
Unsupervised Font Reconstruction Based on
Token Co-occurrence

Michael P. Cutter
cutter@iupr.com

Joost van Beusekom
j_vbeu@iupr.com

Faisal Shafait
faisal.shafait@dfki.de

Thomas M. Breuel
tmb@cs.uni-kl.de

Technical University of
Kaiserslautern, Germany

ABSTRACT
High quality conversions of scanned documents into PDF
usually either rely on full OCR or token compression. This
paper describes an approach intermediate between those
two: it is based on token clustering, but additionally groups
tokens into candidate fonts. Our approach has the poten-
tial of yielding OCR-like PDFs when the inputs are high
quality and degrading to token based compression when the
font analysis fails, while preserving full visual fidelity. Our
approach is based on an unsupervised algorithm for group-
ing tokens into candidate fonts. The algorithm constructs a
graph based on token proximity and derives token groups by
partitioning this graph. In initial experiments on scanned
300 dpi pages containing multiple fonts, this technique re-
constructs candidate fonts with 100% accuracy.

Categories and Subject Descriptors
I.7.5 [Document and Text Processing]: Document Cap-
ture—document analysis; H.3.7 [Information Storage and
Retrieval]: [Digital Libraries Collection]

General Terms
Algorithms

Keywords
Token Compression, Font Reconstruction, Candidate Fonts,
Token Co-occurrence Graph Partitioning

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DocEng2010, September 21–24, 2010, Manchester, United Kingdom.
Copyright 2010 ACM 978-1-4503-0231-9/10/09 ...$10.00.

1. INTRODUCTION
Automatically creating high quality versions of printed

documents has become increasingly important as more and
more books and archives are scanned. The implication of
having every printed text available at the click of a mouse
in a searchable, reflowable format is a greatly increased ac-
cessibility to knowledge. Online archives desire a structured
format such as PDF/A, due to the advantage of compres-
sion and reflowability. In order to save space, it is desirable
to utilize compression algorithms that compresses text and
images while taking into account the content they are com-
pressing.

The goal of font reconstruction is to replace each letter
found in a document image with a Bézier curve representing
the outline of the letter. The advantages of using a vec-
tor outline are increased compression, scalability and im-
proved readability. Additionally, once a font has been re-
constructed, it is also available for creating new text, a ca-
pability that is important in some historical contexts.

The primary contribution of this paper is a novel method
that partitions the tokens found in a document during token-
based compression into candidate reconstructed fonts. To-
ken partitioning is an important aspect of our font recon-
struction because it selects tokens representing clusters of
letters from the document image to become part of a candi-
date font. Using the candidate font from this process, it is
possible to classify which font every letter belongs to, and
then the page can be reconstructed by using the font class
of the letter and the parameterized reconstructed glyphs.
It will also be possible to make additions to the original
document without the requirement of knowing the original
font(s) used. Through token partitioning, a candidate font
is formed that is essentially a set of extracted glyphs from a
scanned document image that can then be reused.

In this paper, we show that by using our technique it is
possible to completely describe the fonts found in a docu-
ment image with automatically grouped tokens. The grouped
tokens or candidate font, result from a sequence of steps in-
cluding: Optical Character Recognition (OCR), token based
clustering, a token co-occurrence or proximity graph, and, fi-
nally, the greedy graph segmentation algorithm that assigns
tokens to a candidate font. The OCR assists in segment-
ing connected components into letters by using a language
model. The binned-nearest-neighbor algorithm is designed

to make use of the OCR results, and the distance metric
used is designed to avoid false font merging. The partition-
ing algorithm is motivated by the assumption that words are
typically written in the same font, so if the same token co-
occurs in different words, then all of the letters in the linked
words have a high probability of being in the same font. The
candidate fonts are evaluated based on if each token in that
candidate font comes from the same original font. We find
through our evaluation in Section 4, that our technique per-
fectly partitions tokens into candidate fonts. These candi-
date fonts are an important step towards our goal of creating
a system that gives full, reflowable PDF/A for clean docu-
ment images, but degrades gracefully to a token-compressed
image for bad inputs.

