first of all needs to be able to
process a speech signal, turning it into (possible) sequences of words. Then,
turn those words into utterances, and assign a meaning representation to
them. Depending on the referential status of content in these meaning repre-
sentations, links are made to a model of the preceding dialogue, so that it can
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be established how meaning refers to things that were already said before (if
at all), and how it moves the dialogue along.

That’s one part – listening, comprehending utterances against a model
of the dialogue context, and updating that context model as the dialogue
continues. The other part is the talking part. Based on how the dialogue has
developed so far, the robot should decide how to continue. Then, following
up on this decision, it should see how to formulate the utterances to achieve
that ”goal”, and formulate them such that they refer to the situations in a
contextually appropriate way. It should be clear to the listener what the robot
is referring to, talking about. And once the robot has said what it decided to
say, it should of course again update the model of the dialogue context.

In this section we would like to focus on the comprehension side, and
sketch how the production side is structured. We would like to start simple
here, explaining the basics behind the approach we take to making robots
talk. Explain the design decisions as they result from the bi-directionality
hypothesis, why we do the things the way we propose to do them. Come
the next sections, we will delve into more detail, or where necessary provide
references to more technical discussions.

Adopting the bi-directionality hypothesis poses requirements both on how
we design our processes, and our representations.

We consider the processes involved in comprehending situated dialogue to
be ”permeable glass boxes.” While processing, it should be possible to take
partial results, connect them with information from other processes, and then
use the results to guide how to continue processing. One way to design such
processes so is to make them incremental. In incremental processing , a pro-incremental processing

cess proceeds from the ”beginning” towards the ”end” of a representation it
is to process, in a step-wise fashion. After each step, bi-directionality can be
used to guide how to take the next step. Because linguistic representations
are typically sequential, we can process them incrementally. Much of the ben-
efits of bi-directionality consist therein that they can help processes focus on
sensible analyses, discarding those which are not supported by the context.

Each process typically maintains several concurrent hypotheses. Particu-
larly if we look at things from an efficiency point of view, there are several
requirements bi-directionality raises for the nature of representations. First
of all, we are looking at dialogue, a context in which interpretations develop
over time. Utterances refer to the preceding context, adding to or correcting
previous information. Connecting information across processes can be more
efficient if these relations are clear. It identifies a history of what previously
was already interconnected. The way we will address this requirement is by
using discourse referents as permanent hooks to relate information to, bothdiscourse referents

at utterance- and at dialogue-level.
Secondly, even though a process may maintain multiple hypotheses, this

does not imply that they need not share certain similarities in how they in-
terpret something. Representations should identify how alternative analyses
are different, and where there are similarities, so that we can avoid having to
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check each hypothesis individually. We will address this requirement by pack-
ing multiple hypotheses into a single, possibly underspecified graph structure, packing

and determining preference orders over alternatives. preference orders

Below we will explain these processes and representations in more detail.
We start with representations, to make it clear what we are working with,
and towards.

Representing an utterance

Loosely speaking, a dialogue is an exchange of utterances between two or dialogue

more ”interlocutors.” Usually, this exchange serves a particular purpose. In the
context of human-robot interaction, that purpose usually relates to performing
tasks in the real-world.

The thing is, whereas sentences in a text are usually complete, and gram-
matically well-formed, this need not be the case with utterances in spoken
dialogue. Utterances are often incomplete or grammatically incorrect, and
may include self-corrections. ”Take the red uh ... no put that green one next
to the ... you know, yes, the pyramid.” This of course raises the question,
what we should consider an utterance to be. utterance

Most dialogue systems (still) consider an utterance to be like a sentence,
and have a definable beginning and end. We adopt a more flexible notion than
that. What we ultimately consider to be an utterance, depends on the context
in which linguistically conveyed content is being used. As far as processing
within our system is concerned, an utterance is a stream. There are marked
points at which it can be further interpreted, either within the dialogue system
or beyond it. At such ”points,” the representation of the utterance provides
enough meaning to start off further forms of processing. Each further inter-
pretation modality is thus free in considering when it works with meaning,
and thus –ultimately– what it considers an ”utterance” to be.

Which brings us to how we represent meaning. We represent meaning as
an ontologically richly sorted, relational structure – a logical form [18, 20] in logical form

a decidable fragment of modal logic [17, 19]. The following is an example of a
logical form:
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@w1 :cognition(want ∧ 〈Mood〉 ind ∧ 〈Tense〉 pres ∧
〈Actor〉 (i1 : person ∧ I ∧ 〈Num〉 sg) ∧
〈Event〉 (p1 : action−motion ∧ put ∧

〈Actor〉 y1 : person ∧
〈Patient〉 (m1 : thing ∧ mug ∧

〈Delimitation〉 unique ∧ 〈Num〉 sg ∧ 〈Quantification〉 specific ∧
〈Modifier〉 (r1 : q− color ∧ red)) ∧

〈Result〉 (t1 : m− whereto ∧ to ∧
〈Anchor〉 (r2 : e− region ∧ right ∧
〈Delimitation〉 unique ∧
〈Num〉 sg ∧
〈Quantification〉 specific ∧
〈Owner〉 (b1 : thing ∧ ball ∧
〈Delimitation〉 unique ∧ 〈Num〉 sg ∧ 〈Quantification〉 specific)))) ∧

〈Patient〉 (y1 : person ∧ you ∧ 〈Num〉 sg) ∧
〈Subject〉 i1 : person)

Each node has a unique identifier with an associated ontological sort (e.g.
p1 : action −motion means that the handle p1 is of sort action −motion),
and a proposition (e.g. put for p1). Nodes are connected through named
relations. These indicate how the content of a single node contributes to the
meaning of the whole expression. For example, ”you” (y1) both indicates the
one whom something is wanted of (Patient-relation from w1), and the one who
is to perform the put action (Actor-relation from p1). Nodes carry additional
features, e.g. i1 identifies a singular person.

Propositions and relations in such a representation are instances of con-
cepts. This makes it possible for us to interpret logical forms further using
ontological reasoning. We use this possibility in reference resolution, and in
relating meaning representations to interpretations formed outside the dia-
logue system.

The relational nature of our representations provides us with several conse-
quences. We build up our representations from elementary propositions as we
illustrated above – sorted identifiers and propositions, features, and relations.
An interpretation is thus simply a conjunction of such elementary proposi-
tions, and the more we can connect those elementary propositions, the more
complete our interpretation becomes. This makes it relatively straightforward
to represent partial interpretations. For example, for ”take the red ...” receives
the following interpretation:
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@t1 :action−motion(take ∧ 〈Mood〉 imp ∧ 〈Tense〉 pres ∧
〈Actor〉(a1 : entity ∧ addressee) ∧
〈Patient〉 (m1 : thing ∧

〈Delimitation〉 unique ∧ 〈Num〉 sg ∧ 〈Quantification〉 specific ∧
〈Modifier〉 (r1 : q− color ∧ red))

〈Subject〉 a1 : entity)

The interpretation shows more than just the content for the three words.
It also shows that ”red” is expected to be the color of the ”thing” which is
supposed to be taken.

Characteristic for language is that it presents many ways in which we can
say things – and interpret them. This inevitably means that we will usually
get not just one, but multiple alternative interpretations for an utterance.
To keep ambiguity to a minimum, we should look at to what extent these
interpretations are indeed different. Where they show overlaps, we should
ideally have to deal with those identical parts only once.

Using relational structure and elementary propositions enables us to do
so. We represent alternative interpretations as alternative ways in which we
can connect content, whereas identical content across interpretations is rep-
resented once. The procedure to create such ”condensed” representations is
called packing , after [59, 60]. Figure 8.2 illustrates the development of the packing

packed packed representation for ”here is the ball”. At the first step (”take”),
9 logical forms are packed together, with two alternative roots, and several
possible ontological sorts for the word “here”. The second step reduces the
number of alternative interpretations to one single logical form, rooted on the
verb “be” with a “presentational” ontological sort. The possible meanings for
the determiner is expressed at the dependent node of the “Presented” relation.
At this point we have an overspecified meaning. Although the delimination is
unique, we cannot tell at this point whether we are dealing with a singular
object, or a non-singular (i.e. plural) object – all we know it has to be one or
the other. This becomes determined in the fourth step (”here is the ball”).

In the appendix to this chapter we present a detailed technical discussion
of packing.

Representing the interpretation of an utterance in context

The meaning of an utterance goes well beyond what is expressed just by
the individual words that make it up. Meaning is about how the utterance
relates to the context – the situation (indexically) and to the actions (to be)
performed therein (intentionally). How it can be taken to refer to things we
already talked about, to beliefs we have, to expectations which may be raised
on the basis of what we are saying. How the utterance helps us to further the
dialogue, helping to reach a goal – or not.

Referent resolution is the first step we take to relate content from the cur-
rent utterance, to that of previous utterances in the dialogue context. The
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purpose here is to establish co-reference relations: relations between mentions
referring to the same object(s) or event(s). Examples of references to previ-
ous objects are pronouns (e.g. ”it”), or anaphoric expressions (e.g. ”the red
mug”). We are using a (simple) algorithm based on referent resolution in the
segmented dialogue representation theory of [24].

For each index in a logical form, the algorithm determines potential an-
tecedents in the preceding dialogue, using the model of the dialogue context
the system maintains. There are two simple cases. One, we may be talking
about a something new. We then create a new (unique) referent identifier, say
antn, and represent this as a reference structure [NEW : {antn}]. Two, there
is a unique antecedent referent anti. We represent this as [OLD : {anti}],
meaning there is a ”discourse old” antecedent anti. In both cases we relate
the index in the logical form (which only has naming uniqueness within the
scope of the logical form) to the built structure.

Complications arise if a reference cannot be ambiguously resolved. A good
example of such a situation arises when resolving deictic pronouns like ”this”.
How a deictic pronoun needs to be resolved, depends on the dialogue- and
the situated context. If the utterance is not accompanied by a gesture, the
preference is to resolve the reference to a preceding antecedent in the dialogue.
However, if the utterance is accompanied by a gesture, then this preference
may be overridden. It may be that the gesture refers to an object which was
mentioned before, just not most recently; or it may refer to an object which
has not been talked about at all. To capture these possibilities, we allow
for reference structures to specify preference orders over sets of old and new
referents. For example, if a deictic pronoun can be resolved to several old
antecedents, with anti the most preferred, or to a new referent antn, then we
get

[OLD : anti < {antj , ..., antk} < NEW : {antn}].

Subsequently, information about grounding the utterance in the situated
context then can help resolving this ambiguity (e.g. by providing support for a
new referent). The example of deictic pronoun nicely illustrates the principle
bi-directional nature of situated dialogue processing as implemented here.
There is no strict pipeline of interpretation processes, invoked at incremental
steps. Instead, interpretation processes interact to mutually constrain and
complement the interpretations they form.

Another aspect of dialogue-level interpretation regards ”speech acts”, or
dialogue moves. A dialogue move specifies how an utterance ”functions in”, i.e.
contributes to furthering the dialogue. We determine an utterance’s possible
dialogue move(s) on the basis of the shape of the logical form, and expectations
about possible moves to extend the current dialogue. Figure 8.3 illustrates a
decision tree used to map logical form features to dialogue moves.

Once the dialogue move for an utterance has been determined, the utter-
ance content, and its referent- and event structures are added to the dialogue
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Fig. 8.3. Example of a decision tree for determining dialogue moves from LF form

context model maintained by the system. Figure 8.4 shows a snapshot of such
a model. (We will elaborate on event structures in Section 8.6.)

Comprehending an utterance in context

When we try to comprehend an utterance, we analyze it at several linguistic
levels. As we are dealing with spoken dialogue, the first step is the automatic
speech recognition [ASR], which takes an audio signal stream as input andautomatic speech

recognition produces a word recognition lattice as output. This step is known to be partic-
ularly error-prone [61], for several reasons. The first one is the inherent noise
present in the real-world environments in which our robots are deployed. Since
we require the speech recognition system to be speaker-independent, we also
have to deal with the wide variety of voices, accents and styles of speech of
human speakers. And finally, natural spoken dialogue is also characterised by
a high proportion of disfluencies (filled pauses, speech repairs, corrections,
repetitions), and the production of many partial or ill-formed utterances, all
of which negatively affect the performance of the speech recognition.

Our strategy for addressing this issue is to exploit contextual knowledge
about the situated environment and the dialogue history to prime the utter-
ance recognition. This knowledge is represented in the cognitive architecture
as a cross-modal salience model of the situated context. It integrates bothsalience model

visual salience (objects perceived in the physical scene) and linguistic salience
(previously referred-to objects within the current dialogue). The model is
dynamically updated as the environment evolves, and is used to establish ex-
pectations about uttered words which are most likely to be heard given the
context. The update is realised by continuously adapting the word probabil-
ities specified in the statistical language model of the speech recognizer. We
have shown that this approach yields a statistically significant improvement
of the ASR performance compared to a baseline, non context-sensitive model
[62].

As soon as the speech recognizer is able to suggest a (partial) recognition
hypothesis for the utterance, a word recognition lattice is created and inserted
into the working memory for subsequent analysis. A word recognition lat-
tice is a packed representation for the set of potential recognition hypothesis,
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combined with their respective confidence scores. The set of recognition hy-
potheses can be easily retrieved by traversing the lattice. Figure 8.5 illustrates
a typical example of word lattice.

Fig. 8.5. A typical word recognition lattice

This word recognition lattice is then further processed incrementally – the
lowest, incremental level being that of grammatical analysis. For modeling nat-
ural language grammar we use the Combinatory Categorial Grammar (CCG)
framework [15, 16]. CCG is a lexicalized framework: For each word, there are
one or more lexical entries specifying a syntactic category, and a correspond-
ing lexical meaning. A syntactic category defines how the word can be used
in forming a larger, grammatical expression. The lexical meaning specifies the
word meaning. The meaning of an expression is built up compositionally, in
parallel to its syntactical derivation.

Fig. 8.6. Incremental analysis of ”take the mug”

Figure 8.6 illustrates how meaning is built up in parallel to a grammatical
derivation. The verb ”take” has a syntactic category s : e/np : p. This means
that it will yield a sentence s if it is combined to the right / with a noun
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phrase np. The indices e and p relate the syntactic material to the meaning
being built: e provides a handle to the index for the verbal meaning, whereas
p indicates that the noun phrase will provide the meaning for the Patient
[20, 18].

The words ”take” and ”the” can be combined incrementally into an expres-
sion ”take the”, using function composition (the B rule in CCG, cf. [15]). The
resulting syntactic category specifies that this expression requires a noun n to
its right to yield a complete sentence. The meaning of the determiner ”the”
circumscribes that of the noun. Finally, ”take the” and ”mug” are combined
into a complete expression, ”take the mug”.

We have factorized (incremental) grammatical analysis into several, inter-
connected functions: the incremental parsing process itself, packing/unpacking
and pruning of incrementally construed analyses of utterance meaning, and
context-sensitive lexical retrieval. Figure 8.7 illustrates the interactions be-
tween these different functions.

Fig. 8.7. Context-sensitive utterance interpretation at grammatical level: interac-
tive processes for parsing and lexical retrieval, which can be primed by contextual
information.

Parsing begins by retrieving the lexical entries for the first word, and
initializing the chart. A chart is a data structure in which all active and com-
pleted analysis are stored, marking for each analysis what part of the utterance
(from beginning to some position x) it covers. Maintaining partial analyses
makes it possible to re-use them at a later point, when constructing analyses
that span more of the utterance. (This principle of re-using partial analyses
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sets chart-based parsing apart from e.g. backtracking, in which analyses are
construed every time anew.) The chart is subsequently updated with the lex-
ical entries for the first word, and a parsing process starts. Parsing is based
on a bottom-up Early chart parser built for incrementally parsing Combi-
natory Categorial Grammar. Its implementation relies on basic functionality
provided by OpenCCG1.

Incremental chart parsing creates partial, and integrated analyses for a
string in a left-to-right fashion. After each increase in position, the parser
checks whether it has reached a frontier. A frontier is specified as a type of
complete grammatical structure at the right branch of a grammatical deriva-
tion. This enables us to specify whether the parser should return after every
word, or e.g. after every phrase. At each frontier check, the chart is pruned us-
ing a category scorer. This scorer ranks the categories for the partial analyses
construed so far, possibly pruning them if they are guaranteed not to lead to
a complete analysis. (For example, in an incremental analysis, any category
requiring an argument to the left \ preceding the beginning of the utterance
will never be completed.)

Once incremental parsing stops, a packed logical form is construed, and
provided to working memory. This packed representation of possible gram-
matical interpretations of an utterance provides the basis for further interpre-
tation steps – for example, referent resolution. Depending on the exact fashion
in which these processes are synchronized, the next phase of incremental pars-
ing is triggered by the becoming available of further information on working
memory (e.g. referents). In this case, the chart is retrieved, and updated with
the lexical entries for the current word, and incremental parsing continues as
described above.

The advantage of factorizing grammatical analysis into separate inference-
and lexical retrieval processes is that the system can use information about
the situated- and task-context to prime attention in both processes, possibly
asynchronously (i.e. ”opportunistically”). Activated categories for objects and
events can help to restrict what lexical meanings are retrieved (”activated”) for
a word. Furthermore, based on what (partial) interpretations can be grounded
in the context, unsupported interpretations (analyses) can be removed from
the chart.

Picking up the right interpretation

Even with the help of these contextual priming/pruning techniques, the out-
come of the utterance comprehension process will nevertheless remain in many
cases severely ambiguous and underspecified. This is not surprising: ambiguity
is known to be extremely pervasive in natural language, at all processing lev-
els (lexical, syntactic, semantic, pragmatic), and contextual priming/pruning
alone cannot be expected to resolve all ambiguities. This means that most

1 http://openccg.sf.net
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utterance will still yield tens, if not hundreds, of possible analyses. With-
out mechanisms for interpretations selection/filtering at our disposal, these
ambiguities are inevitably going to hinder any further interpretation.

We therefore implemented a robust parse selection system able to deter- parse selection

mine the most probable analysis among a set of alternative interpretations.
The parse selection is based on a statistical linear model which explores a set
of relevant acoustic, syntactic, semantic and contextual features of the parses,
and is applied to compute a likelihood score for each of them.

Our approach can therefore be seen as a discriminative approach to ut-
terance interpretation: we first generate the possible analyses, and then dis-
criminate amongs them according to various features.

The parameters of this linear model are estimated against an automatically
generated corpus of 〈utterance, logical form〉 pairs. The learning algorithm is
an averaged perceptron, a simple and efficient technique for parameter estima-
tion which is known to give very good results for this task [63].

The parse selection can be formalised as a function F : X → Y where the
domain X is the set of possible input utterances2, and the range Y is the set
of parses. We assume:

1. A function GEN(x) which enumerates all possible parses for an input x.
In our case, this function simply represents the set of parses of x which
are admissible according to the CCG grammar.

2. A d -dimensional feature vector f(x, y) ∈ <d, representing specific features
of the pair (x, y). It incorporates various acoustic, syntactic, semantic or
contextual features relevant for discriminating the parses.

3. A parameter vector w ∈ <d.

The function F , mapping an utterance to its most likely parse, is then
defined as:

F (x) = argmax
y∈GEN(x)

wT · f(x, y) (8.1)

where wT · f(x, y) is the inner product
∑d

s=1 ws fs(x, y), and can be seen
as a measure of the “quality” of the parse.

Given the parameters w, the optimal parse of a given utterance x can be
therefore easily determined by enumerating all the parses generated by the
grammar, extracting their features, computing the inner product wT · f(x, y),
and selecting the parse with the highest score.

We present evaluation results of parse selection later on in the chapter,
after we have discussed how language and visuo-spatial information can be
combined.

2 or, in the more general case, a set of possible word recognition lattices.
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Producing an utterance in context

Just like in comprehension we put context into the production of dialogue.
Planning what to say and how to say it, is all influenced by context – dialogue-,
situation-, and action contexts.

Producing one or more utterances is triggered by a communicative goal.
This goal can arise within the dialogue system, for example to follow up in a
purely communicative way (e.g. matching a greeting with a greeting), or from
outside. The differentiation how communicative goals may arise enables us to
put dialogue in the service of other modalities, e.g. to help clarify something
the robot does not understand [64], and to achieve a continuum between
planning action and interaction (as we will explain further in Section 8.6).

A communicative goal specifies a dialogue move, and content which is to
be communicated. We formulate this goal as a logical form. As we describe
in detail in [65], we then use a planner to expand (and possibly rewrite)
this goal logical form into a logical form specifying the content for one or
more utterances. The planner uses a collection of systemic-functional grammar
networks [66] to decide, on the basis of the provided content, the way thissystemic-functional grammar

networks content can be related within the logical form and to the broader context,
how to extend a logical form.

Relating content to context is particularly relevant in the case of generating
referring expressions. This task of can be paraphrased as finding a description
for an entity in the world (the intended referent) that refers to the intended
referent and only the intended referent. This implies that the description must
be chosen in a way that prevents it from referring to another entity in the
current context set. All entities in the context set except the intended referent
form the contrast set. The referring expression must thus distinguish the in-
tended referent from the members of the contrast set. A referring expression
is a noun phrase (NP) of any degree of complexity. In order to provide enough
information to uniquely identify the intended referent, further attributes of
the referent need to be expressed, for instance with adjectives or prepositional
phrases, which in turn might contain a referring expression NP.

One of the best understood and widely accepted approaches for generat-
ing referring expressions, is the incremental algorithm of Dale and Reiter[67].
This algorithm needs a knowledge base that describes the properties of the
domain entities through attributes and values. A special attribute is an en-
tity’s type. The algorithm is initialized with the intended referent, a contrast
set (defined as the context set without the intended referent) and a list of
preferred attributes. The algorithm tries to incrementally rule out members
of the contrast set for which a given property of the intended referent does
not hold.

In the course of this chapter we describe various instantiations of this
algorithm, for producing references to aspects of local contexts (Section 8.4),
and the larger spatial organization of the environment (Section 8.5).



8 Situated Dialogue Processing for HRI 335

Once content planning has yielded a complete logical form for one or more
utterances, we provide content utterance by utterance to a realizer. This real-
izer uses the same grammar as the parser, to produce a set of possible surface
strings expressing that content [68]. We use statistical models, trained over
a corpus of ”usual” utterances for our domain, to select the best realization
[69]. This realization is then provided to the MARY speech synthesis engine,
to produce audio output [70].

8.4 Talking about what you can see

In the previous section we discussed how we model meanings for utterances,
in a linguistic fashion. We put relations between concept instances, to see how
they contribute to the overall meaning – and, by establishing how they relate
to preceding utterances, how they contribute to the overall dialogue. Next,
let’s have a look at how to situate that meaning.

We begin by looking at how we could process situated dialogue about
things you can see. Both the human and the robot are in the same place, and
are talking about objects that are (roughly) in their field of view, often even
within reach. Simply put, they are in the same room and that’s all they talk
about. We call this a small-scale space or closed context . small-scale space

closed contextLooking at the literature, you will often find this problem of relating lan-
guage to ”the world” (which, really, mostly means small-scale space) referred
to as symbol grounding . There is a linguistic symbol, representing some mean- symbol grounding

ing, and it needs to be ”grounded in” how the world is perceived. The degree
to which this ”grounding” determines the meaning of the linguistic symbol is
one issue for discussion – the way we look at interconnecting content across
modalities is described in more detail in Chapter 2.

But there is more to linguistic meaning than just that. Expressing some-
thing is an act. We convey meaning in a way that makes it clear not just
how a listener should understand what we are saying, but also what she is to
do with it. There is a purpose, an intention to saying something. This goes intention

beyond trying to understand the dialogue move or speech act of an utterance.
Such a move is –often– a reflection of the action to be undertaken in the real
world. So when it comes to relating language to the world, we need to do more
than connect symbols to perceptions. We also need to connect meanings to
how these perceptions are to be acted upon, or dealt with.

Which brings us to another point we want to raise here. Not every bit of
meaning is created and presented equal, in a contextual sense. As a dialogue
progresses, we build up a collection of references to aspects of the real world.
They form the common ground for the dialogue, a set of mutually held and common ground

agreed upon beliefs about the dialogue and the situated context in which
that dialogue is set. When we use meanings which refer back to beliefs which
are part of the common ground, such meanings provide ”old information” on
which we can build further, connecting ”new information” to it. The point is,
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there is a difference in which new and old information should be grounded.
Whereas the indexicality of old information is generally assumed to hold, for
the meanings providing new information it needs to be established. And how
that is to be done, couples back to the intentional aspect of an utterance.

Let us illustrate these ideas on an example, before we discuss how they
are dealt with in our approach to situated dialogue processing. One popular
setting for human-robot interaction is socially guided learning , in which asocially guided learning

robot interacts with a human while trying to learn more about the world.
As we describe in Chapters 7 and 10, we have explored several aspects of
visual learning in such a setting. For example, when the human would like to
explain more about a particular object to the robot, she could say something
like ”The red mug is big.”

Now what would that mean?
The way she refers to the object in question, ”the red mug,” makes clear

that she assumes that the robot knows what object she is talking about. It
is presented as old information, something already talked about and identi-
fiable not just in the dialogue context but also in the situated context. Next
comes a bit of information about the size of the object. The property ”big”
is being attributed to the object, providing new information which the robot
presumably did not yet know. Finally, the intention behind attributing such
a new property to an already known object is to teach the robot. It should
(still) ground ”red mug” in its visual models of the scene, and try to update
its models so as to be able to classify that object as ”big.” Separating old
from new information thus first of all indicates, what we should be able to
ground. The intention clarifies what to do with the new information. Whether
or not the robot then succeeds in learning how to classify the ”red mug” as
”big” determines how it should react to the utterance. Instead, would we
have have followed ”standard” approaches to grounding, and not make any
such distinctions (old, new; indexicality, intentionality), we would just have
the robot try to connect all the meanings immediately to what it sees. The
almost inevitable outcome of that would have been – ”no.” Not knowing that
the property ”big” could be applied to the object, the robot would not be
able to ground the meaning ”big red mug” to the visual object (using the
proposition of applying the predicate ”big” to the argument ”red mug”).

What you see and what you mean

Building up a representation of the possible meanings for an utterance, we re-
late these meanings to the various models the robot maintains. These models
can be of the environment, or of actions and plans set therein. We do so in a
mediated way. We explained already before that we model meaning as onto-
logically sorted, relational structures – graphs which related concept instances
through named relations. We can resolve mentions of these instances against
the dialogue context model, so that we know how instances are being talked
about and referred to over the course of a dialogue. Grounding such structures
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using mediation means we use ontologies to mediate the translation of themediation

representations specific to language as a modality, into representations from
which we can ultimately construct a-modal representations. (See also Chapter
2, on binding of modality-specific structures and the formation of unions as
a-modal representations.)

Since our graph structures are directed and acyclic, we can use recursion
over our structures. At each step, a node in the graph is translated into another
graph structure on the basis of its ontological sort (as defined in the ontology
used in the grammar). A translation can just cover this single node, or a
subgraph governed by that node. It can exclude nominals in that subgraph
from further processing, making it possible to collapse or omit parts of the
graph. An example of that is the translation of spatial expressions, like ”the
box to the left of the ball:”

@b1 :thing(box ∧
〈Delimitation〉 unique ∧ 〈Num〉 sg ∧ 〈Quantification〉 specific ∧
〈Modifier〉 (t1 : m− location ∧ to ∧

〈Anchor〉 (l1 : e− region ∧ left ∧
〈Delimitation〉 unique ∧ 〈Num〉 sg ∧ 〈Quantification〉 specific ∧
〈Owner〉 (b2 : thing ∧ ball ∧

〈Delimitation〉 unique ∧ 〈Num〉 sg ∧ 〈Quantification〉 specific))))

Such a representation is translated –more or less– into a structure there is
a ”Location:left-of” between the box and the ball.

Our approach is set apart from other approaches in several ways. First, we
ground meaning as graph structures, not as individual words. Second, we are
dealing with instances to which we assign discourse referents. Whenever we
ground content, we maintain the connection between the discourse referent,
and the content it is grounded to. Next time we have new content pertaining
to that discourse referent, we update the translated content rather than that
we would provide a whole new graph structure to be anchored in the situ-
ated context. Naturally, this connection is also used to inform dialogue about
changes of information about content to which referents are attached – or can
no longer be attached. Thirdly, any ambiguities present in a packed represen-
tation are propagated to content to be grounded. This is one point where it
we make use of the mechanism for informing dialogue about the grounding
possibilities of discourse referents, and any relations between them. As we
will see below, ambiguities which cannot be grounded, can be pruned from
the packed representation, not having any contextual support in the current contextual support

context.
When mapping structures are based on ontological sort, content can be

flagged as indexical, intentional, or both. As we describe in Chapters 2, 9
and 10, we assume architecture designs in which we can at least differentiate
between a working memory for visuo-spatial information about the current
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context (the ”binding” working memory), and a working memory for struc-
tures which will prompt the robot to take actions (the ”motivation” working
memory). Indexical content is put on binding working memory. (Currently,
the architecture designs do not include a form of situated episodic memory.
Where that to be the case, the resolved temporal reference of an utterance
could be used to establish whether to indeed provide the content to the model
of the current scene, or to store it with a future or past episode.)

We store intentional content on motivation working memory, with point-
ers to the indexical content it is related to. Intuitively, intentional content
usually represents processes and ascriptions (”verbs”), with representations
of objects they operate on including pointers to their indexical counterparts.
For example, consider again the command ”take the red mug,” which results
in the following logical form:

@t1 :action−motion(take ∧ 〈Mood〉 imp ∧ 〈Tense〉 pres ∧
〈Actor〉(a1 : entity ∧ addressee) ∧
〈Patient〉 (m1 : thing ∧ mug

〈Delimitation〉 unique ∧ 〈Num〉 sg ∧ 〈Quantification〉 specific ∧
〈Modifier〉 (r1 : q− color ∧ red))

〈Subject〉 a1 : entity)

Translating this structure into content to be grounded, binding working
memory will end up containing structures for the robot, and the red mug. On
the intentional side, we will have a structure for the take action, identifying
the robot as the Actor of the action, and the red mug as the Patient. The
representations for the robot and the mug on motivation working memory
refer to their corresponding representations on binding working memory, so
that we can situate the intended action.

These translations are based directly on the content of the utterance. We
have already seen that they make use of information from the dialogue con-
text, namely resolved discourse referents, to establish what extra-linguistic
content to connect to. This primarily concerns indexical information. On the
intentional side, information about dialogue move is combined with utterance
mood to provide further information about the kind of intention we are deal-
ing with – for example, a command, an assertion, or a question. (See also 2
and 6 for how this can affect general motivation and planning in a cognitive
system.)

We will deal with commands later on, in Section 8.6, and focus here on
questions and assertions. Particularly in the scenarios we consider in 9 and 10,
questions and assertions have in common that they involve a predication over
an argument. If we say ”The ball is red” we are effectively stating that we can
predicate having a ”red color” over the ”ball” object. A question can also be
taken to involve such a predication relation, only now we are quantifying that
predication. We rephrase a question like ”What color is the ball?” to predicate
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a color over ”ball,” quantifying that the value of the color attribute. Slightly
more complicated, if we ask ”Is the ball red?” we want to know whether we
can indeed do so – turning quantifying the predication into a higher-order
quantification over the truth of the predication (similar to situation theoretic
semantics). For formal details, see [64].

Practically, we represent this information through additional relational
structure on the working memory dealing with intentions. We connect the
structure produced for the predicate to that for the argument, using two
relations. One relation indicates whether we have a polar or factual question,
i.e. whether we quantify over the truth of, or a value for, the predication. The
other relation indicates what it is that the speaker is after – the intended
belief state, resulting from answering the question. For example, for ”What
color is the ball?” we will connect the predicate ”color” to the argument ”ball”
using a relation ”Fact-Q”, and a relation ”SPEAKER-KNOWS:Colour.” For
polar questions like ”Is the ball red?,” the latter relation will also indicate the
value of the color: ”SPEAKER-KNOWS:Colour?red” i.e. the speaker knows
whether the ball indeed has a red color.

The argument of SPEAKER-KNOWS can be a pointer to any type of
elementary predication in a meaning representation. This makes it possible
for to quantify over any type of information represented as predication – be
that a sort (”Is this a ball?”), the value of an attribute, or a relation (”Is
there a ball to the left of the box?”). Assertions only differ from questions
in that we just introduce a relation stating that the hearer knows the as-
serted information (HEARER-KNOWS, with the same type of structure as
SPEAKER-KNOWS).

How we subsequently evaluate whether we can achieve the desired belief
state is dependent on the grounding of the various pieces of content. This is
driven by the information status of content, as we explain next.

What you all know, and what you are saying

We already differentiate content by its intentional or indexical nature. We
make a further division into content which the speaker presents as ”old in-
formation” belonging to the common ground, and that which is presented as
new. Grammatically speaking, we are using a form of information structure
[71]. We determine the information status of an object on the basis of its information structure

semantic features for delimitation and quantification, and how the content
functions in the larger context of an intentional construction [18]. The basic
idea is that if an object is established to be old news, we will immediately
try to ground it. This way, it can provide the basis for forming the relevant
situated context against which we need to consider the intention. Based on
the intentional content, we will next evaluate whether the new information
can indeed be grounded in relation to the already grounded information.

In Section 8.6 we will explain how this works out for commands like ”put
the ball to the left of the box.” We will see there how information structure
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interacts with the intention of performing a ”put” action on the mentioned
objects, and the desired state of the ball being to the left of the box, to help
establish how we should evaluate whether this action can indeed be performed.
For our current purposes, we will focus on ascriptions – assertions such as
”This box is red,” or questions like ”Is the red box to the left of the ball?”

As we saw above, we build additional structure for question- and assertion-
interpretations. This structure reflects a desired update to an interlocutor’s
belief state. Evaluating a question or an assertion then boils down to establish-
ing whether we can obtain that state. How we evaluate is guided by informa-
tion structure. When translating meaning to indexical and intentional content,
we determine the information status of objects on the basis of using semantic
delimitation and quantification. We adopt the overriding exception that we
will always interpret the argument of a SPEAKER- or HEARER-KNOWS
relation to be ”new.” Any indexical information with an ”old” information
status will be written to binding working memory. We do this to establish
the relation to common ground. In parallel, we represent the new information
and any purely intentional information on the motivation working memory.
Evaluation then consists therein to establish whether we can in principle up-
date binding working memory with the new information, or check against the
results of grounding whether the new information already holds or could be
retrieved. A felicitous update may in this case provide the trigger for learning
processes, as we discuss in Chapter 7.

The result is a model of information structure and its interaction with
indexical and intentional content that is reminiscent of a dynamic semantics-
based approach to information structure [71]. Where we differ is the use of
multiple indexical and intentional contexts, and the evaluation of the update
on one context relative to the intended use of information as stated in another
context.

Using what you see to rank alternative interpretations

As we already outlined in section 8.3, a discriminative model is used to as-
sign a score to each possible semantic interpretation of a given spoken input.
The discriminative model includes a wide range of linguistic as well as con-
textual features. The linguistic features are defined on the analyses construed
at the different processing levels: the acoustic level (based on ASR scores),
the syntactic level (based on the derivational history of the parse), and the
semantic level (based on substructures of the logical form). As for the con-
textual features, they are defined using information from both the situated
context (the objects in the visual scene) and the dialogue context (previously
referred entities in the dialogue history).

Experimental evaluation We performed a quantitative evaluation of our ap-
proach to parse selection. To set up the experiments for the evaluation, we
have gathered a corpus of human-robot spoken dialogue for our task-domain,
which we segmented and annotated manually with their expected semantic
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interpretation. The current data set contains 195 individual utterances along
with their complete logical form.

Three types of quantitative results are extracted from the evaluation re-
sults: exact-match, partial-match, and word error rate. Tables 8.1, 8.2 and
8.3 illustrate the results, broken down by activated features, use of grammar
relaxation, and number of recognition hypotheses considered.

Gram. Activated Features Nbest 1 Nbest 5
Relax. Sem. Synt. Ac. Cont. Pr. R. F1 Pr. R. F1

40.9 45.2 43.0 14.4 13.9 14.2
× 35.2 41.5 38.1 28.8 31.8 30.2

× 42.8 46.3 44.5 38.1 47.1 42.2
× × 41.9 45.8 43.7 43.1 49.4 46.0

× 59.0 54.3 56.6 30.3 51.3 38.1
× × 59.0 54.3 56.6 35.2 55.1 43.0
× × 59.0 54.3 56.6 58.3 65.4 61.6
× × × 59.0 54.3 56.6 60.8 66.3 63.4

× 20.9 49.0 29.3 10.7 34.1 16.3
× × 20.9 49.0 29.3 12.1 39.0 18.4
× × 27.1 55.5 36.4 27.3 54.6 36.4
× × × 21.7 50.0 30.2 27.9 56.2 37.3
× × 34.1 61.1 43.7 21.0 39.6 27.4
× × × 30.2 58.2 39.7 21.9 44.2 29.3
× × × 34.1 61.1 43.7 32.8 59.1 42.2
× × × × 32.5 60.0 42.2 32.5 60.0 42.2
× × 49.6 69.5 57.9 28.9 77.7 42.2
× × × 49.6 69.5 57.9 31.0 78.9 44.5
× × × 49.6 69.5 57.9 52.1 83.1 64.0
× × × × 49.6 69.5 57.9 53.1 84.4 65.2
× × × 52.7 70.8 60.4 29.6 78.1 43.0
× × × × 52.7 70.8 60.4 31.7 79.3 45.3
× × × × 52.7 70.8 60.4 54.6 82.7 65.8
× × × × × 52.7 70.8 60.4 55.6 84.0 66.9

Table 8.1. Exact-match accuracy results, broken down by activated features, use
of grammar relaxation, and number of recognition hypotheses considered. For each
configuration, we give the precision, recall, and F1 value (all in percents).

