
Landmarking for Meta-Learning using RapidMiner

Sarah Daniel Abdelmessih1, Faisal Shafait2, Matthias Reif2, and Markus Goldstein2

1Department of Computer Science
German University in Cairo, Egypt

2Competence Center Multimedia Analysis and Data Mining
German Research Center for Artificial Intelligence (DFKI GmbH)

D-67663 Kaiserslautern, Germany
{faisal.shafait, matthias.reif, markus.goldstein}@dfki.de

Abstract— In machine learning, picking the optimal classifier
for a given problem is a challenging task. A recent research
field called meta-learning automates this procedure by using
a meta-classifier in order to predict the best classifier for a
given dataset. Using regression techniques, even a ranking of
preferred learning algorithms can be determined. However, all
methods are based on a prior extraction of meta-features from
datasets. Landmarking is a recent method of computing meta-
features, which uses the accuracies of some simple classifiers as
characteristics of a dataset. Considered as the first meta-learning
step in RapidMiner, a new operator called landmarking has been
developed. Evaluations based on 90 datasets, mainly from the UCI
repository, show that the landmarking features from the proposed
operator are useful for predicting classifiers’ accuracies based on
regression.

I. INTRODUCTION

Predicting the performance of classifiers, ranking learning
algorithms and a dynamic selection of a suitable learning
algorithm for a given problem are recent research topics
in machine learning [1], [2], [3]. As derived from the No
Free Lunch Theorem, no learning algorithm can be specified
as outperforming on the set of all real-world problems [4].
This implies that a learning algorithm has reasonable per-
formance on a set of problems that is defined as its area of
expertise [3]. In this context, meta-learning was developed:
it relates algorithms to their area of expertise using specific
problem characteristics. The idea of meta-learning is to
learn about classifiers or learning algorithms, in terms of
the kind of data, for which they actually perform well [5],
[6]. Using dataset characteristics, which are called meta-
features [7], [6], one predicts the performance results of
individual learning algorithms. These features are divided
into several categories [7]:

• simple/general features (number of attributes, number
of categorical attributes, number of samples, . . . ).

• statistical features (canonical discriminant correlations,
skew, kurtosis, . . . ) [8].

• information theoretic features (class entropy, signal-to-
noise ratio, . . . ).

In addition, a new feature category called landmarking was
proposed [9]. These landmarking features are classification
accuracies of some simple but fast computable learning
algorithms, mostly related to more complex classifiers.

Figure 1 gives a general schematic overview of a meta-
learning system: it shows, that for a number of datasets,
multiple classifiers are evaluated. From these datasets land-
marking features are extracted as explained in Section II. All
results are stored in a central case base as later explained in
Section IV and a meta-learning model is trained. Later, if
an unknown dataset q needs to be processed, landmarking
features are extracted and using the meta-learning model, a
classifier is recommended.

Fig. 1. Schematic view of meta-learning: on the left, the case base is
created, on the right an unknown dataset is processed and a suitable classifier
is recommended.

The PaREn project (Pattern Recognition Engineering)1

aims to facilitate pattern recognition and machine learning
for non-expert users. As a part of PaREn, a landmarking
operator was developed as a first meta-learning step in
RapidMiner [10], which is an open source system for data
mining. In the following sections an overview of the devel-
oped landmarking operator and its evaluation is provided.

II. LANDMARKING

Every problem or dataset has certain characteristics that
relates it to an area of expertise for which a specific learning
algorithm exists. In this context, landmarking features are de-
fined as dataset characteristics representing the performance
of some simple learners on this dataset. These simple learners
are called landmarkers.
The basic hypothesis behind landmarking is that the simple

1This project is initialized by the German Research Center for Artificial
Intelligence (DFKI) and funded by the Federal Ministry of Education and
Research. For more details see http://madm.dfki.de/paren/.



landmarkers are somehow related to more advanced and
complex learners. This means that landmarkers or com-
binations thereof are able to estimate the performance of
more sophisticated algorithms for a given problem. This
raises the question how to choose the learners that are
ideal as landmarkers. They have to satisfy the following
conditions [9]:

• The algorithm has to be simple, which requires its exe-
cution time to be short, implying minimal computational
complexity of the learner [11].

• The landmarkers have to differ in their bias, mechanism,
property measurements, or area of expertise [3].