There does not appear to be much research on font recon-
struction from scanned, unlabeled documents. One commer-
cial product that offers this capability is the Adobe Acrobat
version 9 feature called called Clear Scan. While no pub-
lication describes the algorithm Clear Scan uses, based on
published descriptions available, it performs something sim-
ilar to font reconstruction. Their blog [1] makes a claim
that with Clear Scan you can decrease the file size while
improving the readability and greatly decreasing the time
it takes to print the file. The most relevant related work to
font reconstruction is font recognition. Previously published
research in font recognition, described in the related work
section, has primarily addressed the problem of classifying
a document containing known fonts. There has been work
in unsupervised clustering of fonts, but, as further discussed
in the related work section, their approach is different from
ours because they use a global approach. We address the
problem differently, by segmenting with the help of OCR,
then partitioning the letters found in a document into a new
candidate font, without considering any previously known
fonts.

The rest of the paper is structured as follows. In Sec-
tion 2, the background of research techniques used for font
identification and recognition is discussed. In Section 3, the
method is described and broken down into four main phases:
the OCR phase, the binned-nearest-neighbor token cluster-
ing phase, the co-occurrence graph construction phase, and,
finally, the graph partitioning into candidate fonts. In Sec-
tion 4, the evaluation of the quality of a candidate font is
explained, along with discussion of the motivation for sev-
eral aspects of the partitioning algorithm. Lastly, Section 5
highlights the planned future work.

2. RELATED WORK
Optical Font Recognition (OFR) is a niche of (OCR) that

has been approached with various methods [12, 17]. The re-
lated work in font identification discussed in this section can
be split into either character by character or global analysis
approaches. All of the related character by character meth-
ods can be considered supervised OFC, since these tech-
niques function by using labeled training data. First, they
apply a feature extraction method on known fonts. They
then apply the same feature extraction on unknown charac-
ters to assign the font classes based on a nearest neighbor
approach. In 2000, Nagy wrote a survey of work in doc-
ument image analysis [13] with a section devoted to font
classification and script detection.

Recent character by character methods, such as fyfont [12],
compare features from each connected component against a

font database in order to classify the font class of each com-
ponent. The method performs an eigenvalue calculation af-
ter edge based feature extraction. By using eigenvalues, the
feature space is reduced and therefore an increased speed
of the query response of the font database is possible. The
authors set up a website [3] where one can upload an im-
age and the font can be identified with the help of labeling
each connected component. Their method achieved high
recognition accuracy and over 99% of the time the correct
font is one of the top five suggested fonts. Zrammdini et
al. [17] use a multivariate Bayesian classifier on typographi-
cal features extracted on a global scale. The technique also
uses a known font dataset of hundred of fonts. Since it is a
global approach, it can only classify the document with one
font. A word by word technique developed by Khoubyari
et al. [10] classifies the dominant font in the document by
comparing frequent words such as articles and prepositions
(a,and,the,etc) to a database of these words in various com-
mon fonts. The technique assumes that a document is only
authored in one font.

The techniques discussed above in the area of supervised
font identification do have high font recognition rates, but
they are only suitable when recognizing a font that has al-
ready been encountered and labeled. This motivates the de-
velopment of a novel automatic font partitioning algorithm
that does not require as a prerequisite that the font found
in the page already exists in some database.

There has been work in unsupervised font recognition pro-
posed by Zhu et al. [16] and Avilées-Cruz et al. [5] using
global texture windows. The method by Avilées-Cruz et
al. first performs preprocessing on the document image to
ensure monospacing, and then performs feature extraction
using various sized texture windows; finally, the Expectation
Maximization algorithm clusters the windows together into
font groups.