Each line in the tables corresponds to a possible configuration. For each
configuration, we analyse the accuracy results on different NBests, and give
the precision, recall and F1 value for each.

The first cell of the first line corresponds to the baseline: no grammar relax-
ation, no activated features, and use of the first NBest recognition hypothesis.
The last line corresponds to the final results with all features, combined with
the grammar relaxation mechanism.

Two elements are worth noticing in the results:

1. In each of the three tables, we observe that no configuration is able to
beat the results obtained with all activated features. In other words, it
shows that all features types are playing a positive role on the task.

2. Likewise, we observe that taking into account more ASR recognition hy-
potheses has a positive effect on the results: the results obtained using
five recognition hypotheses are substantially better than those obtained
based only on the first hypothesis.
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Gram. Activated Features Nbest 1 Nbest 5
Relax. Sem. Synt. Ac. Cont. Pr. R. F1 Pr. R. F1

86.2 56.2 68.0 73.5 45.8 56.4
× 85.5 56.0 67.7 81.3 54.2 65.1

× 86.8 56.4 68.3 84.3 60.4 70.4
× × 86.2 56.2 68.1 85.4 60.4 70.7

× 90.5 57.4 70.3 80.1 66.4 72.6
× × 90.5 57.4 70.3 83.3 67.2 74.4
× × 90.5 57.4 70.3 88.9 67.1 76.4
× × × 90.5 57.4 70.3 89.5 67.2 76.8

× 75.7 73.3 74.5 71.4 81.9 76.3
× × 73.7 72.8 73.2 71.7 78.7 75.1
× × 75.3 73.2 74.2 74.6 73.1 73.8
× × × 72.7 72.5 72.6 74.6 74.1 74.4
× × 80.9 74.6 77.6 76.2 72.1 74.1
× × × 80.2 74.4 77.2 78.7 76.2 77.4
× × × 80.8 74.6 77.6 80.3 74.5 77.3
× × × × 80.4 74.5 77.3 80.3 75.5 77.8
× × 86.5 75.8 80.8 80.7 88.4 84.4
× × × 86.5 75.8 80.8 80.0 88.3 84.0
× × × 86.5 75.8 80.8 86.2 86.7 86.4
× × × × 86.5 75.8 80.8 86.3 87.2 86.8
× × × 88.1 76.2 81.7 79.3 88.2 83.5
× × × × 88.1 76.2 81.7 81.7 88.5 85.0
× × × × 88.1 76.2 81.7 87.5 85.4 86.4
× × × × × 88.1 76.2 81.7 87.6 86.0 86.8

Table 8.2. Partial-match accuracy results, broken down by activated features, use
of grammar relaxation, and number of recognition hypotheses considered. For each
configuration, we give the precision, recall, and F1 value (all in percents).

Gram. Activated Features Nbest 1Nbest 3Nbest 5Nbest 10
Relax. Sem. Synt. Ac. Cont.

20.5 26.9 29.7 25.9
× 20.5 23.6 24.6 28.0

× 20.5 19.7 19.6 19.7
× × 20.5 18.7 18.2 18.3

× 20.5 24.6 25.6 31.2
× × 20.5 21.4 23.2 26.1
× × 20.5 18.3 18.4 18.1
× × × 20.5 17.3 17.4 17.4

× 19.6 23.6 25.9 23.9
× × 19.3 20.4 23.3 26.7
× × 19.7 18.6 18.4 19.3
× × × 19.4 18.0 17.6 17.7
× × 19.4 24.6 26.9 27.9
× × × 19.4 22.2 23.9 28.1
× × × 19.4 18.8 18.7 18.8
× × × × 19.4 17.8 17.3 17.4
× × 20.2 22.4 25.5 29.4
× × × 20.2 21.0 22.9 26.1
× × × 20.2 17.8 17.8 17.8
× × × × 20.2 17.4 17.1 17.1
× × × 19.4 21.5 24.3 28.7
× × × × 19.4 19.8 21.9 25.9
× × × × 19.4 16.8 16.7 16.7
× × × × × 19.4 16.5 15.7 15.7

Table 8.3. Word Error Rate results, broken down by activated features, use of
grammar relaxation, and number of recognition hypotheses considered. For each
configuration, we give the error rate (in percents).
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Comparison with baseline Here are the comparative results we obtained:

• Regarding the exact-match accuracy results, the difference between the
baseline results and the results with our approach (grammar relaxation
and all features activated for NBest 10) is striking: the F1-measure climbs
from 43.0 % to 67.2 %, which means a relative difference of 56.3 %.

• For the partial-match, the F1-measure goes from 68.0 % for the baseline
to 87.3 % for our approach – a relative increase of 28.4 %.

• Finally, the decrease in Word Error Rate is also worth noting: we go from
20.5 % for the baseline to 15.7 % with our approach. The difference is sta-
tistically significant (p-value for t-tests is 0.036), and the relative decrease
is of 23.4 %.

Using what you see to figure out what is meant

If we have a packed representation that includes alternative interpretations,
any indexical ambiguity will end up as alternative relational structures on
binding working memory. By monitoring which relational structures can be
grounded in the current context, and which ones cannot, we can prune the
set of interpretations we maintain for the dialogue. We thus handle examples
such as those discussed in [10] through an interaction between binding, and
dialogue processing. Below we provide a detailed example of resolving syntac-
tic attachment ambiguities using the situated context. (Lexical ambiguities
based in different semantic categories are resolved against visual categories.)

Fig. 8.8. Situated context for ”put the ball near the mug to the left of the box.”

Consider the visual scene in Figure 8.8, and the utterance ”put the ball
near the mug to the left of the box”. Linguistically speaking, this utterance
is ambiguous. There are several ways in which we can combine the modifiers
”the ball”, ”near the mug”, and ”to the left of the box.” Is the ball near the
mug? Or is ”near the mug” the place where the robot is to put the ball, with
”the mug” supposedly being located left of the box?

On its own, the utterance is highly ambiguous. But, this ambiguity some-
how vanishes when we consider the visual scene in Figure 8.8. Then it is clear
that there is only one sensible way to understand the utterance. The ball is
near the mug, and it should end up to the left of the box (as indicated by the
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arrow). The system achieves the same disambiguation effects through (incre-
mental) pruning of linguistic interpretations, based on whether they can be
grounded in the visuo-spatial situated context.

Fig. 8.9. Ambiguous (complete) packed logical form for ”put the ball near the mug
to the left of the box” (l.) and the spatial relations for the visual scene (r.)

Figure 8.9 (right) gives the spatial model for the visual scene in Figure 8.8
[26]. On the left is the (complete) packed logical form we obtain for ”put
the ball near the mug to the left of the box”. Up to ”put the ball near the
mug” the modifier ”near the mug” remains ambiguous between being the
destination for where to put the mug, or specifying a location for ”the ball.”
The visuo-spatial scene provides support for both interpretations, (although
planning may prefer the locative reading, as the ball is already near the mug
thus pre-empting execution of the action). As soon as ”to the left of the box”
is being processed, the spatial model invalidates the reading on which the
mug is located left of the box. This resolves ”to the left of the box” to be the
destination of the put action, and (by grammatical inference over the resulting
syntactic categories) ”near the mug” to be the location modifier of ”the ball.”

Referring to what you see

A robot isn’t just to understand what we are saying. It should also be able to
produce dialogue which refers to the environment in meaningful and appropri-
ate ways. In the context of small-scale space, what is particularly important
is that the robot can refer to objects and the spatial relations between them.

This presents an interesting challenge. If the robot is to generate any form
of spatial language, is needs to construct and maintain a model that explic-
itly marks the spatial relations between objects in the scene. However, the
construction of such a model is prone to the issue of combinatorial explosion
both in terms of the number objects in the context (the location of each ob-
ject in the scene must be checked against all the other objects in the scene)
and number of inter-object spatial relations (as a greater number of spatial
relations will require a greater number of comparisons between each pair of
objects. This becomes particularly problematic when we consider that a scene
may be dynamic, requiring the robot to update its models.

We present in [72] a framework that addresses this issue. We provide a way
to define the set of objects in the context that may function as a landmark,
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and then sequence the order in which spatial relations are considered using a
cognitively motivated hierarchy of relations. Defining the set of objects in the
scene that may function as a landmark reduces the number of object pairs
that a spatial relation must be computed over. Sequencing the consideration
of spatial relations means that in each context model only one relation needs
to be checked and in some instances the agent need not compute some of
the spatial relations, as it may have succeeded in generating a distinguishing
locative using a relation earlier in the sequence.

A further advantage of our approach stems from the partitioning of the
context into those objects that may function as a landmark and those that
may not. As a result of this partitioning the algorithm avoids the issue of
infinite recursion, as the partitioning of the context stops the algorithm from
distinguishing a landmark using its target.

In recapitulation

When it comes to talking about what you see, we discussed above several
aspects in which the bi-directionality hypothesis turns up. The possible lin-
guistic meanings we can provide for an utterance are connected to the way
the situation is understood, which is coupled back to what meanings are es-
tablished as contextually supported. We use this mechanism in post-filtering
during incremental parsing, in parallel to predictive mechanisms such as parse
selection and word lattice re-scoring, and during production in the generation
of referring expressions.

We illustrated how we ground meanings, by looking at intentional and
indexical aspects, and the information status of content. Instead of grounding
all content wholesale word-by-word in visuo-spatial models, as is usually done,
we first only ground meaning already part of the common ground, and then
evaluate whether new information can be grounded in the sense as indicated
by the intention of the utterance. This yields a situated form of dynamic,
context-sensitive interpretation of linguistic meaning.

8.5 Talking about places you can visit

Above we discussed how we process situated dialogue about small-scale space.
The human and the robot are in the same location, and talk about things that
are in view. Already there we faced the problem to determine what part of
that space forms the current context – which objects, and what aspects of
spatial organization, we can consider common ground.

This becomes an even bigger issue when we want to talk about large-
scale space – that kind of “space which cannot be perceived at once” [73]. large-scale space

Discussing aspects of large-scale space, for example where a particular room
is or where the robot could find a specific object, is typical for the Explorer
scenario, see [74] and Chapter 9. Most of these referents will, however, not be
in view for the interlocutors.
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So, whereas in situated dialogue set in small-scale space we can call upon
visuo-spatial content stored on a short-term ‘binding’ working memory, we
need to go beyond that in the case of large-scale space. In this section we will
discuss how we can integrate content from situated dialogue with ontological
reasoning and conceptual spatial mapping [74, 75, 76].

8.5.1 Talking about places

When it comes to talking about places, various Wizard-of-Oz studies have
investigated how humans tend to inform robots about the spatial organization
of an environment. For example, [77] discuss a study on how a human presents
a familiar indoor environment to a robot, and [78] when a human talks with a
robot wheelchair while being seated in it. These studies have yielded various
important insights.

The experimental setup in [77] models a typical guided tour scenario. The
human guides the robot around and names places and objects. One result of
the experiment is the observation that people tend to employ many differ-
ent strategies to introduce new locations. Besides naming whole rooms (“this
is the kitchen” referring to the room itself) or specific locations in rooms
(“this is the kitchen” referring to the cooking area), another frequently used
strategy was to name specific locations by the objects found there (“this is
the coffee machine”). Any combination of these individual strategies could be
found during the experiments. Moreover, it has been found that subjects only
name those objects and locations that they find interesting or relevant, thus
personalizing the representation of the environment that the robot constructs.

In [78], the subjects are seated in a robot wheelchair and asked to guide it
around using verbal commands. This setup has a major impact on the data
collected. The tutors must use verbal commands containing deictic references
in order to steer the robot. Since the perspective of the human tutor is identical
to that of the robot, deictic references can be mapped one-to-one to the robot’s
frame of reference. One interesting finding is that people tend to name areas
that are only passed by. This can either happen in a ‘virtual tour’ when giving
route directions or in a ‘real guided tour’ (“here to the right of me is the door
to the room with the mailboxes.”). A robust conceptual mapping system must
therefore be able to handle information about areas that have not yet been
visited.

Next we discuss how we deal with the above findings, combining informa-
tion from dialogue and commonsense knowledge about indoor environments.

8.5.2 Representing places to talk about

In Chapter 5, we present our approach to semantic modeling of space. In this
approach, we use a multi-layered spatial map that represents space at different
leveles of abstraction. The most abstract layer, the ‘conceptual map’, char-
acterizes spatial units (e.g. rooms) by assigning them human concepts (e.g.
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“kitchen”), which can be used to resolve or generate linguistic expressions. The
‘conceptual map’ is represented as a Description Logics ontology, consisting
of a concept taxonomy and a storage of instances, which form the T-Box
and A-Box of a Description Logics reasoning framework.3 The concept tax-
onomy is a hand-written common sense ontology representing various aspects
of an indoor environment (different kinds of areas and other spatial struc-
tures, different kinds of objects, agents, and several different relations that
can hold between any of these). During run-time the ontology is populated
with instances of spatial units and objects through evaluation and interpre-
tation of sensory data (e.g. laser range scans, and visual object detection). A
conceptual map that is constructed only from sensory input, e.g. during an
autonomous exploration of the robot’s environment, will consist of instances of
the abstract concept Area (corresponding to the units of the topological map
layer), which are further specified by the appropriate sub-concepts Room and
Corridor (based on the laser-based semantic place labeling method), and
also instances of Object, further specified by their respective visual object
class, e.g. Couch or TV. On the basis of this object information, the reasoner
can even further specify the area instances, for instance by inferring that a
Room instance containing some KitchenObject instance (e.g. an instance of
Coffeemachine) is an instance of the more special concept Kitchen.

Through this approach, the robot achieves a level of spatial understanding
that is already compatible with the linguistic categories that humans use to
refer to places in an indoor environment. The conceptual map, however, also
holds information about the environment given by human users, for example
in a ‘guided home tour’ interactive mapping set-up.

Our approach to interactive map acquisition accomodates the previously
mentioned findings in studies on Human-Augmented Mapping [77] through
the following properties:

References to whole rooms or specific locations are used to assert that the
instance of the corresponding topological area is of the mentioned concept,
even if the reasoner could not infer that knowledge on the basis of the robots
own information.

References to specific objects, and thus omitting naming the whole room,
will assert that an instance of the mentioned object type is present, which
allows the reasoner to draw further inferences about the current topological
area. In the above example, the user only points out that “there is the coffee
machine”. On the basis of its knowledge that the current area is a Room in-
stance, which is asserted to contain a Coffeemachine instance, the reasoner
now infers the new concept Kitchen.

Like this, our system can combine sensor-based information and informa-
tion provided through dialogue with a human user. This allows the system
to cope with otherwise incomplete information, and with highly personalized

3 We have used different 3rd party reasoners in our experiments, including RACER,
Pellet, and Jena.
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information. Our approach yields a conceptual representation of space that
is suitable for understanding linguistic references to spatial entities, and for
producing expressions that can be understood by human users.

8.5.3 Referring to elsewhere

A conversational autonomous mobile robot will inevitably face situations in
which it needs to refer to an entity (an object, a locality, or even an event)
that is located somewhere outside the current scene. In technical terms, the
robot must be able to produce a referring expression to an entity in large-scale
space [27].

There are conceivably many ways in which a robot might to refer to things
in the world, but many such expressions are unsuitable in most human-robot
dialogues. Consider the following set of examples:

1. “the location at position (X = 5.56, Y = −3.92, θ = 0.45)”
2. “the mug left of the plate right of the mug left of the plate”
3. “Peter’s office no. 200 at the end of the corridor on the third floor of the

Acme Corp. building 3 in the Acme Corp. building complex, 47 Evergreen
Terrace, Calisota, Planet Earth, (...)”

4. “the area”

These referring expressions are valid descriptions of their respective refer-
ents. Still they fail to achieve their communicative goal, which is to specify
the right amount of information that the hearer needs to uniquely identify the
referent. First of all, robots are good at measuring exact distances, humans
are not. So the robot should employ qualitative descriptions that make use of
the same concepts as a human-produced utterance would. Second, specifying
a referent with respect to another referent that is only identifiable relative
to the first one leads to infinite recursion instead of the communicative goal.
Finally, the robot might have a vast knowledge about facts and entities in the
world, but it should not always try to uniquely separate the referent from all
entities in the world. At the same time, it is necessary to provide enough in-
formation to distinguish the intended referent from those entities in the world
that potentially distract the hearer. The following expressions might serve as
more appropriate variants of the previous examples:

1. “the kitchen around the corner”
2. “the red mug left of the china plate”
3. “Peter’s office”
4. “the large hall on the first floor”

The fact that these might (or might not!) be successful referring expres-
sions points to the importance of knowing what the given context in a situation
is. This is especially the case for a mobile robot that operates and interacts
in large-scale space. It is thus an important basis to endow the robot with
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a spatial representation that resembles the way humans conceive of their en-
vironment. But it is not enough; the robot must also be able to determine
which entities in the world might act as potential distractors with respect to
the hearer’s knowledge.

In the following paragraphs we will show how our multi-layered concep-
tual spatial map provides a suitable knowledge base for Dale and Reiter’s
incremental GRE algorithm[67]. Furthermore, we will propose a method for
a proper construction of the context set for successfully referring to entities
in large-scale space.

The instances in the ontology are the entities of the world model. The con-
ceptual hierarchy provides the taxonomical type information of the instances
that the GRE algorithm requires. Furthermore, a number of concepts such as
Office, Kitchen, Corridor, Table, etc. are marked as basic level categories,
cf. [79] and [80]. The relations between instances are the attributes that the
algorithm can use to further specify a referent. In terms of the Dale and Reiter
algorithm, we currently use the following list of attributes, ordered by their
preference: 〈 type, topological inclusion, ownership, name 〉.

Type

We represent an entity’s type as the (asserted and inferred) concepts of the
corresponding instance. Through ontological reasoning, we can retrieve an
instance’s most specific concept, its basic level category, and all the instances
of a concept.

Topological inclusion

If the current context spans topological units at different hierarchical levels (cf.
Figure 8.10) it is important to specify the intended referent with respect to the
topological unit that contains the referent, e.g. when referring to “the kitchen
on the 3rd floor”, or “the table in the lab”. In the ontology the transitive
property topoIncluded(X,Y) and its inverse property topoContains(Y,X)
represent topological positions of entities. By constructing a query to the
reasoner that only returns those ‘topological containers’ of an entity that don’t
contain any other entities which in turn also contain the entity, we assure to
only take into account direct topological inclusion despite the transitivity of
the ontological properties.

Ownership

Areas in an environment are often referred to by identifying their owners,
e.g. “Bob’s office”. In our ontology instances of Area can be related to a
Person instance via the owns(X,y)/isOwnedBy(Y,X) relation pair. People
are instances of the ontological concept Person. The name of a person is
represented as a string datatype property.
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Fig. 8.10. A topology of places, rooms and floors. Stars depict navigation nodes
that denote free and reachable space for our robotic system. The set of navigation
nodes is partitioned into distinct spatial areas, such as e.g. rooms. Areas in turn
can belong to a floors, which are on the next level of abstraction. Using topology
abstraction, we construct an appropriate context set for the GRE task.

Name

As names are usually (locally) unique, e.g. “the Occam meeting room”, or
“office 120”, they are definitely a highly discriminating attribute for the GRE
task. However, names do not seem to be a preferred category for referring to
rooms as they seldom contain more useful information than a generic NP + PP
referring expression, e.g. “the meeting room on the first floor next to the large
hall”. On the contrary, such a generic referring expression might even bear
additional useful information. Moreover, remembering the inherently artificial
name for an entity might involve a higher cognitive load than processing
the information encoded in a more generic referential description. For other
scenarios though, such as an information desk agent at a hospital, or any other
institution in which there is a specific naming scheme, such as e.g. encoding
floor number and department, and numbering them in sequential order, the
name feature can conceivably be placed in a higher-ranking position in the
preference list. In our ontology names for areas are represented as a string
datatype property.

Determining the appropriate contrast set

In order to successfully identify a referent it is important to determine a cor-
rect and appropriate contrast set. If the contrast set is chosen too small, the
hearer might find it difficult to uniquely identify the intended referent with
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respect to his or her knowledge. If, on the other hand, a too large contrast
set is assumed, the generated referring expression might violate Grice’s Max-
ims, here the Maxim of Quality, in that it contains too much unnecessary
information.

Since the contrast set is defined relative to a context set, the crucial task is
hence to determine which part of the environment constitutes the current con-
text. For one, the context needs to include the intended referent. The context
must also include the current referential anchor, i.e. what is considered the
current position of the two interlocutors. In the simple case, this referential
anchor is the physical location where the dialogue takes place. But as a dia-
logue evolves, the referential anchor moves through space and time. Consider
the following example dialogue:

Person A: “Where is the exit?”
Person B: “You first go down this corridor. Then you turn right. After a
few steps you will see the big glass doors.”
Person A: “And the bus station? Is it to the left?”

As can be seen, any utterance in such a collaborative dialogue is grounded
in previously introduced discourse referents, both temporally and spatially.

Assuming the last mentioned discourse referent (or the physical location of
a conversation) as the referential anchor, the question remains which other en-
tities constitute the current discourse context. In other words: when referring
to things, places, and actions in large-scale space, what possible distractors
must one rule out in order for a referential description to be successful?

It is a widely accepted theory that humans tend to represent large-scale
space in terms of topologies, rather than using exact measures. Following this
view, we claim that the context for a dialogue situated in large-scale space
can be determined on the basis of a topological representation.

Figure 8.10 shows a topological segmentation of an indoor space like the
one used in our robotic system. The smallest unit in this representation is a
graph-like structure of ‘place nodes’ (distinct places of approx. 1m in diame-
ter that can be reached by the robot) and ‘object nodes’ (places from which
objects are visible). These nodes are linked by edges that denote accessibility
or visibility of one node from another. Through a number of processes, cf.
Chapter 5, this graph is segmented into distinct areas, corresponding to e.g.
rooms, corridors, or special regions within larger spatial structures. This seg-
mentation into areas yields a first topological abstraction of space, in which
the information about containment and reachability of its units is preserved,
but metric distances don’t play a role.

Our process of topology abstraction for determining the context set is de-
picted in Figure 8.11. It can be paraphrased as “Start with the referential
anchor and check whether the intended referent is a member of the set of the
referential anchor and its child nodes. If so, this set is the referential con-
text. If not, construct the set of the referential anchor’s parent nodes and
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Require: r = intended referent; a = referential anchor
Initialize: CONTEXT = {}
CONTEXT = CONTEXT ∪ topologicalChildren(a) ∪ {a}
if r ∈ CONTEXT then

return CONTEXT
else

Initialize topological containers to check: CONTAINERS = {a}
while r /∈ CONTEXT do

if CONTAINERS = {} then
return failure

end if
for each c ∈ CONTAINERS do

for each p ∈ topologicalParents(c) do
CONTAINERS = CONTAINERS ∪ {p}
CONTEXT = CONTEXT ∪ topologicalChildren(p)

end for
end for

end while
return CONTEXT

end if

Assuming a topological hierarchy of places, the context should include
all sibling nodes of those topological units that are visited when following
the search path between the current position and the intended referent. For
instance, if the intended referent is an object located in the same room as the
user and the robot, only local landmarks should be considered. Likewise, if
the robot is to produce a referring expression to a room on a different floor,
all entities on that floor and on the current floor will form the context. Using
topological inclusion as the most preferred attribute (after type) will then
essentially function as a pruning of the hierarchically ordered context set (if
it has discriminatory power at all, that is).

In our implementation, the lowest topological level is the navigation graph.
The set of navigation nodes is then partitioned into topological areas that
correspond to basic spatial units, such as rooms and corridors, cf. Chapter
5. Our ontology additionally contains a representation for dividing areas into
storeys to which they belong, cf. Figure 9.

The topological unit that is considered the current position need not nec-
essarily be the robot’s and/or the hearer’s physical location. We claim that
our approach will also yield plausible results when used in an incremental
dialogue to generate route descriptions. In that case, the most recent dialogue
referent is assumed as the initial position.

Starting from the
THE USER KNOWS function can be used to incrementally enlarge the

context by making common ground (or the other way round rather).

Fig. 8.11. Topological abstraction algorithm for context generation.

their children, and check again. Repeat this procedure of topological abstrac-
tion until the intended referent is a member of this growing context set.”
With respect to the ontological representation of the conceptual spatial map,
the function topologicalChildren(x) corresponds to a query that matches all
instances i for which topoContains(x,i) applies. topologicalChildren(x) is
defined as the set of instances i for which the direct, intransitive variant
direct-topoContains(x,i) is true.

This means that if an object is located in the same room as the user and
the robot, only local landmarks should be considered potential distractors.
Likewise, if the robot is to produce a referring expression to a room on a
different floor, all known entities inside the building will form the context.
Using topological inclusion as the most preferred attribute (after type) will
then essentially function as an early pruning of the hierarchically ordered
context set.

8.5.4 Understanding references to elsewhere

A conversational robot should not only be able to produce meaningful speech,
but also must be able to understand verbal descriptions given by its users.
Similar to the challenge of generating referring expressions to entities in large-
scale space, a dialogue system for a mobile robot will have to deal with its
user’s referring expressions. The robot essentially needs to match a complex
nominal construction with its internal knowledge base. Analogous to the task
of generating referring expressions, an appropriate context against which to
compare the referential description is crucial.
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The first step is to translate the semantic interpretation of an utterance
into a query to the ontology reasoner. This is being done through the archi-
tectural binding subarchitecture. A Logical Form is translated into a proxy
structure, i.e. a number of proxies with well-defined ‘concept’ features, and
labelled relations between them. The subarchitecture that holds the concep-
tual spatial mapping and reasoning functionality then reads the full relational
proxy structure and converts the provided features into attribute-value pairs
in the representation of the ontology. The relations are also reconstructed
in the ontology language. Iteratively, an ontological description of the refer-
ring expression is generated. This description will then serve as a query to
the reasoner. Upon such a query the reasoner will return all instances in its
knowledge base that fulfill the criteria specified by features and relations.

In order to not overgenerate possible referents, the resulting query needs to
be evaluated against a subset of the full knowledge base. The relevant subset
is the discourse context. Following the approach described above, the query is
first evaluated against the child nodes of the current discourse anchor and the
discourse anchor itself. If the reasoner does not find any instances that satisfy
the description, the context set is increased using the method of topological
abstraction until at least one possible referent can be identified within the
context.

8.6 Talking about things you can do

So far we have seen how bi-directionality figures in situated dialogue process-
ing, when talking about things and space. We are using information about the
situated context to predictively filter interpretations in speech recognition and
incremental parsing, and later on use grounding of content to further zoom in
on those interpretations which are contextually supported. Furthermore, go-
ing back and forth between what we know about the scene, the environment,
and what we would like to say, we can generate referring expressions which
are contextually appropriate.

But how about action? And where do we draw the line between action and
interaction, in situated dialogue? We know from human communication that
the very situatedness of such dialogues allows us to ”overload” actions, giving
them also a communicative function. If we want to provide similar possibil-
ities for human-robot interaction, we need to consider how action planning,
and dialogue planning, should interact. This takes the bi-directionality even
further, from sharing content to sharing decision making processes.

Below we first discuss how action planning and situated dialogue process-
ing interact at content-level, and then close with a discussion on the spectrum
between planning for action and interaction.
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Things you can do

When we talk about performing an action, it’s about more than just the act
itself. There are the objects involved, who is to do something. There is what
we assume as outset, and what we expect to be the outcome of the action.
And it is all these aspects that somehow need to match up in context – in the
dialogue context as well as in the situated context.

What we do is to interpret the action further. We follow [25] and assign the
action a so-called event nucleus . The event nucleus models the action as anevent nucleus

event with temporal and causal dimensions. It models what needs to be done
before this action could be performed, and what would result from performing
this action – in as far as we can determine this linguistically, of course. In [23]
we discussed detail how we formally model the event nucleus. Here we will
focus on the basic intuitions behind these models, and discuss their interaction
with the ideas about indexicality, intentionality, and information structure we
discussed already earlier.

Fig. 8.12. Event nucleus, from [23]

Figure 8.12 provides the basic model we use for an event nucleus. Like all
our other representations, it is a relational structure, with variables which are
ontologically sorted. The sorts model a temporal ontology of types of events
[25], whereas the variables themselves gives us the possibility to explicitly
refer to these aspects of an event. We resolve any explicit or implicit temporal
references to these variables, so that we can establish the temporal relations
between events. After all, the ways in which events may be related need to
match the order in which we have been talking about them. For example,
consider we have a sequence of instructions like ”First take the mug, then put
it to the left the plate.” This sequence already indicates that we first need to do
the taking, then putting. Using the event nuclei associated with these actions,
we can establish a much richer interpretation though. The consequence of the
”take” action is that we have the mug – which is exactly what needs to be
the case for the ”put” action. Together with the fact that these actions are
to apply to the same object (”the mug” / ”it”), we can associate ”take” as
a preparatory action to ”put.” Finally, we can establish that being ”near the



8 Situated Dialogue Processing for HRI 355

plate” is an intended state for the mug – the goal we are trying to achieve
with the put action.

When we look at the nature of the content we provide for this intended
state or goal, we again see there is a need to differentiate between the infor-
mation status of content. We consider content which specifies the kernel (or
the root) of the content for the intended state to be ”new.” Thus, if we have
”put [the mug] to the left of the plate” we start out with considering the mug
and the plate to be ”old” and part of the identifiable common ground. The
intended location of the mug, being left of the plate, is new. Before grounding
it in binding working memory, we need to establish whether there is a suitable
location given the action(s) we want to perform.

We thus follow in principle the same approach as we do for questions and
assertions. Considering the command as intentional content, we provide it to
motivation working memory with pointers to the indexical content for ”mug”
and ”plate.” Action planning in turn tries to establish a suitable location
and plans for executing the action, as described in more detail in [81]. Bi-
directionality between planning, motivation, binding working memory and
dialogue processing subsequently provides feedback on the basis of which we
post-filter out any potential linguistic interpretation for which we cannot find a
suitable, situated plan, and provide communicative feedback on the command.

Between saying and doing

In situated dialogue, there is no clear division between action and interaction.
As a simple example, consider reacting to a put-command like the one above.
The robot could listen. Then provide an elaborate response to make clear it
has understood: ”Okay, let me put the mug to the left of the plate.” And then
do it. This is possible, but it stands in some contrast to what humans tend to
do. There, you often see that someone says ”fine” and moves the mug around.
Or she even just does the latter. The action is the feedback, performing it
gets overloaded with a communicative function of providing feedback.

What we can observe here is the next step in following out the bi-
directionality hypothesis. For most of this chapter, we have considered bi-
directionality in situating the linguistic content construed in a dialogue, be
that during comprehension or production of utterances. Here we go one small
step further, and take bi-directionality to the level of decision processes. We
go from how to understand communication, to how to direct it in a given
situation.

This builds forth on the bi-directional links we have already established, at
an intentional level, between action planning and situated dialogue process-
ing. We pointed out how dialogue meaning has two interrelated dimensions,
namely an indexical and an intentional one. These dimensions determine how
meaning gets related to content in other modalities in a cognitive architecture.
Notably, intentional content is used within the motivational subsystem of the
architecture to establish plans for action.
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It is on this basis we make a first attempt to establish a spectrum of in-
tentions between planning for action and interaction. Dialogue planning can
–naturally– generate dialogue moves from purely linguistic intentions, e.g.
those arising at engagement level [82]. At the same time, it can handle inten-
tions which originate outside the realm of dialogue. Typically, these intentions
stem from an action plan created on the basis of a communicated intention.
The intentions are always accompanied by indexical content, to which they
apply. For example, an externally raised need to inquire with the user about
a property of a particular object will be modeled as a ”question” intention
together with references to the object and the property. We can integrate such
an external intention as a continuation in the dialogue context model, by us-
ing the links we maintain between dialogue referents, and the cross-modally
connected indexical and intentional content they figure in. We provide several
examples of how this works out in a cross-modal clarification context in [64].

8.7 Conclusions

We started out with the idea that, when it comes to processing, context is
the first and last that situated dialogue is about. It drives what we want to
say, it drives how we want to say or understand something, it drives how
we want to communicate. The way context comes into play, we hypothesize,
is through bi-directionality. Processes can mutually influence each other by
sharing information – about the content they are forming, and the decisions
they are proposing to make.

Throughout this chapter, we have discussed how that works out. We
started out with just talking about ... talking. How we propose the linguistic
aspects of processing situated dialogue can be set up, and how information
about what is salient in the current context (be that the situated context or
the dialogue one) can act as predictor for how to recognize speech or how to
interpret an utterance, and how it naturally influences how we want to refer
to aspects of the environment.

We then continued by gradually investigating more and more aspects of
bi-directionality in situated dialogue processing. We looked at dialogue about
the current visual scene. We saw how relating linguistic content to that scene
requires distinguishing the indexical aspects of what you are talking about,
from the intentional aspects of how you mean what you are saying – against
the background of ”old” and ”new” information, relative to a common ground
already formed. And the other way round, feeding back into the language sys-
tem, we saw that alternative interpretations could be pruned in post-filtering
on the basis of whether they could be grounded in the situated context.

Next, we moved perspective from the scene in front of us to the larger
environment around us – where not everything we want to talk about can be
seen all at once. This required to establish connections with further models
for situation awareness, and ontological reasoning to establish how aspects
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of the environment could be referred to. Bi-directionality made it possible to
complement linguistic content with further information necessary to resolve
what it is someone is referring to.

Finally, we put bi-directionality into action. We looked at how communi-
cated content about actions could be enriched with event information, so that
we could establish when, how and what was to be done. We established bi-
directional links between planning, motivation and dialogue processing. This
provided the possibility to create plans on the basis of what was being talked
about – and, again, to use information about possible and impossible plans to
weed out irrelevant linguistic interpretations. But, bi-directionality between
action and dialogue can mean even more than that. We saw that, if we con-
sider action and interaction to be a spectrum, rather than two isolated forms of
acting, we can also consider bi-directionality at the level of decision processes.

The chapter contributes an approach to situated dialogue processing in
human-robot interaction. The approach has been fully implemented and inte-
grated in the systems described in 9 and 10. We have been able to show that
the system achieves better performance on understanding situated dialogue in
our domains by making use of information from dialogue- and situated con-
texts, than if it were not. At a deeper level, the chapter contributes insights in
what appears to be required if a system is to process situated dialogue; more
particularly, what requirements on processes and representations need to be
addressed if information is indeed to be exchanged and interconnected. Cru-
cial is a basis for establishing a common categorical and referential ground in
connecting content across modalities, to deal with always-present ambiguities
in efficient ways, and to provide means for persistence in maintaining these
connections over time to deal with changes in content and context.

Ultimately, when it comes to situated dialogue, what we really understand
about dialogue – is how we understand how we can experience.
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71. M. Steedman, I. Kruijff-Korbayová, Discourse and information structure, Jour-
nal of Logic, Language and Information 12 (2003) 249–259.

http://cognitivesystems.org/cosybook/chap8.asp#Lison/Kruijff:2008
http://cognitivesystems.org/cosybook/chap8.asp#Lison/Kruijff:2008
http://cognitivesystems.org/cosybook/chap8.asp#Lison/Kruijff:2008
http://cognitivesystems.org/cosybook/chap8.asp#Lison/Kruijff:2008
http://cognitivesystems.org/cosybook/chap8.asp#Kruijff/etal:2008
http://cognitivesystems.org/cosybook/chap8.asp#Kruijff/etal:2008
http://cognitivesystems.org/cosybook/chap8.asp#Kruijff/etal:2008
http://cognitivesystems.org/cosybook/chap8.asp#Kruijff/etal:2008
http://cognitivesystems.org/cosybook/chap8.asp#Kruijff:2005
http://cognitivesystems.org/cosybook/chap8.asp#Kruijff:2005


362 Kruijff et al.

72. J. Kelleher, G. Kruijff, Incremental generation of spatial referring expressions
in situated dialog, in: Proceedings of the 21st International Conference on
Computational Linguistics and 44th Annual Meeting of the Association for
Computational Linguistics, 2006, pp. 1041–1048.
URL http://cognitivesystems.org/cosybook/chap8.asp#Kelleher/

Kruijff:2006
73. B. Kuipers, Representing knowledge of large-scale space, Ph.D. thesis, Mas-

sachusetts Institute of Technology, Cambridge, MA, USA (1977).
74. G. Kruijff, H. Zender, P. Jensfelt, H. Christensen, Situated dialogue and spatial

organization: What, where... and why?, International Journal of Advanced
Robotic Systems 4 (2).
URL http://cognitivesystems.org/cosybook/chap8.asp#Kruijff/etal:

2007-JARS
75. H. Zender, P. Jensfelt, O. M. Mozos, G. Kruijff, W. Burgard, An integrated

robotic system for spatial understanding and situated interaction in indoor
environments, in: Proc. of AAAI-07, Vancouver, BC, Canada, 2007, pp.
1584–1589.
URL http://cognitivesystems.org/cosybook/chap8.asp#Zender/etal:

2007-AAAI
76. H. Zender, P. Jensfelt, O. M. Mozos, G. Kruijff, W. Burgard, Conceptual

spatial representations for indoor mobile robots, Robotics and Autonomous
Systems 56 (6), special Issue ”From Sensors to Human Spatial Concepts”.
URL http://cognitivesystems.org/cosybook/chap8.asp#Zender/etal:

2008
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tecture. A packed logical form [PLF] represents content similar across the
different analyses of a given input as a single graph, using over- and under-
specification of how different nodes can be connected to capture lexical and
syntactic forms of ambiguity.

