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Abstract. Embodied agents are a powerful paradigm for current and
future multimodal interfaces, yet require high effort and expertise for
their creation, assembly and animation control. Therefore, open anima-
tion engines and high-level control languages are required to make em-
bodied agents accessible to researchers and developers. In this paper,
we present EMBR, a new realtime character animation engine that of-
fers a high degree of animation control via the EMBRScript language.
We argue that a new layer of control, the animation layer, is necessary
to keep the higher-level control layers (behavioral/functional) consistent
and slim, while allowing a unified and abstract access to the animation
engine, e.g. for the procedural animation of nonverbal behavior. We de-
scribe the EMBRScript animation layer, the architecture of the EMBR
engine, its integration into larger project contexts, and conclude with a
concrete application.

1 Introduction

Turning virtual humans into believable, and thus acceptable, communication
partners requires highly natural verbal and nonverbal behavior. This problem can
be seen from two sides: creating intelligent behavior (planning context-dependent
messages) and producing corresponding surface realizations (speech, gesture,
facial expression etc.). The former is usually considered an AI problem, the latter
can be considered a computer graphics problem (for nonverbal output). While
previous embodied agents systems created their own solutions for transitioning
from behavior planning to graphical realization (cf. [1–3]), recent research has
identified three fundamental layers of processing which facilitates the creation of
generic software components [4, 5]: intent planner, behavior planner and surface
realizer. This general architecture allows the implementation of various embodied
agents realizers that can be used by the research community through a unified
interface.

In this paper, we present a new realizer called EMBR1 (Embodied Agents Be-
havior Realizer) and its control language EMBRScript. An embodied agents re-
alizer has particularly demanding requirements: it must run at interactive speed,
1 see also http://embots.dfki.de/projects.html



animations must be believable while complying with high-level goals and be syn-
chronized with multiple modalities (speech, gesture, gaze, facial movements) as
well as external events (triggered by the surrounding virtual environment or by
the interaction partners), it must be robust and reactive enough to cope with un-
expected user input with human-like responses. The system should provide the
researchers with a consistent behavior specification language offering the best
compromise between universality and simplicity. Finally, all the components of
such a system should be open and freely available, from the assets creation tools
to the rendering engine. In the terminology of the SAIBA framework [4, 5], users
work on the level of intent planning and behavior planning and then dispatch
high-level behavior descriptions in the behavior markup language (BML) to the
realizer which transforms it into an animation. Because the behavior description
is abstract, many characteristics of the output animation are left for the realizer
to decide. There is little way to tune or modify the animations planned by exist-
ing realizers [6]. To increase animation control while keeping high-level behavior
descriptions simple, we propose an intermediate layer between: the animation
layer. The animation layer gives access to animation parameters that are close
to the actual motion generation mechanisms like spatio-temporal constraints. It
thus gives direct access to functionality of the realizer while abstracting away
from implementation details.

On the one hand, the animation layer provides users with a language capable
of describing fine-grained output animations without requiring a deep under-
standing of computer animation techniques. On the other hand, the concepts of
this layer can be used as building blocks to formally describe behaviors on the
next higher level (BML).

To sum up, the main contributions of this paper are:

– Introducing a new, free behavior realizer for embodied agents
– Presenting a modular architecture for realtime character animation that

combines skeletal animation, morph targets, and shaders
– Introducing a new layer of specification called the animation layer, imple-

mented by the EMBRScript language, that is based on specifying partial key
poses in absolute time

In the following, we will first review related work, then describe the animation
layer and EMBRScript. We then explain EMBR’s modular architecture and
conclude with a concrete application and future work.

2 Related Work

In the terminology of the SAIBA framework, the nonverbal behavior generation
problem can be decomposed into behavior planning and realization. The problem
of behavior planning may be informed by the use of communicative function [7],
linguistic analysis [8], archetype depiction [9], or be learned from real data [10, 3].
The problem of realization involves producing the final animation which can be



done either from a gesture representation language [2, 1] or from a set of active
motion segments in the realizer at runtime [6].