One way our method differs from previous OFR [17, 15],
is that it uses OCR to assist OFR instead of the other way
around. It also contributes to the field with a novel tech-
nique that solves a problem not addressed in the previous
work [5, 3, 10]: our technique can classify multiple fonts
within a document without using any known font dataset.
The goal of our font partitioning is to be able to reuse re-
constructed fonts in new documents in order to facilitate
reflowable, searchable, and compressed text.

3. METHOD
Candidate font reconstruction in this paper is achieved

through a pipeline of Optical Character Recognition (OCR),
Token Clustering (TC), and, finally, a Greedy Graph Seg-
mentation (GGS) algorithm.

The candidate font reconstruction technique is applied
only after OCR. The first step as shown in Figure 2 [Part (b)]
is to perform token based clustering which clusters visually
similar letters, i.e. letters that are the same font and alpha-
betical letter class are assigned the same token ID. A token
represents all the similar letters merged into a representa-
tive image along with a count of the total letters associated
with the token. The next step as shown in Figure 2 [Part
C & D)] treats each token as a node in a graph where links
between nodes represent how each token co-occurs in words
found in the scanned document. The final step is to group
the tokens based on the links between them.

(a) DejaVu Serif

(b) AlMateen

(c) Sazanami Gothic

Figure 1: These are small snippets of the scanned document image containing multiple fonts. The images
were scanned on a flat bed scanner at 300 dpi.

Figure 2: The candidate font reconstruction pipeline. (a) The input image. (b) Token clustering stage:
letters are assigned token IDs. (c) Each token ID becomes a node. (d) Co-occurrence graph and candidate
font partitioning: an edge weight represents every time there is a token co-occurrence with another token in
the same word. Since token ’4’ and ’3’ co-occur in the word ’font’ and in the word ’token’, the edge between
them has a weight value of two. Finally, a greedy graph segmentation algorithm groups tokens, connected by
the token co-occurrence graph, into candidate fonts.

Figure 3: Example of how connected component ex-
traction can fail. Here this image was recognized as
containing three components ’R’ ’a’ and ’H’. The im-
age is of the word ’Raft’, but due to the font that it is
typeset in and noise, the space between the ’f’ and
’t’ is invisible. To a connected component extrac-
tion system, each horizontal white space delimited
sequence of black pixels is considered a connected
component.

Figure 4: Example of how using a statistical lan-
guage model can yield better results. Here this im-
age was recognized as ’Raft’ because ’RaH’ could
not be found commonly in a corpus of English text.

3.1 OCR
Candidate font reconstruction technique is implemented

after the traditional OCR pipeline has been performed by
OCRopus [4, 6, 7, 8]. Fortunately, OCRopus, a state of
the art OCR open source program, handles the difficult pro-
cess of character segmentation, which allows our technique
to begin with letters that have been segmented and clas-
sified. Our contribution, therefore, is focused on clustering
these letters into tokens and then grouping these tokens into
candidate reconstructed fonts.

OCR is an initial step in the pipeline for this method
because it is essential for font reconstruction that charac-
ter segmentation is performed as well as possible. Previous
font identification methods have simply extracted connected
components from the scanned document image, which can
lead to problems, such as shown in Figure 3. In this image,
connected component extraction recognized adjacent letters
’f’ and ’t’ as just a strange ’H’; unfortunately, this kind of
under-segmentation mistake is far too common. That is why
the OCR engine used in our approach invokes a statistical
language model to segment words into letters versus con-
nected components. The statistical language model rejects
the segmentation shown in Figure 3 because ’Rah’ is not a
word. It then finds the closest probabilistic segmentation
that would render this image into a word, which results in
a segmentation shown in Figure 4.

Using an OCR engine is also integral to our process be-
cause in order to form a candidate font because it is nec-
essary to know the class label of each letter. Additionally,
the candidate font must be accurately labeled in order to
use the font to reprint the document. If an OCR system
encounters a new font when it has not been trained for the
specific nuances of the font by an appearance model, er-

ror rates sharply increase. The method is tolerant to OCR
error because of the greedy approach of the partitioning al-
gorithm. Therefore, even a high OCR error rate does not
imply that the letters in the newly reconstructed candidate
font are necessarily mislabeled. These labeled letters are
the input to the next phase of the technique, binned nearest
neighbor clustering.