After each incremental step, the resulting set of logical forms is compacted
into a single representation, which can then be directly manipulated by various
processes, in order, for example, to prune unsupported interpretations. It can
also be unpacked, ie. the original logical forms can be completely regenerated
(this is done by traversing the packed structure).

The packed representations are made of two basic elements: packing nodes
and packing edges. A packing node groups a set of nominals sharing identical
properties and named relations under a particular subset of the logical forms.
Packing edges are responsible for connecting the different packing nodes to-
gether, thus ensuring the correspondence between the packed structure and
the set of logical forms it represents.

The packing of logical forms is performed in two main steps:

1. An initial PLF is first constructed on the basis of the set of logical forms
(Step 1 of algorithm 6). To this end, each logical form is traversed and its
nominals are used to populate the packed structure.

2. The resulting structure is then compacted by merging particular substruc-
tures (Step 2 of algorithm 6).

A.1 Example

The Figures 8.13-8.15 below exemplify a simple case of packing operation.
The parsed utterance is ”Take the ball to the left of the box”. Two distinct
readings can be derived, depending on the interpretation of the phrase ”to
the left of the box”. In the first reading (LF1 in the figure 8.13), the robot is
asked to take the ball and put it to the left of the box - the phrase is thus seen
as indicating the direction of the move. In the second reading (LF2) however,
”to the left of the box” indicates the location of the ball to take.

Figure 8.14 illustrates the application of the first step of the packing op-
eration. A packing node - drawn in the figure as a square - is created for each
nominal. A packing edge is constituted for each relation found in the logical
forms. As shown in the figure, some packing edges are shared by both logical
forms, whereas others are only evidenced in one of them. An example of the
first case is the edge between ”take” and ”robot”, which shared by the two
logical forms LF1 and LF2. The edge between ”take” and ”left” illustrates the
second case: it is only evidenced in LF1.

In the example we present here, all packing edges have only one pack-
ing node target. In the general case however, several distinct targets can be
specified within the same edge.

During the second step, the packed structure is compacted by merging
packing nodes. The criteria to decide whether two packing nodes can be
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Fig. 8.13. The two initial logical forms LF1 and LF2 retrieved from parsing the
utterance ”Take the ball to the left of the box”

Fig. 8.14. The resulting packed logical form, before compacting

merged is the following: if (1) two packing nodes are connected by a packing
edge, and if (2) the logical form identifiers for the head node, the edge and
the target node are all identical, then the two packing nodes can be merged.
For example, the packing node surrounding ”take” and the one surrounding
”robot” can be merged, since the two nodes and the edge between them are
present both in LF1 and LF2.
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The compacting operation is repeated until no more merges are possible.
In our case, illustrated in the figure 8.15, we are left with two packing nodes,
one rooted on the nominal ”take”, and one on ”left”.

Fig. 8.15. The final packed logical form, after compacting

A.2 Data structures

We present below the informal specifications of the various data structures
used to construct PLFs. See figure 8.17 for a graphical representation.



366 Kruijff et al.

PackedLogicalForm:

• id: packed logical form identifier
• packingNodes: set of packing

nodes
• root: root packing node

PackingNode:

• id: packing node identifier
• packedNominals: set of packed

nominals
• lfIds: set of LF identifiers, enu-

merating the logical forms in
which the nominals included in
the packing node are present

• root: root nominal

PackedNominal:

• id: packed nominal identifier
• sort: ontological sort
• prop: logical proposition
• features: set of packed features
• relations: set of internal relations
• packingEdges: set of outgoing

packing edges

PackedFeature:

• feature: name of the feature
• value: value of the feature
• lfIds: set of the LF identifiers,

enumerating the logical forms
in which the feature holds

PackingEdge:

• id: packing edge identifier
• head: head nominal
• mode: edge label
• packingNodeTargets: set of pack-

ing node targets

PackingNodeTarget:

• lfIds: set of LF identifiers, enu-
merating the logical forms in
which the edge exists

• target: packing node targeted by
the edge

Fig. 8.16. Data structures used to construct PLFs

Fig. 8.17. Graphical representation of the data structures
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A.3 Pseudo-code

We finally describe the details of the algorithms used in the packing mecha-
nism we implemented.

Algorithm 6 : Pack(LFs) - Packing of a set of logical forms

Require: LFs is a set of logical forms (describing the same utterance)

% Step 0: Initialization
rootNominal ← 〈 rootSort, ’root’, ∅, ∅, ∅〉
rootNode ← 〈 {rootNominal}, ∅, rootNominal 〉
packingNodes ← {rootNode}
PLF ← 〈 packingNodes, rootNode 〉

% Step 1: Construction of the packed logical form
for lf ∈ LFs do

AddLFInformation(lf, PLF)
end for

% Step 2: Merge of the packed logical form
PLF = MergePackedLogicalForm(PLF)

return PLF

Algorithm 7 : CreateNewNode(nom) - using the information in nom, create
(1) a new packing node, (2) a new packed nominal inside it and (3) new
packing edges connected to the latter.

Require: A well-formed nominal nom

newEdges ← ∅
for every relation rel in rels(nom) do

% A packing edge is defined with a head nominal, a mode (”edge label”), a set of packing
node targets, and a set of logical form identifiers
newEdge ← 〈 head(rel), mode(rel), {target(rel)}, {lfId(nom)}〉,
newEdges ← newPackingEdges ∪ {newEdge}

end for

% A packing nominal comprises an ontological sort, a logical proposition, a set of features,
a set of internal relations, and a set of outgoing packing edges
newNom ← 〈 sort(nom), prop(nom), feats(nom), ∅, newEdges 〉

% A packing node is a triple comprising a set of packing nominals, a set of LF identifiers,
and a reference to the root nominal
newPackingNode ← 〈{newNom},{lfId(nom)}, newNom〉

return newPackingNode
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Algorithm 8 : AddLFInformation(lf, PLF) - Add the information con-
tained in lf to the packed logical form.

Require: lf is a well-formed logical form

for every nominal nom in nominals(lf) do

if there is no packing node in PLF which encapsulates a packed nominal with the ontological
sort sort(nom) and the logical proposition prop(nom) then

% We create a new packing node and its related substructures
newPackingNode ← CreateNewPackingNode(nom)

% We add the packing node to the PLF structure
packingNodes(PLF) ← packingNodes(PLF) ∪ {newPackingNode}

else
% We update the existing nominal and its dependent edges
let pNom = the packed nominal with sort(nom) and prop(nom)
let pNode = the packing node encapsulating pNom

pNode ← IntegrateNominalToPackingNode(nom, pNode)
end if

if nom is the root nominal in lf then
% We establish a connection between the root node and the current one

let packingNode = the packing node which encapsulates nom in PLF

Add a packing edge between root(PLF) and packingNode
lfIds(root(PLF)) = lfIds(root(PLF)) ∪ {id(lf)}

end if

end for

return PLF
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Algorithm 9 : IntegrateNominalToPackingNode(nom, pNode) - integrate
the information contained in nom to the existing packing node pNode

Require: A well-formed nominal nom
Require: A well formed packing node pNode which already encapsulates a nominal with the same

ontological sort and logical proposition as nom

let pNom = the nominal encapsulated in pNode

for every relation rel in rels(nom) do
if ∃ edge ∈ edges(pNom) where mode(rel) = mode(edge) then

% If there is already a packing edge with same mode, add one packing node target and
the LF identifier
targets(edge)←targets(edge) ∪ {target(rel)}
lfIds(edge) ← lfIds(edge) ∪ {lfId(nom)}

else
% Else, we create a new packing edge
newEdge ← 〈 head(rel), mode(rel), {target(rel)}, {lfId(nom)}〉
edges(pNom) ← edges(pNom) ∪ {newEdge}

end if
end for

% Update the features in the nominal, and the LF identifiers in the packing node
feats(pNom) ← feats(pNom) ∪ {feats(nom)}
lfIds(pNode) ← lfIds(pNode) ∪ {lfId(nom)}

return pNode

Algorithm 10 : MergePackedLogicalForm(PLF) - compact the PLF repre-
sentation by merging nominals
Require: PLF a well formed packed logical form

while there are packing nodes in PLF which can be merged do
for every packing node packingNode ∈ PLF do

for every nominal nom ∈ nominals(packingNode) do
for every edge edge ∈ edges(nom) do

if edge has only one packing node target then

let LFShead = set of logical forms identifiers in packingNode
let LFSedge = set of logical forms identifiers in edge
let LFStarget = set of logical forms identifiers in target(edge)

if LFShead = LFSedge = LFStarget then
% If the set of logical forms shared by the two packing nodes (and the
packing edge between them) is identical, then they can be merged in one
packing node

let targetNom = the head nominal of target(edge)

Merge packingNode and targetNom into a single packing node

Transform edge into an internal relation (in the merged packing node) be-
tween nom and targetNom

end if
end if

end for
end for

end for
end while

return PLF
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9.1 Introduction

Research in CoSy was scenario driven. Two scenarios were created, the Play-
Mate and the Explorer. One of the integration goals of the project was to
build integrated systems that addressed the tasks in these two scenarios. This
chapter concerns the integrated system for the PlayMate scenario.

The work described here on the PlayMate scenario is concerned with un-
derstanding at a systems level the problems that an intelligent system must
face if it must interact with humans in an object rich environment. In par-
ticular the goal is to understand how a robot can interact with a human in
a space in which they both manipulate objects, and in which they can talk
about those objects. This requires many abilities. The robot must be able
to understand and generate references to objects, actions with them, their
properties and spatial relationships. It must understand how actions alter the
relationships between objects, be able to recognise actions the human per-
forms with objects, and it must be able to learn about the effects of actions
on objects, both by discovery and by watching others. If there are several
opportunities for action it must choose between a number of potential goals
at any one time. Finally, since it is working with a human, the human may
change the world while the robot is acting. Thus the robot must meet many of
the requirements that we outlined in Chapter 2, and utilise many of the tech-
nologies that we described in the subsequent chapters. This chapter describes
how these technologies were integrated to solve some of the tasks that exist
in the PlayMate scenario. It describes both the complete PlayMate system,
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Fig. 9.1. The PlayMate robot with two of the object sets that it uses. The lower
panels show the robot’s visualisation of its environment, and the manipulation plan-
ner.

and the major innovations that cut across the PlayMate and the Explorer.
It is important to note that the system described here is the last of a series
of systems [1, 2, ?, ?]. Each of these systems was been used as an experi-
mental platform, and the lessons learned at each stage were used to revise
the cognitive architecture (see Chapter 2), and the systems level engineering
approach.

To help us in our exposition we will use a single example that runs through
the chapter and shows the various problems that we encounter in building a
robot with multiple modes of sensing and action. The script for this example
is given in Figure 9.2. The PlayMate robot has a physical set up with a table,
two head mounted cameras, and an arm with a pincer gripper and a camera on
the wrist. The objects are everyday cardboard packages such as small cereal
boxes, or brightly coloured shapes (triangles, squares, circles) with differently
coloured handles as seen in Figure 9.1.

The ability to handle this script requires that the robot be able to handle a
number of situations. First it must be able to understand not just the content,
but the role of an utterance in the interaction, when the human says ‘‘This
is a blue square.’’ The robot must have a way of knowing that it should
learn something. Second of all, the robot must be able to bind information from
one modality to that from another, so that when the red square appears it
understands which visual object is being referred to when the human refers to
‘‘a red square’’. When it is learning it also needs to identify which object
it is learning about. It must also have ways of finding information that is
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Human (H) puts a blue square down on the table

H: ‘‘This is a blue square.’’

Robot (R): ‘‘OK.’’

H puts down a red square to the right of the blue square.

H: ‘‘This is a red square.’’

R: ‘‘OK.’’

H picks up the red square and puts down a red triangle to the right

of the blue square.

R: ‘‘What is the thing to the right of the blue square?’’

H: ‘‘It is a red triangle.’’

R: ‘‘Ok.’’

H picks up the red triangle and the blue square and puts down a

blue triangle.

H: "What colour is this triangle?"

R: "It is blue."

H picks up the blue triangle and puts down a green triangle on the

right and a red circle on the left.

H: ‘‘What shape is this thing?’’

R: ‘‘Do you mean the green thing or the red thing?’’

H: ‘‘The red thing on the left.’’

R: ‘‘It is a circle.’’

H: ‘‘Put the circle to the right of the triangle.’’

R picks up the circle and puts it to the right of the triangle.

H puts a red triangle on the table.

H pushes the red triangle across the table to the red circle.

H: ‘‘What is the game?’’

R: ‘‘We are playing the colour game.’’

Fig. 9.2. An example script of an interaction between the PlayMate and a human.

required by one modality (e.g. language) from another (e.g. vision). So that if
the human asks a question — ‘‘What is the thing to the right of the
blue square?’’ — it can produce the answer. Alternatively, since the robot
is required to learn about the relationships between two modalities (vision
and language) it must also have the ability to learn associations between
aspects of the two, i.e. to perform multi-modal or cross-modal learning. If the
information available to the robot is insufficient for it to be able to perform
its task it must acquire it. In other words the robot must plan clarification
processing to resolve ambiguities. An example of this is when the human asks
a question but the referent of the question is unclear — ‘‘What shape is
this thing?’’ — so that the robot has to ask which thing is being referred
to. Also, if the robot is unsure about something it should be able to raise its
own questions, so that it can learn. An example of this is when the robot
realises that it doesn’t know the red triangle it is motivated to ask its own
question. In understanding the references to objects the robot has to have
and use a mapping between quantitative and qualitative notions of spatial
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arrangement. When the human tells the robot to put the circle to the right
of the triangle the robot has to map from a qualitative notion to a metric one
(it has to put the circle in a particular place). Whereas in order to be able
to make the utterance ‘‘What is the thing to the right of the blue
square?’’ it must perform the mapping in the other direction, from metric
to qualitative.

However, looking at this script, and comparing it to the script for a system
such as SHRDLU [3] or Shakey [4] from the 1970s it would seem to be little
different. It is however, important to note that SHRDLU was not embodied.
Systems such as Shakey at the time were embodied, but used a similar inter-
action modelto SHRDLU which in many ways abstracted away most of the
difficult parts of the interaction model — although they did this for very good
reasons. Figure 9.3 ilustrates the difference between the interaction model that
underpinned Shakey and SHRDLU and the one that must necessarily be used
to address some problems raised by the script above.

The upper panel of Figure 9.3 represents events and actions, including
speech acts, as having duration, and the world as being subject to periods of
continuous change punctuated by periods of stasis. This model is referred to
here as the Multiple Strand Continuous Change (MSCC) model of interac-
tion. It also models sensing and sensory processing of the robot as on-going
during actions of the human or the robot. In the lower panel is a characteri-
sation of the interaction model that underpinned both Shakey and SHRDLU.
In this second interaction model — which will be referred to as the Single
Strand Discrete Change (SSDC) model — actions have no temporal duration
that matters, as sensing is performed only on a static world, and utterances
are received as complete text strings. The second interaction model makes a
small number of key assumptions which do not hold in general, but which
must be addressed in both the script for the PlayMate, and in intelligent
robotics more generally. Before we commence the dicussion, note the differ-
ence between what is meant here by an interaction model and what we call a
representational model. A interaction model of a system is here a model of how
the system interacts with the environment that underpins system design. A
representational model is a model that the system may have internally. When
we refer here to the internal state, or the internal or world model of the robot,
we mean a representational model.

The assumptions of the SSDC interaction model are as follows:

• Events in the world have no duration.
• Events are modelled by analysing the static world states that precede and

follow them.
• There is a single processing strand.
• There are no parallel events.
• Perception can be performed reliably enough without cross-modal infer-

ence.
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Fig. 9.3. Two interaction models of change and processing. In the upper panel is
the interaction model that our PlayMate task requires, and below is the interaction
model that underpins the approaches of Shakey and SHRDLU.
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The first of the assumptions in the SSDC interaction model is that the tem-
poral duration of an event is essentially irrelevant. Events cause transitions
between states. This is familiar in AI from the viewpoint of a representational
model: the robot’s internal model of the external world can take one of a
number of discrete states, and when the world is sensed the internal model
will transition from one state to another. In addition the internal model rep-
resents the robot’s and human’s actions as a function modelling these state
transitions, which it can use for planning or reasoning. In addition, however,
the SSDC interaction model assumes these discrete states and durationless
transitions when designing the system’s processing. This assumption breaks
down if the robot has to process the durative and continuous change in the
world induced by an action of the human or robot. This breakdown is caused
by the fact that the SSDC interaction model doesn’t attempt to process the
sensory changes induced by actions until after they have ended. This fits with
the second assumption, that events are modelled by analysing the static world
states that precede and follow them. This means that the robot can’t handle
the processing of continuous change in our script as when the human is push-
ing an object through the scene. An additional drawback of this approach in
Shakey was that the world had to be allowed to “settle” before sensing was
performed. This model does not work where continuous feedback is required,
or where dynamic control becomes important. This is the case when the robot
is moving and tracking objects.

The classic way that the SSDC model is extended to environments with
change is to ensure that the rate of sensing and processing in the robot is
much higher than that in the world. If this holds it permits the third assump-
tion of the SSDC model: there is a single strand of processing. This model
of processing is realistic only where the robot has a single pipeline of incom-
ing information, i.e. there are no parallel events. This is not necessarily the
case in our script. It could be that the person starts to speak while they are
moving an object. In addition for the single strand processing model to work
the processing to be performed must relatively simple. Analysing a changing
visual scene, understand the speech sginal, and analyse the meaning of the
utterance at the same time, is not simple. Processing information in a single
strand means that the interaction can only proceed in steps: there must be
total ordering of the events in the SSDC model, which will not happen typi-
cally when executing our script in a natural manner. The consequence of this
is that to handle multiple concurrent, durative events, and respond in reason-
able time, processing must be done in parallel. In other words there must be
Multiple Strands.

A further assumption of Shakey was that perception was a process of trans-
lating information from sensory information into a single representation. In
the single strand interaction model there is no opportunity for information
from one kind of sense to assist the interpretation of another sense. Thus it is
implicitly assumed that perception can be performed reliably enough without
cross modal inference. In fact, because correct interpretation of sensory infor-
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mation is so hard to do reliably, it is wise to integrate information from many
sources as a way of increasing reliability. As soon as this is accepted we need
a way of ensuring that these strands interact correctly. Under a continuous
change model it is not possible to guarantee the time that any particular piece
of sensory processing will take. This means in turn that if processing strands
need to swap information then the time it takes to process information in one
strand relative to another can matter.

In summary, while the script appears at first sight to be quite similar to
those handled by SHRDLU and Shakey, when executed in a natural way by
a human, the assumptions of the interaction model that underpinned those
systems, and many subsequent ones (including models inspired by human
cognition such as [5]), break down. To tackle the PlayMate script in a nat-
ural way, is in essence to tackle a different script that is more appropriately
modelled by the MSCC model that underpins CAS and the PlayMate and
Explorer designs. The script detailed above is one of a large number that the
PlayMate can handle, but it illustrates many of the key issues. In the next
section (Section 9.2) we will give a sketch of the components and shared repre-
sentations that the PlayMate employs. In that section we focus on two of the
generic sub-systems that are employed in all activities: the binding system,
and the system for motivation and planning. This system sketch will provide
a framework for understanding the content of Section 9.3 where we describe
the cross-cutting issues and the innovative solutions employed in the Play-
Mate. These issues include those raised in the discussion of the script above,
but we highlight our approach to cross-modal learning, incremental process-
ing, disambiguation and clarification, and mediation between different levels
of abstraction.

9.2 System Overview

In the previous section we outlined the kinds of tasks the PlayMate robot can
be engaged in, and some of the requirements arising from those. In Chapter
2 we also outlined the requirements that arise generically on the architecture
for both the PlayMate and Explorer scenarios. In this section we describe
a specific system, built using CAST, which makes much stronger architec-
tural commitments than CAS itself. We also give an overview of the system
structure as it stands at the end of the project. The PlayMate and Explorer
share much of the same structure as one another, and we refer to the archi-
tectural instantiation that is common across the PlayMate and the Explorer
as CASPER. As part of the description of CASPER we will describe how the
system structure supports principled solutions for a number of possible tasks.

The PlayMate system is an architectural instantiation of the CAS schema.
It follows a broadly functional decomposition contra much recent work in
robotics, but utilises parallelism and incrementality to build up its represen-
tation of the environment efficiently.
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Fig. 9.4. An overview of the PlayMate System. There are seven sub-architectures,
each of which corresponds to a functional and development unit.

Following this broadly functional decomposition, there are seven sub-
architectures (SAs) in the PlayMate. These are concerned with visual pro-
cessing (Vision SA), Communication (ComSys SA), spatial representation and
reasoning (Spatial SA), manipulation (Manipulation SA which includes rele-
vant visual processing), ontological representations and reasoning (CoMa SA),
binding of information between modalities (Binding SA), and control of moti-
vation and planning (Motivation and Planning SA). In the PlayMate central
roles are played by the last two of these sub-archtictures. In the latter part of
this chapter we will show how we use these to control most of the reasoning
processes and flow of control, thus provided general control solutions for a
variety of potential tasks (question answering, question asking, cross-modal
learning, manipulation, handling ambiguities). We now briefly sketch the com-
ponents employed in each sub-architecture and the representations that they
share in their working memories. The reader should refer to Figure 9.4 to aid
understanding. Since the CoMa sub-architecture is used only peripherally in
the examples used here, and is explained in Chapter 10 we omit a further
description of it here.
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9.2.1 Vision SA

The visual system operates in two ways: it has the ability to analyse static
scenes (e.g. producing simple descriptions of objects and their spatial rela-
tions), and to analyse dynamic scenes (e.g. recognising actions with objects).
When new objects enter the field of view and then cease moving as they are
placed on the table the resulting static scene is analysed. A simple change
detector is used to determine whether the scene is, or has stopped chang-
ing. If the scene ceases changing, regions of interest (ROIs) in the scene are
segmented from the background, and information about them is written to
the working memory. It is important to note that all the information is ex-
changed between components on the working memory, and that most of this
is captured in two types of structure. The first of these structures captures
information about ROIs in the image, and the second captures hypotheses
about objects that may exist in the world. At the moment in the integrated
system we rely on there being a one to one correspondence between ROIs and
objects. Clearly this is not always the case, for instance due to occlusion and
partial occlusion, and in our work[6] on planning of visual routines we have
developed methods to split ROIs into smaller regions that are more likely to
correspond to single objects [7]. In general, despite this, we would need to
treat segmentation in a rather more sophisticated way, an example of which
is the kind of iterated recognition and segmentation employed in the Implicit
Shape Model [8]. Given our initial assumption about lack of occlusion the
segmentor creates, for each ROI, not just a structure representing the ROI,
but also one representing the object. These are linked, using the references
that CAST allows between items on working memories, and each of them is
a slot and filler structure that allows components to work in parallel. These
slots for the object include descriptions of the object’s category (by the cate-
goriser component), global shape classification and colour classification. The
ROI slots include the segmentation of the object within the ROI, and fea-
tures calculated by the feature extractor. This calculates, for example, local
shape and colour features for each region of interest. This split in the level of
abstraction is quite useful: ROI structures typically store quantitative local
visual features, and object structures capture the more abstract classification
of the whole object into a smaller number of qualitatively different classes.
This correspondence between local-quantitative and global-qualitative is part
of the process by which we gradually produce abstract representations suitable
for planning and high level reasoning. The other key notion from the architec-
tural schema CAS that is displayed here is that the components in the visual
system incrementally refine, in parallel, these shared representations of what
is in the scene.

When a static scene starts changing again, either because the robot or the
human intervenes, dynamic scene analysis starts. In the case of objects, all
the objects that have been segmented from the previous static scene analysis
are tracked by the object tracker, giving their full pose. In addition we sepa-
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rately track hands that appear with a hand-tracker, and analyse not only their
position, but also any pointing gestures that they may make. These pointing
gestures can be used to manipulate the salience of different objects or areas
within the scene. Hand information is stored in a separate hand structure on
the visual working memory. When objects and hands are being tracked infor-
mation about their pose is constantly updated on the working memory. Many
quantitative spatial features are also extracted from the tracking information
that describe the relative pose of hands and objects, and these are used by
the event analyser to classify simple and complex actions as described in [9]
and Chapter 7. This allows the system to recognise some of the actions that
are performed by the human with an object.

In addition to the ability to describe regions of the scene, objects in the
scene, and actions performed with those objects, the visual system also per-
mits learning of object properties. The learner/recogniser learns correlations
between the low level features of associated with ROIs (e.g. colour and shape
features) and abstract classifications associated with objects (e.g. the ball be-
ing red). To learn this requires a feedback signal. There are many possible
feedback signals, but in our case we utilise the information from language.
This cross-modal learning is described in more detail in [10, 11], in Chapter
7 Section 7.2, and also in Section 9.3.1 below.

9.2.2 Communication SA

The Communication sub-architecture (or ComSys) has a number of compo-
nents concernd with understanding and generation of natural language utter-
ances. The main discussion of the techniques employed occurs in Chapter 8,
but it is worth highlighting some points here. First a speech recogniser is used
to convert speech to a text string. But even at this early stage the entities
that exist as recorded on the binding sub-architecture can be used to bias
the likelihoods of recognising certain words6. This is an important example of
how tentative binding can be used to assist early processing of information by
cutting down the space of hypotheses. This process of using binding to limit
interpretations is also carried out by the parser. This uses a combinatorial
categorial grammar with semantics expressed in a modal logic. As described
in Chapter 8, this produces logical forms that correspond to semantic inter-
pretations of an utterance. In the ComSys we have the ability to perform
interpretation incrementally, i.e. as the elements of the text string arrive from
recognition. Whether parsing is performed incrementally or not, the possible
bindings of the discourse referents in the possible semantic interpretations cut
down the interpretations that can be considered. Each utterance is interpreted
as it arrives, and both the content of the utterance and its intent are modelled.

6 Given our current implementation of the framework, due to cross-language issues,
this is slow, even though it improves reliability, and thus was not used in our
experiments
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The resulting interpretations of all the utterances in the dialogue to date are
grouped together in what we call a packed logical form. We think about this as
a forest of trees, where each tree corresponds to the logical form from a single
utterance. The dialogue model includes a packed logical form, information on
all the discourse referents, a representation of events as well static scenes, and
contextual information. All of this information is communicated to the bind-
ing and motivation sub-architectures by the ComSys binding monitor. This
creates proxies representing both the indexical and intentional content of the
utterances in the dialogue. In rough terms the indexical content (information
about entities in the world) is used by the binder to link with information
from other modalities, particularly vision. Meanwhile the intentional content
(information about the purpose of the utterance) is used by the motivation
and planning sub-architecture to raise goals for activity elsewhere in the sys-
tem. The ComSys is able to signal to the overall system whether information
is intended by the speaker to be new information, e.g. in an utterance that
provides a description of an object to be learned. This is useful when it comes
to cross-modal learning between language and vision.

9.2.3 Manipulation SA

Because our primary integration goal in the PlayMate scenario was to un-
derstand the integration and architectural issues some of our components
implement standard techniques, rather than each pushing forward the bound-
aries of each sub-field. This is true for manipulation where we utilise standard
approaches to grasping and path planning for the manipulator. The manip-
ulation is given the identity of objects it must manipulate, and their desired
target locations. It plans trajectories through space to a suitable location to
commence grasping by using a probabilistic road map planner with optimi-
sation of the planned trajectories to minimise energy costs and path length.
Having reached the location to commence grasping a local reactive controller
utilises information from a visual analysis of the area in front of the ma-
nipulator. The manipulator has a camera on the hand, and this provides a
high-resolution image of the objects to be grasped. Because of the mechanical
restrictions imposed by two fingered manipulators (we use a jaw gripper and
have 5 DOF) we have restricted our objects to always have graspable sur-
faces in the form of handles, or to objects that naturally afford grasping (e.g.
upright oblong boxes of a suitable width). Given these objects however the
visual analysis must still correctly identify the graspable surface from within
the image. This analysis is performed using edge detection and anytime per-
ceptual grouping methods reported previously by Zillich [12]. These analyse
the image and find candidate graspable top surfaces. The surface that best
matches the hypotheses from the visual sub-system about the location and
size of the object is chosen, and a power grasp is executed on the object.
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9.2.4 Spatial SA

The robot may receive information about the spatial configuration of objects
from either language or vision. From language we have a representation that
is essentially qualitative. Utterances that the PlayMate might typically be ex-
pected to handle include several different types of spatial references, such as
projective references, e.g. "The box to the left of the red ball", "The
square in front of the triangle" or proximal ones, e.g. "The triangle
near the red thing". Both of these types of reference are essentially quali-
tative. The visual system can also produce a representation of spatial relations,
but this is essentially metric. The spatial sub-architecture captures both met-
ric and qualitative representations of space, which it derives from visual input.
This information will be combined information from language about space in
the binder. How the mapping from these metric to qualitative representations
is performed is described in Section 9.3.3. But note here that this process of
abstraction is central to the representational problems the PlayMate faces. In
addition that any solution to it that is suitable for supporting communica-
tion must also take account of the context sensitive way in which humans use
spatial references. The spatial SA has a component called the scene manager
which monitors changes in the information on the visual working memory.
When a new object appears there it creates a record called a location struc-
ture of the corresponding metric location on its own working memory. These
location structures point back to the visual information from which they were
derived, creating the kind of processing trail that was discussed in Chapter 2.
Because, during a dynamic scene, the position of objects can change quickly
the actual location information recorded in the spatial working memory is
only reupdated using the record on the visual working memory when the vi-
sual scene ceases changing. The set of the locations that hold during a period of
stasis are grouped by reference in a scene structure. This grouping is also per-
formed by the scene manager, which creates an ordered stack of scenes. This
means that the spatial system has memory, which is necessary to enable the
system to reason about the changes induced by previous trains of action. The
spatial system also builds a qualitative representation of the spatial relations
between scene locations. Two components search for proximal relations and
projective relations between these locations, and create scene relations which
are also referenced by the corresponding scene structure. These relations are
detected in a context sensitive manner using potential field models that are
described in detail in Section 9.3.3. The qualitative spatial description thus de-
rived is related to descriptions from language by the binding sub-architecture.
Our approach to binding is described in the next sub-section.

9.2.5 Binding

We have already described the binding problem in Chapter 2. We described
how CAS allows two levels of solution to the binding problem. Within sub-
architectures the results of processing by components are bound by design
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time decisions about the structure of the representations that reside on the
working memory. We referred to this as implicit binding. However, as explained
in Chapter 2 this is not enough in many cases. If in the PlayMate scenario
there are two objects on the table, and we refer to "the blue circle" we
need to relate structures on the communication working memory to those on
the visual working memory. We cannot use implicit binding to relate these
two structures. This is because those structures will have been created at
different times. Also because there are many ways of referring to an object,
and many ways of interpreting a reference — especially ambiguous references,
which may require accommodation or reinterpretation of the scene — the
binding of structures from across modalities must be done at run time, and
done in context sensitive way that produces an interpretation of the scene
that is consistent across both modalities and objects [13].

Because we have chosen a largely functional decomposition for the Play-
Mate systems we have built, explicit binding is largely a cross-modal affair:
we only have to perform explicit binding on entities across modalities. This is
not to say, however, that binding can occur only after the results of modality
specific processing have been completed. In Chapter 8 we described how we
use possible bindings between entities in the visual scene and discourse ref-
erents in the utterances to incrementally interpret the utterances. This use
of incremental binding means that binding becomes a way of achieving cross-
modal inference [14]. This is a powerful feature of the architectural approach
taken in CoSy.

However, it would be reasonable to hypothesise that there are several dif-
ferent ways that binding could be performed within a system like the Play-
Mate. Our approach is carried out using a central mediator and amodal rep-
resentations that are abstractions from the modality specific representations.
This is a very old approach, with a pedigree that in some sense goes all the
way back to the Shakey project. An alternative approach would be to perform
explicit binding pair-wise across sub-architectures, i.e. to perform distributed
explicit binding as opposed to our approach of centralised explicit binding. This
would mean that if one entity from each of N different sub-architectures were
all related to one another N ∗ (N − 1) pairwise bindings would be required,
giving an overall complexity order of O(N2). In our scheme N abstractions
must be performed plus one binding performed on each of those abstract rep-
resentations, giving an overall complexity order of O(N). The relative overall
run-time also depends on the relative processing cost of the processes of ab-
straction and binding on abstract representations, versus that of the processes
of binding on non-abstracted representations. In the PlayMate we have found
that the abstraction process is time consuming to design, but quick at run-
time. Perhaps the run time of binding on non-abstract representations can also
be low (it may be performed rapidly by using a content based memory for
example). A second challenge for distributed explicit binding is that bindings
must be made consistent, and that this must be done incrementally across
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Fig. 9.5. A timeline for a simple binding between a visual object and an utterance.
In a real system run these events will occur asynchronously and thus in a relative
order that depends on the timing of the utterance and the placement of the object.
For simplicity we have presented the system state here at chosen fixed points. Ar-
rowed links indicate one way references, while non-arrowed connections indicate two
way references between representations. The rows represent the working memory
contents for each sub-architecture listed on the left.

all the sub-architectures involved. This would make an interesting topic for
future work.

We now describe how our binding process works for the case of some
simple steps in our example. The discussion should be followed with reference
to Figure 9.5. It is important to note that to simplify the discussion we treat
the steps of the process as if they were synchronous. In fact all the processing
runs asynchronously. First recall the script:

Human (H) puts a blue square down on the table
H: ‘‘This is a blue square.’’

This simple example requires that the robot understand that the sole ob-
ject in view is the object being referred to. In one sense to bind these two
information items (the scene object in the visual working memory and the
discourse referent in the communication system working memory) is trivial,
the robot must simply associate the only visual object there is with the only
discourse referent there is: "blue square". But to do the binding in a way
that is general requires that the robot understand that binding them is per-
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missible because of what is known about them. In this first step, since the
robot does not yet understand from visual input alone that the object is blue
and square, the binding must occur purely on the basis that since they are
both structures that represent physical things they could be the same. Since
no other binding is possible they are bound.

Figure 9.5 shows this process. As described in Chapter 2, within each
sub-architecture a binding monitor component looks for new entities in that
sub-architecture’s working memory. When a new information structure is cre-
ated, the monitor writes an abstract amodal representation of that structure’s
contents to the working memory of the binder. Not all information creates
structure on the binder, and a crucial design decision in any specific system is
which pieces of information we regard as irrelevant change. Once created this
abstract representation is called a proxy. A binding monitor may write several
proxies to the binder to capture different aspects of the information. In our
example, after time t = 1 when the scene object is created in the visual work-
ing memory, the visual binding monitor creates three proxies. The first proxy
represents the physical object, the second proxy the location of this object,
and the third proxy the relation between the first two proxies — in this case
the simple fact that the object is at the location. Each proxy is essentially
a bag of features, which are attribute-value pairs. In our example, the first
proxy has the feature that it’s a type of physical thing, and the second that it
is a location. Note that the abstraction process into these amodal descriptions
of the objects is entirely decided by the binding monitor.

Also by time t = 2 a separate entity has been created for the spatial
location in the spatial sub-architecture. By time t = 3 a proxy for this has
also been created on the binding working memory. Recall that the purpose
of the binder is to decide which proxies are related to which other proxies.
If proxies are related it groups them into a set called a union. The precise
algorithm for matching is described in Chapter 2, but in the basic idea is that
if enough common features of proxies have values that match, and if there are
no features in common that mismatch, the proxies are bound into a union. To
restrict binding the binder also assumes that different proxies from the same
sub-architecture can’t be bound. In other words the binding process trusts
that the modality specific sub-systems generate the right proxies.

In our example, since the spatial proxy with a location and the visual
proxy representing that location match (the locations are the same) they are
bound into the same union. Since the spatial information here was derived
from vision this seems redundant. In fact it is not since we could equally
derive spatial information from language, and the spatial sub-system does not
tell the binder the origin of it’s representations. Thus the binder is blind to
the processing trails that exist from the proxies back to the source data.

During this processing the human has made the utterance: "This is a
blue square.". Parsing leads to a logical representation of the semantic con-
tent of the utterance, together with a record of the discourse referent. The
binding monitor for the communication sub-architecture creates a proxy from



388 Hawes et al.

the discourse referent, as seen at time t = 4. This proxy contains information
that the referent is blue, square, and that it is a physical thing. Since the only
feature this proxy has in common with the visual proxy for the object is type,
and the types match (they are both physical things) the proxies are bound
into the same union. So if one modality provides a richer description of an
entity than another modality this does not prevent binding. In our example
the binding process ends here.