Kopp et al. [2] created an embodied agent realizer that provides the user with
a fine grained constraint-based gesture description language (MURML) that lets
him precisely specify communicative gestures involving skeletal animation and
morph target animation. This system allows a user to define synchronization
points between channels, but automatically handles the timing of the rest of
the animations using motion functions extracted from the neurophysiological
literature. Their control language can be regarded to be on the same level of
abstraction as BML, being, however, much more complex with deeply nested
XML structures. We argue that a number of low-level concepts should be moved
to what we call the animation layer.

The SmartBody open-source framework [6] relates to our work as a freely
available system that lets a user build its own behavior realizer by specializing
generic animation segments called motion controllers organized in a hierarchi-
cal manner. Motion controllers have two functions: they generate the animation
blocks and manage motion generation (controllers) as well as blending policy,
scheduling and time warping (meta-controllers). As SmartBody uses BML [4] as
an input language, it must tackle both the behavior selection and the animation
selection problem. Although extending the controllers to tailor animation genera-
tion is feasible, there is currently no easy way to modify the behavior selection as
“each BML request is mapped to skeleton-driving motion controllers” [6]. More-
over, even if Smartbody lets users import their own art assets, the only supported
assets creation tool is Maya (commercial) and used rendering engine is Unreal
(also commercial). The BML Realizer2 (BMLR) is an open source project that
uses the SmartBody system as an engine and Panda3D as a realizer. It therefore
remedies the drawbacks of commercial tools from the Smartbody system.

3 Animation Layer: EMBRScript

It has been proposed that an abstact behavior specificaiton language like BML
should be used to communicate with the realizer. Such a language usually in-
corporates concepts like relative timing (e.g. let motions A and B start at the
same time) and lexicalized behaviors (e.g. perform head nod), sometimes allow-
ing parameters (e.g. point to object X). While we acknowledge the importance
of this layer of abstraction we argue that another layer is needed that allows
finer control of animations without requiring a programmer’s expertise. We call
this layer the animation layer. It can be regarded as a thin wrapper around the
animation engine with the following most important characteristics:

– specify key poses in time
– use absolute time
– use absolute space
– avoid deeply nested specification structures



Fig. 1. EMBRScript sample (bottom box): The script describes realizations of the
behavior specified in the original BML script (top box).



We incorporate the functionality of this layer in a language called EM-
BRScript (see Fig. 1 for a sample script). EMBRScript’s main principle is that
every animation is described as a succession of key poses. A key pose describes the
state of the character at a specific point in time (TIME POINT), which can be held
still for a period of time (HOLD). For animation, EMBR performs interpolation
between neighboring poses. The user can select interpolation method and apply
temporal modifiers. A pose can be specified using one of four principal meth-
ods: skeleton configuration (e.g. reaching for a point in space, bending forward),
morph targets (e.g. smiling and blinking with one eye), shaders (e.g. blushing or
paling) or autonomous behaviors (e.g. breathing). Sections 3.1 to 3.3 describe
each of these methods in detail. Since the animation layer is located between
behavior planning (BML) and realizer (animation engine), one can implement a
BML player by translating BML to EMBRScript, as depicted in Fig. 13.

3.1 Skeleton configuration

Animating virtual humans using an underlying rigid skeleton is the most widely
used method in computer animation. In EMBRScript, a skeleton configuration
can be described in two different ways: (1) using forward kinematics (FK): all
angles of all joints are specified, usually pre-fabricated with the help of a 3D an-
imation tool, (2) using inverse kinematics (IK): a set of constraints (e.g. location
of wrist joint, orientation of shoulder joint) are passed to an IK solver to deter-
mine the pose. In Fig. 1 the pose description labeled p2 in EMBRScript defines a
key pose using two kinematic constraints on the right arm: a position constraint
and a partial orientation, both defined in Cartesian coordinates. In EMBR, kine-
matic constraints modify parts of the skeleton called BODY GROUPS which are
defined in terms of skeleton joints. Pose description p3 referes to a stored pose
in the engine’s pose repository. The animation description Clip:headShake refers
to a pre-fabricated animation clip (which is treated as a sequence of poses) also
residing in the engine’s repository.