3.2 Binned-Nearest-Neighbor Clustering
This candidate font reconstruction method relies on first

grouping letters as seen in Figure 6 into tokens during the
token clustering phase, see Figure 2 [part b]. In order to
discover which letters together form a font, we first group
letters into clusters. These clusters of letters are consid-
ered tokens and will later be partitioned from the token co-
occurrence into various candidate fonts.

Token clustering is a common procedure that is analogous
to the well-known symbol compression scheme used in the
JBIG2 standard. Token clustering merges images that are
visually similar together. For our candidate font reconstruc-
tion method, we have to take special precautions in order to
successfully reconstruct a candidate font.

i. The clustering algorithm must be efficient enough to run
on a variety of resource-constrained platforms. A stan-
dard nearest neighbor model must compare each added
letter to every already existing token. Applying this
standard classifier to a book image, which may contain
many thousands, if not hundreds of thousands, of let-
ters, requires too many comparisons for an acceptable
run time.

ii. Two very similar letters with the same character class
and only slight differences based on their font should
not be merged into a token. If they are merged, then
the reconstructed font will not be accurate because the
token will have come from two different fonts.

In order to ensure a fast processing time, we modified the
standard nearest neighbor model to include binning based
on image features. Simple preprocessing is performed on an
image of a letter so that it is only compared to other letters
that could be potential matches for clustering. The prepro-
cessing extracts features: height, width, and the number of
holes present in the image. These features form a hash that
determine which bin the token is restricted to.

The dissimilarity measure used to compute the nearest
neighbor adds weight heavily to the differences in the outline
of the images of letters; the motivation being, a candidate
font should not contain two letters from different original
fonts. This is achieved by first aligning the letters based on
their centroids. A mask, as seen in Figure 5(b), of the image
of the letter is computed by a combination of morphologic
operations; the inverted, dilated image is subtracted from
the binary eroded image and then a binary OR is computed
with a thinned version of the image, as seen in Figure 5(c).
This sequence of operations generates a mask that is used
to compute the edge weighted dissimilarity metric, i.e. dif-
ferences between two letters on the exterior of their shape
results in a higher total error score. The computation of the
error is computed on two images aligned by centroids by the
following equation:

(a) (b) (c) (d)

Figure 5: Various images of a ’h’ as it goes
through the binned-nearest-neighbor-clustering al-
gorithm (a) Raw binarized inverted image of letter.
(b) Mask of image - black pixels represent outline.
(c) Thinned image - used to reduce weight on in-
terior during distance computation. (d) Result of
merging an image of a letter with a token prototype
image. The new image pixels are averaged with the
current token prototype with a weighted average de-
pending on how many letters the token previously
represented.

error =
W∑
x=0

H∑
y=0

M(x, y)× ‖T (x, y)− I(x, y)‖ (1)

errorI =
W∑
x=0

H∑
y=0

M(x, y)× I(x, y) (2)

errorT =

W∑
x=0

H∑
y=0

M(x, y)× T (x, y) (3)

FinalError = min(
error

errorI
,
error

errorT
) (4)

Where I is the candidate image, T is the token, and M
is the mask. H and W represent the height and width of
the token respectively. The candidate image and token will
always have same height and width as a prerequisite for
being in the same bin.

A new image is compared against every other image in
the same bin in order to find the match with the minimal
dissimilarity score. If this dissimilarity score is below the
threshold, the new image is merged with its strongest match,
shown in Figure 5(d). On the other hand, if the dissimilarity
score is above the threshold, then a new token cluster, that
would look like Figure 5(a), is created for that image in its
respective bin.