One key design decision is the abstract set of features and values employed
for binding. These form our core amodal language. In our case, not only are
these features chosen carefully, but they are related in a type network or
ontology. This type network allows matching of entities lower in the type
hierarchy with entities higher up. Thus if the visual system sees a toy cow on
the table, but the human refers to it as an animal the type network allows
matching. This kind of reasoning about types and their relations is performed
by the Coma sub-architecture. This is mostly used in the Explorer scenario,
so we do not discuss it here, but it allows what we call ontology mediated
binding. This is another powerful aspect of our approach.

We have now covered the basic notions of binding as they are realised in
the PlayMate system. We have introduced the ideas of implicit, explicit[13],
incremental[14] and ontology mediated binding [1]. We have described in detail
how explicit binding occurs. We have emphasised that it relies on the ability to
abstract from modality specific representations into a common amodal repre-
sentation. Our implementation of this binding approach is also asynchronous,
and does not depend on information arriving from different modalities in any
particular order. This is important when trying to integrate representations
that change at different rates. As mentioned in Chapter 2, an important as-
pect of the abstract features we have chosen for the PlayMate is that they are
temporally stable. We now turn to the other central system: the motivation
and planning sub-architecture.

9.2.6 Motivation and flow of control

The motivation and planning sub-system plays the role of receiving poten-
tial system goals from other sub-systems, and then deciding which ones the
whole system should pursue (motive management) and how (planning). We
wanted to achieve this in as flexible and general purpose a way as possible. For
overall system behaviour the planning occurs at an abstract level, using rep-
resentations that are essentially those employed by the binder. Within other
sub-architectures (manipulation, communication and vision) domain specific
planners fill out the details of individual steps of the high-level plan.

The motivation sub-system has a monitor component. This is different to
monitors elsewhere in that it essentially keeps an up to date local record of
entities on the binding working memory that can be used for planning. It
watches the proxies and unions that appear on the binding working memory
and keeps a list of them - grouped by union - with pointers to the proxies
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themselves. This list is referred to as the Address-Variable Map (AVM). The
AVM is used by the planner to access information about the world via the
binder.

New system goals are adopted in a three-stage process. First a sub-system
such as the communication system or the visual system posts a proxy to the
motivation sub-architecture working memory. These proxies contain informa-
tion relevant to deciding what kind of system goal might be raised. This allows
sub-systems to raise potential system goals in parallel and asynchronously. In
the second stage the motive generator component then reads each proxy as
it arrives, and decides whether or not to generate a motive structure on the
working memory. In the third stage the motive structure is picked up by a
motive manager and a decision is made about whether to turn that motive
into a system goal. If so then the motive will be turned into a goal posted to
the motivation working memory, which will make reference to variables listed
in the AVM. This three-stage process allows local sub-systems to raise poten-
tial system goals, for the system to filter these and to maintain a resulting
set of motives, and then to choose which of these motives will be acted upon
now. This allows the system to switch goals if urgent new motives arrive, and
not to forget old motives that were of low priority, but which can be acted on
later. Motives can therefore be thought of as very similar to desires in a BDI
framework.

This system goal, posted by the motive manager, will in turn be picked
up by the planner [15]. Before planning can begin the planner asks for the
information from the proxies (referred to by the AVM) in a form suitable for
planning. This translation process is carried out by a state generator com-
ponent. Following the planning process an action dispatcher sends action re-
quests to different sub-architectures, and checks that the sub-architectures
claim they have been executed. The planner, being continual, also includes
an execution monitor which checks the achievement of the plan steps via the
state generator, the AVM and the proxies referenced by the entries in it.

To illustrate the process of raising and acting on motives we return to our
example. In the following sections we will show how the binding and motiva-
tion approaches described above provide a general way to tackle both tutor
driven learning, self-driven learning, clarification, and following instructions
or answering of human posed questions.

9.3 System Level Control of Information Flow

In the following sections we will go through the steps of our example, using this
as a way to describe the commonalities in how the PlayMate handles different
types of activity at a system level. The example script requires that the Play-
Mate be able to handle cross-modal learning, question answering, question
asking for clarification, and mediation between qualitative and metric repre-
sentations of space. Since the component technologies have been described in
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detail in various chapters we will not focus on the details of those here, but
on how the system level flow of information allows the right sub-systems to
be active at the right time.

9.3.1 Cross Modal learning

In Chapter 7 we described methods for cross modal learning at an algorithmic
level. In particular we described a continuous learning algorithm that is used
for learning associations between vision and language. Specifically it learns
the correlations between the abstract qualities of objects (colour and shape
names) or relations between objects (names for spatial relations), and features
calculated directly from low-level image properties (such as colour features or
local shape features). The framework described in Chapter 7 allows for the
learning to be either tutor driven or tutor supervised. To recap, in the first
approach the tutor drives the learning process by choosing the descriptions of
the objects that provide the qualitative labels. In tutor supervised learning,
the learner raises queries about the visual objects presented in order to obtain
qualitative descriptions. In our example the first exchange is tutor driven:

Human (H) puts a blue square down on the table
H: ‘‘This is a blue square.’’

Whereas the second exchange is an example of tutor supervised learning:

H picks up the red square and puts down a red triangle to the
right of the blue square.
R: ‘‘What is the thing to the right of the blue square?’’
H: ‘‘It is a red triangle.’’
R: ‘‘Ok.’’

At a systems level the challenge is to decide when to engage in one type
of learning or another. In addition the system must distinguish between when
learning activity is required, versus another kind of activity (question an-
swering, physical action). To do this we use the motivation system described
above. Sub-systems raise potential system wide activities, and the motivation
sub-system chooses between them. Learning also raises a second problem for
our broad approach. When a description given to the robot by the human
is intended for learning, how does the learner know which object is being re-
ferred to? In the section on binding above (Section 9.2.5) we described how we
handle this, binding only on common features, and where necessary using the
ontology to handle binding across the type hierarchy. To understand how the
motivation and binding solutions work together to enable cross-modal learn-
ing at a systems level we return to our simple example of "This is a blue
square". To aid the discussion Figure 9.6 shows a timeline that begins where
the time-line from Figure 9.5 ends. As described in Section 9.2.6, when the
utterance is processed a proxy telling the system about the intent of the utter-
ance is posted on to the working memory of the motivation sub-architecture
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Fig. 9.6. The extended timeline for learning activity for the "This is a blue

square." example.
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(time t = 1). This proxy contains the information that the ComSys has iden-
tified as new. The motive generator has a number of templates for creating
motives from proxies posted by other sub-systems. In this case it raises a mo-
tive and posts it onto the motivation working memory (t = 2). Motives are
essentially possible system goals, expressed in the language of the planner.
The goal arising from the statement "This is a blue square" is:

(for all ?sa (want-colour-info ?sa) (K ?sa (colour v1:blue))
and
(for all ?sa (want-shape-info ?sa) (K ?sa (shape v1:square)))

where ?sa refers to any sub-architecture, and K is a modal operator for
believes, such that (K agent fact) means that some agent believes some
fact. As described in Chapter 6, our planning language allows us to make both
epistemic states into system goals. In addition we model the architecture as a
multi-agent system in which the sub-architectures are agents. In order to take
advantage of this all the other sub-architectures register with the motivation
and planning sub-architecture which kinds of beliefs they are concerned with.
These information service offers/wants are stored during the entire run of the
system on the motivation sub-architecture working memory. To support cross-
modal learning both the ComSys and Vision sub-architectures register that
they can offer information about colour and shape. They also register that they
want to be told information about colour and shape that may be provided
by other sub-systems. In the case of cross modal learning the goal created
essentially says that all agents that want information of the type that has just
arrived should believe this new information. If the motive is adopted by the
motive manager the goal is adopted by the planner. It requests an abstract
description of the state suitable for planning, which is in turn supplied by
the state generator and posted onto the working memory (t = 3). This state
includes information about the general service offers and wants of different
sub-architectures. It also represents the specific beliefs that sub-architectures
have. As mentioned previously, the objective of binding is partly to provide
stable entities to support planning. The state generator essentially uses the
abstract state descriptions used by binding, and re-represents them in the
language of the planning domain. A plan is produced (t = 4) and its steps are
executed one by one (t = 5, t = 6). After each plan step has been executed
the continual planner we employ performs execution checking, again using the
abstracted state description provided via binding and the state generator. The
plan in this case is very simple:

(acknowledge motive comsys)
(tell-val colour vision v1 blue)
(tell-val shape vision v1 square)

It simply asks the motivation system to tell the ComSys that its request is
being dealt with, and then tells the vision system about the colour and shape



9 The PlayMate System 393

of the object. This plan has two important features. First it does not decide
whether or not the human needs an acknowledgement. That decision is left
to a separate dialogue management and planning process. This means that
our continual planner is isolated from some aspects of the system’s activity:
planning is carried out in a distributed fashion by a variety of specialised
planners. The second point is that the discourse referent blue square and
the visual object were bound explicitly, but the new information to support
learning was sent to vision, avoiding the binder. Thus in this case learning oc-
curs mediated centrally, but information exchange occurs between modalities,
not via a central world model.

In our second learning exchange recall that the learning is driven by the
robot:

H picks up the red square and puts down a red triangle to the
right of the blue square.
R: ‘‘What is the thing to the right of the blue square?’’
H: ‘‘It is a red triangle.’’
R: ‘‘Ok.’’

This is handled at a system level in a very similar way to the tutor driven
learning. When the visual system realises that it is unsure of the qualitative
colour and shape labels for the red triangle it posts a proxy to the motive
sub-system. Rather than containing new information this proxy is marked as
representing a question. This time the motive generator creates a goal that
the vision sub-architecture wants information on the colour and shape of a
visual object:

(K Vision (Colour v1 ?c))

This goal is then planned for as previously, and a plan will be produced
of the following form:

(acknowledge-goal-accepted vision)
(ask-val colour motive comsys v1 ?c)
(ask-val shape motive comsys v1 ?s)
(tell-val colour motive vision v1 ?c))
(tell-val shape motive vision v1 ?s))

In this case the planner realises that the ComSys can be asked about the
colour and shape of the object and that it can then send this information
directly to the vision sub-system to support learning. It is of course perfectly
possible that a motive for learning would be raised on behalf of vision while
the speaker was making an utterance intended to support learning. In this
case the system should be able to catch this by realising that a simpler plan
will suffice.
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9.3.2 Clarification and Question answering

We now briefly show how both clarification and question answering requests
can be handled using essentially the same mechanisms described above for
tutor driven and tutor supervised learning. Recall that in the dialogue there
is the following exchange:

H picks up the red triangle and the blue square and puts down
a blue triangle.
H: "What colour is this triangle?"
R: "It is blue."

In this case the proxy will be raised by the ComSys, and converted into a
goal for the ComSys to know what the colour of the triangle is. In this case
the plan will be:

(acknowledge-goal-accepted comsys)
(tell-val colour motive comsys v1 blue)

Because the visual system has analysed the scene, and confidently classified
the object’s colour this information has been stored in binding. Thus the
planner has access to this. The discourse referent for "this triangle" has
also been bound to the visual object. This means that the planner doesn’t
need to ask vision. Essentially the reason for this boils down to the fact that
in our current system visual processing is data driven, so information flows
directly from vision to the binder. In Chapter 2 we outlined how the visual
system could have task driven processing. This would make it much more like
language, in that vision would need to be asked, so that the plan would need
an extra ask-val step as did the one for tutor-supervised learning. Note that
both cases are handled by the planning process, rather than by the designer.

So far we have seen that our system handles two kinds of learning, and
question answering in essentially the same manner. Finally we see that clari-
fication requests can also be handled in a similar way. In the next step of the
dialogue the human places two objects on the table:

H picks up the blue triangle and puts down a green triangle
on the right and a red circle on the left.
H: ‘‘What shape is this thing?’’
R: ‘‘Do you mean the green thing or the red thing?’’
H: ‘‘The red thing on the left.’’
R: ‘‘It is a circle.’’

In this dialogue the utterance from the human is ambiguous. Perhaps the
robot should assume that the most salient, or recently deposited object is
the topic of the query. However, lacking such information it must clarify the
ambiguous reference. In our case this occurs in the process of the system’s
attempt to raise a motive to answer the question: ‘‘What shape is this
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thing?’’. There will be three relevant proxies on the binder: one from vision
for the green triangle (v1), one from vision for the red circle (v2), and one
from language for the discourse referent for "thing" (v3). Since there is not
enough information from the binder to bind the linguistic proxy to either of the
others the question cannot be directly answered. An important design decision
is how this is handled. On the one hand the ambiguity could be written into
the planning state, together with actions that have the effect of removing
ambiguities. This presents problems in that expressing the possible bindings
in terms of planning operators is extremely challenging. An alternative is for
the motive generator to perform simple reasoning to establish that the goal
will be unachievable without further information. This is the approach we
take. Thus when presented with an ambiguity that leads to an unachievable
goal the motive system instead posts a goal to resolve the ambiguity. When
this is resolved it posts the goal to answer the original question:

(K Binder (Colour v3 ?c))
(K ComSys (Shape v3 ?s))

The first goal is to enable the binder to get the information it needs to
distinguish which object the referent should be bound to. The reasoning to
generate the distinguishing features is performed by the binder itself. When
v3 has been bound to one of v1 or v2 the next goal of the ComSys knowing
the shape of the object can be adopted. The plan for the initial goal in this
case will be:

(acknowledge-goal-accepted comsys)
(ask-val colour motive comsys v3 ?c)

which will cause the ComSys to generate the clarification question: "Do
you mean the green thing or the red thing?" as a way of obtaining the
required colour information to complete the binding of v3. When the answer
is: "The red thing on the left." v3 and v2 are bound, and the second
goal is planned for:

(tell-val shape motive comsys v2 ?s)
A comparison of the relationship between these different types of control

flows is given in Figure 9.7.

9.3.3 Mediating between qualitative and quantitative
representations

In the final step of our example the human gives the robot an instruction to
move one of the objects:

H: ‘‘Put the circle to the right of the triangle.’’
R picks up the circle and puts it to the right of the
triangle.
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Fig. 9.7. Tutor driven learning, question answering, tutor supervised learning and
clarification of ambiguity are all handled in a similar framework. Essentially each
begins with a proxy posted on the motivation and planning SA working memory.
Then a motive/goal is created, which takes into account the desired knowledge state
of the various agents. Finally the planner creates a plan which includes knowledge
generating actions. These actions may cause specialised planning processes to be
run in other sub-systems.

To act on the kinds of action commands we are interested in, the robot
must be able to translate from the qualitative linguistic spatial description of
the location to place the object, to both a geometric description of the loca-
tion that can be used by the manipulation system (i.e. a geometric waypoint
positioned in the robot’s world), and a logical description for the planning do-
main (i.e. a symbolic representation of this waypoint and its relationships with
other waypoints). This translation involves constructing geometric models of
the semantics of spatial terms. In our approach we use potential field models
to create abstract spatial relationships from metric information in the spatial
sub-architecture. These potential field models are very simple, but are able to
take into account the context when interpreting spatial relationships. For in-
stance, the notion of the nearness of two objects is mediated by the proximity
and salience or size of other objects that may act as landmarks. The potential
field models thus let us extract qualitative spatial relations that correspond
to the terms as used by humans. In moving from qualitative to metric we
simply take the mode of a field with respect to some landmark. This is how
we generate actual goal locations for objects when given instructions like the
one in the final step of our example.
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9.4 Conclusions and Discussion

In this chapter we have looked at some of the issues involved in building a
robot controller for situations where the robot and a human can talk about and
manipulate a set of objects in a shared space. Working from requirements we
explained how the PlayMate architectural solution provides a specialisation
of CAS. Essentially the PlayMate is a functional instantiation of the CAS
architecture schema. This is only one possible instantiation among many. The
functional approach, while still deeply unfashionable in parts of robotics has
some advantages. In particular it is one way that we can produce abstract
enough representations to support planning of system wide activity. While we
do embrace an abstract world model we wish to emphasise that the approach
here is not that of Shakey or similar. There are a number of design choices
that we have embraced and from which we believe others could benefit. These
are:

• Shared Representations: while systems like Shakey employed a central
representation and a serial processing model we have used parallel process-
ing of distributed representations and explicit sharing of representations.
Brooks criticised approaches that pass representations as being subject to
a ”strong as the weakest link” problem [16]. Sharing representations can
overcome this weakness because by refining shared representations we can
leverage many sources of information to refine our hypotheses and ren-
der our conclusions more reliable. This is already a feature of statistical
inference in AI, we have taken the same principle and employed it at an
architectural level. We have also explored one set of approaches for parallel
and incremental refinement. The sharing rather point to point transmis-
sion of representations, and the parallel rather than serial refinement make
the model very different to that of early representation heavy systems like
Shakey.

• Abstraction: In our view the ability to coordinate system wide behaviour
requires that we have quite abstract, stable representations that are suit-
able to support symbolic planning. This was another criticism of the
Shakey approach: that such abstract representations are hard to come and
brittle in the face of change. In the PlayMate we employ ideas like process-
ing trails to allow the stable and abstract representations to point back to
rapidly changing information without being corrupted by this change. In
addition we employ a variety of levels of abstraction: within vision for in-
stance we maintain both low level visual features, and qualitative descrip-
tions of objects, in the spatial system we store both metric and qualitative
descriptions of spatial relations. Finally we have looked for ways that we
can move in both directions: from metric to qualitative and back again.

• Binding: Once the benefits of representations that are distributed across
many sub-systems are accepted there is a price to be paid. This is really
the binding problem: that it will not always be obvious without some in-
ference the way in which representations from one sub-system are related
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to those from another. We can think of our approach to explicit binding as
being a way of tying together elements across a field of evolving represen-
tations rather than as a single monolithic central representation. We have
shown in different parts of this book how a cognitive system with such a
distributed set of representations can benefit from strategies such as incre-
mental binding, implicit binding and ontology mediated binding. We have
employed all these in the PlayMate system to good effect.

• Processing control: Once we think about a distributed system com-
posed of many processing agents, we need to address the issue of how that
processing is controlled, and how information flows through the system.
How can the system produce coherent behaviour from these many parts?
Rather than take an approach in which coordination emerges we have pur-
sued one in which it is the result of informed decision making. This idea —
that we can model the internal informational effects of processing — is a
very powerful one. The idea need not be restricted to planning approaches
as here: it is perfectly reasonable to suppose that learning strategies could
be employed to acquire some aspects of processing control. In this chapter
we have focussed on the way that a variety of different activities can be
modelled using planning operators.

Overall in this chapter we have presented, at a systems level, a synthesis
of old and new approaches from AI and robotics to building complete cogni-
tive systems. We draw on, and synthesise, several traditions: representational
approaches to AI, aspects of parallel processing from robotics, and ideas from
statistical machine learning. The problems their synthesis posed resulted in
new architectural ideas. Their synthesis in the PlayMate in particular has
been an important driver in preventing us from shying away from hard issues
we would otherwise have ignored.
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10.1 Introduction

In the Explorer scenario we deal with the problems of modeling space, acting
in this space and reasoning about it. Comparing with the motivating example
in Section 1.3 the Explorer scenario focuses around issues related to the second
bullet in the example. The setting is that of Fido moving around in an initially
unknown (Fido was just unpacked from the box), large scale (it is a whole
house so the sensors do not perceive all there is from one spot), environment
inhabited by humans (the owners of Fido and possible visitors). These humans
can be both users and bystanders. The version of Fido that we work with in the
Explorer scenario can move around but interaction with the environment is
limited to non-physical interaction such as “talking”. The main sensors of the
system are a laser scanner and a camera mounted on a pan-tilt enabling Fido
to look around by turning its “neck”. Figure 10.1 shows a typical situation
from the Explorer scenario.

The construction of spatial models from sensor data in the context of
mobile robotics has been studied extensively in the literature. Simultaneous
localization and mapping (SLAM) is by now a mature technology and it is
not primarily in this field that the Explorer makes contributions. The kind of
maps typically created by SLAM are, as discussed in Chapter 5, focused on
providing the robot with means to localize and determine how to move from
one place to another. While this is still required by the robot in the Explorer
scenario, it is not the primary focus. Besides the obvious challenges in creating
an integrated system, one of the motivations for the Explorer, as with the
PlayMate, is to study the problems that occur when an intelligent robot must
interact with humans in a rich and complex environment. In this case we focus
on the design of models of space that are able to facilitate such interactions.



402 Sjöö et al.

Fig. 10.1. The user shows the Explorer robot where the living room is. The robot’s
visualization of a similar situation can be seen on the right-hand side.

In order to do this, the representation used by the robot must support the
anchoring of spatial concepts shared between the robot and humans. Such
spatial concepts may not be needed by and may not, for that matter, be
available to a robot acting on its own. However, when communicating with a
human, they play a key role in generating a shared understanding of space.
For example, instead of the robot talking about an area delimited by a certain
polygon it is more natural to talk about a certain room.

In the Explorer scenario spatial models are built using input from sensors
such as laser scanners and cameras but equally importantly also based on hu-
man input. It is this combination that enables the creation of a spatial model
that can support low level tasks such as navigation, as well as interaction.
Even combined, the inputs only provide a partial description of the world.
By combining this knowledge with a reasoning system and a common sense
ontology, further information can be inferred to make the description of the
world more complete. Unlike the PlayMate system, all the information that is
needed to build the spatial models are not available to it sensors at all times.
The Explorer need to move around, i.e. explorer space, to gather information
and integrate this into the spatial models. Two main modes for this explo-
ration of space have been investigated within the Explorer scenario. In the
first mode the robot explores space together with a user in a home tour fash-
ion. That is, the user shows the robot around their shared environment (Fido
needs to know where things are and what stuff is called in his new home). This
is what we call the Human Augmented Mapping paradigm. The second mode
is fully autonomous exploration where the robot moves with the purpose of
covering space. In practice the two modes would both be used interchangeably
to get the best trade-off between autonomy, shared representation and speed.

Another important aspect of the Explorer scenario is the ability to perform
tasks autonomously. If robots like Fido is ever going to take the steps from
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toys to utilities they need to do something for us besides providing entertain-
ment. Since the Explorer system does not have manipulation skills tasks are
somewhat limited. The focus in the Explorer is not on performing a particular
task to perfection, but rather acting within a flexible framework that alleviates
the need for scripting and hardwiring. We want to investigate two problems
within this context: what information must be exchanged by different parts
of the system to make this possible, and how the current state of the world
should be represented during such exchanges.

One particular interaction which encompasses a lot of the aforementioned
issues is giving the robot the ability to talk about space. This interaction
raises questions such as: how can we design models that allow the robot and
human to talk about where things are, and how do we link the dialogue and
the mapping systems?

10.1.1 Related work

There are a number of systems that permit a robot to interact with humans
in their environment. Rhino [1] and Robox [2] are robots that work as tour
guides in museums. Both robots rely on accurate metric representations of
the environment, and both have quite limited communicative capabilities. In
the Explorer the communication with humans and reasoning about space are
central elements. Examples of robots with more elaborate dialogue capabilities
are RoboVie [3], BIRON [4], GODOT [5], WITAS [6] and MEL [7]. BIRON is
endowed with a system that integrates spoken dialogue and visual localization
capabilities on a robotic platform. This system differs from ours in the degree
to which conceptual spatial knowledge and linguistic meaning are grounded in,
and contribute to, situation awareness. In contrast, in our system, information
from dialogue and situated contexts can be combined during processing of
utterances [8]. Furthermore, whereas RoboVie and BIRON use finite state
machines to model dialogue behavior, we combine information states [9], like
GODOT; together with a task-oriented perspective, as WITAS or MEL. One
more things that the sets the Explorer system aside from the above system
is that the integratation mechanisms themselves are as important or maybe
more important than the performance of the end product. That is, we want
to study how to integrate a large set of components in a cognitve system in
a flexible and scalable way rather then creating a system that can perform
certain tasks well.

10.1.2 Outline

The outline of the rest of this chapter is as follows. In Section 10.2 we give
an overview of the Explorer system, focusing mainly on outlining the dif-
ferences to the PlayMate instantiation presented in the previous chapter. In
Section 10.3 we describe how the spatial model is acquired, how it can be used
for conceptual reasoning and finally how cross-modal knowledge is represented
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and shared across the system. Section 10.4 details the specifics of planning in
the Explorer domain. Finally, in Section 10.5, we describe in detail an exam-
ple task and how different parts of the system contribute to the completion
of that task. We present some conclusions in Section 10.6.

10.2 System Overview

This section gives an overview of the system structure used in the Explorer
scenario. Figure 10.2 shows the subarchitectures (SAs) used and some of the
more important data structures published in the working memories of the
different SAs. Comparing with Figure 9.4, which describes the instantiation
of the PlayMate scenario, we see that the scenarios share four SAs: ComSys
SA for communication with the user, Binding SA for binding of information
between modalities, Motivation and Planning SA for motivation and planning
and the Conceptual map SA, for ontological representations and reasoning.

The SAs that have been removed from the PlayMate scenario are Manipu-
lation SA, Spatial SA and Vision SA. There is no manipulation in the explorer
scenario which eliminates the need for a dedicated SA. The Spatial SA in its
current form deals with spatial relations in a tabletop scene; in the Explorer
scenario the environment is large-scale and the Spatial SA is replaced by the
Navigation SA, which handles motion control and the three lowest levels of the
spatial model (see Chapter 5), and the Place SA which provides capabilities
for place recognition and categorization.The Conceptual Mapping SA takes a
more prominent role in the Explorer scenario than it does in the PlayMate
scenario. Here it is used to represent large-scale space at an abstract level,
allowing for natural language expressions to be related to places in the world
– and their respective representations in the robot’s lower level maps. The
requirements on the visual processing system also differ considerably between
the PlayMate and the Explorer. The camera is mobile in the Explorer which
violates some of the assumptions in the Vision SA. The Object SA, dealing
with object detection reuses some of the components from the Vision SA.

In the remainder of this section we will briefly outline the composition of
those SAs in the Explorer that do not exist in the PlayMate.

10.2.1 Navigation SA

The Navigation SA hosts the three lowest levels of the spatial model, i.e., the
metric map, produced by the SLAM Process; the navigation graph, and the
topological map; both of which are produced by the NavGraphProcess. The
metric map, represented as a line map, and the navigation graph are published
in the working memory for other components to use. The SLAM Process also
updates one structure for the current metric position and one for the current
topological position of the robot. Each node is assigned an AreaID representing
the topological area it belongs to. Some nodes are gateway nodes (doorways),
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Fig. 10.2. An overview of the Explorer System. There are 7 sub-architectures, each
of which corresponds to a functional and development unit.

and are connected to nodes with differing AreaID. This implicitly defines the
topological map: All navigation nodes with the same AreaID, taken together,
correspond to one node (area) in the topological map, and each gateway node
corresponds to an edge connecting two different areas.

Detecting and Tracking People

Detecting humans and keeping track of them is one of the key capabilities
of a robot that aspires to interact with humans. In the Explorer system we
use relatively simple means to realize this and make the assumption that
there are not too many people close to the robot. For people detection we
use a method similar to that used in [10, 11] which detects motion using
laser scanner data. A new person is hypothesized when motion occurs far
enough from any existing person. Each new person hypothesis is given a unique
PersonID. Association between detected motion and a hypothesis is based on
nearest neighbor matching. Tracking is accomplished by associating detected
motion to hypothesis and using these as measurements in a Kalman filter that
estimates the position and velocity of each person. Once a person disappears
from the field of view of the sensor the hypothesis is removed. If the same
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person reappears they will be given a new PersonID since the system is not
able to identify individual people. Using the camera in combination with the
pan-tilt for actively acquiring and using the appearance of the person could
possibly deal with the problem.

Motion Control

Mobility is one of the most significant differences between the Explorer and the
PlayMate. The Navigation Control module is based on the Nearness Diagram
method [12] and executes the low level “go-to” commands. The target location
is defined based on the current task which might be to follow a person, move
to a specific point in space, etc. This module uses the navigation graph for the
purpose of path planning by finding a path from the current robot position
via the closest node in the graph, through the graph to the node closest to
the goal and finally to the goal location.

10.2.2 Object SA

The Object SA collects the components involved in the finding of objects. It
consists of a module for view planning and one for visual search. The view
planning component creates a plan for which nodes to visit, in what order
and in what direction to look given the assumption that objects can be found
in places where the metric map registers obstacles. The visual search can
be performed using a pan-tilt-zoom camera where an attention mechanism
gradually guides the robot to zoom in closer and closer on object hypotheses
where finally a SIFT based method is used for recognition. In the absence of a
camera with zoom, the SIFT based matching algorithm can be used directly.

The Object SA can be used in two modes: one to perform active object
search in the current region, which engages the above-mentioned modules, and
another where the images are continuously processed to detect objects. In both
cases the objects that are found are published on the working memory. This
is detected by the Navigation SA, whereupon it in turn extends the spatial
model with the new objects. This then propagates the information onwards
to the Conceptual Mapping SA.

10.2.3 Place SA

The Place SA is responsible for assigning nodes and areas to one of predefined
semantic place categories (e.g. an office, a corridor etc.) as described in Chap-
ter 5. It gathers sensory data from a laser scanner and a camera and processes
them in parallel using dedicated visual and laser processing components. The
results for both sensors are integrated by a cue integration component, which
provides beliefs about a place category for the current viewpoint. This in-
formation is, in turn, integrated temporally and spatially in a component
responsible for assigning place labels to the nodes and areas.
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Each area is initially categorized as unknown until the Place SA delivers
a reliable classification result. The place categorization information is pulled
from Place SA by the Navigation SA whenever the current node is changed
in the navigation graph. The interaction with the Navigation SA is carried
out via the structure NodePlaceInfo which contains the established place
category for an area (and a node).

The area categorization provides important information when reasoning
about space. As an example, object search is expensive and the place cat-
egorization can help to speed it up by allowing for a more selective search
for objects. If the task is to populate the map with objects and it is known
that the current area is a kitchen the search can be focused on typical kitchen
objects.

10.2.4 Conceptual Mapping SA

The subarchitecture for Conceptual Mapping maintains a symbolic represen-
tation of space suitable for situated action and interaction. It represents spa-
tial areas, objects in the environment, and abstract properties of persons in a
combined A-Box and T-Box reasoning framework. Section 5.6 gives details on
the underlying knowledge representation and knowledge processing principles.

For our implementation, we use the Jena reasoning framework5 with its
built-in OWL reasoning and rule inference facilities. Internally, Jena stores the
facts of the A-Box and the T-Box of the ontology reasoner as RDF triples.6

The knowledge base can be queried through SPARQL queries.7 This reasoning
framework is wrapped inside a CAST component, the Reasoner, which handles
all necessary communication with the reasoning framework through SPARQL
queries. There are a number of other components that mainly manage the
interaction with other subarchitectures, namely the Nav SA Map Monitor, the
On Demand Binding Monitor and the Concept Comparator. In Section 10.3.2
we will describe the run-time behaviour of the individual components of this
subarchitecture.

10.2.5 The robot platforms

The Explorer system was developed and tested on two similar mobile robot
platforms, Minnie from KTH and Robone from DFKI, seen in Figure 10.3.
Both platforms are equipped with a SICK laser scanner, Minnie with an LMS
200 and Robone with an LMS 291. The laser scanner is the main sensor for the
Navigation SA. Both robots also have a pan-tilt unit with a camera. Though
Robone has a Videre stereo camera setup, only one of the cameras was used
in the scenario.

5 http://jena.sourceforge.net
6 http://www.w3.org/RDF
7 http://www.w3.org/TR/rdf-sparql-query
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Fig. 10.3. The mobile platforms on which the Explorer scenario was developed and
tested. Left: Minnie from KTH, Right: Robone from DFKI.

10.3 Spatial Modeling and Reasoning

In this section we will look closer at spatial modelling, spatial reasoning and
maintaining relations between entities in the spatial model.

10.3.1 Map Acquisition

When building spatial models for human-robot interaction it is natural to
adopt an interactive scheme for the acquisition process as well. We use the
paradigm of Human-Augmented Mapping (HAM) [13, 14].

Human Augmented Mapping

The acquisition process using HAM can be described as a guided tour scenario.
The user takes the robot on a tour of the environment and provides labels for
areas and objects of importance. Wizard-of-Oz studies have investigated the
interaction between human and robot in HAM [15, 16]. The findings concern,
for example, the type of dialogue typically used and strategies to introduce
new locations.

In a typical HAM scenario, the user walks up to the robot and initiates the
mapping process with a command like “follow me!”. The robot continuously
tracks the position of the user and follows them through the environment. As
the robot moves, the spatial model is built from the sensor data.

One important aspect of our implementation of HAM is that the inter-
action is not master/slave-like, with the user initiating all interactions. The
robot is also able to engage in, for example, clarification dialogues when it
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encounters contradictory or ambiguous information. In [17] we describe in de-
tail a HAM case study. In the example illustrated there, the robot detects a
false door when passing by a table and a trash bin placed close together (see
Figure 10.4). This makes the robot segment space into a new area. However,
as it moves on it finds itself reentering a part of space classified as belonging to
the previous area. This should not be possible without passing a door which
leads to a contradiction; the robot can then ask if it really passed through a
door recently.

Fig. 10.4. Left: The user activates the robot at its recharging station. Right: The
robot passes through an opening between a table and a trash bin interpreting the
narrow opening as a door.

Throughout the HAM session, the user can query the spatial knowledge of
the robot. The robot will be able to provide more and more precise descrip-
tions of space as more information comes in. Although the HAM paradigm is
very useful for acquiring a shared representation for spatial knowledge, it is
rather time-consuming for the user. It is therefore natural that the user walks
through the environment relatively quickly and introduces the main features.
The robot could then revisit the environment later when not assigned a spe-
cific task and extend the model with more detected objects, better covered
space, etc.

Autonomous Exploration

In addition to the HAM scheme for map acquisition, the Explorer also pos-
sesses the ability to do autonomous exploration. The Explorer uses a frontier-
based strategy [18] for autonomous exploration. Briefly put, the algorithm
maintains a representation of the world where space is classified as FREE,
OCCUPIED and UNKNOWN. The frontiers are defined as the borders between
FREE and UNKNOWN space.
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Exploration is considered complete when there are no more reachable fron-
tiers. Exploration can be configured to be confined to one area. In this case,
the exploration frontiers are considered unreachable if they require passing a
door, i.e., changing area. When detecting a door, the robot will back up into
the area from which it came and select a new frontier to explore.

Because the way the navigation graph is built requires the robot to move,
exploration is not only about having the sensor see all parts of the room, but
the robot needs to move there as well. The rationale behind requiring the
robot to travel a path to make it part of the navigable space, i.e. a part of the
navigation graph, is that some obstacles may not be detected by a sensor such
as a laser scanner. Upward-facing IR-sensors for detecting tables are examples
of sensors that could detect obstacles which the laser cannot see. Hence, in
order to force the robot to actually visit all the space physically, we limit the
range of the sensor for the purposes of updating the occupancy grid, which
is used to define the frontiers, to 2m. This way, the robot will move across a
large part of a room, even if it is able to see all parts of it from the door.

10.3.2 Acquiring the conceptual map

Upon start-up, the system comes with a rich conceptual ontology consisting of
taxonomies of indoor area types, of commonly found objects, and of different
spatio-topological relations that can hold between area instances and object
instances. Moreover, the ontology contains a concept for persons and a relation
that denotes ownership. This conceptual knowledge is held in the reasoner’s
T-Box. In case the system is started with a blank map, the A-Box of the
reasoner is empty. Otherwise, it will contain area, person and object instances,
and their relations, as contained in the loaded map. It is worth mentioning
that the exact positions of persons are not represented in the conceptual
map, just their ownership relations, which hold irrespectively of their current
whereabouts.

As the robot learns about the world (either through interaction with the
user, or through its autonomous map acquisition skills), this knowledge is
added to the A-Box of the reasoner. To this end, the subarchitecture for Con-
ceptual Mapping contains a component that constantly monitors the working
memory of the Navigation subarchitecture, the Nav SA Map Monitor (see
Figure 10.2). Whenever the Navigation subarchitecture identifies a new topo-
logical area, it creates a working memory entry for it. The working memory
entries for areas on the Navigation Working Memory include a field that con-
tains the most specific area category that can be autonomously extracted from
sensory data. Initially, the working memory entries for areas will contain the
neutral category “area”. As soon as the Place subarchitecture for place cat-
egorization has reliably determined a more specific category (e.g. “corridor”,
or “office” etc.), it will overwrite the corresponding working memory entry
for that area. The Nav SA Map Monitor is notified whenever an area work-
ing memory entry is created or an existing one is modified. In these cases, a
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(area0 rdf:type Corridor),

(area1 rdf:type Library),

(area2 rdf:type Office),

(area3 rdf:type Office),

(...)

(nick rdf:type Person),

(nick name Nick), (nick owns area2),

(...)

(obj1 rdf:type Book),

(obj2 rdf:type Mug),

(...)