• Every landmarker has to be simpler than the targeted
advanced learner. Otherwise the landmarker will be
useless, since the targeted learning algorithms could
be evaluated directly avoiding a potentially error prone
prediction step and saving time [11].

The landmarkers used in the implemented RapidMiner
landmarking operator are [9], [12], [13]:

• Naive Bayes Learner is a probabilistic classifier, based
on Bayes’ Theorem:

p(X|Y ) =
p(Y |X) · p(X)

p(Y )
(1)

where p(X) is the prior probability and p(X|Y ) is
the posterior probability. It is called naive, because it
assumes independence of all attributes to each other.

• Linear Discriminant Learner is a type of discrim-
inant analysis, which is understood as the grouping
and separation of categories according to specific fea-
tures. Linear discriminant is basically finding a linear
combination of features that separates the classes best.
The resulting separation model is a line, a plane, or
a hyperplane, depending on the number of features
combined.

• One Nearest Neighbor Learner is a classifier based
on instance-based learning. A test point is assigned to
the class of the nearest point within the training set.

• Decision Node Learner is a classifier based on the
information gain of attributes. The information gain
indicates how informative an attribute is with respect
to the classification task using its entropy. The higher
the variability of the attribute values, the higher its
information gain. This learner selects the attribute with
the highest information gain. Then, it creates a single
node decision tree consisting of the chosen attribute as
a split node.

• Randomly Chosen Node Learner is a classifier that
results also in a single decision node, based on a
randomly chosen attribute.

• Worst Node Learner is a classifier that calculates
the highest information gain for a split for all the
attributes. Then it chooses the attribute with the lowest
information gain among all attributes to model a single
node decision tree.

• Average Node Learner calculates the average perfor-
mance of single node decision trees, where each node

corresponds to one attribute.
The accuracies of the above defined algorithms are used in
the following as landmarking features for the task of meta-
learning.

III. LANDMARKING OPERATOR IN RAPIDMINER

The developed landmarking operator is the starting point
for meta-learning using RapidMiner. It can be easily ex-
tended and used to build meta-learning processes, such as
classifier recommenders or automatic algorithm selection. In
this section, an overview of the design of the landmarking
operator is provided.

A. RapidMiner Terminology

Before going into details of the landmarking operator,
some RapidMiner terminology has to be defined:

• Operator is the super-class of any operator imple-
mented in RapidMiner. To be precise, an operator is an
object that accepts an array of input objects, does some
operations or processes based on its defined role, and
then returns an array of output objects. These inputs
and outputs of an operator are delivered or received
through ports, that can be connected to other operators’
ports. Operators can have parameters as settings for its
operations or processes. The processes or operations of
an operator are performed in a method called doWork,
which has to be implemented by every operator. This
method is invoked when the operator is executed in
order to start its processes. Moreover, an operator can
be encapsulated or embedded in another operator as a
subprocess.

• ExampleSet is an interface that represents datasets. It
can be passed to operators as input or delivered by an
operator as output. This ensures that example sets can
be preprocessed or processed by an operator.

B. Landmarking Operator Functionality

As shown in Figure 2, the landmarking operator has two
ports: an input port that should receive an ExampleSet, and an
output port. The delivered output contains the landmarking
results in the form of an ExampleSet, having the landmarkers
as attributes, and their accuracies as attribute values. Some
parameter settings are provided to make the operator ade-
quate to problem requirements. The user has control over:

• the landmarkers to be evaluated.
• whether the landmarkers should be encapsulated into a

cross-validation process or not. If this parameter is not
enabled, the input dataset is considered as training and
test set at the same time.

• the preprocessing of the input ExampleSet by Normal-
ization.

By default all the landmarkers described in Section II are
enabled and the normalization property is set to true with
a range [0, 1]. However, since several classifiers have spe-
cial properties or requirements, some landmarkers have to
preprocess the input dataset or have to use the classifier
in a certain way. For example, it is illogical to evaluate



Fig. 2. The landmarking operator in RapidMiner. In the middle of the figure, the process tab is depicted. In this tab the landmarking operator is connected
to an ReadXRFF operator to get an input ExampleSet. The parameters of the operator are represented in the Parameters tab on the right. These are the
default settings of the parameters of the landmarking operator.

the One Nearest Neighbor landmarker without using cross-
validation, as the prediction will be always correct by picking
the point itself as the nearest neighbor, resulting in a 100%
accuracy. Another specially handled landmarker is the Linear
Discriminant Learner: It is set to be never validated using
cross-validation, because of the inability of the RapidMiner
operator to run always correctly in this case. Furthermore,
some preprocessing is applied on its input ExampleSet. The
preprocessing steps employed are:

1) Removing mappings of label values that actually do not
occur in the examples of the dataset, as RapidMiner’s
linear discriminant operator can not handle this case.