The benefit of this approach is to cluster letters together
only if they are of the same font. Differences in fonts are
generally seen on the exteriors of images such as serifs vs
sans serifs. The serifs, the strokes found at the end of letters,
distinguish two almost identical letters as a different font.
Our clustering method is designed to be robust against this
distinction.

This paper’s binned-nearest-neighbor clustering algorithm’s
highlighted features are:

1. Clustering has the constraint that OCR class labels
must match, which increases speed by decreasing the
number of comparisons.

Figure 6: List of ’h’ letters that the dissimilarity
measure evaluates to be similar enough to belong to
the same token – see Figure 5(d).

Figure 7: Token frequency distribution: the graph
shows only the first 160 tokens. There are thousands
of others but since they only represent one letter,
they are omitted from this chart.

2. Binning criteria is affected by topology.

3. The outline of the image is weighted heavily to prevent
false font merging.

3.3 Token Co-occurrence Graph
The unsupervised automatic font grouping method relies

on the assumption that words are formed by letters of the
same font. Our model tries to optimize the best grouping of
token IDs based on their links between one another. A token
co-occurrence graph is constructed as the feature inputted
into the font grouping method.

The co-occurrence matrix measures how many times token
IDs are found in the same word together. The co-occurrence
is measured so that if tokens are found in many words to-
gether, then the edge is heavy that connects their respective
node in the co-occurrence graph. The method used to seg-
ment the graph into candidate fonts is greedy and tries to
find the maximum alphabet by finding the most strongly
connected nodes.

3.4 Greedy Graph Segmentation
The goal of greedy graph segmentation is to approximate

the fonts in a document by creating a candidate font for
every font in the document. The edges between tokens rep-
resented in the token co-occurrence graph are the primary
feature to partition the tokens into the candidate fonts. The
algorithm’s goal is to maximize the sum of all edge weights

between a token and every other token in a candidate font.
In other words, the goal of greedy graph segmentation is to
assign the optimal set of token IDs to candidate font F to
maximize Equation 5 subject to constraints discussed below.

LinkScore(Fi) =
∑

tk∈Fi

∑
tj∈Fi

G(tk, tj)×H(j, k) (5)

H(j, k) =

{
1 : j �= k
0 : j = k

(6)

∀tk, tj ∈ Fi | tj �= tk ⇒ C(tidk) �= C(tidj) (7)

Where function C(x) maps token ID x to its character
class, G(x, y) is the edge weight between node x and y, k and
j are generic token IDs. Equation 7 represents the constraint
that a candidate font can only contain one token for each
character class in its alphabet. There is another constraint
that a token ID can at most, only become a part of one
candidate font. Additionally, a candidate font can be at
most a set of of 26 lowercase and 26 uppercase tokens, each
of which represent clusters of alphabetical letters.

The Greedy Graph Segmentation Algorithm

1. The token co-occurrence graph is computed.

2. The token that represents the greatest number of let-
ters and is not already in a candidate font becomes the
seed for the new candidate font.

3. Tokens contained in candidate font’s edges are explored
for nodes representing tokens that have a character
class not in the current candidate font or are a mem-
ber of any other candidate font, and in the case of a tie,
the node with the most links to the current candidate
font is added.

4. Repeat Step 3 until all character classes are found or
until an iteration threshold has been reached.

5. Randomly choose a token from the candidate font and
swap it with another token representing the same char-
acter class if the LinkScore is increased by switching to
the new token and the new token is not in any other
candidate font class and represents at least as many
letters as the previous token.