Fig. 10.5. RDF triples in the A-Box of the conceptual map (namespace URIs
omitted).

new instance of the area’s category is created in the reasoner, or a given one
is modified respectively. A similar information flow is implemented for visu-
ally detected objects. Figure 10.5 shows a part of the A-Box in the Explorer
example scenario.

So far we have only described how the Conceptual Mapping Subarchitec-
ture reflects knowledge present elsewhere in the system, e.g. in the Navigation
Subarchitecture. However, one of the main roles of this subarchitecture is to
infer new or more specific knowledge based on partial information. The De-
scription Logic definitions of the concepts in the T-Box express properties that
form necessary and sufficient conditions for being instances of that concept.
By combining and reasoning over instances and their relations, the reasoner
can infer more specific concepts for those instances. In our current system,
the reasoner can infer subconcepts for room instances based on the objects
they contain, according to the principles described in Section 5.6.

The other components of the Conceptual Mapping SA, namely the On
Demand Binding Monitor and the Concept Comparator, are used to make
the information inside the Conceptual Mapping SA available to other subar-
chitectures. In the current system, the On Demand Binding Monitor registers
its competences with the Planning & Motivation Subarchitecture, and upon
request, contributes relevant data to the Binder working memory. The com-
petences offered are spatial reference resolution and the possibility to provide
typical locations for objects. We will detail the properties of these compe-
tences below. The Concept Comparator compares two Concept Binding Fea-
tures according to their taxonomical relation in the T-Box of the Reasoner.
The comparator will return true if the two concepts are ontologically equiv-
alent, or if the concepts are in a taxonomical subsumption relation. It will
return indeterminate if at least one of the concepts is unknown. Otherwise,
i.e. if and only if both concepts exists but are not hierarchically related, the
comparison result will be false.
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10.3.3 Cross-modal spatial knowledge sharing

To enable different modalities to support each other with high-level knowledge,
a number of protocols were implemented for the publishing of data on the
binder.

Current spatial context

The spatial context denotes high-level data on the spatial state of the robot
and of other entities in its current vicinity. This defines a class of binding
proxies that are used by the rest of the system to reason and plan. The
following proxies are always present on the binder:

• A robot proxy representing the physical robot itself
• An area proxy for the area the robot is currently in
• A position relation connecting the robot proxy with its area

In addition, the following are represented as appropriate:

• A person proxy for each person currently being tracked by the people
tracking module

• area proxies for each person
• position relation proxies between the above
• An object proxy for each object belonging to an Area that is being repre-

sented
• position proxies connecting each object and its corresponding Area
• Close relation proxies between the robot and persons that are near to it

The robot proxy

There is always exactly one robot proxy on the binder. The only feature of
this proxy is its Concept: robot. The proxy is designed to bind to proxies
generated by ComSys, representing the listener – the “You” in a dialogue –
and does so on the basis of its Concept feature (using concept comparators
provided by the Conceptual Mapping SA).

Area proxies

As described in Section 5.5.2, the navigation subsystem divides space into
areas, based on door nodes. At the level of planning and reasoning, these areas
constitute the basic units of spatial location. On the binder, the location of
objects, persons and the robot itself is represented by position relation proxies
connecting the entity with an area proxy.

Area proxies have the sole binding feature AreaID, a number that
uniquely identifies the area to the navigation subarchitecture. This feature
identifies the proxy as an area proxy, and also provides the information nec-
essary for another subarchitecture to create a navigation command to move
to the area in question.
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Object proxies

An object proxy has the feature Concept, describing the particular class
of object that it belongs to – for example, book or mug. The concept string
corresponds to the argument that is used to issue a search command to the
Object SA; thus, the feature can be used both for binding and for executing
a plan.

Person proxies

Person proxies store the following binding features:

• Concept: always set to person
• Location: last observed metric position
• PersonID: unique identifier

The Concept feature provides basic binding control, making sure (through
the Conceptual Mapping SA:s comparators) that only other types of person
bind to the proxy. The Location provides the planner with an exact target
for approaching a previously seen person in order to initiate a dialogue. It
also helps in binding: as the system is incapable of distinguishing between
individuals, it uses position to adjudicate binding. If a newly detected and
a previously detected person proxy have locations that are nearer than a
certain threshold, they are bound. Obviously, this makes the strong implicit
assumption that people are immobile.

Position relation proxies

The position proxy is a relational proxy, denoting the spatial relationship “X
is in Y”, where X is the proxy at the From side and Y the proxy at the To
side of the relation. It has the following features:

• Label: always set to position
• OtherSourceID: set to the ID of the navigation subarchitecture; negated

(see below)
• TemporalFrame: PERCEIVED for directly perceived entities; ASSERTED for

others

The OtherSourceID feature is compared to the SourceID feature of other
proxies on the binder, as one criterion on whether the proxies should bind or
not. Since it is negated, this prevents the relation proxy from binding to other
position proxies generated by the navigation subarchitecture.

TemporalFrame indicates the currency of the location information.
While a person is being tracked, its position is regarded as perceived; if it goes
out of perceptual context, yet remains on the binder (due to being bound to
another subsystem’s proxy), its status is changed to asserted.
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This is so that the system can clean up old person proxies: if the asserted
proxy binds to a perceived one (such as when the robot returns to a person it
has previously had a dialogue with), the newer proxy “takes over” from the
older one and the latter can be removed.

Objects’ positions are considered perceived indefinitely after they are de-
tected, since object detection is a discrete event, unlike the continuous tracking
of persons.

The robot’s position is always considered perceived.

Closeness relation proxies

Whenever a person is near to the robot, a relation proxy is created between
the two, with the features:

• Label: always set to close
• OtherSourceID: set to the ID of the navigation subarchitecture; negated
• TemporalFrame: always PERCEIVED

The closeness relation between robot and person is considered a prerequi-
site for initiating dialogue with the person. That is, if the planner is to plan a
dialogue action, it must first ensure that closeness holds, by moving the robot
up to the person if necessary.

As with position proxies, the “close” proxy has an OtherSourceID fea-
ture to prevent binding between the “close” proxies themselves. The relation
is also always considered perceived; if a person ceases to be tracked by the
robot, it is no longer considered “close” even though it may still be on the
binder (with an asserted position).

Supplementing non-spatial context

The preceding paragraphs define the current spatial context of the robot;
that is, the entities that are perceptually relevant to it. In addition, there
may be spatial proxies that are not part of this context, yet still remain
on the binder. This is done in order to supplement other contexts, such as
dialogue. Accordingly, any spatial proxies that are bound to proxies from
other modalities will not be removed as they go out of spatial context. Any
person or object that is thus sustained will also sustain its containing area
and the relation between the two. Similarly, sustained area proxies will also
sustain their contents in terms of objects.

For example, a person proxy will usually go out of context and will be
removed when the person is no longer being tracked (having passed from the
sensor scope of the robot). However, if this person proxy was bound to e.g. a
ComSys proxy representing the speaker in a conversation, the spatial person
proxy will not be removed. Consequently its position relation proxy and the
proxy of the area where the person was last seen also have their removal
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Concept: {"office"}
Concept: {"person"}

Name: {"Bob"}

RelationLabel: {"OwnedBy"}

Fig. 10.6. Proxy structure generated by ComSys for “Bob’s office”.

from the binder suspended. This allows e.g. the planner to access cross-modal
information relevant to its plan as it executes it or performs re-planning.

In addition to retaining spatial proxies that are bound to other modalities’
proxies, it is sometimes necessary to conversely supplement other modalities’
proxies by creating spatial proxies that will bind with them. For example,
when ComSys registers the mention of an area that is not currently part of
the spatial context, the Conceptual Mapping SA may resolve this mention
to a known area instance (see below). It will then provide a proxy of its
own, containing an AreaID feature of the known area; detecting this, the
Navigation SA will in turn create a proxy for that area (provided it hasn’t
already got one on the binder).

As in the case of the direct spatial context, an area that is put on the
binder in this manner will be accompanied by proxies for all objects known
to be in that area, as well as position relations linking the objects to the area.

Situated resolution of referring expressions

When the user gives the robot an order that involves a reference to a location,
ComSys will generate proxies that reflect the given verbal description. Fig-
ure 10.6 shows an example of such a proxy structure. The planner, however,
can only send a navigation command to the Navigation SA that contains a
goal location that is specified in terms of an Area-ID.

The On Demand Binding Monitor of the Conceptual Mapping SA of-
fers the competence to resolve such a structural description of a location to
an AreaID. Whenever the planner needs to resolve an AreaID feature for
a proxy structure, it will send a request for resolution to the On Demand
Binding Monitor. This component will then try to find an instance in the
conceptual map that matches the structural description represented by the
proxies. Internally, the proxy structure is translated into a SPARQL query
to the A-Box of the Reasoner. Figure 10.7 shows an example of a SPARQL
representation for “Bob’s office”.

The results of that query are then transformed into proxies and put on
the binder. The proxies generated by the On Demand Binding Monitor of the
Conceptual Mapping SA will contain the most specific concepts as Concept
features, any other additional information stored in the A-Box, such as name
information, and most importantly the Area-ID.
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SELECT ?x0 ?x1 WHERE {

?x0 rdf:type Office. ?x1 owns ?x0.

?x1 rdf:type Person. ?x1 name ’Bob’.

?x1 owns ?x0.

}

Fig. 10.7. SPARQL query for “Bob’s office”.

On the binder the original ComSys proxies and their counterparts from
the Conceptual Mapping SA are bound to a common union. The On Demand
Binding Monitor then reports task done back to the planner, which then can
continue to try to find a plan that satisfies the user’s command.

Providing default assumptions to the planner

Sometimes the user gives the robot a task that involves an object whose
current location is unknown to the robot. In such a case, the system can
make use of the conceptual knowledge represented in the Conceptual Mapping
SA. As mentioned earlier, the concepts in the ontology are defined through
necessary and sufficient conditions, mostly involving the existence of certain
objects in certain places. Here we make use of this encoded implicit knowledge
to form assumptions about where certain objects can typically be found. For
example, the concept of a library is defined as follows:

Class(Library complete Room

restriction(hasObject valuesFrom(LibraryObject) minCardinality(5))

)

SubClassOf(Library restriction(hasObject someValuesFrom(Book)))

This means that Library is equivalent to the anonymous concept that
fulfills the necessary and sufficient properties of being a subconcept of Room
and containing at least 5 LibraryObject instances. Moreover, a Library has
the necessary condition of containing Book instances. The latter one, however,
is not a defining (i.e. necessary and sufficient) property because books can also
be found elsewhere.

In any case, such a definition allows the system to form a hypothesis that
Books and other LibraryObjects can be expected in a Library. Consequently
the On Demand Binding Monitor registers its competence to provide typical
locations to the Planning & Motivation SA.

When queried by the planner to provide a typical location for a given
object, a SPARQL-query to the T-Box of the Reasoner is constructed and
executed. Figure 10.8 shows a query for the typical location of books.

If a typical location is found, the On Demand Binding Monitor creates a
proxy for the location that contains its most specific concepts. In our example
this would be Library. It also creates a proxy for the concept in question (Book
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SELECT DISTINCT ?defaultLoc WHERE {

?defaultLoc rdfs:subClassOf ?blankNode.

?defaultLoc rdfs:subClassOf oe:Area.

FILTER (!isBlank(?defaultLoc)).

FILTER (?defaultLoc != owl:Nothing).

FILTER (isBlank(?blankNode)).

?blankNode owl:someValuesFrom ?defaultObjClass.

Book rdfs:subClassOf ?defaultObjClass.

}

Fig. 10.8. SPARQL query for the typical locations of books.

in our example), and a Location relation between them with the additional
restriction that it has a TemporalFrame feature with value TYPICAL. This
denotes that the presence of such an object is not guaranteed to hold at a
specific point in time, but can be assumed to be typically the case. It is then
up to the planner to use this information to execute an action, e.g., a visual
search in such a place where the object in question is likely to be found, in
order to instantiate this “typical” knowledge with perceived information.

10.4 Planning

The Motivation and Planning Subarchitecture is general-purpose, and has
therefore been reused (with different configuration information) in both the
Explorer and PlayMate systems (see Chapter 9 for a more detailed descrip-
tion). The data the subarchitecture reasons about, however, is highly domain-
specific. In the Explorer scenario, this includes goals referring to spatial con-
cepts, beliefs about object positions and spatial relations, and actions to per-
ceive and manipulate the environment of a mobile robot. The goals, beliefs
and actions are represented in the symbolic planning language MAPL (see
Chapter 6). The symbols used are maintained by the Address-Variable Map
(AVM, see Chapter 9) such that they can be mapped back to binding prox-
ies and, consequently, to component-specific representations later during plan
execution.

In the Explorer scenarios described in this chapter, the main motivation
for the robot to act is usually provided by an extrinsic source, i.e. a human
user gives the robot a task. The ComSys generates appropriate proxies on the
Motive working memory which are then translated into a planning goal using
the AVM.

Planning starts with the creation of an initial planning state from the con-
tents of the current state of the binder. The task of the planner is then to
determine a sequence of actions whose execution from this state will achieve
the goal. Interestingly, the planning problems arising in the Explorer scenario
are characterised by a large degree of uncertainty and incompleteness in knowl-
edge: the map may still be incomplete, object locations might be unknown
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and the observability of the environment is severely limited. As explained in
Chapter 6, the planner actively tries to reduce such gaps in the robot’s knowl-
edge by using a continual planning approach: the planner repeatedly switches
from planning to execution in order to gather additional knowledge. Based
on the information gained, the planner first revises its current state and, sub-
sequently, its plan. It can then execute this plan further (possibly switching
back to planning later again) until a goal has been achieved.

A plan consists of both external (physical) actions and internal (i.e. pro-
cessing) actions. Physical actions are often scenario-specific. For the Explorer
they include:

• Follow person: Track and follow a human
• Approach person: Move to the proximity of a person
• Gain attention: Attract the attention of a human (e.g. say “Excuse me”)
• Move: Move to a given area in the map
• Object search: Perform object search for a given object
• Inform: Verbalize and transfer information on an object’s position to a

human that is close-by

Internal actions are mostly concerned with the task-driven extension of
the planning state, i.e. the querying of subarchitectures for additional infor-
mation that may be relevant for the problem at hand. In the current Explorer
scenario, it is mainly the Conceptual Mapping Subarchitecture that is queried
for default information, e.g. about where books are usually found. While this
kind of information could be provided to the planner in the initial state, this
would lead to an information overload: there is just too much information
that the different parts of the system could provide to the planner – often at
high processing costs, yet relevant only to few tasks (e.g. visual information
that has to be extracted from camera data). Thus, instead of generating all
this potentially irrelevant data in advance, the continual planner will deter-
mine possibly relevant sources of information on its own as part of the initial
planning phases in the continual planning process. When these information
gathering actions have been executed, a new plan is generated in the next
planning phase that exploits the new information.

If a subarchitecture provides some behaviour (sensing, acting, reasoning,
etc.) that is to be used by the planner, it needs to define two interfaces to this
action for the planner:

• A MAPL action in the planning domain including preconditions, param-
eters and effects

• An action dispatcher, which translates a request from the planner to ex-
ecute a specific MAPL action, i.e. with all parameters instantiated, into
whatever format is required to set the subarchitecture in action.

During plan execution, the planner calls the appropriate action dispatchers
to map the MAPL actions into the local representation used by the executing
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Human (H) approaches robot (R) who is idling in the corridor.

H: ’Find me the Borland book.’

R: ’OK.’

R turns and moves off, going to the door into the library. It

enters the door.

R moves about the room, turning to face different directions at

each location, searching for the Borland book.

R detects the book.

R moves back out into the corridor and up to H.

R: ’The Borland book is in the library.’

Fig. 10.9. An example of the Explorer performing an object localization task.

subarchitecture. For example, an action that in a MAPL plan is described as

PhysicalAction motmon0: approach-person motmon4 area id 0

contains the planner symbols motmon0, motmon4 and area id 0, which corre-
spond to the robot proxy, the user person proxy, and the area proxy on the
binder, respectively. The action dispatcher uses the AVM to find the proxy
corresponding to motmon4, extract the Location feature for the person and
issue a low-level movement command to the Navigation SA to move to that
location.

10.5 Scenario: Find object

Here, we describe in detail an example of a task performed by the robot, and
how the different parts of the system contribute to fulfilling this task.

The robot is ordered by a user to “Find me the Borland book”. It moves
off to look for the book, visually locates it, and returns to report its findings.
The externally apparent features of the task are described in Figure 10.9.

Initial binding state

Before the order “Find me the Borland book” is spoken, the following entities
are represented on the binder:

• The robot
• The area corresponding to the corridor (with AreaID #1)
• A person
• A Position relation connecting robot and area (TemporalFrame PERCEIVED)
• A Position relation connecting person and area (TemporalFrame PERCEIVED)
• A Close relation connecting robot and person (TemporalFrame PERCEIVED)

Note that no objects are present, nor are other areas except the current area.
A snapshot from a system run illustrates the initial state (Figure 10.10).
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Fig. 10.10. Initial binding state.

Processing utterance

As ComSys receives and interprets the user’s phrase “Find me the Borland
book”, it adds the following proxies to the binder, corresponding to the dif-
ferent parts of the utterance.

• The robot itself, being the recipient of an order, is represented by a proxy
with Concept addressee, which binds to the robot proxy already present.

• The word “me”, referring to the speaker, generates a “person” proxy iden-
tified by the Name feature I.

• The expression referring to the book is represented by a “Borland book”
proxy, which is not bound to any other proxies at this point.

Motive generation

The phrase “Find me the Borland book” is used to generate the motive that
will provide the planner with a goal state, as described in Chapter 9: Com-
Sys writes proxies to Motivation SA working memory corresponding to the
semantic interpretation of the command. The motive generator then creates
a motive structure, which the motive manager turns into a planning goal.

The planning goal resulting from the above command is an epistemic one,
saying, in words, that the user needs to know the position of the Borland
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book.8 In the planning language MAPL (see Chapter 6) this goal is represented
as follows:

(:goal (K motmon4 (perceived-position motmon6)))
where the symbols motmon4 and motmon6 represent the user and the book, re-
spectively. These symbols are maintained by the Address-Variable Map (AVM,
see Chapter 9) which allows the planner to refer back to their respective source
modalities during execution.

Continual plan creation

Planning starts with the creation of an initial planning state from the contents
of the current state of the binder. The planner will determine a sequence of
actions whose execution from this state will achieve the goal.

Planning in both the Explorer and the PlayMate system is a continual
process, i.e. the plan is revised repeatedly during its execution. Plan revision
occurs due to external reasons (exogenous events, unexpected execution re-
sults) or because internal state changes enable the planner to fill in details in
its plan that have been deliberately postponed before.

The early phases of continual planning in this Explorer scenario can be de-
scribed as means-end reasoning to determine necessary information for more
detailed planning. For example, the planner first forms a very abstract plan
which, in words, can be expressed as “determine the possible position of the
book by querying some person or subarchitecture who supposedly knows, then
verify this information by actually going there and identifying the book. Fi-
nally, go back and relate that information to the user.” The continual planning
process thus first queries the internal Conceptual Map Subarchitecture which
provides information about default locations of books. This new information
will trigger a plan revision (for details of this process, see Chapter 6) that
leads to a new, more detailed, plan that involves concrete movement to the
library and a search for the object there. If execution of this plan fails, e.g.
because the book is not in the library, this is detected during plan monitoring
and leads to another plan revision. The planner will then rely on sources of in-
formation other than Conceptual Mapping, e.g. humans (except the user). For
the planner, querying a human and querying another subarchitecture about
some information are identical. Both behaviours are planned as ask-val ac-
tions, the only difference to the planner being the addressee and the state
variable the query is about. Likewise, providing information to another agent
is realised by the same planning operator tell-val, regardless of whether this
agent is a human or another subarchitecture.

While humans and other external agents are mostly treated the same as
internal components, the planner makes one important distinction: external
agents will usually be given acknowledgements when requests have been ac-
cepted and when achieved. To that end, the planner implements the Continual
8 This is a convenient interpretation of “Find me the Borland book” because the

robot cannot pick anything up



422 Sjöö et al.

Collaborative Planning algorithm presented in Section 6.7. The realisation of
acknowledgements is not determined by the planner and is usually realised by
the ComSys.

The plan created initially upon receiving the order “Find me the Borland
book” consists of the following steps:

1. Acknowledge command acceptance to user
2. Have the Conceptual Mapping SA provide a default position for the book
3. Search the position provided for the book
4. Tell the user the perceived position of the book

Plan execution and revision

The first actions in the plan (acknowledging the new command and querying
for default information about the position of the book) are dispatched to
the appropriate execution modules (ComSys and Conceptual Mapping SA,
respectively). As a result, ComSys produces the utterance “OK” and the
Conceptual Mapping SA augments the binder state with the information that
the Borland Book, being a book, will typically be found in a library. This is
represented by a proxy of Concept borland book and a proxy of Concept
library, connected by a relation position, with TYPICAL status.

The Conceptual Mapping SA also volunteers the specific information it
has on libraries; namely, the fact that it knows about an area that is a library,
with a specific AreaID (#1). It publishes this information in the form of
another proxy with Concept library and AreaID #1. On the binder, this
information is bound together into a structure whose meaning is “The Borland
book will typically be in area #1” (see Figure 10.11).

The addition of this new knowledge to the planning state will lead to the
expansion of the assertion object-search-abstract which abstracted from
the actual position of the book as long as there was no hypothesis for its
position. When such a hypothesis exists, this assertion is no longer allowed to
be used (see Chapter 6), i.e. the planner is forced to reason in a more detailed
fashion with respect to the book position. After replanning, a more concrete
plan is produced:

1. Move to area #1
2. Search the current room for the book
3. Get back to user (area #0)
4. Tell the user the perceived position of the book

Note that by now, the planner also is certain that for finding the book the
robot must move away from the user. Thus it includes an action for getting
back to him later in the plan.

Using the correct AreaID, the planner issues a navigation command “Go
to area #1” to the Navigation SA, and the robot moves into the library. The
planner then proceeds to issue an object search command to the Object SA.
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Fig. 10.11. Binding representation of hypothetical position of Borland book.

The robot searches the room as described in Section 5.7.1. Once the object
is found, the Navigation SA adds it to the navigation graph. Since it is part
of the current spatial context, it is also exported to the binder in the form of
an object proxy, connected to the room’s proxy by a new position proxy. This
position proxy has PERCEIVED temporal frame.

The new proxies bind to the old complex, resulting in the structure in
Figure 10.12. Plan monitoring verifies that the search action was successful.
Because the perceived book proxy (with source ID nav.sa) has been bound
to the proxy from ComSys, the Planner can surmise that the position of the
former applies also to the latter. Thus, the robot now knows the position
of the Borland book that the user mentioned, which means the precondition
now holds for “Tell the user the perceived position of the book”. Consequently,
plan execution goes on to the “Move to the user” action. If object search had
failed, this would have invalidated the plan and triggered replanning.

The person proxy on the binder put there by the Navigation SA remains,
even though it is no longer being tracked, because it is bound to the user’s
ComSys proxy (see Figure 10.13). Thus, the planner can read the Location
feature of the person from the binder, and issue a navigation command to
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Fig. 10.12. Visually confirmed information about the book is added to the binder.

Fig. 10.13. Retained binding data about the user.

the Navigation SA to go to this location. Once there, it calls upon Com-
Sys to formulate a response to the user’s request, using the binder contents
(Figure 10.12) to do so.

10.6 Conclusions

In this chapter we have presented one more instantiation of the CAS architec-
ture schema in the form of the Explorer system. The same software framework
and many of the components are common with the PlayMate instatiation.
While the PlayMate and the Explorer share the underlying framework and
many components, the scenarios/tasks are in fact quite different. This pro-
vides evidence that CAS/CAST are general tools and can be used for a wide
variety of problems.

In this chapter we have also shown how we can share representations across
different modules by employing abstraction and various strategies for bind-
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ing knowledge, that is associating knowledge from one sub-system with that
from another. We showed how the system can bind not only with explicitly
perceived knowledge but also with ontological knowledge. This provides a
mechanism to, for example, fall back to knowledge about the typical location
of objects and thus provide a working hypothesis for a task even when the
location of an object is not known.

The abstraction of knowledge also provided the means to move away from
the hard-coded coupling between user input and action and use a much more
flexible solution using a planner.

With the Explorer system, we also wanted to investigate how to create
spatial representations which could bridge the gap between low-level robot
control, and the qualitative ways in which humans tend to understand space.
We approached this problem from a system point of view, looking at how the
combination of different information sources could help to bridge that gap –
building up a more comprehensive sense of space.

Following out that approach, we have found that integrating different
modalities leads to significant synergies in building up a more complete under-
standing of the spatial organization of an environment, particularly towards
a semantic understanding. Synergetic effects could be observed in informa-
tion sources complementing each other, and in disambiguating interpretations.
These synergies happen over time, and have highlighted an important require-
ment for spatial knowledge representation and reasoning. Namely, knowledge
must not, and cannot, be irrevocable. Spatial reasoning appears to be inher-
ently non-monotonic. The robot needs to be able to retract earlier inferences,
to prevent that erroneously acquired or asserted knowledge leads to irrecov-
erable errors in inferred knowledge.

Synergies only arise when we integrate many components. And that inte-
gration brings not only more complete knowledge and more capabilities, it also
increases complexity and presents problems due to the fact that the real world
is unpredictable to some extent. For example, in a scenario where the robot
continuously interacts with a user and is facing her/him most of the time, the
information content of the sensor input suffers as the user occupies a large
part of the field of view. In our case, the camera was mounted on a pan-tilt
unit and could have been used to actively look for objects and build a metric
map using visual information while following the user. However, this conflicts
with the use of the camera to indicate the focus of attention on the user. As
a result, most of the time the camera only sees the user and not the environ-
ment. The user’s presence not only disturbs the visual object recognition but
also influences the performance of the multi-modal place classification. From
this practical issue, we can derive again more fundamental issues too. Inte-
gration should not only lead to synergy, but also to robustness and plasticity.
In forming more complete interpretations, dependencies between modalities
should not be static. In situ, a robot should be able to resort to alternative
means for perception. And over time, a robot should be able to complete its
incomplete observations, e.g. through autonomous exploration.
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In addition to such practical issues, the experiments we ran in real envi-
ronments highlighted new requirements for the system. For example, spatial
referencing needs to be improved in both directions of the communication
and using several modalities. This would allow the user to indicate a specific
object through, e.g., gesture or gaze direction when saying “This is X”.
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11.1 Introduction

From the very start the CoSy project set out to demonstrate and evaluate
its progress in implemented, integrated systems. Chapters 9 & 10 set out
both the two scenarios we chose to integrate around, and the contributions
we made by studying problems following an integrative, rather than isola-
tionist, methodology. However, these contributions did not come without a
cost. Following an integrated systems methodology (and therefore delivering
a genuinely integrated project) demands a large input in terms of person
hours, a demand which is regularly underestimated in the planning phase
(both of whole projects and of development cycles). In CoSy we put in an
extremely large amount of time and effort into the “integration process.” At
some point or other almost everyone associated with the project wrote code
that was used in a demonstrator system. From undergraduates and masters
students, to postgrads and postdocs, up to PIs and other faculty members,
we all bought into the collective ingenuity or insanity required to produce a
state-of-the-art intelligent robot. It is rare that so many people from so many
different disciplines work together to integrate at this scale. Whilst many of
us have built integrated systems before, some of which could do more within
a single domain, none of us have worked to put so much from many different
fields into a single system.

So, what can we learn from our experiences? The short (and almost uni-
versally appreciated) answer is that integration is hard. Very hard. There is
not a single reason why this is the case, instead there is a complex of inter-
related issues that make the kind of problems we are often faced with hard.
These issues are explored in Section 11.2. Having been through the good, the
bad and the ugly of the integration process over four years, we have a lot of
informative (if not unique) first-hand experience. The role of this chapter is
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to attempt to share this experience with others, with the hope that they can
learn from both our successes and failures. We have distilled our experiences
into a collection of lessons. These are presented in Section 11.3.

Although the rest of this book is a scholarly work, this chapter is equal
parts memoir, training tool and self-help guide. We are a collection of sci-
entists who must tackle large engineering challenges in order to demonstrate
theoretical advances in our fields. Within our fields we apply various eval-
uation methods to supply evidence to support our conclusions. Faced with
the task of doing the same for our conclusions on the integration process we
are left only with a collection of subjective experiences. So, whilst we suggest
that our recommendations are taken with a pinch of salt, please consider them
for what they are: the findings of scientists trying to understand their own
behaviour4.

It is worth asking whether our experiences in the CoSy project qualify us
for commenting on the difficulties of systems engineering for science. Perhaps
we were all just painfully bad engineers and adopted flawed practices from
the start. Whilst all projects have their weaknesses, on average we’d like to
think engineering abilities were at least above average5. In argument against
this view we would like to present the evidence of the complexity of the sys-
tems we were working on. Chapters 10 & 9 present overviews of systems that
include components of massively varying levels of sophistication (from back-
ground subtraction to multi-level intentional action recognition), maturity
(from brand new components to off-the-shelf techniques wrapped in CAST)
and experimental purpose (from demonstrating the power of small changes to
an algorithm to justifying the existence of a collection of components). Mak-
ing all of these components, and their developers, work together in perfect
harmony requires an effort that goes beyond basic software engineering.

11.2 But is it implemented?

At the heart of the difficulties of doing integrated systems science is a trade-
off: innovation vs. realisation (or science vs. engineering). For any new advance
it is crucial that it is demonstrated in an implemented system. It is often not
enough to demonstrate the theoretical potential of a new idea, it must be im-
plemented and evaluated in silico before it will pass peer review. Conversely,
it is not just enough to demonstrate that some piece of software or hardware
works in practice; there must be a theoretical underpinning to justify its con-
tribution to knowledge. The best work in intelligent systems science, and in
AI and robotics in general, has a good balance between the theoretical and
practical: not only does the work represent a theoretical advance, its imple-
mentation is solid enough for its contributions to be repeatedly demonstrated

4 Some people would argue that CoSy is similarly inspired.
5 But we would say that, wouldn’t we!
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in a practical setting. Examples of recent component science that has had this
balance include the Fast Forward planner [1] and the SIFT vision algorithm
[2]. In terms of system science it is very rare to find whole systems (rather
than single components) that are available to the community. This is in part
due to the difficulties caused by differences in software and hardware between
groups, and the additional effort required to make complex systems of inter-
dependent components available in a usable state. Additionally, the lack of
systems, and system science, that is available for testing by the community is
due to the relative youth of the field.

At the moment we are still in the early stages of developing a science of
building intelligent systems. This means that our theories that can be tested
by integration (as opposed to the component theories that can be tested in
isolation) are still taking shape, and we are still learning what questions to ask
about how we put the parts together. In opposition to this stands “scenario-
based integration” (as described in Section 1.4.8) where we know the kinds
of behaviours we’d like our system to generate, but we’re free to specify how
they’re achieved. Whilst this is a compelling approach to setting integrated
system challenges, it has the potential to focus minds on the wrong element
of what is being delivered at the end of the process.

Related to this is the issue of reliability. For a system to really satisfy
the requirements of the scenario (and to be a compelling demonstrator at a
project review) it must be engineered to a standard where it can perform a
task repeatedly without crashing (physically or virtually). This arguably re-
quires a great deal more effort than building a system to be run purely in a
lab to generate results for a research paper. Herein lies one of the difficulties
of integration: if we are doing science (and we are employed as scientists af-
ter all!) then why should we spend our valuable time engineering a system
to be a convincing demonstrator when a lesser effort is required to test our
hypotheses. One answer to this is that we are interested in intelligent systems
as systems that can operate successfully in the long term. Our scientific aims
should not just address snapshots of behaviour (e.g. can it do this), but how
collections of behavioural competences work together in an intelligent system
over the lifetime of that system. A second answer is that any science of arti-
facts is dependent on engineering to support any demonstration of progress.
Obviously it is possible to have solid scientific ideas demonstrated with unre-
liable engineering and vice versa, but it is easier to evaluate and demonstrate
the science when the engineering is transparent.

11.3 Lessons

From our experiences of the integration process we have created a series of
lessons that we have learnt. We present them here in a rough order of impor-
tance. Although some readers may place more emphasis on one or more of the
lessons, or prefer them in a different order, it is probably worth considering
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all of them when considering proposing, starting or approving an integrated
systems project.

11.3.1 Integrate Ideas First

The most fundamental issue in integration is that the ideas underlying the
work must be integrated before a line of code is written. This means there
must be a clear reason for building a particular system in a particular way
before the engineering begins. Generally this means the scientific aims of the
integration (whether the system is an answer to a hypothesis itself, or whether
it is a tool to support the other exploration) must be set out from the begin-
ning. Although this may sound painfully obvious, it is not always the case in
large-scale projects. Many such projects promise integrated systems as a deliv-
erable or demonstrator, without truly understanding the reasons for building
such a thing (or the cost they will have to pay in terms of person-hours),
i.e. integration for integration’s sake. In this way some researchers are given
integration tasks they are not happy with, or equipped or employed for, and
the project suffers as a whole. This lesson generalises to “think before you
act”, a statement which sounds simple in theory, but is surprisingly hard in
practice. This is made doubly hard in integrated systems projects where most
contributors have dual localities: to their components (which often exist in-
dependent from the project, and have therefore required action already) and
to the system as a whole.

A second element of this first lesson is that integrating ideas first means
that a more concerted effort can be made to only integrate ideas that are
a good match for each other, or clearly all fit into a single system. One of
the side-effects of integration for integration’s sake, where the end product
of the process is a working system rather than new knowledge, is that sepa-
rate ideas which work well in isolation (often as clearly defined units of work
from separate workpackages) are roughly bolted together to show that they
all contribute to the same end. However, this type of integration often shows
nothing about the individual pieces of work that wasn’t demonstrated in iso-
lation, and, because the integration process was shallow and aimed only at
achieving integration, nothing is learnt about the science of building integrated
systems.

In the CoSy project we were lucky to be part of a project where ideas were
(mostly) integrated early on, and where these ideas often came from the syn-
ergistic effects of working on a multi-disciplinary project with scientific goals.
However, we did have our “integration for integration’s sake” moments and
we have been part of, and talked to researchers from, other projects which
were less dedicated to doing science in integrated systems. Our experiences
support this lesson in two additional ways. First, our integrators were much
more motivated when the engineering work was being performed based on
ideas that were clear from the start and had some relationship to scientific in-
tegration. Second, and perhaps most importantly, when there is a good match
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between the ideas that are the basis for the integration, the interplay between
theory and practice can be very productive (e.g. as in the case between the
CAS architecture schema and our ideas of cross-modal binding). In such cases
problems in engineering can sometimes be related to problems in the original
ideas, and progress can be made across both fields when a solution is found. It
is also the case that concepts originating from the engineering can work their
way back into the theory if they prove powerful enough. We experienced this
when discovered that some kind of change notification system is an essential
part of the theory of CAS as well as its implementation. Such progress can-
not be ruled out through misguided integration efforts too, but it seems that
theory-practice synergies6 in integrated systems require a certain relationship
between the theory and practice, and shallow integration efforts are less likely
to foster this relationship.

One important effect of idea integration is that it reduces the instances
of a common misconception that occurs when integrating ones own piece of
work (e.g. in form of a software component) with work of others: the X is
easy fallacy. This describes the assumption that the other parts of an inte-
grated system are essentially solved, rather than being work in progress (as
they should be for most ambitious research projects). Underlying this mis-
conception is often the feeling that the other problems within an integrated
system are somehow easier to solve than somebody’s ones own work. This is
a few which stems from a lack of understanding of the difficulties and open
research issues in other fields. Whilst it is impossible to overcome this lack of
understanding for all people and all fields (we’d all have to become experts in
everything), by integrating ideas at the outset of a project at least a superfi-
cial understanding of the key problems related to the project can be gained
by all involved parties.

To illustrate this, consider the following, overly optimistic, statement that
you might here during a system design meeting: “... and then the vision com-
ponent puts all the objects found on the table into working memory ...”.
Needless to say (for a vision researcher) this is a very ill-posed problem with-
out an existing solution. What happens if an object cannot be detected? What
about false positives? What about partly occluded objects? What happens if
an object is not actually on the table but is currently being grasped and car-
ried by the robot? What if the scene is currently changing? And what is an
object anyway? Are markings, scratches and sticky tape on the table objects
too? Do you expect three objects or three-thousand? Could the rest of the
system handle three-thousand objects? Although this example features vision,
similar assumptions can easily be made (and have been made) about many
other disciplines.

If all parts of a system are designed under the assumption that other
parts will simply work flawlessly in the required manner, the result will be
a very brittle system that works in small number of restricted cases. It is

6 I can’t believe I just wrote that
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important to keep in mind that nothing is easy. Part of integrating ideas (and
people) from diverse fields is building an awareness of the possibilities and
limitations of methods within different fields. This requires that individual
researchers occasionally take the difficult decision to say “No - we can’t and
won’t do that. It’s impossible to solve (within the time frame of the project,
with the given personnel resources)”. Even if the echo would be “But I saw
this paper by group X (or video on YouTube) - they solved it!”, it is always
worth asking which sub-sub-problem of the big problem did this group solve,
and how was the solution integrated with the rest of its enclosing system (as
we unfortunately often see an inverse relationship between the power of a
deployed solution and the strength of its integration with other systems).