2) Converting all polynominal attributes to binominal,
then to numerical attributes, as the linear discriminant
analysis operator does not support nominal attributes.

If cross-validation is applied on an ExampleSet with a total
number of examples smaller than the chosen number of
folds, a leave-one-out cross-validation is performed instead
automatically.

C. Landmarking Operator Architecture

The developed landmarking operator consists of three
important components, namely AbstractLandmarker, Land-
markingOperator, and LandmarkingResults. AbstractLand-
marker is the super-class of all landmarkers, as illustrated in
Figure 3. The main method of this class is learnExampleSet,
which evaluates the performance of the model of the passed
Operator on the input ExampleSet, according to the parame-
ter settings described in Section III-B. Any landmarker has to
be a sub-class of AbstractLandmarker, having its own opera-
tor and specific preprocessing or parameter settings. Figure 3
shows the relation between the landmarkers and RapidMiner
operators. All decision node landmarkers use RapidMiner’s
DecisionStumpLearner to create their decision node. This is
achieved by reducing the attribute set of their input dataset
according to their definition and using the information gain
of the attributes. The other landmarkers are simply mapped
to their corresponding operators in RapidMiner, as depicted
in Figure 3.



Fig. 3. Class diagram for RapidMiner’s landmarking operator

To integrate the landmarkers in an operator in RapidMiner,
the LandmarkingOperator has been developed as a sub-class
of Operator. The interaction point between the operator and
the landmarkers is the doWork method of the landmarking
operator. By calling the major method evaluateLandmarkers,
a map containing the parameters described in Section III-
B as key is created. For any additional parameters that
should be passed to a landmarker, a modification of the
map can be easily done in the LandmarkingOperator class.
Then, these parameters are passed to the landmarkers and
each landmarker process is managed separately. At the end
a LandmarkingResults object is returned. The result of the
evaluated landmarkers is controlled by LandmarkingResults
class. The result object contains a map, landmarkersResult,
that is filled after the evaluation of a landmarker with its
name and accuracy. The LandmarkingOperator parses the
LandmarkingResults object and delivers it as an ExampleSet
to the output port of the operator. If one is interested in
results other than the accuracy (e.g., absolute error, RMSE,
. . . ), a key and a value can be easily added to the result map.

IV. PERFORMANCE EVALUATION

The main goal of the evaluation is to determine whether
landmarking features are useful for meta-learning or not
compared to other meta-features. Accordingly, landmarking
features are evaluated by predicting the accuracies of some
classifiers.

A. Experiment Setup
To evaluate the landmarkers, 90 datasets from the UCI

machine learning repository [14] and other sources are used.
In order to have reliable accuracy estimates, all chosen
datasets have more than 100 samples. RapidMiner processes
were used to manage the experiments. To extract the land-
marking features from the datasets, the landmarking operator
(described in Section III) was used. The parameters of the
operator were set according to the description provided
in [9]. Accordingly, the extraction of landmarking features
was performed using a 10-fold cross-validation on four land-
markers: One Nearest Neighbor2, Decision Node, Randomly
Chosen Node, and Worst Node. In addition, the datasets
were normalized before evaluating the landmarkers. The
target algorithms, for which the accuracy was predicted, are
Naive Bayes, k-Nearest Neighbors, Multilayer Perceptron,
OneR, RandomForest-Weka3, Decision Tree, and LibSVM.
They origin from different algorithm categories and were
chosen because of their prominence. A grid search parameter
optimization was applied on important parameters of the
target classifiers. For each of the classifiers, the accuracy
was computed for all the datasets. These accuracies, along
with the dataset names were stored in a dataset considered
as a case base as illustrated in Figure 1. In order to estimate
the accuracies of the chosen classifiers and the confidence
of their prediction, regression4 was applied [8]. The root

2Note that in [9] the elite One Nearest Neighbour was used instead.
3Operator in the Weka plug-in
4A paper about regression for meta-learning will be published soon



mean squared error (RMSE) is used as the confidence of the
prediction. In other words, it gives feedback on how close
the predicted and computed accuracies are.
The experiment was divided in two stages:

1) Evaluation of the landmarkers on all datasets was
performed using the presented landmarking operator
with its default settings as outlined in Section III. The
resultant dataset, lm-case base, included the evaluated
landmarkers accuracy along with the dataset name
as attributes. These attributes were joined with the
original case base dataset.