3.2 Morph targets and shaders

The face is a highly important communication channel for embodied agents:
Emotions can be displayed through frowning, smiling and other facial expres-
sions, and changes in skin tone (blushing, paling) can indicate nervousness, ex-
citement or fear. In EMBR, facial expressions are realized through morph target
animation, blushing and paling are achieved through fragment-shader based an-
imation. In EMBRScript, the MORPH TARGET label can be used to define a morph
target pose and multiple morph targets can be combined using weights. Like
with skeletal animation, the in-between poses are computed by interpolation. In
Fig. 1, pose p1 in the EMBRScript sample defines a weight for a morph target
key pose which corresponds to the basic facial expression of anger in MPEG-4.
2 http://cadia.ru.is/projects/bmlr
3 BML examples are deliberately chosen to be similar to the ones used in [6].



For skin tone, one defines a SHADER TARGET together with an intensity, like the
blushing pose in p1.

3.3 Autonomous behaviors

Autonomous behaviors are very basic human behaviors that are beyond con-
scious control. Such autonomous behavior include breathing, eye blinking, the
vestibulo-ocular reflex, eye saccades and smooth pursuit, balance control and
weight shifting. Although we don’t want to completely describe such behav-
ior in EMBRScript, we still want to specify relevant parameters like breathing
frequency or blinking probability. However, we don’t want the EMBRScript lan-
guage to be restricted to a set of predefined autonomous behavior parameters
but rather let the users define and implement their own autonomous behaviors
and associated control parameters. The pose description labeled p1 in the EM-
BRScript sample depicted in Fig. 1 shows how a user can modify autonomous
behavior parameters like breathing frequency and amplitude.

3.4 Temporal variation and interpolation strategies

Human motion is rarely linear in time. Therefore, procedural animations derived
from interpolation between poses must be enhanced with respect to temporal
dynamics. Therefore, EMBR supports time warp profiles that can be applied on
any animation element and correspond to the curves depicted in Figure 2. Time
warp profiles conveying ease in, ease out and ease it and ease out can be specified
in the EMBR language with a combination of two parameters: function family
and slope steepness. The first gesture described in the EMBRScript sample of
Fig. 1 illustrates a possible usage of the TIME WARP element.

Fig. 2. Time warp profiles can be used to model ease in, ease out and ease in and
ease out. EMBRScript offers two spline-based function families, TAN and EXP, where
parameter σ roughly models steepness at (0, 0). A profile may (intentionally) result in
overshoot (also used by [1]).



3.5 Immediate, high-priority execution

An agent may have to respond to an interruptive event (like dodging an incom-
ing shoe). In order to specify behaviors which require immediate, high-priority
execution, EMBRScript provides a special TIME POINT label: asap. A behavior
instance whose time stamp is asap is performed as soon as possible, overriding
existing elements.

4 EMBR Architecture

The EMBR engine reads an EMBRScript document and produces animations
in realtime. In practice, this means that EMBR must produce a skeleton pose
for every time frame that passes. This process is managed by a three-component
pipeline consisting of the motion factory, the scheduler and the pose blender
(Fig. 3). This processing is independent of the concrete rendering engine (cf. Sec. 5
to see how rendering is managed).

To give an overview, EMBR first parses the EMBRScript document which
results in a sequence of commands and constraints. The motion factory gathers
and rearranges constraints according to their timestamp and type in order to
create a set of time-stamped motion segments. Motions segments are sent to the
scheduler which sorts out at regular intervals a set of motion segments whose
timestamp matches the current time. Relevant poses are sent to the pose blender.
The pose blender merges all input poses resolving possible conflicts and outputs
a final pose.

Fig. 3. The EMBR architecture

4.1 Motion Factory

The motion factory produces the building blocks of the animation called mo-
tion segments from the key poses specified in EMBRScript. A motion segment
represents an animation for part of the skeleton4 over a period of time . For
4 More precisely: for part of the pose which includes morph targets and shaders.



instance, a motion segment may describe a waving motion of the right arm or
the blushing of the face. Each motion segment contains an instance of a spe-
cialized actuator which drives the animation. The actuator’s type depends on
the motion generation method and the relevant pose component (recorded ani-
mation playback, skeleton interpolation, morph target weight and shader input
interpolation). Motion segments are controlled in terms of absolute time and the
timing can be warped (see Sec. 3.4) to model e.g. ease-in and ease-out.