11.3.2 Integrate People Second

Given that you’ve learnt from the previous lesson and have wisely chosen and
integrated your ideas for an intelligent system, then you have to get it built.
The next lesson to learn is that it is not only the ideas that must be integrated
for your efforts to succeed, your people must be integrated too. The integra-
tion of people primarily means the establishment of communication channels
between the people designing and building the system7. For building an inte-
grated system based on new scientific ideas, this means more than just having
an email address or Skype ID for everyone else in the team. For such engineer-
ing tasks it is essential that tight feedback loops are created and maintained
between the people that have the design ideas (including the science that is
to be done), and the people doing the implementation work. Often these are
the same people, but it is important that, as integration across ideas is cru-
cial to the project’s success, this theoretic integration informs the engineering
as much as possible. One reason that this is important is that the problems
with the theoretical integration often emerges during early engineering work.
Problems with the designs should be fed back quickly to all relevant parties,
rather than worked around in software.

The ultimate aim of people integration is for each member of the integra-
tion team to have a shared understanding of the problems they are solving and
the methods they are employing. Such an understanding is necessary because
decision made during the implementation of one part of the system can have
inadvertent effects on other parts of the system. Although careful planning
may help to avoid this, it is really only an appreciation of the reasoning under-
lying the plans that can keep people pulling in the same direction. If people
integration is successful, then they will not only have a shared understanding,
but also shared goals in terms of the whole system. Such shared goals should
ultimately mean that researchers and engineers move away from only caring

7 Although this will have had to have happened to some degree during the ideas
phase, communication channels may only exist between team leaders or people
with a history of previous interactions.
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about one part of the system (vision, manipulation, language etc.), and start
to care about the interplay of these systems and the effects they have on
overall system performance. Naturally there is a balance to be found in this.
Whilst too little group investment in shared goals will hamper the integra-
tion process, too much investment in them may distract from the component
scientific goals that drive much project work (especially PhD work).

From experience it seems apparent that integrating people around shared
goals prevents them from getting disenfranchised during the integration pro-
cess. From a management standpoint this means that people stay motivated,
work for each other, and take responsibility for developments across the whole
project. Such behavioural characteristics are very difficult to instill in a top-
down manner (particularly in scientists who do not take direction easily),
but develop naturally through interpersonal relationships around shared chal-
lenges (via social, and peer, pressure). To draw a parallel with the previous
lesson: whilst the science of integrated systems will develop from the syner-
gies between ideas that are traditionally studied in isolation, the integrated
systems themselves will best emerge from the synergies between people.

11.3.3 Choose Your Tools Wisely

The next lesson concerns one of key practical elements of the creation of an
integrated system: the speed at which ideas can be turned into functioning
code. Although this speed is influenced by many things (including the integra-
tion of ideas and people, plus their underlying abilities as scientists, engineers
and communicators), the tools that are used during the integration process
can have a massive impact (both positively and negatively). A tool may be
anything that is used in the workflow from thought to software; anything from
a mailing list to a programming language, from a software library to robotic
hardware. Although it is to be expected that the tools available and adopted
differ from site to site in a large project, we will focus on the tools which are
chosen for project-wide use. As our experience is mostly with software tools,
we will focus on these at the expense of hardware choices (which can have a
massive impact across projects).

For us, the ultimate tool is something which allows us to achieve some
goal (e.g. implementing an algorithm or behaviour, communicating an idea,
finding a bug, etc.) which would not have been possible, or would have been
a lot harder to achieve, without the tool. Ideally, any tool will not make
any other (unrelated) goal harder to achieve, or otherwise hinder progress.
Such an ideal is rarely realised, with most tools either reducing the space of
development options available at a later stage, new concepts or practices to
be learnt, or (perhaps most insidiously) old practices to be changed. There is
often a relationship between the amount of these practical ‘hoops’ an engineer
is willing to jump through, and the (perceived) benefit of using the tool in the
first place.
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In CoSy we enforced some tool choices across the consortium. These were
Subversion8 for software versioning, the use of the CMake9 and Apache Ant10

build systems, the use of the C++ and Java programming languages, and
the use of the CAST architecture toolkit [3] (which brought with it the im-
plicit use of the OmniORB CORBA libraries11 and Boost12 shared pointers).
Some tool conventions emerged through consensus and collaboration across
the consortium. These were a mailing list purely for integration developments,
Doxygen13 for documenting code, Bugzilla14 for bug-tracking, common direc-
tory structures and software release practices. Other tools were adopted se-
lectively by single partners and their use was accommodated (but not neces-
sarily widely taken up) by the consortium. These were OpenCV15 for image-
processing and as a simple windowing toolkit; QT16 and SWT17 for more
complex interfaces; various forms of run scripts, configuration files, and con-
figuration options to components; and Matlab18 and Python19 as additional
programming languages (which required specialised integration mechanisms).
In hindsight almost all of these things (whether software libraries or develop-
ment processes) should be considered during the planning of an integration
process, and standardised and enforced as required20. However there is a ten-
sion between enforcing standard tools and practices which allow the majority
to make progress with the least amount of overhead, and giving talented indi-
viduals the freedom to tackle their problems in the ways that come naturally
to them.

To develop this theme further we can consider two examples from the above
list: OpenCV and CAST. At some point in time almost every developer of a
component from the visual subarchitecture needed to pop up a window to
show an image (showing the current frame, a region of interest, or some re-
sult of processing). When doing this in relative isolation (i.e. developing their
component with the bare minimum of other components) using OpenCV for
this was simple and efficient. However, OpenCV was not designed for use in
multi-threaded systems, so when two or more components with OpenCV vi-
sualisations were placed together in the system we often saw crashes when one

8 http://subversion.tigris.org
9 http://www.cmake.org

10 http://ant.apache.org
11 http://omniorb.sourceforge.net
12 http://www.boost.org
13 http://www.stack.nl/ dimitri/doxygen
14 http://www.bugzilla.org
15 http://opencv.willowgarage.com/wiki
16 http://trolltech.com/products
17 http://www.eclipse.org/swt
18 http://www.mathworks.com/products/matlab
19 http://www.python.org
20 The types of tools and the issues they address should be considered, not neces-

sarily these particular instances
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of them tried to open a window. This simple example demonstrates a number
of things that can be generalised to more complex examples. First, the im-
portance of forward planning in terms of tool choice. If the individual users
of OpenCV had considered the future uses of their components (including de-
bugging them as part of the whole system, i.e. testing them in an integrated
context) they may have made a different choice. Second, it demonstrates how
a single choice made in a couple of components can effect software across the
whole project: if a third party ran two OpenCV-using components without
knowledge of their contents, they would experience behaviour that the com-
ponent authors would not have experienced on their own. Third, and perhaps
incidentally, it shows how tools for debugging and visiualisation (in this case
the ability to display results in a window) are an important element of any
software project. Because such tools should be simple and accessible develop-
ers tend to use tools they are already familiar with (hence the use of OpenCV
here). If a project is intending to standardise software tools across its mem-
bers, such common debugging elements (including logging and image display)
should be one of the focus points of this effort. In complex integrated systems
debugging happens continually, and is often required with every new combi-
nation of components. As such it should be made as easy, and as uniform, as
possible.

The second example of tool use in CoSy is CAST, our architecture schema
toolkit. CAST was used from year 2 onwards in the project as the sole soft-
ware middleware for components in our integrated systems. From its inception
CAST always had two purposes. It’s practical role was to make writing multi-
language, distributed, component-based architectures as simple as possible
(after some initial bad experiences with an arbitrary collection of other tools).
Under the cover of this practical tool (i.e. something that should make peo-
ple’s lives easier) we also used CAST as an embodiment of our architectural
theory (see Chapter 2), thus enabling us to integrate these important ideas
from an early stage. However, in the early stages (year 2 of the project) CAST
was a less than useful software tool. It was initially hard to learn, configure
and debug, and contained numerous, occasionally obscure, bugs. This allowed
us to witness first-hand the adverse effects of enforcing a bad software choice
on a whole project: that first year we used CAST we almost certainly made
less progress than we would’ve done without it. However, over the remaining
years of the project (and afterwards) we tracked down bugs and refactored
CAST to be much more useful as a development tool. Whilst this was pure
engineering, making our tools better ultimately allowed us to do better sci-
ence (in this case build more complex integrated systems in less time from
heterogeneous parts). Watching CAST progress from a hindrance to a help
demonstrated the power of choosing the right tools.

When tools pervade throughout a system they not only aid its develop-
ment, they also start to shape its design. Although a special case (as it was
intended to have this effect from the start), CAST demonstrates this. Before
we used CAS or CAST in our integrated systems, our planning meetings for
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the integrated systems were often ultimately unproductive, as we mixed up
various interrelated issues (communication patterns vs. the information being
communicated, system decomposition vs. desired functionality, even require-
ments vs, designs). Even after we proposed the schema as a theory this did
not improve greatly. However, once people started manipulating CAS concepts
(working memory entries, change events etc.) in software, the theory, and its
implications and constraints, started to seep back into their heads. This led
to integration meetings where people started with a common system-design
vocabulary, and were free to discuss representations, algorithms, component
interactions and behaviour at various levels of detail, within a fixed global
framework. Whilst CAST will not be the correct choice for every project, we
found having a common tool (and therefore common language) that supports
both system design and implementation (something which most component-
based middleware would not) invaluable.

11.3.4 Find the Scenario Sweet-spot

As stated previously, all our integration work was based around scenarios,
i.e. examples of system behaviour. Although we had guiding scenarios from
the start (first the Fido scenario from Section 1.3, then later the PlayMate
and Explorer scenarios from the preceding chapters), these were too abstract
to serve as meaningful targets for integration. Therefore, for each round of
integration work (roughly each year of the project) we had to select more
detailed sub-scenarios from these abstract scenarios to use as targets21. This
selection process was the main process by which we chose which bits of com-
ponent science would be integrated into the two main demonstrator systems
(the PlayMate and Explorer). This choice is crucial because the demonstrators
and their target behaviours represent the public face of a project’s ambitions
to the wider community (i.e. they are a project doing X and Y). As such,
making a particular set of behaviours prominent in an integration scenario
can provide high visibility for the component science, with commensurate
pressure on the relevant partners to deliver both good components and good
integration. In turn this drives both the integrated systems, and the progress
of the whole project, in particular ways. This is because a particular set of
behaviours will require supporting efforts from the rest of the consortium. In
the best case these supporting efforts will be in line with the scientific aims
of the relevant partners in the consortium (e.g. the marriage of planning and
communication to tackle the problem of clarification [4]). In the worst case
the supporting efforts will either require pure engineering work from other
partners (e.g. integrating standard solutions to solved problems), or work on
problems that are not within a partner’s field of expertise or have a difficulty
that is beyond the scope of the overall system behaviour (cf. the X is easy fal-
lacy). These issues all arise without even discussing the scientific aims of the

21 See Chapter 12 for further discussions on scenarios and surrounding issues.
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partners choosing the scenarios or the project they’re working within (we’ll
take it as read that these will play a major influence on the decisions). All this
demonstrates what a critical (in terms of science, progress and project poli-
tics) decision the integration scenarios are for an integrated systems project.
In CoSy we spent a significant amount of time discussing and choosing scenar-
ios, working on systems as a result of our choices, and having both positive
and negative experiences during this process. This process has provided us
with the following insights.

Perhaps the most crucial element of a scenario is how difficult it is to
actually achieve given the time and resources available to the project. There
are two interrelated issues here: how difficult it is to solve all the necessary
subproblems of the scenario then integrate them in a system, and how difficult
it is to decompose the scenario into subproblems in the first place. The latter
is not necessarily an indicator of the former, but it does need to be performed
if the scenario is to be tackled. In terms of scenario difficulty there appears
to be a sweet-spot where the scenario is difficult enough to be challenging,
but not so difficult that it is impossible given the resources available. Ideally
the difficult should be uniform across the subfields tackled by the scenario. In
other words, each partner should need to extend the state of the art in their
fields, but shouldn’t be expected to have to tackle extremely difficult unsolved
problems within a limited time-frame. Setting this kind of difficulty level is
easier said then done. As we are engaged in research it is often difficult to
predict the real difficulty of a task, including the time it will take to tackle,
and whether a solution exists at all. It is also very difficult to estimate the
time it will take to engineer a particular solution into an integrated system. It
is often this part that takes a lot longer than anticipated (e.g. after a system
has been prototyped in Matlab, turning it into a component in an integrated
system can take at least as long again).

Aside from scientific progress, the difficulty of a scenario has a real impact
on the morale of the researchers involved in the project. If the work involved in
the scenario looks trivial and too easy then it is hard to get people interested in
working on it. It is also difficult to motivate the same people into contributing
to integration work early on in the integration cycle; if things look easy then
they are more likely to be left until the last minute. Conversely if the scenario
looks too hard then it is harder to motivate researchers as they may feel their
efforts are best placed elsewhere (where they might have a better chance of
success) as either there own parts look unachievable, or they don’t believe the
components they are supposed to integrate with will be completed successfully.

Choosing a scenario purely by picking something which is just slightly
beyond the state-of-the-art is a dangerous long-term process. This is because
without taking into account longer-term aims it is impossible to determine
whether or not your overall research program is heading in the right direction
or not. This dictates that any scenario should be embedded within a long-
term roadmap which links it into a partially-ordered series of other scenarios
leading to a desired future system (see Section 12.1 for further discussion).
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However a scenario is chosen, the process of choosing it must actively in-
volve all of the people who will ultimately be contributing to the integrated
system. This is because, as stated previously, the choice will dictate their work
for the next period. The process of defining of a scenario that spans several
disciplines is inevitably one rooted in compromise. What makes a scenario
challenging and interesting for one partner can often make it either trivial or
impossible for another. As such, the process of choosing a scenario requires
a constant balancing of interests across all parties, with each contributor re-
quired to compromise on some aspects of the scenario. It is worth noting that
in CoSy, as in other projects, the scenarios only dictate the nature and so-
phistication of the component science that will be integrated together. It is
generally expected that partners will take the component science to a level of
greater sophistication than is shown in the demonstrators (for evaluation and
publication etc.). This means that although the scenario sets the general tone
of the work, it doesn’t set any limit on how far the work can be taken.

We often encountered this phenomena in the intersection of work on vi-
sion, communication, planning and manipulation when choosing PlayMate
scenarios. If we take a stereotyped view of each disciple (Where this view is
part of the problem) we consider that vision provides us with some type of
scene description, communication works out what the human wants the robot
to do with the objects in the scene, planning decides how this should be done,
and manipulation does it. If you take any part of this process in isolation the
researchers will want to solve a problem of a particular complexity. For exam-
ple, communication researchers will probably want to use natural descriptions
of the objects in the scene (e.g. categorical ones) and perhaps complex spatial
prepositions to provide unambiguous descriptions of the objects’ start and
end positions (e.g. “put the mug in the big box”), and planning researchers
may want the robot to be given an instruction with multiple different solu-
tions with different costs, or other constraints in construction. However, in
robotics both these disciplines must take into account the limitations of the
sensor and effector modalities being used. In the above examples the assump-
tions being implicitly made of vision (at least view-independent categorical
perception and the ability to see things that are within other things) and
manipulation (the ability to manipulate a mug and place it inside another
object, where both could have an arbitrary relationship to the robot and each
other) actually place the scenario (in this unconstrained state) way beyond
the state-of-the-art (in integrated systems at least) of the two disciplines. As-
sumptions like this most often occur due to the X is easy fallacy (as described
in Section 11.3.1). This happens when researchers have a stereotyped view of
what other disciplines are about, and what their proponents should provide
to an integrated system (e.g. vision is about whole objects, planning is about
controlling the entire system, manipulation can pick and place anything etc.).
When researchers are forced to reconsider these stereotypes not only does a
better theoretical integration emerge, but interesting, hitherto unconsidered,
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uses for particular approaches emerge (e.g. see the uses of planning in 2.5.4
and Section 6.9).

To make scenarios feasible in situations like this, we have found that we
must go through a process of adding detail to descriptions and then altering
(often simplifying) the scenario based on the abilities the descriptions require.
This process can be used on either the behaviour of the scenario participants
(the robot and humans) or the environment the scenario is taking place within.
For example, we often had to be very explicit about the nature of the objects
involved in a scenario (so that they could work with both the limited manipu-
lation abilities of the PlayMate and categorical perception routines described
in Chapter 4), the scenes in which the robot would encounter these objects
in (e.g. how much occlusion, how many objects, any restrictions on positions
to support grasping etc.), and how the robot was expected to interpret these
scenes (e.g. what kind of information it should make available to the rest of the
system). This in turn influenced the descriptive language used by the robot’s
communication system. Given limited manipulation and 3D vision capabilities
we also had to be explicit about what physical actions the robot was expected
to perform. This often meant that interesting planning problems (such as ob-
ject stacking or construction) had to be ruled out. This was also the case
with the Explorer: no on-board arm restricted the scenario tasks in general,
an inability to reidentify people made certain long-term interactions difficult,
and the limitations of appearance-based vision restricted the objects that the
Explorer could locate to ones with prominent texture features (resulting in
the “Borland book” example).

The aforementioned process of adding detail to scenarios is crucial. It is
easy to assume that both the proposer of a particular scenario and their
collaborators understand what is meant by a particular statement (e.g. “then
the robot see and picks up the shape described by the human”), but there
are often innumerable caveats, conditions, and additions needed to implement
such a behaviour in practice. By drilling down into the detail at design-time
(e.g. how does it see the shape, what information is returned in what format,
who is responsible for each part of the process, what are the limitations on
what can be seen, etc.) the whole team can try to anticipate problems before
they occur during implementation (e.g. “oh, but my technique is not view-
independent” or “but how are the actions going to be triggered the plan?”) and
spot gaps in the expertise and engineering (e.g. “but who’s going to implement
that bit, it’s not my field really”). This process can be quite tedious, but we
have found it invaluable in really fleshing out and specifying our integration
work22.
22 As with integrating ideas first this is really just a “think before you” act lesson.

As with all the previous lessons it sounds like common sense, and something that
every good scientist and engineering should do. But as with previous lessons it is
one of those things that is very hard to do in a multi-site, multi-discipline project.
However, in this type of project careful planning becomes even more critical as
the opportunities for misunderstanding are even greater than usual.
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Finally, it is worth adding that once you have spent a great deal of time
choosing your scenario and specifying it in great detail, you should feel free
to deviate from the detail where appropriate when actually implementing
the system. As we discussed in Section 11.2 AI and robotics both have a
theoretical and a practical element, with the former being refined by the latter.
This means that as you integrate, you often discover that your initial plans
were overspecified or otherwise incorrect, or that there is just a better (more
natural, efficient, elegant etc.) way of solving a particular problem that you
didn’t foresee until faced with the code. This is a perfectly acceptable way of
proceeding with an integrated system (as long as the proposed changes are
communicated back to the team, cf. the second lesson). In fact, it could almost
be said that if you don’t deviate from your initial scenario in some way you
weren’t being ambitious enough in the first place.

11.3.5 Beware The Modularity Mantra

Our final lesson takes us away from the planning process and addresses one of
the fundamental problems in system design and implementation: modularity.
Often an integrated system will consist (as in our case) of a collection of mod-
ules of some sort. Note that it is not at all clear what the granularity of these
modules should be. Quite certainly it is not one module per site or research
partner (that would be a very unlikely coincidence!). It also need not be one
module per algorithm. Keep in mind that cross-module communication is typ-
ically immensely expensive compared to normal code, not so much in runtime
but in coding complexity (concurrency, asynchronous messages, locks, data
consistency checks etc.). This will almost certainly be the case irrespective of
the particular communication layer you are using.

It will often make sense to put related algorithms into one module, maybe
even to the point where everything is just one monolithic piece of code. Just
because modularity is desirable in many applications and processes does not
mean that a ruthless modular decomposition of an intelligent system actually
makes sense (although in our case it did). Collaboration need not happen
solely across module boundaries. It is a very simplistic notion (and proven
inefficient in many integration efforts) to assume that partner A writes module
X, partner B writes module Y, then they define clear interfaces and everything
works. Unfortunately, it is never this simple in practice. If the collaboration
is to be worth anything, it can be expected to be deep and complex. Such
depth can never rarely be simply captured by “clear interface definitions”
and standard software engineering practice. However, there is one exception
to this: if partner B is just required to package an off-the-shelf algorithm
into a module. This might be a necessary endeavor at the beginning of the
project (e.g. to plug a gap in capabilities identified by detailed analysis of the
integration scenario). Note though that this is not actually collaboration, as
partner B does not get anything in return. This gives us another motivation
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for examining scenarios in detail: to limit the occurrences of this type of
interaction (which can be frustrating for partner B).

So, it is important to carefully consider the granularity of modules, what
it is that defines module boundaries, and what dependencies arise across these
boundaries23. Often in the initial planning stages of a project these modules
will be defined on an ad hoc basis, using the aforementioned stereotyped view
of a system and its component functionality (e.g. “there is a planning module,
a language module, a vision module ...” etc.) or on the availability of existing
code (e.g. “there is a SIFT module, an edge detector module, and a colour
segmenter module ...” etc.). Such choices may come from practical concerns
(providing a starting point for a design and characterising the types of be-
haviours the system will be involved in) but lack any theoretical justification.
As such, such coarse initial choices should be reconsidered as the project gains
a greater understanding of the problems it is trying to solve and the methods
it has at its disposal.

11.4 Conclusion

It is hard to draw concrete conclusions from the lessons in this chapter, and
our integration experiences on the CoSy project as a whole. Our subjective
experiences (within the project and discussing these issues with the intelli-
gent robotics community) lead us to believe that we are not the only group
facing problems in integrating our component science into intelligent systems
based on coherent principles (i.e. ideas that are integrated first). However,
the precise problems, their causes and effects, have not been considered, let
alone formalised, enough for a consensus to emerge. So, although the lessons
and thoughts presented here won’t offer immediate solutions to those with
similar problems, documenting our experiences and making them public are
important first steps towards developing this necessary part of the science of
intelligent systems. As such, it is advisable not to study our experiences with
too critical an eye, or treat our lessons as set in stone. Rather, treat them as
a work in progress, and try to take their general direction as something you
can follow in your own integration work. This latter point is important. We
must try to learn from our integration experiences as a community. The time
spent engineering for scientific ends in integrated systems projects can take a
large proportion of the available project person-months. This time must not
be continually misspent in the same ways. Remember, integration is hard.
Integration across multiple international partners is even harder. As such it
should be afforded the respect that other hard problems are.

If we had to provide one succinct statement to take away from this chapter
then it would be “cogitate before you integrate”. Applying this maxim to

23 One way of measuring the information-processing costs of modularity in an ar-
chitecture for an intelligent system is presented in 2.5.3.
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theoretical and practical integration tasks at the personal, workpackage and
project level may take up time when you’d rather dive head-first into an
interesting problem, but it might save you at least that much time again
when the first unforeseen problems start appearing.
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12.1 Introduction

This chapter reports work done mostly by one member of the team – a philoso-
pher with substantial AI programming experience, whose primary interests
were in the very long term goals of the project, summarised in Chapter 1,
including the goal of shedding light on problems solved by biological evolu-
tion, and who was not directly involved in the coding but who interacted
closely with people who were, and with people outside the project, in several
related disciplines. The majority of the work reported here is concerned with
requirements, and gaps between those requirements and the current state-of-
the-art in AI/Robotics, and related disciplines. A key feature of this work is
its emphasis on study of aspects of the 3-D environment we and other ani-
mals inhabit, with which a Fido-like intelligent domestic robot (described in
Chapter 1) would need to interact. This is an essential part of a strategy for
developing a roadmap to bridge the gaps in the long term.

From the start, the CoSy project emphasised the need to study require-
ments, as a prerequisite for producing designs. This analysis supported the
suspicions in the original proposal, namely that current state-of-the-art de-
signs and implementations were nowhere near meeting the long term require-
ments. So our goal became to develop a methodology for identifying the gap
more precisely, and a strategy for bridging the gap (or gaps). As an aid to
these tasks, we organised several interdisciplinary events, including a tutorial
at IJCAI’05, a Symposium at AISB’06 and the “Meeting of minds” workshop
in Paris, in 2007. Most of this work did not fit into the formal work-plans and
deliverables, but results were published in workshop and conference papers,
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contributions to collections, the euCognition wiki, and online presentations
and discussion papers,1 along with web sites for the events we organised.2

Some of the results of that study are presented below, suggesting direc-
tions for future work and implications for other disciplines, including study
of humans and other animals. The project’s goal of producing and demon-
strating a sequence of implemented, integrated systems starting in year 1
(see Section 11.1) required many detailed decisions to be taken before long
term requirements could make much progress. As a result, the long-term re-
quirements analysis proceeded in parallel with most of the design and imple-
mentation work, and only loose connections were possible. Had the project
been funded for 10 or 15 years, without the need to produce publications and
demonstrations every year from the start, things might have been different.

Fig. 12.1. How to develop a long term research roadmap based on a partially or-
dered network of scenarios developed by backward-chaining (presented at euCognition
roadmap meeting Jan 2007).

As work on the two streams (requirements analysis and implementation)
progressed, it became clear that the aforementioned gap was even greater
than we had anticipated. This created a tension between the “safe” approach
of taking existing techniques and attempting to combine them, where possible
with additions, and the “risky” approach of trying to find ways to reduce some
of the huge gaps between current techniques and animal/human competences.

1 See [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]) [16] [17] [18] [19] [20]
[21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32]
Length restrictions allow only a subset of the ideas to be presented here.

2 http://www.cs.bham.ac.uk/research/projects/cosy/conferences

http://www.cs.bham.ac.uk/research/projects/cogaff/gc/aisb06

http://www.cs.bham.ac.uk/research/projects/cosy/conferences/

mofm-paris-07

http://www.cs.bham.ac.uk/research/projects/cosy/conferences
http://www.cs.bham.ac.uk/research/projects/cogaff/gc/aisb06
http://www.cs.bham.ac.uk/research/projects/cosy/conferences/mofm-paris-07
http://www.cs.bham.ac.uk/research/projects/cosy/conferences/mofm-paris-07
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Attacking the gaps head-on would have required most of the four years to be
spent on the study of long term requirements, and attempting to decompose
those requirements in a backward chaining process of the sort described in
[4] and depicted in Figure 12.1. Instead, a fairly small subset of the work in
the whole project focused on long term requirements: most of the design and
implementation work was an attempt to extend the current state of the art,
as reported in preceding chapters, especially the state of the art in integrating
different kinds of functionality.

The latter work did include some requirements analysis, e.g. for archi-
tectures and tools for integration of subsystems (Chapter 11). The specific
short-term demonstrator goals were grown, modified and constrained through
experience of trying to put pieces together by extending techniques originally
developed for modules running in isolation. As a result of our growing ap-
preciation of the gaps between the state of the art in AI and robotics and
the functionality required for the futuristic ‘Fido’ scenario, most of the ef-
fort in the project went into feasible extensions of component capabilities,
along with integration into a system that combined the components. Some of
what that left out is presented in the rest of this chapter. (Choosing scenar-
ios to work on raises many practical problems, some of which are discussed
in Chapter 11.) Many of the detailed requirements became visible as a re-
sult of reflecting on what our implementations could not do, illustrating the
importance of implementation-based requirements analysis! For this purpose
rapid-prototyping tools without a prior commitment to any particular archi-
tecture are essential, as discussed in [33, 34] and Chapter 11.

12.2 Must an intelligent robot use language?

Since preverbal children and many animals that do not use language can
interact with complex environments, including environments in which pro-
cesses are occurring, e.g. during nest-building, fighting, manipulating sources
of food or shelter, eating things that do not come ready carved up into bite-
size chunks, etc., that shows that the ability to use a human language is not
a prerequisite for such competences. However, it can be argued (as in [15])
that both pre-verbal humans and other intelligent animals must use forms of
representation internally that support structural variability, context-sensitive
compositional semantics, as well as the ability to introduce substantive ex-
tensions to the ontology. They must also be suitable for use in perception,
planning, various kinds of learning, the expression of motives and preferences,
and the generation and control of action.

Such features, especially structural variability and compositional seman-
tics, are normally thought of as key features of languages used for communica-
tion, but they must have existed earlier in internal “languages”. What forms
those representation used, and still use, is an open question. There are no
obviously correct candidates, though they are unlikely to have the grammat-
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ical or logical structures of languages that evolved for communication rather
than for representing percepts and controlling actions. Neither do we claim
that the internal languages are fixed at birth: they may be extended by boot-
strapping and debugging processes, including substantive (non-definitional)
ontology extension [17]. So our arguments are not endorsements of Fodor’s
theory in [35].

Since some researchers object to the use of the word “language” to label
something that is not used for communication, we call this notion of language
that covers both forms of representation used for communication and forms
used internally for perceiving, thinking, etc. ‘Generalised Language’ (GL),
discussed in more detail in [36] [15]) [27].

The argument that GLs used internally precede the use of verbal languages
for communication both in evolution and in individual human development
has many implications, including implications concerning requirements for
future intelligent robots.

Looking at videos of pre-verbal infants and toddlers helped to draw atten-
tion both to gaps in their understanding of various aspects of the environment
and to the depth and variety of their visual and manipulative competences,
despite those gaps. Before a human child starts learning to talk there is al-
ready a deep understanding of, and interest in, many structures and processes
in the environment [38], and those competences and interests are required for
the language learning process. Learning a language is part of learning how
to achieve collaborative goals in a shared, partially understood, 3-D environ-
ment, using an exosomatic ontology (defined below in Section 12.5.1), not just
learning mappings between acoustic signals (spoken words) and other sensory
signals. Because our robots were nowhere near human toddler competences
in vision and manipulation, and did not have the rich internal information-
processing formalisms (“internal languages”) postulated above (and in [36, 15],
their language learning processes described in previous chapters had to be to-
tally different from human language learning, and much more artificial and
restricted. It is to be hoped that this deficit can be remedied in future research.

12.3 The role of the environment

Thirty years ago, [39] suggested that work in AI could clarify or solve many
philosophical problems, but our analysis of requirements in the CoSy project
revealed further implications of the fact that important aspects of human and
animal intelligence were evolutionary responses to the challenge of interacting
with and manipulating movable, reconfigurable, 3-D objects of varying com-
plexity in an extended environment, only part of which is perceivable at any
time. A core feature of the challenge is perception of concurrently changing
3-D spatial (geometric and topological), causal and functional relationships
between both whole objects and parts of objects, where some of the changes
involve independently movable limbs and hands. Some of the requirements
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are discussed in [30]. Most of the requirements deriving from that challenge
appear not to have been noticed by roboticists, vision researchers or psychol-
ogists, and philosophers have not realised their significance for philosophy of
science and philosophy of mathematics (see [21, 5]).

A very early robot with manipulative capabilities was the Edinburgh robot
Freddy II [40] developed around 1973, which could assemble two different
objects (a toy car and a toy boat) from parts initially piled or scattered
randomly on a table.3 Its speed and versatility were severely limited4 yet
recent robots have not reached some of Freddy’s competences, even though
many hardware and software components required have separately developed
enormously. Why not?

Processes of learning and development in humans and some other ani-
mals depend on rich interactions with the environment in early months and
years that lay a foundation on which many other aspects of human intel-
ligence depend in later life. Many biologists study animal behaviours, and
many developmental psychologists study spatial competences in infants and
young children (e.g. the book by Gibson and Pick [41]). However, the meth-
ods of experiment accepted as producing significant results are so restrictive
that most of the cognitive richness of processes required for interaction with
manipulable objects, described in [20], and below, goes unnoticed. Likewise,
limitations of current tools and techniques cause AI researchers to ignore most
of the complexity in the environment, as do many researchers working on dig-
ital companions for the elderly or disabled [14]. Examples of what they ignore
(e.g. differences between tracking moving 2-D image features and perceiving
a 3-D process) are given later in Section 12.12.2.

Without a rich and deep, mostly culture-neutral, biologically rooted, un-
derstanding of space, time, and the 3-D physical environment in which animal
activities are embedded, a robot is unlikely to be able to learn to talk, think,
and perform tasks like a human adult – though it may cope with a very
restricted subset in a very brittle way, as in many robot demos.

12.4 Analysing requirements is very hard

Analysis of requirements is a task whose complexity is largely unnoticed.
Many researchers think it is sufficient to define some goal in terms a very high
level description e.g. “recognition of everyday objects in everyday situations”,
“coping flexibly with domestic tasks”, “engaging in natural conversation about
some topic”. Sometimes, words like “reliability”, “flexibility”, “robustness”,

3 While this chapter was in preparation, a remarkable video of Freddy II was made
available here http://en.wikipedia.org/wiki/Freddy_II

4 In 1973, 384KBytes of memory was a luxury, computer speeds were measured in
kilocycles, and it could take several minutes just to find the bounding contours
in an image, ruling out concurrent perception and action, or visual servoing.

http://en.wikipedia.org/wiki/Freddy_II
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“intelligence”, “autonomy”, “versatility”, “extendability”, and “maintainabil-
ity” are used to indicate design features, even though such words refer to very
different characteristics in different contexts. For example, the requirements
for robustness are very different in an operating system, a word processor,
a theorem prover, a medical expert system, and a lawnmower. (Discussed in
more detail in [42].)

Sometimes benchmark tasks (e.g. fixed sets of images for training and
testing) are used to replace imprecise requirements. But the benchmarks often
lack “ecological validity”, directing research down narrow paths and diverting
attention from the problems the benchmarks were intended to characterise.

Close examination of problems with which various environments confront
humans and other animals reveals richness and diversity of problems and solu-
tions that usually escape notice. The diversity of possible solutions indicates a
need to study trade-offs between alternative competences and alternative de-
signs, rather than performance metrics and bench-marks (see Section 12.11).

By collecting partially ordered sets of scenarios (ordered by both difficulty
and dependency), we can identify short, medium and long term challenges to
be met in specifying designs, as indicated in Figure 12.1. Some of the sce-
narios should include multiple interacting competences with the interactions
described in film script detail. Systematically varying features of the scenarios,
can demonstrate the inadequacy of designs tailored to limited sets of examples.

This task of generating scenarios is very close to the process of conceptual
analysis in philosophy, where theories (e.g. about the nature of desire, inten-
tion, attention, perception, belief, understanding, etc.) need to be tested by
production of examples. In principle, this is an area where philosophers and
AI researchers should be able to interact, partly because good philosophers
have already developed the ability to think up examples to challenge theories.

We developed templates for scenarios,5 and a scenario-generation method-
ology based on a 2-D grid of types of competence against types of object, with
complexity as a third dimension, summarised in [2]. Unfortunately the task of
generating and analysing demanding scenarios proved difficult for researchers
who had never previously done anything like it, especially while facing great
challenges in their own sub-fields. Eventually, scenarios limited by short-term
feasibility were developed, described in Chapters 9, 10 and 11.

12.5 Robotics and Philosophy of Science

12.5.1 Ontologies and Laws

A project like CoSy illustrates limitations of conventional philosophy of sci-
ence. Chapter 2 of [39]6 explained how science is an attempt to understand
5 E.g. in http://www.cs.bham.ac.uk/research/projects/cosy/scenarios
6 Online at http://www.cs.bham.ac.uk/research/projects/cogaff/crp/chap2.

html
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both the form and the content of the world, where the form has two aspects:
(a) what sorts of things are possible (an ontology), and (b) how those possi-
bilities are limited, e.g. in laws such as “All As are Bs”, which rules out the
possibility of something being an A and not a B. But that presupposes an
ontology that includes the possibility of A things and B things.

Conventional philosophy of science emphasises (b), not (a), whereas the
deepest scientific advances are of type (a), substantially extending our ontolo-
gies, and thereby allowing new questions and theories to be formulated, e.g.
adding atomic theory, or evolution by natural selection to our ontology. Such
advances require new concepts, extending the pre-existing ontology substan-
tively, i.e. adding new concepts that cannot be defined in terms of old ones,
though they may be connected via what Carnap called “meaning postulates”
in [43]. Substantive kinds of ontology extension must occur in children [15].

Deep research in cognition and robotics requires researchers to extend
their scientific ontologies if they are to produce more intelligent machines.
Following [30] these can be labelled “designer ontologies”, in contrast with
the ontologies required by robots (or animal being modelled!) “application
ontologies”. Intelligent robots will also need mechanisms capable of substan-
tive (non-definitional) ontology extension. Mechanisms for extension of senso-
rimotor ontologies by dimensionality reduction, presented in Chapter 3, may
be useful, but cannot add new dimensions, e.g. required for interpreting 2-D
motions as projections of 3-D rotations. Similarly, mechanisms using senso-
rimotor statistics to induce new concepts useful for prediction, will not be
enough: contrary to “Symbol-grounding” theory, which is a serious impedi-
ment to progress, as explained in [17]. In particular, what a child develops
and what a robot will need includes “exosomatic” concepts referring not to
sensorimotor patterns, but to objects and processes in the environment that
could exist independently of the observer.

12.5.2 No “right” or “best” designs

Philosophers often try to specify necessary conditions for something to be a
mind. This leads to shallow and unsatisfactory theories. Attempting to iden-
tify one best design for intelligent systems would be like physicists attempting
to study only the substances that exist in some particular spatio-temporal re-
gion, e.g. Rome in 1630. Instead, there is a broad class of possible active
information-processing systems, a class that includes myriad varieties of or-
ganism produced on this planet by biological evolution, and probably even
more produced in other parts of the universe, or in the future on earth, and
some that are possible, but never will be produced.