2) To predict the accuracy values of the classifiers, a
regression model was trained on the landmarking fea-
tures stored in the lm-case base dataset using a leave-
one-out cross-validation. LibSVM of type ε-SVR and
radial basis function kernel was used for regression.
Then the RMSE was calculated. To increase the relia-
bility of the regression model, the following steps were
performed:

• Missing attributes and labels were filtered from
the lm-case base dataset. The classifiers’ computed
accuracies were considered as dataset labels. Any
example having a missing label was excluded
from the dataset, as it would not improve the
regression model. Furthermore, examples having
missing meta-features (represented as dataset at-
tributes) were removed.

• Estimation of the LibSVM parameters C and γ
was attained by optimization. Grid search and
leave-one-out cross-validation were used for op-
timization.

B. Results and Discussion

This experiment was also applied on other meta-features,
for instance, statistical, information theoretic, and simple
features, in comparison to landmarking features5. The RMSE
results of the different experiments were compared, taking
into consideration the variations in the number of datasets
included in the experiments, that resulted from the filtering
explained previously. As an overall result, the RMSE range
([5.1%, 8.3%]) of the landmarking features experiment can
be currently considered as the most confident among its
counterparts, as it can be deduced from Table I. Therefore, a
more detailed discussion about the experiment of landmark-
ing features is provided below.
Out of 90 datasets used for the experiment only 86 datasets
were included in the lm-case base dataset, due to the failure
of the evaluation of the four datasets: trains, profb, splice,
and mfeat-pixel. For the trains and profb datasets, the prob-
lem occurred when applying the preprocessing operators. For
the mfeat-pixel dataset, the landmarking operator was prepro-
cessed successfully only if one landmarker was evaluated at
a time. Otherwise, it resulted in an OutOfMemoryError. This
might have occurred due to the large number of categorical
attributes (about 240) it had. The execution of the linear

5results will be published soon

RMSE
Classifier
(samples)

Simplei Statisticali Information
Theoreticii

Landmarking

Decision Tree
(n = 61)

0.116 0.111 0.109 0.070

LibSVM (n =
61)

0.115 0.096 0.109 0.064

Naive Bayes
(n = 68)

0.136 0.121 0.123 0.079

Nearest
Neighbor
(n = 68)

0.123 0.105 0.109 0.053

Multilayer
Perceptron
(n = 57)

0.118 0.104 0.108 0.074

OneR (n =
68)

0.162 0.159 0.105 0.083

Random For-
est (n = 68)

0.112 0.101 0.099 0.051

TABLE I
RMSE FOR THE PREDICTED ACCURACIES BASED ON DIFFERENT

META-FEATURE EXTRACTION APPROACHES. NOTE, THAT FOR EACH

CLASSIFIER THE NUMBER OF SAMPLES (DATASETS) DIFFERS DUE TO

FILTERING OF MISSING ATTRIBUTES AND LABELS AS EXPLAINED IN

SUBSECTION IV. EACH RMSE VALUE IS A MEASURE FOR THE

CONFIDENCE OF PREDICTION OF A CLASSIFIER. IT WAS FOUND THAT

LANDMARKING OUTPERFORMS ALL OTHER METHODS WITH RESPECT

TO PREDICTION ACCURACY.

i ) Features described in the STATLOG project [8].
ii ) Features extracted using the METAL data characterization toolkit
(DCT) [15]. More details about the METAL project can be found in
http://cordis.europa.eu/esprit/src/26357.htm.

discriminant analysis operator on the splice dataset was
not successful neither as an encapsulated operator in the
landmarking operator nor independently as a RapidMiner
operator; although the preprocessing steps described in Sec-
tion IV-A were applied on the dataset in both cases.
From the results shown in Table I, the following information
can be deduced:

• By filtering the missing labels6 from the lm-case base,
the number of datasets taken into consideration differed
from one classifier to the other.

• Random Forest has the lowest RMSE, indicating the
highest confidence of prediction. A possible reason may
be the inclusion of three decision node landmarkers, as
the Random Forest classifier is based on Decision Trees.