4.2 Scheduler and Pose Blender

The scheduler manages incoming motion segments, makes sure that active seg-
ments affect the computation of the final pose and removes obsolete segments.
For each time frame the scheduler collects all active segments and assigns a
weight according to the following algorithm:

– if segment is terminating (fade out), assign descreasing weight from 1 to 0
– else if segment contains a kinematic constraint, it is tagged with priority
– else segment is assigned weight 1

The pose components from the motion segments are merged in the pose
blender according to their weights using linear interpolation (we plan to allow
more blending policies in the future). For kinematic constraints it is often critical
that the resulting pose is not changed (e.g. orientation and hand shape of a
pointing gesture), therefore the pose is tagged priority and overrides all others.

5 Integrating EMBR Into Larger Projects

An open character animation engine is only useful if it can easily be integrated
into a larger project context and if it is possible to extend it, specifically by
adding new characters. For EMBR, one of our goals was to provide a framework
whose components are freely available. Therefore, we rely on the free 3D mod-
elling tool Blender5 for assets creation and on the free Panda3D engine6 for 3D
rendering. This section describes the complete pipeline from assets creation to
runtime system. To sum up our goals:

– components for assets creation and rendering are freely available
– modifying existing characters is straightforward
– creating a new agent from scratch is possible
– use of alternative assets creation tools or renderers is possible

The EMBR framework is depicted in Fig. 4: It can be characterized by an
assets creation phase (top half of figure), a runtime phase (bottom half), and
data modules connecting the two (boxes in the middle).

5 http://www.blender.org
6 http://panda3d.org



Fig. 4. The EMBR framework: Assets creation and runtime system.

5.1 Assets creation

When creating a new character, two mandatory steps are involved: creating
3D assets in a 3D modelling tool (Blender) and specifying the EMBR char-
acter configuration. Optionally, shader programs can be designed. In the 3D
modelling tool, one first creates static resources: the character’s mesh, skeleton,
mesh-skeleton rigging, and textures. For facial animation, one usually creates
a set of morph targets. Finally, one creates a repertoire of skeletal animations.
Since in the modelling stage the user is free to choose joint names and skele-
ton topology, the EMBR character configuration file must be created to inform
EMBR about the character’s kinematic chains (e.g. left/right arm) and joint
limits. Autonomous behaviors (Sec. 3.3) can also be defined here. Finally, the
user may create a set of programmable shaders, e.g. for changing skin tone
at runtime (blushing/paling) or for improved rendering. Shader programming
is highly dependant on the rendering engine. For instance, only the Cg7 pro-
gramming language is currently supported by Panda3D. Developers can expose
parameters from the shader program and control them through EMBRScript.
Shader input parameters must be declared in the EMBR character configuration
file. Once the character is ready, export scripts package the data from Blender
for later usage by the EMBR engine and the Panda3D renderer.

7 http://developer.nvidia.com/page/cg main.html



5.2 Runtime

At runtime, EMBR is initialized with the EMBR character data (Fig. 4). First,
it dynamically populates the animation factory with motion segment producers
corresponding to the character’s attributes and capabilities (see Section 4). Sec-
ond, it configures the EMBRScript parser according to the character’s attributes
and capabilities. EMBR uses the Panda3D rendering engine for interactive dis-
play of the character. Panda3D provides a Python scripting interface which we
use for synchronizing EMBR with Panda3D and for contolling the runtime sys-
tem. During the lifespan of a character inside an EMBR session, two instances
of the characters exist: one stored in EMBR representing the poses that result
from processing EMBRScript, another one stored in Panda3D representing the
display-optimized version of the character. Our Python synchronizer ensures that
the Panda3D character is always in the same the state as the EMBR character.