Different designs can be evaluated in relation to different sets of require-
ments. Sets of requirements for organisms are referred to as “niches”. So the
task is to understand the space of sets of designs, the space of sets of require-
ments and the relationships between them (Figure 12.2). Since individuals can
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develop and since species can evolve, there are also trajectories within those
spaces and we need to understand how those trajectories work.

Fig. 12.2. The space of possible designs, the space of possible niches (sets of require-
ments) and the varied relationships and trade-offs between them. Both spaces have
many discontinuities. There are trajectories of various sorts through both spaces,
including development and learning done by individuals, evolution of species, so-
cial/cultural evolution, and in the case of artificial systems design changes. In an
ecosystem there will be complex feedback loops involving trajectories in both design
space and niche space.

This broad-minded approach to both philosophy and AI, presented in [44,
45, 46], is hard for most researchers, especially as progress is inevitably slow.
Studying the full spaces in depth is impossible, but we can explore limited
regions (“neighbourhoods”) in design space and niche space ([47]).

Detailed specification of such regions cannot be done in a research pro-
posal: it is the result of research. As the work on integration in CoSy pro-
gressed, decisions had to be taken about what was and what was not being
addressed, such as whether the robot should be able to perceive processes (like
its hand moving), whether to include recognition of objects or perception of 3-
D structure, since they required very different mechanisms, whether it should
interact sensibly with more than one human at a time, which kinds of failure
in performing tasks it should be able to detect and remedy, which aspects of
verbal interaction should be capable of influencing visual processing, or vice
versa. Some choices between project sub-goals, and the design problems they
led to, were not visible to participants before the project started. Such “invis-
ibility” is reduced as more researchers gain experience in integrated projects.

12.5.3 A science of explosive diversity

The problem of description arises partly because individual designs for “com-
plete” working systems can vary enormously: in their architectures, e.g. in the
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variety of components they contain; the forms of representation they use; the
kinds of information they acquire, manipulate and use; the variety of connec-
tions between sub-systems; and whether the architecture is static or grows
itself, as certainly happens in humans, but not yet in CoSy. This diversity
makes it very hard to compare designs, especially when represented in com-
plex diagrams using arbitrary diagrammatic notations. We need a better way
to talk about such complexity.

Much of the variation between designs is closely related to the different
challenges posed by the kinds of environment that different systems need to
interact with, and a detailed study of interesting designs must be linked to
a detailed study of the relevant environments, a point emphasised also by
Neisser [48] and Gibson [49] (discussed further below). [12] illustrates some
aspects of the complex feedback between evolution of designs and evolution of
niches, from microbes in chemical soups to articulated animals surrounded by
diverse rigid and non-rigid 3-D structures, and also other intelligent systems.

12.5.4 Individual variability

Not only the diversity of designs, but also the diversity of states and pro-
cesses possible for instances of a design needs to be studied. Instances of more
complex designs are capable of more diverse states, processes, and forms of
development over time, illustrated by the vast diversity of human minds. We
mention some high level concepts that may help, in Section 12.7.

Some organisms, often labelled “precocial”, remain largely unchanged
throughout their life (apart from parameter adjustments within a fixed frame-
work), or follow patterns of change common to all members of their species
(e.g. microbes, insects, and probably most other invertebrates) whereas oth-
ers, the so-called “altricial” species, start highly incompetent, and develop
under the influence of complex feedback from the environment.

A paper (with J.Chappell) was presented at IJCAI 2005 [6] arguing that
the precocial-altricial spectrum is just as relevant to robots as to animals. A
sequel was an invited journal paper [1], presenting ideas about multi-layered
bootstrapping processes based on a combination of features of the genome
and specific features of the environment revealed by exploratory play, as in
Figure 12.3. These ideas are still being developed, but have already had some
influence. We propose to apply these ideas in research on primate competences.

12.5.5 The “designer stance” in biology

Robotic research exposes questions not normally asked by researchers in an-
imal behaviour. Animal behaviour researchers should adopt what McCarthy
[50] calls “the designer stance” and ask “What mechanisms, forms of represen-
tations, and architectural features, would I need to put into a robot to enable
it to do that”. Robotics-inspired questions can draw attention to previously
unnoticed fine details of competences generating behaviours, and may also
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Fig. 12.3. Varieties of control routes from the genome to competences and be-
haviours: on the left most details are determined by the genome, whereas towards the
right there are more complex staggered or layered processes of learning to learn, pro-
ducing sequences of more sophisticated competences and meta-competences. (Based
on [1].)

transform some nature-nurture debates, e.g. by showing that the demands of
interacting with a complex, structured, manipulable 3-D environment may be
at least as important in driving evolution of cognitive powers as the need for
social interaction, which has gained far more attention.

E.g. the work on altruism in young humans and chimpanzees in [38] in-
vestigates motivation, but takes for granted the cognitive competences men-
tioned above in Section 12.2, required for all of: perceiving what is going on,
inferring somebody’s intention (e.g. “trying to get books into a cupboard”),
planning actions to achieve that intention, deciding to execute actions to un-
block a precondition (walking forward and opening the door), and performing
the actions. If all that, including the use of meta-semantic capabilities, can
occur in pre-verbal children, and in simpler forms in chimpanzees and other
animals, that raises deep questions about the pre-verbal forms of represen-
tation available to animals. There are also deep questions about where those
representations come from – are they innate, or, as seems more likely, since
evolution is unlikely to have provided an innate concept of a cupboard door,
are they a result of developmental processes including processes driven by
meta-competences that cause exploratory behaviours that produce learning
as indicated in Figure 12.3, explained in [1].

12.5.6 Should requirements refer to laws of behaviour?

For animals with very large collections of capabilities, changing motives, plans
and beliefs, and frequently changing environments, there may not be any
laws that characterise their behaviour – only possibilities that need to be
explained. So although some members of the cosy team studied psychological



12 Philosophical Robotics 457

research literature, as reported in Chapter 8, it is important not to assume
that laboratory results provide evidence of laws to which human-like robots
had to conform – they merely show what sometimes happens, especially when
the subjects are from a single culture, restricted age ranges, and numbers of
subjects are often well below 100.

Even for a particular design there may not be well defined laws predict-
ing characteristics or behaviour, only a rich space of possibilities. There may,
however, be laws concerned with “low level” features of transducers and im-
plementation mechanisms, and there will be some limitations on what is pos-
sible for any particular implementation of a design, for instance limitations of
processing speeds, and capacity limits. Nevertheless, how any particular indi-
vidual instance of an “altricial design”, behaves within the limits permitted by
the architecture and mechanisms used, far from conforming to exceptionless
laws will typically depend in complex ways on its goals, preferences, interests,
what the individual has learnt, what it was doing previously, etc. – condi-
tions that can vary enormously across individuals and from time to time for
each individual. In addition for deterministic dynamical systems with non-
linear feedback prediction can be impossible if measurements of initial states
have bounded precision.7 So the kind of research that is appropriate to a
design-based science of cognitive systems, natural and artificial, will not fit
the popular conception of science as mainly a search for exceptionless laws
(or even high probability generalisations) but will require us primarily to at-
tempt to understand varieties of possibilities that particular designs support
in combination with particular contexts and personal histories [39, Ch 2].

12.6 Environment-neutral requirements and limitations

Some requirements and limitations that arise when they are not satisfied are
not concerned with specific types of environment: they are “topic-neutral”.
Other requirements will be discussed later. The main topic-neutral require-
ments and limitations are concerned with architectures and with forms of
representation available or missing.

12.6.1 Forms of representation

Limitations due to forms of representation available include: if full predicate
logic is not available, it will be difficult to express or reason about non-singular
propositions such as “There is no tiger in the room” or “Every person in the
room is taller than at least one other person in the room” or the correspond-
ing questions, or goals (e.g. “Find chairs for everyone”). However “compiled”
versions of some of these can be expressed as procedures (e.g. a procedure for

7 See http://www.ecmwf.int/research/predictability/background.

http://www.ecmwf.int/research/predictability/background
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fetching chairs, with appropriate stopping condition). This will enable a robot
to do things, but not to describe or think about what it is doing.

Systems lacking modal operators (e.g. “possible”, “necessary”, “impossi-
ble”, “contingent”) may be unable to represent the difference between an em-
pirical generalisation such as that pools of water sometimes merge while being
counted and a necessary truth such as that counting a fixed set of objects in
different orders must give the same result. (See Section 12.13.) Without modal
operators it will also be impossible to represent what is possible or impossible,
and therefore affordances will be inexpressible. (See Section 12.12.5. Words of
natural language related to affordances, such as “graspable” refer to what is
possible, and therefore involve an implicit modal operator.)

The forms of representation available and the architecture can also con-
strain what questions can be formulated (internally or externnally), a topic
discussed in more detail in an early CoSy requirements deliverable [30]. Being
able to formulate questions that can generate information seeking goals is an
important aspect of being an autonomous learner.

Being able to think about or communicate with other intelligent individ-
uals requires the use of forms of representation that support meta-semantic
competences: the ability to refer to things that refer. This is also required
for certain kinds of introspection and self-understanding. Meta-semantic com-
petences require the ability to make a distinction between representations
whose function is to refer to the world and those whose function is to repre-
sent what someone or something else is referring to, possibly erroneously. This
is generally referred to by philosophers as “referential opacity”. It is not clear
when human children have that competence or whether other animals have it,
though the ability to understand or tell stories, or engage in “make believe”
play requires it. We did not attempt to provide this level of sophistication
in our robots so in a sense they could not think about other individuals as
having information processing capabilities, including beliefs, intentions, de-
sires, etc. This necessarily limited the forms of interaction that were possible.
For example, without such meta-semantic competence a robot cannot con-
sider whether a human lacks information, or whether been misperceived, or a
communication misunderstood.

There is no general agreement on how referentially opaque forms of rep-
resentation should be dealt with. Many researchers hope that an extension
to logic, e.g. using new logical operators, will suffice. I suspect that the best
solution is to extend architectures, to allow the same form of representation
to have different roles in different parts of the system, so that a form of rep-
resentation may be taken as believed to be true if it occurs in one part of the
system, and as a specification of someone else’s belief if it occurs in another
part of the system. Similar remarks can be made about differences between
propositions, questions, goals, conjectures, memories, fantasies, etc.

Another important feature of a form of representation may be the way it
can be used to control search in certain classes of problem. Being restricted to
Fregean (logical, applicative) forms of representation, without any subsystems
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able to reason with analogical or other forms of representation may be a serious
handicap for some classes of problem, as exlained in [51] and [39, Chapter
7]. Moreover, in some cases probabilistic representations are more useful than
categorical representations. In other cases hybrids are useful. Often it is useful
to combine many detailed information items with histograms that can reveal
otherwise unnoticed global patterns – e.g. most edge-features in one part of an
image are horizontal, and vertical in another. We did not attempt to produce
a catalogue of forms of representation that could be used to select optimal
candidates for various parts of the system. Instead, in most parts of cosy,
forms of representation were used that were traditional for work of that sort
in AI. It may be useful at some future date to investigate whether this has
restricted progress (either in CoSy or in the whole field of robotics).

12.6.2 Architectures

Limitations directly related to architectural features include: whether a sys-
tem can do certain tasks in parallel or not; whether certain behaviours are
interruptable; whether there are some low level “cognitively impenetrable”
components (Pylyshyn in [52]) whose functioning is not affected by other
sub-systems; whether some competences can be modified (e.g. debugged or
speeded up) as a result of self-monitoring during performance; whether in-
formation about the environment is represented on different scales (e.g. local
and global); whether information is stored about what has recently happened
(episodic memories); whether there are mechanisms that check for consistency
within and between percepts, previously acquired generalisations, episodic
memories; whether information changes can trigger side effects via constraint
propagation (as suggested in connection with vision, below in Section 12.12.6
and Figure 12.8); whether there is an “alarm” system (or several) that trigger
rapid reorganisation in response to a detected threat or opportunity (Sec-
tion 12.10). This is not a complete list.

Since the environment endures over time with some changing and some
static features, while sensory contents change on much faster time-scales, it
can be useful to have an architecture in which the main source of information
about the environment for most of the system is not the contents of sensory
signals but an enduring, incrementally updated representation of the environ-
ment. In some cases this should be a-modal so that different sensory sources
can be used in parallel adding or modifying different features, and acting as
cross-checks.

Both motion of perceived objects and the perceiver’s own motion (includ-
ing saccades) entail such requirements for a visual architecture, discussed by
Trehub in [53]. In particular the mapping between an enduring scene repre-
sentation and image pixels will be constantly changing, though not the map-
ping between the scene representation and the optic array, if the viewpoint is
fixed. However if information at different levels of abstraction is represented,
the very notion of registration becomes blurred, though a sort of registration
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is indicated in figure 6 of [39, Chapter 9]. Further complexities are required
if manipulation or motion of either objects viewed, or the viewer, causes dif-
ferent parts of an object to be visible. The requirement to represent hidden
parts (e.g. the far side of a cube after rotation, or the contents of a box af-
ter shutting its lid) goes beyond representing what is available in the optic
array. Unfortunately, it was not possible in the time available to meet these
architectural requirements, except in restricted ad hoc fashion, though the
dialogue system (Chapter 8) presupposed some of them, and the Explorer
system (Chapter 5) used SLAM techniques to represent far more information
about currently unperceived entities than PlayMate.

12.7 De-fusing diversity: Towers and layers

Designs for whole systems can vary in uncountable ways, if all possible alterna-
tives for every design decision are considered. This raises the urgent question:
is there any way a science of intelligent systems can impose some intelligi-
ble and useful structure on the space of possibilities, or is it just a morass
composed of an enormous collection of special cases?

12.7.1 Generative frameworks

One way of trying to impose structure is to specify a generative framework
by specifying a collection of basic building blocks for behaviours and ways
of combining them into arbitrarily complex systems. That was the approach
adopted by Turing, which produced a class of machines that was later shown
could be generated in alternative ways, e.g. Turing machines, production sys-
tems, lambda calculus, Curry combinators, logical inference mechanisms, etc.

Another approach is to take some supposedly general architectural frame-
work such as SOAR or ACT-R (both summarised in [54]) and then show how
all other architectures of interest can be subsumed by the chosen one.

There are two problems with this generative approach, despite its great
power and usefulness in computer science. First the set of machine-types gen-
erated is too restricted, being composed entirely of systems whose behaviour
consists only of components in the selected framework, e.g. discrete serial steps
in a Turing machine. However that limitation can sometimes be overcome by
allowing the components to be combined in different ways, to generate types
of machine with possibly asynchronous concurrently active components, e.g.
as in digital circuit design formalisms, or Milner’s pi calculus [55], or Hewitt’s
actor formalism [56]. The remaining restriction to discrete processes can be
removed by allowing additional analog mechanisms that support continuous
variation, e.g. conductors, oscillators, capacitors, etc, or mechanical devices,
such as gears, pulleys, springs, strings, etc. and analog to digital and digital
to analog converters. The use of generative representations has the problem
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of being “bottom up”, making it hard to get a high-level, top-down view of
the space of designs.

A closely related problem is that for the kinds of behaving systems we are
interested in there is always an external environment, and we need to find
ways of characterising systems not merely in terms of how they are built,
from processing components, or what goes on inside them, but in terms of
what sorts of environments they can interact with, and how they interact
with them – i.e. they are characterised in terms of combinations of types of
functionality rather than combinations of types of mechanism. A framework
for presenting those ideas was loosely inspired by Nilsson’s discussion in [57,
Ch 25] of architectural “towers” and architectural “layers”.

12.7.2 Subdivision into towers of functionality

Systems that act in an environment can be described as having three major
(possibly overlapping) sub-systems with different functions:

• a perceptual sub-system that gains information from the environment, pro-
cessing information derived from physical transducers that produce inter-
nal signals from incoming energy in various ways;

• an action sub-system that emits energy in various forms (especially applied
forces) using transducers controlled by internal signals;

• and between those sub-systems an arbitrarily complex collection of “cen-
tral” mechanisms that interact with the perceptual and action sub-systems
but may also do many other things.

This gives us Nilsson’s three towers, which he called the perception tower, the
action tower and the model tower. For our purposes, the label “model” is too
narrow, though our label “central” is also inadequate.

We can further subdivide types of tower according to which kinds of sen-
sory information they use (visual, auditory, haptic, magnetic, etc.), which
kinds of outputs their effectors produce (luminescence, acoustic, pressure-
applying, squirting, throwing, blowing, changing shape, etc.), what kinds of
information they can derive from the sensors, and what changes they can
produce in the environment – including cases where acting and sensing are
tightly linked (Gibson, [58]). e.g. altering gaze in order to obtain different vi-
sual information or squeezing something in order to gain haptic information.
(See Chapter 3.)

12.7.3 Subdivision into layers of functionality

A different way of subdividing systems or sub-systems “top-down”, i.e. in
terms of their functionality, is by distinguishing different ways of mediating
sensing and acting. This is orthogonal to the previous divisions, and can be
thought of as providing three layers, though our partly biologically-inspired
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division into layers is not exactly the same as Nilsson’s (or most others, e.g.
[59], Gat [60], and Minsky [61]).

Reactive layer: The evolutionarily oldest, and easiest to implement mecha-
nisms are systems that respond to sensory input by immediately generating a
short term response (externally or internally) without representing any con-
sequences of that response, and without reasoning about multiple possibili-
ties before selecting that response. We can call those “reactive” mechanisms,
while acknowledging that they can vary enormously in complexity, including
the number of intermediate processing stages between sensing and acting, and
also whether some of the things sensed or altered are internal, e.g. sensing in-
ternal energy levels and damping down internal levels of activity, or switching
sub-systems on or off. Such reactive systems may be either discrete or continu-
ous, and may or may not include feedback control, adaptive learning, or other
kinds of sophistication. In more complex cases (often implemented in neural
net mechanisms) the inputs and corresponding outputs are intput and output
patterns, where a collection of sensors acting concurrently trigger a collection
of coordinated outputs. There are also intermediate cases. Other possibili-
ties include temporally extended triggering inputs (e.g. using thresholds) and
temporally extended outputs (e.g. running away from something). Moreover,
reactive systems can include “proto-deliberative” mechanisms, described in
[10] where competing output actions are stimulated at the same time, but
only one wins on the basis of some mechanism for evaluating alternatives.
(Unfortunately, some researchers confusingly label this “deliberative”.)

Deliberative layer: A second type of layer can provide various kinds of de-
liberative sub-system, which vary in the sophistication of the predictive, or
control functions they support, as discussed in [10]. The common feature in-
volves the ability to respond to input, or the formation of a goal, by considering
not only alternative responses but also the consequences of those responses
before selecting an action. More sophisticated versions can consider alterna-
tive action sequences before deciding – as many of the earliest AI systems did.
The ability to explore branching futures depends crucially on sensory infor-
mation being “chunked” into discrete categories, so that associations can be
learnt between discrete cases, avoiding the need to handle infinitely branching
futures (see [10]). (Nilsson’s top two layers are included in our second layer.)

Meta-management layer (with meta-semantic competences): The
third, biologically most recent, type of layer, not discussed in Nilsson’s chap-
ter, is able to do two important kinds of things, namely monitor some of its
own (semantically rich) internal states and processes, including characteris-
ing them in some explicit, structured formalism (unlike hierarchical analog
control systems), and representing other individuals as also having such in-
ternal states, describable using meta-semantic competences (explained above
in Section 12.6.1).
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Although three layers have been distinguished, there are intermediate cases
not yet mentioned, as well as other useful ways of dividing up functionality
(e.g. Minsky [61] has six layers). A possible source of confusion is that all
mechanisms must ultimately be implemented in reactive mechanisms of some
kind.

12.8 The CogAff architecture schema – one small step

By the time the CoSy project started, we had attempted in previous work
(mentioned in Chapter 1) to make the task of exploring design- and niche-
space more tractable by using a generic schema, in which the tower and layer
classifications presented above were superimposed, thus forming the nine cell
CogAff architecture schema, depicted in Figure 12.4 and mentioned in Chap-
ter 1 of this book. This uses a modified version of Nilsson’s distinction between
layers and towers, where differences between towers arise from different rela-
tionships to the environment, and differences between layers are defined in
terms of differences in evolutionary age, kind of computational and represen-
tational sophistication, and types of mechanism used – though I now prefer
to emphasise types of functionality rather than types of mechanism. For in-
stance, the bottom left box could include several types of low level sensory
processing, and the top left perception of communicative actions, intentions,
moods, etc. Likewise the bottom right box could contain low level motor out-
puts of various kinds and the top right box gestures, linguistic utterances,
and expressive behaviours. The schema is clearly an oversimplification, but
provides a crude initial framework for comparing a wide range of architec-
tures, according to which boxes are used, what they contain, which forms of
representation are used in the boxes, and how the components are connected.
Some of the problems of combining different sorts of functionality, using dif-
ferent forms of representation are discussed in Chapter 2. In contrast with the
“generative” approach to diversity, this framework is neutral as to what the
smallest processing components are. Examples of systems that do not fit this
schema are systems composed of large numbers of autonomous individuals,
so-called “multi-agent systems”.

It is not claimed that this is the only way of dividing architectural compo-
nents or that the divisions are sharp. Different AI researchers who use layered
architectures describe their layers differently (e.g. Brooks [59], Gat [60], and
Minsky [61]) though some of those differences can be subsumed within the Co-
gAff Schema. Sun [63], describes an architecture (CLARION) made of several
components each with two layers corresponding roughly to the two bottom lay-
ers of CogAff. This can be re-described as a two-layer architecture, where the
two layers are subdivided into components, each closely linked to a component
in the other layer. Exploring all these ways of characterising architectures, to
see whether there is some useful over-arching form of representation is a topic
for further research.
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Fig. 12.4. The CogAff schema [62] loosely based on a combination Nilsson’s ideas of
towers and layers, provides a framework for comparing a wide range of architectures.
However, as explained in the text, it is only crude beginning.

To a first approximation the CogAff schema provides a sort of “grammar”
for architectures. There are many special cases of that schema, including spe-
cial cases that use only the reactive layer e.g. purely reactive subsumptive
architectures [59], and reactive insect-like architectures that include a reac-
tive “global alarm” mechanism receiving inputs from all parts of the system
and capable of modulating or redirecting all parts very quickly.

Fig. 12.5. A popular type of architecture, which could be called the “Omega” archi-
tecture, depicted here, is a special case of the CogAff schema.

12.8.1 Omega architectures

A popular type of architecture incorporates a sequential multi-layer pipeline:
sensory information comes in via low level sensors (‘bottom left’), gets ab-
stracted as it goes up through higher central layers, until action options are
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proposed near the top, where decisions are taken, after which control infor-
mation flows down through the layers and out to the motors (‘bottom right’).
This can be called an ‘Omega’ architecture because the pattern of informa-
tion flow is shaped like a the Greek letter Ω, as shown in Figure 12.5. Many
models in AI and psychology have this style e.g. Albus in [64]. The influential
‘contention scheduling’ model of Shallice and collaborators [65] is a variant in
which the upward information flow activates a collection of competing units
where winners are selected by a high level mechanism, on the basis of possi-
bly learnt preferences. Their later work added a further layer the “Supervisory
Attentional System” (SAS), for dealing with novel situations. Such systems
are examples of a general three step cyclic pipeline model for processing in-
formation:

REPEAT: (1) Sense. (2) Think and decide. (3) Act.

The CogAff schema accommodates such sequential pipeline architectures, as
a special case, but also permits alternatives where the mechanisms in differ-
ent layers are concurrently active, and various kinds of information constantly
flow within and between the sub-systems in both directions. An important
feature of embodied animals and robots with multiple physical sub-systems
concerned with locomotion, perception, manipulation, communication, and
internal functions, is that they illustrate the need for such concurrency. For
example, the CoSy Explorer needs to control its movements at the same time
as it uses its visual and other perceptual systems to check whether it has
reached its target and simultaneously processes some speech input. In gen-
eral the sorts of concurrency required in a robot with multiple interacting
sub-systems refute philosophical functionalist theories that use a finite state
machine model of mind, e.g. Block in [66]. This functionality is also inconsis-
tent with sequential “sense think act” models.

Many researchers do not understand the need for anything but Omega
architectures: they think of perception and action as essentially low level
processes of transduction, so they use small boxes for them in architecture
diagrams, possibly connected to low level internal processes. That is roughly
how perception and action are currently implemented in the CoSy robots, (ex-
cept perhaps for the linguistic components). Section 12.12 below explains why
towers are needed for vision and action in more advanced robots, though only
primitive forms have so far been implemented in CoSy, described in previous
chapters.

12.9 Beyond the CogAff schema

The subdivisions in the CogAff schema are not offered as the only subdivi-
sions to be used in describing designs. A study of the products of evolution
will reveal many intermediate cases, requiring a finer-grained subdivision of



466 Sloman

types of component. The task of designing working systems, as in CoSy, can
also drive further development of such a conceptual framework, identifying
discontinuities in requirements and designs as illustrated in [12] and below,
challenging philosophical and other theories that propose a small number of
major steps in evolution (e.g. expanding the useful overview in [67]). Some
finer-grained distinctions between layers are described in [10].

One of high level features of a design not represented in the CogAff schema
is the extent to which it learns or develops. It is clear that the human architec-
ture is not fixed at birth but develops over time, including acquiring new layers
of competence, new forms of representation (including use of new languages,
mathematical and scientific notations, musical notations, technical diagrams,
maps, circuit diagrams, etc.), new ontologies and new reactive skills related
to the other developments. There may be still unknown internal forms of
representation that humans and other animals develop after birth.

In a more detailed survey we would need to divide up systems in terms
of different patterns of change and development, with at one extreme a com-
pletely fixed system, followed by a system that is fixed except for parameters
that can be adjusted, followed by more and more complex forms of learning
and development, as illustrated in Figure 12.3. It is not clear that researchers
in AI and Cognitive Science have so far produced a comprehensive taxonomy
of the sort that would be required. The CogAff schema may turn out to provide
a useful way of indicating that different sub-systems develop in different ways
– for instance many reactive systems learning by parameter adaptation, the
high level systems growing by developing new languages, building explanatory
theories, extending their ontologies, and absorbing new values from the sur-
rounding culture, and all of them developing by acquiring new links between
subsystems (e.g. compiling new reactive versions of pre-existing deliberative
capabilities). Fido, the domestic robot in Chapter 1 may need many of these
forms of development.

Another set of divisions between boxes is concerned with forms of rep-
resentation. AI researchers have frequently noted the importance of choos-
ing forms of representation that are suited to particular problems, e.g. Min-
sky in 1961 [68] and McCarthy and Hayes in 1969 [69]. The latter extended
Chomsky’s ideas about adequacy of grammatical formalisms, by distinguish-
ing metaphysical adequacy, epistemological adequacy and heuristic adequacy.
Following ideas of Marr, it is now commonplace to distinguish viewer-centred,
object-centred and room-centred forms of representation, among others. The
functional differences between the layers and the towers in the CogAff schema
will be only loosely connected with differences in form of representation. Fur-
ther work is needed to work out which sorts of representation fit where. A
special case is the use of linguistic forms of representation.
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12.9.1 Where are the linguistic mechanisms?

Analysis of requirements for our robots raised the question whether linguis-
tic competences fit naturally into a small subset of the boxes in the CogAff
schema, or whether they need additional boxes, or whether they are to be
distributed in all the main portions of the architecture.

The answer seems to be that linguistic competence is distributed through
many parts of the architecture. It is obvious that linguistic perception of
speech requires multi-level, processing dealing concurrently with acoustic,
phonetic, morphological, syntactic, semantic and pragmatic information. So
for speech the requirement for a tower of perception is clear. Similar com-
ments apply to reading printed or hand-written text. Likewise speech produc-
tion requires multiple levels of processing as ideas, sentences, phrases, word-
selection, and production details such as tempo, intensity and intonation are
determined, along with self-monitoring that can lead to self-correction. Sim-
ilar remarks can be made about production of written communications. So
producing linguistic utterances requires an action tower, rather than just a
simple system for feeding signals to a transducer. These two points rule out
an Omega architecture for a system with human language capabilities.

Use of language internally or externally can also function as an enhancer
for other sub-systems, e.g. concerned with planning, reasoning, hypothesis
formation, prediction, motivation, and conflict resolution. Moreover, while
explicitly learning a new foreign language seems at first to exercise mostly
the two upper levels of the schema, as expertise develops that seems to make
increasing use of automatic reactive sub-systems, in the lowest layer.

Further development of these ideas and their implications for imposing
structure on the space of possible designs, remains a topic for further research,
especially if a future project can develop an intelligent pre-verbal toddler-
robot as a basis for acquiring linguistic competence, so that we can more
clearly understand what difference language makes, an issue that was not in
CoSy because linguistic competence was integrated from the start. Although
that appeared a reasonable strategy at the time, and may be an appropriate
strategy for particular engineering applications of AI, it is arguable that the
failure to produce a robot that behaved intelligently before adding linguistic
abilities has seriously distorted our research because proper human-like lin-
guistic competence should be a later addition to more basic general animal
competences, extending sophisticated functionality, including communicative
capabilities, that existed without language.

CoSy does have a number of such capabilities, including perceptual and
planning capabilities, so in principle they could have been used to generate
a kind of animal intelligence (e.g. producing play, exploration and learning).
However that would have required a different way of putting things together
so that motives need not be derived from a human linguistic communication.
We did discuss mechanisms for “architecture-based” motivation, as opposed
to the kinds of “reward-based” motivation often assumed to be necessary.
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Architecture-based motivation, which, it is arguable, is characteristic of most
biological organisms, involves having one or more portions of the architecture
where possible future states or processes, or constraints on states and processes
can be described, and which, if present will tend to generate and modulate
planning, decision-making, and the prioritising of actions. In that case other
modules in the architecture can be triggered by various occurrences to create
these motivational representations and insert them where they can become
effective: for example an auditory mechanism detecting a strange noise, and
automatically generating a motive to investigate the source of the noise and
adding it to the store of current motives (along with other relevant information
[70]). If several mechanisms cause conflicting motives to be generated, that
could be detected and might trigger a conflict resolution mechanism to deal
with the conflict. All such mechanisms for architecture-based motivation are
probably innate in simplest animals (and machines), while products of learning
and development play a role in more sophisticated types.

Pressure of time, and our commitment to integrate the subsystems devel-
oped by all the partners, prevented us investigating this kind of possibility
further. It might in future demonstrate how a robot might learn by play and
exploration without being reward-driven.

12.9.2 Varieties of compositional semantics

One of the major differences between the reactive layer and other layers in
the CogAff schema is that the upper two layers can make use of formalisms
supporting structural variation (e.g. predictions, plans and percepts of vary-
ing complexity) whereas the reactive level mainly uses atomic symbols (e.g.
measures) or fixed dimensional vectors of symbols.

Where there is structural variation, and old structures can be combined to
form new more complex ones (like sentences with sub-clauses), the semantic
content of complex structures is usually assumed to be based on compositional
semantics: the meaning of any complex expression is a function of the mean-
ings of the parts and the structure of the expression. A problem addressed in
CoSy led to an extension of this idea, as follows.

A question arose as to how certain words and phrases such as ‘to the
left of’ used in an instruction to place something should be interpreted when
there is a large area to the left. The solution at first proposed was to use a
probabilistic semantics to select the “best” target location in the region under
consideration, on the assumption that the probabilities would be derived from
previous experiences. A probabilistic mechanism was therefore implemented.

Despite the empirical evidence, I found the arguments for the probabilistic
interpretation unconvincing because they did not take account of the impor-
tance of context. I thought the empirical, probabilistic, data were likely to be
a side-effect of deeper, more powerful and general mechanisms.

So an alternative theory was proposed, according to which Gricean prin-
ciples of communication can be combined with a form of compositional se-
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mantics that allows context to play a role anywhere in a semantic structure.
So on this view, the proper way to obey the request “Put the pen at the left
of the book” is to use an understanding of what the pen is needed for, and
what it can interact with, along with the perceived set of spatial relationships,
to select a target location, rather than using a probability calculation based
on previously observed placings. Where the context does not determine a se-
lection, any location within reach of the person who asked for the pen will
do.

This turned out to be a special case of an important general idea, that
transforms many supposedly vague expressions (e.g. “heap”, “big”, “long”,
“efficient”), into expressions with a gap to be filled by the context of use,
based on general knowledge and intelligence. For example, the number of
stones required for a heap, depends on why a heap is required: to hold down
a tarpaulin in a strong wind, to provide a base for one end of a bridge, to
provide a platform on which to stand to see over a wall, and so on. These
ideas led to a long and complex discussion paper [8] still under development.

An implication of this, is that the process of sentence comprehension can
intrinsically include deep integration with reasoning, memory and visual per-
ception. For this to work, not only the language sub-systems, but also the
reasoning, memory and perceptual sub-systems must be designed so as to
support the integration. That is a powerful challenge to system designers
working on those sub-systems in isolation.

It is a powerful challenge anyway, and I expect it will be many years
before machines can handle such context sensitivity in a useful way: it will
first require development of a great deal of knowledge about the world and
what people can want or intend or fear or prefer to happen in it.

12.10 The H-CogAff Special Case

One special case of the CogAff schema, labelled H-CogAff (Human-Cogaff),
developed at Birmingham in the decade before CoSy [62], and also mentioned
in Chapter 1, assumes all the boxes are occupied and that there are many
connections, including connections to a reactive alarm system, and connec-
tions linking various layers in multi-level perception and action sub-systems
to different parts of the central “tower”, as explained in [62].

This special case and the diversity allowed by the CogAff schema were
mentioned in our proposal. It was hoped that some of the ideas could be tested
and the specifications refined and extended as a result of work on the robots.
We did develop some new ideas about requirements for such an architecture
as a result of the requirements analysis done during the project and work
on some of the sub-systems. In particular [10] showed the need for several
important subdivisions in the deliberative layer, and there were changes to
our ideas about vision, language and the types of compositional semantics
required in an intelligent system, as mentioned above.
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Implications for meta-management were related to requirements for motive
generation and selection in the robot, but so far only very simplified versions
of those mechanisms have been implemented, as they sufficed for the scenarios
chosen. Another important function of meta-management is mentioned below
in connection with mathematical learning. These ideas are still under develop-
ment, and have not yet fed into working systems (so they are not mentioned in
Chapter 2). In some cases, this will require major advances. In general, insofar
as meta-management involves the ability to monitor, represent, modulate or
extend internal processes, it will require meta-semantic competence: namely
the ability to represent things that have semantic content.

This will require dealing with referential opacity, and many other things
that have so far not arisen in the CoSy project because the scenarios addressed
have been relatively simple. However, as some of the discussions among the
team working on integration revealed, the problem is already just below the
surface in the current system because we are close to problems where the
robot needs to think about and reason about what a human knows, wants,
intends, can see, etc. Future work will need to address these problems.

Some researchers, e.g. John McCarthy, favour dealing with such cases by
introducing new modal logics with special modal operators for Knows, Wants,
etc. I think a better solution uses architectural mechanisms providing a kind
of ‘encapsulation’ e.g. where supposed/possible beliefs (one’s own or someone
else’s) are treated using the usual forms of representation but not allowed to
have the normal causal powers of beliefs. For instance, imagining a situation
where you believe a hungry lion is running towards you should not make you
decide to run away. On the other hand if you know that John thinks the bush
in the shadows is a hungry lion you should be able to work out that he may
wish to run away, and therefore decide to tell him that what he thinks is a lion
is a bush. It is well known that young children take some time to develop the
ability to handle referential opacity. It is not clear whether a future robot will
also have to grow the ability, as opposed to having it pre-programmed. This
may be related to whether pre-verbal competences need to be well developed
before language learning starts.

12.11 Study trade-offs not special cases

The diversity of designs and sets of requirements mentioned above is very
daunting. One way of trying to make sense of this diversity is to consider
divisions at a fairly high level of abstraction to start with, as proposed in
previous sections.

Another strategy for imposing structure on the problem is to think in terms
of trade-offs. Instead of arguing about how things must be, or trying find ways
of categorising whole systems using evaluation functions, we can look at costs
and benefits of different options within a single design problem. These costs
and benefits can be thought of as niche-relative disadvantages and advantages,
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without assuming that these must all have numerical values. Often the trade-
offs need to be expressed descriptively rather than numerically: e.g. design X
makes certain kinds of learning impossible, but enables predators of type Y
to be avoided – not-unlike the style of consumer reports on multi-functional
objects such as cars, cookers, computers, etc. (These issues are addressed in
this old paper on “better” [71], which suggests a semantic structure with a
component for context, not unlike the analysis of vague words, above.)

12.11.1 Nature-nurture trade-offs

A particularly interesting case is the trade-off between pre-programming all
the behaviour required in a system (as evolution in effect does for the ma-
jority of species, a feature for which the label “precocial” is often used) and
instead producing an “altricial” organism or machine that starts off superfi-
cially highly incompetent but has a sophisticated meta-competence for devel-
oping itself in a certain class of environments, including acquiring many new
competences through interactions with the environment [41, 72, 6, 1, 27] This
seems to be the option evolution has developed for many mammals, especially
hunting mammals and primates, as well as many birds).