• Nearest Neighbor has the second lowest RMSE. This
could be a result of the inclusion of One Nearest
Neighbour landmarker.

• For OneR, the predicted accuracies were less assertive,
having an RMSE of 8.3%. This was not expected, as
both decision node landmarkers and OneR are based
on RapidMiner’s DecisionStumpLearner, which should
enhance the predictions for OneR.

As future work it would be interesting to find out which
landmarking meta-features are related to which classifiers.

6Most values are missing due to the unreasonable amount of time they
need to be computed.



This correlation could lead to a more reliable approach with
confident results. For example, best node landmarker may
be supportive for decision tree classifier, while another land-
marking feature may reduce the reliability of the regression
model for predicting its accuracy.

V. CONCLUSION

As a bottom line, our aim was to introduce the developed
landmarking operator in RapidMiner as a meta-learning
step. This operator extracts landmarking features from a
given dataset by basically applying seven fast computable
classifiers on it. Throughout our evaluation illustrated in
Section IV, it was depicted that landmarking-features are
well suited for meta-learning. The method employed in the
evaluation for predicting some classifiers’ accuracies was
based on meta-features and regression. The RMSE was
chosen to be an indicator for the confidence of prediction,
as emphasized in Table I, illustrating satisfactory results.
In this context, the landmarking features can be considered
reasonable for developing systems involving classifier rec-
ommendation or automatic classifier selection.

REFERENCES

[1] Pavel B. Brazdil, Carlos Soares, and Joaquim P. da Costa. Ranking
learning algorithms: Using IBL and meta-learning on accuracy and
time results. Machine Learning, 50(3):251–277, 2003.

[2] Carlos Soares and Pavel Brazdil. Zoomed ranking: Selection of
classification algorithms based on relevant performance information.
In PKDD, volume 1910, pages 126–135, Lyon, France, September
2000.

[3] Ricardo Vilalta and Youssef Drissi. A perspective view and survey of
meta-learning. Artificial Intelligence Revieww, 18(2):77–95, 2002.

[4] David H. Wolpert. The supervised learning no-free-lunch theorems. In
In Proc. 6th Online World Conference on Soft Computing in Industrial
Applications, pages 25–42, 2001.

[5] Kate A. Smith-Miles. Cross-Disciplinary Perspectives on Meta-
Learning for Algorithm Selection. ACM Computing Surveys (CSUR),
41(1):25, 2008.

[6] Shawkat Ali and Kate A. Smith. On learning algorithm selection for
classification. Applied Soft Computing, 6(2):119–138, 2006.

[7] Ciro Castiello, Giovanna Castellano, and Anna Maria Fanelli. Meta-
data: Characterization of input features for meta-learning. In MDAI,
pages 457–468, Tsukuba, Japan, July 2005.

[8] R.D. King, C. Feng, and A. Sutherland. Statlog: Comparison of
Classification Algorithms on Large Real-Worlds Problems. Applied
Artificial Intelligence, 9(3):289–333, 1995.

[9] Bernhard Pfahringer, Hilan Bensusan, and Christophe G. Giraud-
Carrier. Meta-learning by landmarking various learning algorithms.
In ICML, pages 743–750, Stanford University, June 2000.

[10] Ingo Mierswa, Michael Wurst, Ralf Klinkenberg, Martin Scholz, and
Timm Euler. Yale: Rapid prototyping for complex data mining tasks.
In Lyle Ungar, Mark Craven, Dimitrios Gunopulos, and Tina Eliassi-
Rad, editors, KDD ’06: Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and data mining,
pages 935–940, New York, NY, USA, August 2006. ACM.

[11] Hilan Bensusan and Christophe G. Giraud-Carrier. Discovering task
neighbourhoods through landmark learning performances. In PKDD,
pages 325–330, Lyon, France, September 2000.

[12] Hilan Bensusan and Alexandros Kalousis. Estimating the predictive
accuracy of a classifier. In ECML, volume 2167, pages 25–36,
Freiburg, Germany, September 2001.

[13] Christophe Giraud-Carrier. Metalearning - a tutorial. 2008.
[14] A. Asuncion and D.J. Newman. UCI machine learning repository,

2007. http://www.ics.uci.edu/∼mlearn/MLRepository.html.
[15] J. Petrak. The METAL Machine Learning Experimentation Environ-

ment V3. 0. 2002.