6. Repeat Step 5 for the number of swaps that has been
specified.

7. Repeat Step 2 for the number of target fonts that has
been specified.

Greedy graph segmentation (GGS) is an algorithm that
labels the nodes in the token co-occurrence graph into a
candidate font. It is initialized by selecting the token that
occurs most and using that token as the seed for a candi-
date font. Then greedy graph segmentation searches all of
the surrounding edges of the tokens in a candidate font and
adds new tokens to a list of potentials that are not already in
the candidate font’s alphabet. After the search is complete,
the potentials are added to the candidate font instantly, un-
less they have duplicate character classes. In this case, each
potential is evaluated by a heuristic, with scoring based on

Table 1: Evaluation of GGS technique
font 1 font 2 font 3

DejaVu Serif 100% 0 0
AlMateen 0 100% 0
Sazanami Gothic 0 0 100%

how strongly connected it is to the current candidate font.
The potential with the higher score is assigned to the candi-
date font. Greedy graph segmentation runs iteratively until
one of two criteria are met: the algorithm has run for over
a certain threshold1 of iterations, or every letter in the al-
phabet is represented in the candidate font. In practice,
the former always occurs first because the probability of the
document containing a capital ”Z” and that was recognized
by OCR correctly is extremely unlikely.

4. EVALUATION AND DISCUSSION
We applied this method to a ten page scanned document

image that contained three fonts. The content for the docu-
ment was generated using a digital copy of a historical text
and then artificially changing each third of the document
to a different font. The three fonts chosen for our test set
were; DejaVu Serif (Figure 1(a)), AlMateen (Figure 1(b)),
and Sazanami Gothic (Figure 1(c)). For this experiment,
we applied our full technique just as in the simple example
in Figure 2 except on a much larger document (snippets of
this document can be seen in Figure 1).

Greedy graph segmentation was run with the parameter
to search for three candidate fonts. The resulting candidate
reconstructed fonts are evaluated based on only containing
glyphs from each respective original font. Since this condi-
tion is met, we achieved 100% accuracy selecting tokens to
become members of a font. In Figure 8, there is an exam-
ple of the ’e’ and ’f’ from the original digital font and the
candidate font.

Our evaluation of GGS is based on how well a candidate
font represents the font it is approximating. The dataset was
labeled so that each letter is given a ground-truth label as to
which font it represents. The precision equation measures
how closely the candidate font represents the actual font
in the scanned document image. For each candidate font,
an error ratio is calculated (Table 1). A true positive is
when a token in a candidate font is selected from the correct
ground-truth labeled font region. A false positive is when
a token in a candidate font is part of a region of the page
that is ground-truth labeled to be in another font. For our
evaluation, we saw that tokens in each candidate font all
came from the same font regions of the test images. This
means our method was 100% accurate at partitioning tokens
of different fonts into candidate fonts that approximated real
fonts found in the scanned document image.

Often when applying tokenization techniques to a docu-
ment, it is more important to not merge tokens together
incorrectly than to leave them in separate clusters. In our
approach, the threshold is set sufficiently high so if there
is a potential chance of two letters being of slightly differ-
ent fonts, they are put into separate candidate fonts. As
seen in Figure 7, the motivation for the greedy aspect of

1A value of 100 epochs has been shown to be sufficient; of-
ten after 10 epochs there are no new token IDs added to a
candidate font

Figure 8: This figure shows in the third column the
current status of candidate fonts (generated by au-
totracing [2] bitmap outlines). It highlights the im-
provements necessary to recreate a document using
font reconstruction.

the graph segmentation approach is evident. Letters that
have been frequently merged together are excellent candi-
dates for a candidate font because they have been smoothed
by repeated mergers.

This algorithm makes the assumption that each word in
the data it is examining is written in a single font. There
are some rare situations were this assumption does not hold;
some disciplines may mix different fonts within the same
word e.g. ”I used MATLAB ’s eig() function to find the
eigenvalues”. An italic version of a font is considered a dif-
ferent font, both by our distance function and by definition.
When analyzing a document containing mixed-font words,
the token co-occurrence graph will contain a link between
tokens that are not part of the same font. This could result
in candidate fonts that contain glyphs from two different
fonts. However, since the heuristic is greedy in respect to
the number of links, it is very unlikely that in a large doc-
ument a few mixed font words would cause candidate font
confusion.