In between the two extremes are different combinations of “precocial” (or
preconfigured) competences and “altricial” (or meta-configured in the termi-
nology of [1]) competences. Jackie Chappell and I argued at IJCAI’05 [6] that
both extremes and intermediate cases will be required in robots.

The CoSy robots have a particular combination of pre-programmed and
learnt competences dictated largely by limitations of our time and available
techniques: future work should explore more possibilities in a more principled
way, after a deep analysis of trade-offs. There is work in progress in building
a version of the PlayMate that discovers things about the world and effects
of its actions in Birmingham8 and Freiburg.9 We are still a long way from the
kind of bootstrapping mentioned in Section 12.5.4.

12.11.2 Image-scene tradeoffs in visual processing

One trade-off that provoked much discussion, especially in the context of the
PlayMate scenario was the trade-off between trying to perform visual tasks by
8 Work by Marek Kopicki, partially reported in
http://www.cs.bham.ac.uk/~msk/report8/report8.final.pdf http:

//www.cs.bham.ac.uk/~msk/report9/report9.pdf
9 See Jürgen Sturm, Christian Plagemann, Wolfram Burgard. Adaptive Body

Scheme Models for Robust Robotic Manipulation. In Proceedings of Robotics:
Science and Systems (RSS), Zürich, Switzerland. 2008.
Jürgen Sturm, Christian Plagemann, Wolfram Burgard. Unsupervised Body
Scheme Learning through Self-Perception. In IEEE International Conference on
Robotics and Automation (ICRA), Pasadena, CA, USA, 2008.
http://www.informatik.uni-freiburg.de/~sturm/media/resources/public/

zora-7dof-demo.avi

http://www.cs.bham.ac.uk/~msk/report8/report8.final.pdf
http://www.cs.bham.ac.uk/~msk/report9/report9.pdf
http://www.cs.bham.ac.uk/~msk/report9/report9.pdf
http://www.informatik.uni-freiburg.de/~sturm/media/resources/public/zora-7dof-demo.avi
http://www.informatik.uni-freiburg.de/~sturm/media/resources/public/zora-7dof-demo.avi
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using and learning about 2-D image features, relationships, models and pro-
cesses, as opposed to using and learning about 3-D structures and processes,
which could be either inferred from image information or used to project to
image information, in a mixture of bottom up and top-down processing.

An illustration of the need for a 3-D ontology is shown by the ambiguity
of the Necker cube, in which the experience of a pattern of straight lines flips
between seeing a cube with one of two spatial orientations, and where the
relative distances change. Since nothing changes in the image when the cube
flips it is clear that something not in the image must be represented in each
of the two states.

It is a small step from there to argue that even in unambiguous images
where a cube is seen the percept must represent 3-D structure, not just iden-
tify a portion of the image and its features and relationships. This kind of
representation using an exosomatic ontology (i.e. referring to something out-
side the perceiver, that can exist independently of whether it is sensed or not)
will be crucial in a robot with the competences we aimed for in CoSy. However
at present the vision systems deployed are very limited in their understanding
of 3-D structures.

Another tradeoff whose potential importance emerged in the analysis of
requirements was the tradeoff between representing only static structures and
then attempting to represent processes, including actions in terms of collec-
tions of representations of static structures, vs constructing representations
of processes that could be used during the perception of processes and also
when reasoning about possible past or future or unperceived processes. This
topic is discussed in [23] and some of the online presentations.

12.11.3 Trade-offs related to noise and uncertainty

Another trade-off discussed at various times and especially during the final
year is the trade-off between (a) dealing with noise and uncertainty by mak-
ing use of probability distributions and performing probabilistic inferences,
as opposed to (b) finding a form of representation that avoids noise and un-
certainty (in a particular situation) by using a high level of abstraction. For
example if it is impossible to decide for certain whether a curved line has
constant curvature or not (i.e. is a circular arc), then instead of working with
a probability distribution over a range of possible curvatures, simply describe
it as curved. In some cases where there is uncertainty the robot could avoid
reasoning about probabilities by getting new information. E.g. if the size of an
object is uncertain because it is partly occluded, instead of dealing with prob-
able lengths choose a different viewpoint, or temporarily move the occluding
object. Another important possibility seems to be to notice that there may
be regions of definiteness where an answer is “yes” and regions of definiteness
where an answer is “no”, and a phase boundary where the answer is uncer-
tain. In that case, it may be possible to move away from the phase boundary
when it is encountered. E.g. if you can’t tell whether your trajectory will or
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will not cause you to bump into the edge of a wall, it will typically be possible
to ensure that you will definitely not bump into it if you aim more to one
side. These points are discussed in this draft document [13] mentioned below
in connection with changing affordances.

There are other trade-offs that surfaced during the project, most of which
still need further work.

12.12 Requirements for visual systems

12.12.1 Why do perception and action need towers?

There are many different sorts of requirements that could be considered for
visual systems. For example, work on systems that can be trained to recog-
nise objects in images of cluttered scenes is challenging and useful for many
application domains, but it does not necessarily provide the kind of visual
competence required for a robot with a movable hand to be able to work out
a good way to pick up an object with a complex shape, subject to varying con-
straints – e.g. it may be fragile, or full of liquid, or very hot, or too large to be
grasped by one hand, or partially obstructed by another object. In some sense
it is obvious that the ability to perceive 3-D shape, including distinguishing
parts with different features and relationships and seeing their relationships
to one another and to other objects must, for humans and other animals, and
presumably also future intelligent robots, have priority over recognition of ob-
jects, since it is possible to see and interact with (e.g. picking up, climbing
over, disassembling) something you do not recognise. This is related to the
theories of Gibson mentioned later.

Humans can perceive and interact with objects in poor light, can see spatial
structures and potential for actions of various sorts even in low resolution noisy
images, as illustrated in Figure 12.6. A more detailed analysis of some of the
requirements can be found in [73].

12.12.2 Multi-strand process perception

Analysis of requirements for PlayMate in year 1 [30] revealed the impor-
tance, for a robot doing 3-D manipulations, of being able to perceive and
think about “multi-strand relationships” (relationships holding between dif-
ferent parts of two or more objects, in addition to relations between the whole
objects). Some of the relationships will be metrical relationships of size, dis-
tance, angle, volume, curvature, etc. Others will be qualitative relationships,
such as containment, contact, being above, overlapping, being nearer, being
between, etc. The latter may change discontinuously while the former change
continuously. Other relationships may be causal or functional, e.g. pushing,
supporting, stretching, compressing, etc. All of these need to be perceived by
a robot with the capabilities we were aiming for in the PlayMate, and to some
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Fig. 12.6. Despite low resolution, poor lighting, and noise in this image, people easily
perceive a collection of objects with definite spatial relationships, even though what is
perceived (including shapes, orientations, curvature, relative thickness, etc.) is not
perceived with very great precision. A challenge is to devise forms of representation
that (a) are derivable from images despite poor image quality, and (b) have sufficient
definiteness to allow actions to be planned and executed reliably. (From [73]).

extent also in the Explorer. However, the work on perception in CoSy was not
able to address most of this.

When actions are performed the different sub-relations can change in par-
allel, producing “multi-strand processes”. Some of the changes are continuous
and others discrete (e.g. topological). This is related to the need for perception
of static structures to use multiple ontologies in parallel (not just part-whole
layers). Examples of the use of different ontologies in seeing a static scene
include seeing lines on a page, seeing the lines forming a face with parts seen
as eyes, nose, mouth, cheeks, etc., and seeing the face as happy, or sad. When
the well known ambiguous duck-rabbit figure (Figure 12.7) flips the perceived
2-D image features do not change, but different ontologies are involved in the
two percepts, e.g. ears vs bill. Furthermore there is a meta-semantic ontology
involved insofar as the duck is seen as looking one way and the rabbit as
looking the other way. Around 30 years ago, the Popeye program described in
[39, Ch 9] used a mixture of top-down and bottom-up processing, and stored
knowledge, to interpret messy pictures in terms of different ontology layers,
with distinct part-whole relationships in each layer. Although it was noticed
many years ago that seeing static structures could involve perception of struc-
tures at different levels of abstraction, using different ontologies, the need
for perception of processes at different levels of abstraction went unnoticed,
though something like this was noted by Grush [74] in 2004.

This generates requirements for human, animal and robot vision that ap-
pear not to have been widely appreciated. This is because when things change
there can also be changes going on simultaneously at different levels of abstrac-
tion. For instance looking at a video of a rotating wire frame cube, involves
seeing changing light and dark portions of the image and simultaneously see-
ing edges, corners and faces of the cube moving around in 3D space, changing
positions, orientations and relative distances. That is a relatively simple case
compared with what is required for the PlayMate robot to see what it is doing
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Fig. 12.7. Many ambiguous figures flip between two percepts without anything in
the image changing. This often gives important clues to the multi-layered ontologies
that can be involved in visual perception. What changes when this flips between the
two views?

when it manipulates objects and far more complex shapes than wire frame
cubes are involved, in addition to changing causal and functional relationships.
At present there is nothing in CoSy that represents multi-strand processes,
although some fragments are there. However the visual challenge of seeing our
robot’s arm and hand seem to be well beyond the state of the art in vision,
especially seeing it moving. These ideas were presented in an invited talk at
a multidisciplinary workshop in May-June 2007 and will be published in the
proceedings: [23].

12.12.3 How to acquire useful ontologies

If the above is correct, then that requires a visual system not merely to be able
to learn to see part-whole hierarchies on different levels but also more abstract
interpretation layers. This is related to the need for an intelligent system to
use amodal exosomatic ontologies. How the ontologies develop and how the
semantics of newly defined symbols are generated if they are not definable in
terms of old symbols or sensorimotor patterns is a complex issue, discussed
in more detail in [17].

12.12.4 Varieties of complexity reduction

Chapter 3 discusses varieties of learning/development that involve reducing
complexity by reducing dimensionality of sensory motor information acquired
by active exploration and experiment.

The complexity reduction involves moving to a new vector space with fewer
dimensions, but preserving the “space-occupancy” form of representation. (An
analogical form of representation in the sense of [51].)

We also need to understand other processes that are important in humans
and some other animals and which could be essential for some future robots.
A very different kind of transformation is the move from representing some



476 Sloman

portion of the world in a pixel/voxel based form (i.e. occupancy of portions of
some vector space) to representing discrete, enduring, re-identifiable objects
with features and relationships – possibly changing features and relationships,
where the same object can occupy different spatial regions/volumes at differ-
ent times.

Consider this example:
A 1000x1000 video with 1000 frames, containing changing blue red and white
pixels might be described either in terms of a huge three-valued array, or like
this:

• A big blue roughly circular pulsating blob moves right with increasing speed
against a white background.

• A smaller red triangular blob rotates clockwise about its centroid while moving
left with decreasing speed.

• The second blob starts to the right of the first blob and is temporarily obscured
by the first blob as it moves.

These descriptions summarise the contents of a 1000x1000x1000 array. The
example illustrates a trade-off between simplicity of conceptual apparatus and
simplicity of descriptions:

The conceptual apparatus required to describe all the array cells is very
simple: just a uniform formalism based on three coordinates and a colour
label, whereas the object-based summary description above achieves massive
complexity reduction by using a much more sophisticated ontology, including
a distinction between space and time dimensions, the notion of a spatially
extended, temporally enduring, but changing object, (with complex criteria
for identity of the object), etc.

Further, the three sentence, object-based, summary above describes not
only the one scenario with 109 cells, but a huge number of different scenarios
with slightly different contents (different blob sizes, slightly different shapes,
different speeds and accelerations, etc.) though the boundaries between what
is and what is not included are somewhat vague because of the vagueness of
‘big’, ‘roughly circular’, ‘pulsating’, etc. and the fact that speeds and acceler-
ations are not specified. This kind of vagueness is related to the point about
context-sensitive compositional semantics in Section 12.9.2.

I think biological evolution somehow discovered the need for something like
the object-based form of representation in a subset of organisms. This seems
to be the basis of human abilities to use logic and to use verbal descriptions.
I don’t know how many organisms can use the object-based type of represen-
tation. It seems very likely that cats, monkeys, nest-building birds, primates,
need it. I don’t know about frogs, flies, paramecia, etc. These questions could
simulate new kinds of research in animal cognition, and new questions to be
asked about cognitive development in humans. Issues like this are discussed
in Brian Cantwell Smith’s book [75], though without specific implementation
recommendations.
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Much work in robotics (including CoSy) assumes the need to use an on-
tology of enduring but changeable objects – though often the ontology is
assembled in a piecemeal unprincipled way. There is much work still to be
done defining the long term ontological requirements first of all for a pre-
verbal child-like robot and then for a robot learning to use a human language
for communication. It is sometimes assumed that there must be some innate
ontology on the basis of which everything else is constructed. However, that
assumption ignores the possibility of an ongoing process of testing and de-
bugging of the current ontology which could lead both to rejection of some
of the innate components and to to construction of extensions that are not
definable in terms of the starting ontology. Something like that happens in
the history of science, so it is possible in principle. How to get a robot to do
that is a topic for future research – one of many long term requirements for
human-like robots.

12.12.5 Beyond J.J. Gibson’s affordances

J.J. Gibson [49] drew attention to the requirement for a perceiver’s ontology to
include positive and negative affordances: namely features of the environment
that are relevant to enabling or obstructing actions that the perceiver can
perform that might be relevant to achieving goals. Analysis of requirements
for a robot has shown that Gibson’s ideas need to be extended:

• An agent can perceive the possibility of processes that are not produced
by the agent, and also perceive things that will enable or prevent such
processes. (For more details see [76].) I call this perception of proto-
affordances. Affordances will then map onto a small subset of proto-
affordances.

• There is a kind of affordance that Gibson did not explicitly distinguish
from an action affordance, namely an epistemic affordance: concerned with
aspects of the environment that support or obstruct the perceiver’s acqui-
sition of new information. E.g. turning a face of a cube towards you cre-
ates the epistemic affordance that is the possibility of getting information
about features of tha face. Likewise the rotation will have moved at least
one other face out of sight, creating a negative epistemic affordance for
that face. One of the important things a child has to learn is what sorts
of epistemic affordances the environment provides, and also what actions
it can perform to increase the epistemic affordances (gain access to more
information).

The ability to perceive and reason about both proto-affordances, including
affordances for other individuals, and epistemic affordances is relevant to many
of things a future domestic robot may be required to do. In particular the
epistemic affordances are very relevant to visual servoing. A partial analysis
is in [13], which was written in response to difficulties in getting the PlayMate
to grasp things reliably at the CoSy review in 2007.
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The ability to detect that one lacks some information requires self-
monitoring and a meta-semantic competence and therefore belongs in the
meta-management architectural layer. The ability to perceive epistemic affor-
dances and action affordances, and to work out which action affordances will
change which epistemic affordances (e.g. moving nearer the door to a room
will enable you to see more of the contents of the room), seems to be a fea-
ture of development in very young children and some animals that has not
been studied except for very restricted contexts using verbal interactions, e.g.
asking a child whether looking at or feeling a hidden object will provide in-
formation about its shape or its colour. In some animals the actions required
to alter epistemic affordances may be genetically compiled into reactive sub-
systems, but animals that have to learn to manipulate epistemic affordances
in environments that evolution could not anticipate will need mechanisms for
acquiring such competences. For example, as you walk through a car park
there are vast amounts of visual information available in the changing optic
array, about changing colours, angles subtended, altering occlusions, various
kinds of optical flow, and moving highlights and reflections on curved and
planar surfaces.

Using that information to compute, in parallel, shapes, orientations, cur-
vatures, distances, spatial relationships, surface properties, etc. is unlikely to
be based entirely on genetically determined competences since nothing like
car-parks existed to influence the selection of our distant ancestors. So there
must be processes of learning, still to be studied. I suspect it will require
massively parallel constraint propagation mechanisms operating at different
levels of abstraction, on different time scales. It will also involve perception
operating in parallel at different levels of abstraction, with different levels in
the perceptual systems connecting to different levels in central systems, as
indicated in the CogAff perception tower.

12.12.6 Implications of speed of human and animal visual
perception

Some experiments help to demonstrate familiar but not often noticed features
of human visual competence: the speed at which very high level percepts seem
to be constructed even when there are no expectations about what the next
scene will be. For example, see the demonstration in [18].

Considerations of the sort presented there led to the conjecture that the
architecture of a human-like visual system includes a multilayer collection of
dynamical systems linked by a constraint propagation network, with different
layers operating in parallel at different speeds, performing different sorts of
tasks, some of them representing only sensorimotor ontologies whereas others,
more remote from the sensorimotor interface can also represent ontologies re-
ferring to unperceivable, relatively inaccessible parts of the universe, including
future actions and events. These ideas are discussed further in [23] See Fig-
ure 12.8.
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Fig. 12.8. A perceptual system composed of multiple dynamical systems linked in a
constraint network, some of them dormant while others operate concurrently more
and less remote from the sensorimotor interface, with more remote sub-systems able
to refer to un-sensed aspects of reality. Some involve continuous dynamics, others
discrete changes. The various perceptual (e.g. visual) sub-systems would also be con-
nected with more central processing sub-systems and in some cases also with action
sub-systems, e.g. for reflexes to work. Dynamical systems further from the sensori-
motor interface can use semantic contents referring to things in the environment that
are more remote from the sensorimotor interface, as indicated by the long arrows.

12.13 Learning to be a mathematician

The ability to see proto-affordances and also epistemic affordances has very
deep implications. By studying requirements for a robot to be able to cope
with novel configurations, we see that some things that at first are learnt as
empirical generalisations, can later be regarded as mathematical (i.e. neces-
sary, not empirical) truths, as appears to happen in young children, though
this has not been noticed by developmental psychologists as far as I know.
An example was mentioned in Section 12.6, namely a child coming to realise
that counting a fixed set of objects in different orders must necessarily give
the same result, even though initially this was learnt as an empirical general-
isation.

There are many unsolved problems about how this transition happens,
but it seems to be closely connected with learning about affordances and
how they are related to structures of objects in a principled way that is
not just empirical. When these matters are fully understood by the child,
animal or robot they enable novel problems to be solved by creative rea-
soning about action and epistemic affordances. This depends on coming
to realise that some true generalisations are not just empirical generali-
sations that might one day be tested. When fully understood they can
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be seen to be, in effect, mathematical theorems, even if the learner does
not explicitly notice this fact. This topic was discussed, with more exam-
ples, in a recent paper [21] and further expanded in this slide presentation:
http://www.cs.bham.ac.uk/research/projects/cogaff/talks/#mkm08

If we can make progress with modelling this kind of learning, not only
will it be a contribution to robotics, and to developmental psychology, it will
also favour Kant’s philosophy of mathematics [77] over Hume’s (and Russell’s
[78]).

12.13.1 Two kinds of causation

The kind of learning that uses a transition from empirical to non-empirical
understanding also supports a notion of causation that is more like Kant’s
than Hume’s conception of causation (which is essentially statistical and is
the precursor of modern Bayesian notions of causation). In work done with
Chappell a start has been made in using these ideas to analyse kinds of causal
competence in other animals as well as in humans competences.10 It is very
likely that future robots of many kinds will need that kind of causal under-
standing. However, our robots were not confronted with problems requiring
the ability to think about causation.

This discussion points to a need for a form of learning that is very different
from the heavily Bayesian (probabilistic/statistics-based) forms of learning
that currently attract the most attention. A possible initial mechanism for
this would be to allow some features of what has been learnt empirically to
trigger a change in the way structures or processes in the environment are
represented – e.g. a change from lots of sensorimotor conditional probabilities
to representing 3-D objects moving around in a locally euclidean space. That
form of representation of processes will have strong implications for what is
and is not possible. If the distinctions between kinds of material are included
in the representations (e.g. some things are impenetrable others not, some are
rigid, others not) then properties of matter can play a role in some of the
reasoning. For example if one end of a rigid rod is rotated in a plane then the
far end must move in a circular arc. If one of two meshed gear wheels made of
rigid impenetrable material is rotated, the other must rotate in the opposite
direction. It is often thought that there are only two ways a young child
or animal can discover useful affordances, namely either by empirical trial
and error, or by learning from what someone else does (through imitation or
instruction). However, our discussion shows that there is a third way, namely
by working out the consequences of combining spatial processes in advance
of their occurrence. This point seems to be missed by many developmental
psychologists, e.g. [41].

Some of these implicit theories with strong implications may have been pre-
preprogrammed genetically in some animals, as a precocial or pre-configured
10 See the slide presentations

http://www.cs.bham.ac.uk/research/projects/cogaff/talks/#wonac

http://www.cs.bham.ac.uk/research/projects/cogaff/talks/#mkm08
http://www.cs.bham.ac.uk/research/projects/cogaff/talks/#wonac
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competence. In others, a genetically pre-programmed tendency to perform ex-
periments, discover generalisations, and then build a new layer of theory to
make sense of the results may reach similar competences more indirectly and
more slowly, but with more scope for subsequent modification. (An example
of a nature-nurture trade-off.) It seems that a new born human is already pre-
disposed to try to interpret perceived structures and processes as inhabiting
a 3-D space, as might an “altricial” robot be. However, various observations
could trigger a process of abduction leading to an enriched explanatory the-
ory about the nature of the environment, e.g. allowing that not only are there
movable objects, but some are rigid and some are impenetrable. These notions
would be understood in such a way as to disallow representations of certain
things bending, being dented, breaking, etc. and also disallowing the repre-
sentation of part of one object passing through another. (Compare McCarthy
on “The well designed child” [50].)

More subtle theories would need to be developed by a child to allow it
to learn facts about the nature of mappings between two structures or two
processes that allow the discovery that it is not just an empirical fact that
counting a row of objects left to right produces the same result as counting
the same row right to left. Contrast the theories of Rips et al. [79]

There is still much work to be done on the architectural and representa-
tional underpinnings for these layered processes of learning and theory con-
struction. Originally it was hoped that some such forms of discovery (e.g. in
relation to counting) could be made by a version of PlayMate that was able
to point at a set of objects in sequence and ask questions about what it had
done.11 But so far we do not have vision systems, episodic memory or action
sub-systems capable of being used for this sort of task.

12.14 Confusions about the role of embodiment

What’s important about embodiment (e.g. what drove the most significant
evolutionary developments in primate and bird cognition) seems to have been
the need to be able to perceive and interact with 3-D structures and processes
(including manipulating, assembling and disassembling 3-D structures) and
the need to be able to think about spatially located events, processes and
entities in the past, remote spatial regions, and the future.

In contrast, much of the work on embodied cognition in robots, and much
of the philosophical concern with the importance of embodiment has focused
on the terribly narrow problem of learning about sensorimotor relationships.
(There are some exceptions.) For a detailed critique of these ideas see [25].

The single most important reason why embodiment influences cognition
in humans is that we are part of a very complex 4-D world that extends way

11 As proposed in
http://www.cs.bham.ac.uk/research/projects/cosy/PlayMate-start.html

http://www.cs.bham.ac.uk/research/projects/cosy/PlayMate-start.html
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beyond what we can experience or interact with at any time, but which we can
think about, plan about, learn about, ask questions about, find or construct
routes to, use to explain what we perceive, build and test theories about, etc.
People born blind, or without limbs (like Alison Lapper, the artist), or with
four legs instead of two, or born as conjoined twins (two heads sharing a torso
and legs) can develop those human cognitive competences.

That contrasts with disembodied AI systems that interact only with and
think only about, some abstract information structure, such as a financial
database, the internet, mathematical proofs, or a board game whose physical
implementation is irrelevant. They don’t need to be embodied or even to know
anything about the 4-D environment and where they are in it or which of its
occupants could affect them.

12.15 Developing the revolution in philosophy

Work in progress, partly inspired by the above work related to CoSy shows
that old ideas about conceptual analysis in philosophy (the study of “logical
geography” in Ryle’s terminology [80]) needs to be reconsidered as a spe-
cial subset of a larger task: investigation of complex aspects of reality that
generate a rich “logical topography” that can be divided up in different ways,
supporting different “logical geographies”. A long paper explaining these ideas
is under development [81].

It is not common for an AI project to be promoted as a contribution
to philosophy, although there have been philosophers involved in AI projects
(e.g. Daniel Dennett in COG, Bruce Buchanan in Dendral, Selmer Bringsjord,
John Pollock, etc.) and at least one philosopher, Margaret Boden, has made
major contributions to the history and philosophy of AI.

My concern was not merely to contribute to philosophy, but also to clarify
problems in biology, psychology and eventually brain science.

There have been many AI projects involving philosophers, though usually
as collaborators helping with engineering goals. Some philosophers interested
in technical philosophical issues, for example, issues concerned with how sci-
entific theories relate to evidence, or issues concerned with how a modal logic
could be used in reasoning about permissions and obligations have tried us-
ing AI languages, tools and techniques to develop and test their philosophical
theories (Herbert Simon, Paul Thagard).

A recent Edinburgh PhD thesis by Alison Pease took the philosophical
analysis of the history of Euler’s theorem by Lakatos as the basis for a model
of mathematical exploration.12

In some cases a particular philosophical viewpoint, for example a philo-
sophical theory about meaning (e.g. symbol-grounding theory), or a theory
concerning the nature of emotions, or of consciousness, or of the importance

12 Available at http://homepages.inf.ed.ac.uk/apease/research/phd.html

http://homepages.inf.ed.ac.uk/apease/research/phd.html
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of embodiment, has influenced the design of a working AI system, especially,
in recent years a flood of work influenced by the bad philosophy of symbol-
grounding, (criticised in Section 12.5).

If the claims in Section 12.13 about the processes of transforming empiri-
cal discoveries to something like mathematical theorems can be substantiated
and modelled, this will have deep significance for several aspects of philoso-
phy, including philosophy of mind, philosophy of mathematics, philosophy of
causation, and philosophical questions about evolution.

12.16 Further documentation on these ideas

For anyone interested in finding out the extent of the impact of CoSy on
thinking about the themes presented here there are three sources of further
information (still growing):

• The online repository of papers, discussion notes and presentations at the
Birmingham CoSy site:
http://www.cs.bham.ac.uk/research/projects/cosy/papers/

• The collection of online presentations at seminars, workshops and confer-
ences, available here:
http://www.cs.bham.ac.uk/research/projects/cogaff/talks/

• The disorganised collection of html discussion notes in this web site
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/

12.17 Why other disciplines need AI

Very often philosophers and psychologists who attempt to think about pos-
sible cases in order to express their theories lack the experience of designing,
implementing, testing and debugging working systems, so that they use levels
of description that no engineer could take as a specification for a working sys-
tem: the verbal descriptions used (sometimes with accompanying diagrams)
are so non-specific as either to determine no possible working implementation,
or as to determine very many different implementations with very different
properties that the original proposers would never have considered.

One of the ways of changing this is for AI researchers to involve more people
from other disciplines both in the detailed analysis of sets of requirements,
and also in the processes of designing, implementing and testing, so that the
depth and precision of future theories in the other disciplines can be improved
over time.

http://www.cs.bham.ac.uk/research/projects/cosy/papers/
http://www.cs.bham.ac.uk/research/projects/cogaff/talks/
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/
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12.18 Conclusion: The future

Work on the follow on EU-funded CogX project (2008-2012)13 will provide
opportunities to develop a subset of the ideas presented here, though limi-
tations of AI technology will remain a constraining factor for some time to
come.

In parallel with that a proposal is under development for a collaborative
project, with two biologists, Jackie Chappell and Susannah Thorpe, to in-
vestigate some of the cognitive competences displayed by orangutans moving
through trees. Unlike most other animals, including other apes, Sumatran
orangutans are able to use the compliance of branches intelligently to over-
come difficulties caused by large gaps and the inability of some of the branches
to support their weight. These problems and the achievements of the animals
will be analysed from the standpoint of a robot designer and related to contro-
versies about the evolutionary origins of ape intelligence, in which too much
weight is sometimes given to social requirements.

Attempts will also be made to use some of the lessons learnt during
the CoSy project, mentioned in Section 12.13, in collaborative research with
developmental psychologists (yet to be identified) investigating the role in
young children of the ability to transform empirical generalisations into proto-
mathematical knowledge that can be used with confidence in solving novel
problems. A start is being made by developing a collection of “toddler theo-
rems”.14
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Lessons and Outlook

Henrik I. Christensen1
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13.1 Introduction

The CoSy project had a very ambitious set of goals from the outset. The
effort was driven forward by scientific and technical goals as outlined in
Chapter 1. Early in the project integration efforts were undertaken to ensure
that both component and systems issues could be addressed. Already after
12 months early demonstrators were available for empirical studies of
cognitive systems. Obviously, at that stage, the systems were brittle and of
limited functionality but they framed the problems in a nice way.
In some respects CoSy is about the marriage of traditional artificial
intelligence, computational perception, human computer interaction and
robotics. In each of the participating disciplines good progress has been
reported over the last few decades, but the expected break through has not
been achieved. A major emphasis of CoSy has been a change in emphasis.
By framing the problem in the context of an embodied or situated agent
many of the challenges change. First of all the context in terms of task and
spatial location in many respects simplifies the problem and makes it much
more tractable. The embodiment also allow for direct interaction with the
world. The system is no longer a passive observer that is trying to
understand what is going on. The system has the ability to participate in
the world and change it to make intractable problem more tractable. The
embodiment is thus a key part both in terms of mobility and manipulation.
It must, however, be recognized that the situated embodied context also
poses a number of additional challenges. As the agent moves through the
world the view point changes, the illumination varies, the human-robot
relation changes over time. The situated context comes as a cost.
Nonetheless as essential part of CoSy has been the study of embodied
systems. Another aspect that has played an important part in CoSy is the
assistive role. The systems studied are not expected to be fully autonomous
but to operate in cooperation with humans. This implies that humans can
be queried when ambiguities arise, which again changes the problem.
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Over the duration of the project significant progress was made across all
areas and many of the problems have been well framed with in the
individual chapters and some of the more philosophical issues have already
been discussed as part of Chapter 12. It is clear that there are a number of
important lessons coming from an effort such as CoSy and obviously the
number of problems discovered by the project are likely to be a numerous as
the lessons. In Section 13.2 a number of the major lessons will be discussed
and correspondingly some of the new challenges will be outlined in Section
13.3.

13.2 Lessons

Architectures: An important part of CoSy has been the study of systems.
A key aspect is here the consideration of architectures. CoSy has performed
extensive analysis of a rich variety of architectures in the literature but as
important is the design of an architectural toolkit CAST, that enable
flexible implementation of a variety of different applications. The
architectural approach could be considered a federation of blackboard
systems that are loosely synchronized. Some of the considerations related to
the design are discussed in Chapters 2 and 11. Early design of systems have
indicated that this might be a highly effective framework for construction of
relatively complex systems.
Representations: Tied to the problem of architectures and systems design
is the problem of representations, which permeates the entire systems
discussion. For many of the sub areas of cognitive systems there has been
progress, but a frequently encountered problem is scalability and
generalization. Across the different areas of planning, geometry and
perception hybrid representations have been adopted as a strategy to
address locality and scalability. In visual perception a hierarchical method is
used where signal level representations are trained in an unsupervised
manner, and as abstractions are introduced so is the degree of supervision
leading to effective models for recognition. In mapping local structures are
modelling using standard Euclidean geometry where as topological models
are adopted for description of the layout of large scale structures. The
change of metric to topological models enables a much higher degree of
scalability and learning of geometric structures can be accommodated at the
local level, which implicitly enables generalization.
Interpretation for Interaction: Through adoption of hybrid models and
tying them to probabilistic reasoning it is also possible to perform efficient
interpretation of scenes. As part of the PlayMate scenario it has been
demonstrated how the system can be taught to play a number of simple
games and it is also here demonstrated how the system can generalize from
one game to another. The interpretation is here closely tied to knowledge
acquisition, dialog generation and dynamic re-planning. The integration of
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these components into a common framework has allowed for a number of
compelling demonstrations. Initially it was expected that a significant
portion of the PlayMate demonstrator would emphasize basic manipulative
skills. In reality the set of manipulative skills needed for studies of basic
interaction has been limited. The set of tasks a system can perform is
directly related to the dexterity of the interaction with the world, but even
with a limited functionality the richness of the world is tremendous.
Robust operation: Operating in a real-world setting requires robustness to
have any degree of extended interaction or autonomy. The issue of
robustness can be approached from several different directions. In CoSy at
least three different approaches have been adopted. First of all processing of
sensory information has largely been modelling within a Bayesian framework
combined with learning for acquisition of data models, such that sources of
variation and noise are explicitly considered. Another approach has been
through integration of multi sensory modalities. Through redundancy and
complementarity in information it is possible generate an added degree of
robustness. An example is in the mapping of environments where visual and
laser based information is integrated to provide more robust recognition of
structures. Visual information typically has a high degree of ambiguity,
where as the laser information is more specific, but it is entirely 2D so
verification with visual data enables added discrimination. However both of
these approach are entirely data driven. Another approach pursued in CoSy
has been through performance monitoring and planning.
Monitoring and Re-planning: Within CoSy a particle based method was
developed for monitoring of state. The particle approach was adopted to
enable description of the high degree of variation that may happen in
processes and to cope with scalability. The performance monitoring was
integrated into the planning framework to allow generation of predictions
about process evolution, i.e. what are the expected and unexpected
evolutions in a process. The prediction of process evolution within a formal
framework also allow for meta-level reasoning to understand when
re-planning can be used for recovery from unexpected situations. The
dynamic re-planning was used in the PlayMate scenario to recover for poor
manipulative capabilities. However, it was also integrated into the dialog
system for communication with humans to handle the variability dialog
patterns. The added degree of robustness demonstrated was essential in the
design of demonstrator systems that exhibited some degree of autonomy.
Situated dialog generation for HRI: A very important part of the CoSy
project was the design of situated dialog systems. Few systems within
Human-Robot Interaction have actually demonstrated dialog behaviour
where is there is any level of flexibility. As such most of these systems
exhibit a high degree of brittleness. Open-ended dialog systems are
obviously a major challenge, but by casting the dialog problem as situated it
is possible to limit the complexity of the overall dialog and consequently to
make it robust and meaningful to users with a limited degree of training. It
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has further been demonstrated that it is possible to generate dialog
structures that generalize across mapping and manipulation. The availability
of a common framework allow for easy adaptation to a variety to
applications. At the same time it must be recognized that the dialog today is
almost entirely based on spoken utterances and auditory feedback. The
integration of a riches set of spatial gestures and body postures would enrich
the interaction significantly.
Overall CoSy has generated a substantial body of knowledge during its
lifetime as witnessed by the results reporting in this volume and by the
significantly body of publications in the archival literature. Progress has
been achieved across all of the areas.

13.3 Outlook

Integration: Cosy was from the outset an “integrated” project with a
healthy balance between topical research and integration of methods into a
systems context. In addition the deliverables where both in terms of theory
and methods. It must, however, be recognized that the project in many
respects merely has formulated the problems and there is tremendous room
for new research to understand the problem of cognitive systems. The
ambitious goals put forward by the European Commission “to construct
physically instantiated or embodied systems that can perceive, understand,
. . . and interact with their environments and evolve in order to achieve
human-like performance” are far from solved. It is, however, important to
recognize that the situated context paves a way to study many of the
essential problems. The embodiment allows for re-formulation of the
problem(s) and to attack them from a new perspective and CoSy has clearly
demonstrated an initial strategy for such studies.
Categorization: It is important to recognize that CoSy by no measure has
solved the categorization problem in perception. CoSy has generated new
methods for multi-categorical recognition but the more general problem of
categorization is still a major challenge. It is clear that through adoption of
a categorical approach it would be possible to provide an added degree of
scalability. Traditionally categories have been defined by linguistic concepts,
which is a straight forward approach, but it is not immediately clear for
example visual categories have a one to one mapping to linguistic concepts.
As an example the “chair” maps to a number of different visual categories.
A stable and sitable surface can be provided in a number of different ways.
Also categories may be defined in several different ways.
Affordances: During the setup of CoSy it was envisaged that object
affordances would play a crucial role in the design of a system and in
organization of representation. In many respects affordances were considered
a fundamental building block in the study of cognitive systems. One could
consider affordances perception-action invariants. However, there are several
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other possible interpretations of the affordance concept as already outlined
in Chapter 12. The exact role of affordances is still largely a open problem.
Physical Interaction: In relation to the affordance discussion it is
important to recognize that CoSy only deployed relatively modest methods
for physical interaction with the environment. The mobile robots had no
way to push or move objects around and the manipulators have simple /
limited functionality grippers. In addition the physical systems were not
designed to allow for learning by demonstration. These limitations allow for
studies of a particular set of problems. However problems such as skill and
task learning for interaction with objects were largely ignored. This
limitation was necessary due to lack of hardware but also due to lack of
resources to address this much more complex problem.
CogX: Some of the open problems will be addressed in a continuation of
the CoSy project. A consortium that is composed of a sub-set of the CoSy
partners and complemented with a few new partners have embarked on new
research effort that is building on the results obtained in CoSy. Further
information about the new project CogX is available from the project web
facility http://cogx.eu. The emphasis of CogX is in particular on
introspection/self-understanding and acquisition of new skills and tasks.

http://cogx.eu
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