6 Application in Procedural Gesture Synthesis

To demonstrate the capabilities of EMBR we outline its application in a ges-
ture synthesis system [11, 3]. The system produces coverbal gestures for a given
piece of text using statistical profiles of human speakers. The profiles are ob-
tained from a corpus of annotated TV material [12]. The gesture annotations
can be considered a low-dimensional representation of the high-dimensional orig-
inal motion, if the latter is seen as a frame-wise specification of all joint angles. In
gesture synthesis the low-dimensional representation facilitates planning of new
motions. However, at the final stage such low-dimensional representations have
to be translated back to a full motion. In this section, we describe one example
of such a translation: from gesture annotation to EMBRScript commands.

The annotation of gesture is performed by the hierarchical three-layered de-
composition of movement [13, 14] where a gestural excursion is transcribed in
terms of phases, phrases and units. Our coding scheme adds positional informa-
tion at beginning and end of strokes and independent holds. The transcription
can be seen as a sequence of expressive phases8 s =< p0, . . . , pn−1 > where each
phase is an n-tuple p = (h, ts, te, ps, pe) specifying handedness (LH, RH, 2H),
start/end time, start/end pose. This description can be used to recreate the
original motion which is useful for synthesizing new gestures or for validating
how faithfully the coding scheme describes the form of the gesture.

For the translation to EMBRScript we separate the pose vector s into two
channels for LH and RH, obtaining two pose vectors sLH and sRH . Each vector
is then packaged into a single GESTURE tag (cf. Fig. 1). For each pose start/end
information, a respective key pose is defined using positional constraints. Note
that even two-handed (2H) gestures are decomposed into the described LH and
RH channels. This is necessary to model the various possibilities that arise when
2H gestures are mixed with single handed gestures in one g-unit. For instance,
8 An expressive phase is either a stroke or an independent hold; every gesture phrase

must by definition contain one and only one expressive phase [15].



consider a sequence of < 2H, RH, 2H > gestures. There are now three possibilities
for what the left hand does between the two 2H gestures: retracting to rest
pose, held in mid-air or slowly transition to the beginning of the third gesture.
Packaging each gesture in a single gesture tag makes modeling these options
awkward. Using two channels for RH, LH allows to insert arbitrary intermediate
poses for a single hand. While this solution makes the resulting EMBRScript
harder to read it seems to be a fair trade-off between expressivity and readability.

Using this straightforward method we can quickly ”recreate” gestures that
resemble the gesture of a human speaker using a few video annotations. We
implemented a plugin to the ANVIL annotation tool [16] that translates the
annotation to EMBRScript and sends it to EMBR for immediate comparison
between original video and EMBR animation. Therefore, this translation can
be used to refine both coding schemes and the translation procedure. A coding
scheme thus validated is then an ideal candidate for gesture representation in
procedural animation systems.

7 Conclusion

We presented a new realtime character animation engine called EMBR (Embod-
ied Agents Behavior Realizer), describing architecture, the EMBRScript control
language and how to integrate EMBR into larger projects. EMBR allows fine
control over skeletal animations, morph target animations, shader effects like
blushing and paling and autonomous behaviors like breathing. The EMBRScript
control language can be seen as a thin wrapper around the animation engine that
we call the animation layer, an new layer between the behavior layer, represented
by BML, and the realizer. While the behavior layer has behavior classes (a point-
ing gesture, a head nod) for specifying form, and allows for time constraints to
specify time, the animation layer uses channels, spatial constraints and absolute
time to control the resulting animation. The latter is therefore much closer to
the animation engine while abstracting away from implementation details. We
showed how to use EMBR in conjunction with gesture coding to visually vali-
date the coding scheme. Thus encoded gestures can then be used to populate
procedural gesture synthesis systems.

For the future we plan to make EMBR freely available to the research com-
munity. We also intend to work on extending the BML layer, e.g. providing de-
scriptors of gesture form. We will use EMBRScript to prototype these extensions.
Finally, for overall integration purposes we want to develop formal descriptions
of embodied agents characteristics and capabilities, taking into account existing
standards like h-anim.
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