5. CONCLUSIONS AND FUTURE WORK
The research presented in this paper contributes a novel

solution to the problem of partitioning tokens into candidate
fonts. The final goal from our work in font reconstruction
is the ability to digitally recreate scanned documents in a
Mix Raster Content [14] (MRC) format. The first step in
the process, font partitioning, is proposed. The result of
font partitioning are groups of tokens for each font present
in a document. As visible in Figure 8, the ’e’ and ’f’ are the
same size, which needs to be corrected in order to reuse the
partitioned glyphs to recreate the document.

The final step needed for full digital recreation will be
to combine text image segmentation with font reconstruc-
tion. Some examples of other techniques that recreate doc-
uments using a MRC format are [11, 9]; it is planned for
future work to benchmark our font reconstruction technique
against these other similar methods.

6. ACKNOWLEDGMENTS
Parts of this project were financed by the Mellon Founda-

tion’s DECAPOD project

7. REFERENCES
[1] Adobe’s blog discussing Clear Scans advantages.

http://blogs.adobe.com/acrolaw/2009/05/better
pdf ocr clearscan is smal.html/.

[2] AutoTrace - converts bitmap to vector graphics.
autotrace.sourceforge.net/.

[3] FyFont, a visual search engine for fonts.
http://media-vibrance.itn.liu.se/fyfont/.

[4] The OCRopus(tm) open source document analysis and
OCR system. http://code.google.com/p/ocropus/.

[5] C. Avilés-Cruz, J. Villegas, and R. Escarela-Perez.
Unsupervised Font Clustering Using Stochastic
Version of the EM Algorithm and Global Texture
Analysis. In Progress in Pattern Recognition, Image
Analysis and Applications, pages 3–25, 2004.

[6] T. Breuel. The OCRopus Open Source OCR System.
In B. Yanikoglou and K. Berkner, editors, Proceedings
of the Document and Retrival XV, IS&T/SPIE 20th
Annual Symposium 2008. SPIE, 2008.

[7] T. Breuel. Recent progress on the OCRopus OCR
system. In MOCR’09: Proceedings of the International
Workshop on Multilingual OCR, pages 1–10, New
York, NY, USA, 2009. ACM.

[8] T. M. Breuel. Segmentation of Handprinted Letter
Strings Using a Dynamic Programming Algorithm.
Document Analysis and Recognition, International
Conference on, 0:0821, 2001.

[9] P. Haffner, L. Bottou, P. G. Howard, and Y. Lecun.
DjVu: Analyzing and Compressing Scanned
Documents for Internet Distribution. In In Proceedings
of the International Conference on Document Analysis
and Recognition, pages 625–628, 1999.

[10] S. Khoubyari and J. J. Hull. Font and Function Word
Identification in Document Recognition. Computer
Vision and Image Understanding, 63(1):66–74, 1996.

[11] A. Langley and D. S. Bloomberg. Google Books:
Making the public domain universally accessible. In
Proceedings of SPIE Volume 6500, Document
Recognition and Retrieval XIV, pages 1–10, 2007.

[12] R. L. Martin Solli. FyFont: Find-your-Font in Large
Font Database. In Image Analysis, pages 432–441,
2007.

[13] G. Nagy. Twenty Years of Document Image Analysis
in PAMI. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 22:38–62, Jan. 2000.

[14] R. D. Queiroz, R. Buckley, and M. Xu. Mixed raster
content (MRC) model for compound image
compression. In Proc EI 99, VCIP, SPIE, pages
1106–1117, 1999.

[15] Y. Xu and G. Nagy. Prototype Extraction and
Adaptive OCR. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 21:1280–1296,
1999.

[16] Y. Zhu, T. Tan, and Y. Wang. Font Recognition
Based on Global Texture Analysis. In IEEE
Transactions on Pattern Analysis and Machine
Intelligence, pages 1192–1200, Oct. 2001.

[17] A. Zramdini and R. Ingold. Optical Font Recognition
Using Typographical Features. IEEE Transactions on
Pattern Analysis and Machine Intelligence., pages
877–882, August 1998.

