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Abstract— RapidMiner already provides easy to use in-
terfaces for developing and evaluating Pattern Recognition
and Machine Learning applications. However, it has only
limited support for parallelization and it lacks functionality
to spread long-running computations over multiple machines.
A solution to this is distributed computing with paradigms
like MapReduce. In this paper, we present a system called
DisPaRe, which integrates distributed computing frameworks
into RapidMiner. A special focus is put on utilizing MapReduce
as a programming model. The frameworks GridGain and
Oracle Coherence are reviewed and evaluated with respect
to their suitability to fit into the context of RapidMiner. The
system provides effective means for transparently utilizing these
frameworks and enabling RapidMiner processes to parallelize
their computations within a distributed environment.

I. INTRODUCTION

Today, Pattern Recognition and Machine Learning tech-
niques are found in many applications like face and object
recognition in videos or images, speech recognition as given
in mobile phones, or optical character recognition (OCR) for
the automatic digitization of scanned documents. Nonethe-
less, applying theses techniques usually both requires pro-
fessional expertise in the field of Machine Learning, as
well as software engineering skills in order to integrate into
real world applications. Furthermore, the development and
adaptation of Pattern Recognition and Machine Learning
systems most often differ to those of traditional software
systems, since the methods used are highly data-driven, i.e.
their performance strongly depends on the problems and
domains they are applied to.

In this context, the Pattern Recognition Engineering
(PaREn) project was initialized. PaREn aims to find ways to
support and automatize development, evaluation and appli-
cation of Pattern Recognition systems. Furthermore, carrying
out these processes should be feasible with respect to execu-
tion time of the computations involved. However, especially
in Pattern Recognition and Machine Learning settings this
goal proves challenging, since one often faces very large
and heterogenous data sets which have to be processed,
and the techniques and algorithms used often require a vast
amount of computation time. This leads to situations in
which one machine is no longer sufficient and scaling to
multiple machines becomes necessary.

One solution to this problem is distributed computing.
Nowadays, there exist complex systems and software tools
which make performant and reliable computation and distri-

bution of data possible on multiple machines, even scaling
to big data centers. Furthermore, programming models like
MapReduce [1] - a divide & conquer approach applied to
distributed computing - aim to foster utilization and inte-
gration of distributed systems into real world applications.
Nonetheless, distributed computing remains challenging in
many aspects and is far from being easy to handle, even
for experts. This particularly holds true when applying it
to complex tasks as arising from Pattern Recognition and
Machine Learning setups.

One tool box, which aims to provide state of the art and
easy to use Machine Learning and Data Mining components,
is RapidMiner [2]. This open source software is an integral
part of PaREn, as it provides intuitive and easy to use
interfaces for handling heterogenous data sets and for con-
structing Pattern Recognition and Machine Learning systems.
Unfortunately, RapidMiner lacks support for distributed com-
puting capabilities. In opposite to this, there exist a variety of
distributed computing software like GridGain [3] and Oracle
Coherence [4], which already have been successfully used
for enabling applications to scale in distributed environments
and to increase their performance. An ideal situation would
be to have the well-suited Machine Learning interfaces of
RapidMiner combined with the benefits of using distributed
computing software to scale on multiple machines. However,
integrating these tools is not trivial and usually requires
detailed knowledge about the frameworks and experience
with distributed systems in general.

Bringing together the techniques of Pattern Recognition
and Machine Learning with the capabilities of distributed
computing in a performant and comprehensible manner is
a difficult task, but becomes mandatory, especially when
considering the constantly growing amounts of information
in todays world of internet and large scale applications.
Projects like PaREn, as well as existing Pattern Recognition
and Machine Learning applications, can benefit from these
approaches by making their underlying processes scalable
and more performant.

In the following section, the architecture and functionality
of DisPaRe is presented. It is shown how this system can be
seemlessly embedded into RapidMiner and how it enables
different components of RapidMiner to make use of multi-
core capabilities and multiple machines. An emphasis of the
system’s development lies on the utilization of MapReduce
as a programming model. After this, the applicability of the



system is shown by building two different use cases upon it,
arising from the field of Pattern Recognition - interest point
extraction from images and k-means clustering. Evaluation
results are presented which prove that DisPaRe is capable to
reach significant performance gains in terms of computation
time.

II. SYSTEM DESIGN

A. Architectural Components

DisPaRe consists of three major abstract components as il-
lustrated in Figure 1, namely Distribution, MapReduceSpec-
ification and DataLayer. From a developers point of view,
DisPaRe totally abstracts from the frameworks which are
used to perform the distributed computations. In principle,
DisPaRe’s modularity allows to implement the system by
using differnet frameworks, from a data distribution view as
well as when considering the computational aspects.
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Fig. 1. Relationship between the components of the developed system.

The Distribution interface is the main interaction point
for RapidMiner to perform the distributed computation and
to get output from it. Furthermore, it is meant to encapsulate
specific characteristics of the underlying distributed comput-
ing infrastructure, i.e. the frameworks in use. This includes
for example configuration issues, processing instance man-
agement and job preparation.

The computation itself can be specified by some Map-
ReduceSpecification. This interface defines the logic of a
computation in form of a map and a reduce function. Map-
Reduce is a programming model and a software framework
which has been introduced in [1] and patented by Google
[5]. The main goal is to have a simple programming interface
which supports distributed computing on large data sets on
clusters of computers. The core idea, which is following a
divide & conquer approach, is to have a map function, which
is applied on parts of the input data, and to have a reduce
function which then aggregates the results of the map step.
The idea is inspired by functional programming, where a
map is used to apply a function on each element of a list,
whereby a reduce construct aggregates a list to a single value.

Even though it is flawed in some places [6], this comparison
gives a good impression of how MapReduce works.

Since a map is thought to be applied independently on
each data element of the input list, many map tasks may
be executed at the same time in parallel. This is where
the interface provides support for distributed computing.
Especially in the fields of Pattern Recognition and Machine
Learning there are many algorithms and tasks which can be
modified to fit into the MapReduce concept, e.g. k-Means,
logistic regression, neural networks and SVMs [7], [8].

The map and reduce functions in DisPaRe are semantically
similar to the map and reduce functions in Google’s Map-
Reduce specification in that they perform parallel computa-
tions and aggregate the partial results. The only difference is
that there is only one reduce task, which gets all the results
from the map tasks in order to aggregate them in a defined
way'. It therefore is less complex, which fosters modularity
for integrating other distributed computing software.

Data access to map and reduce tasks is given by the
Datalayer interface. It exposes methods to provide and
access two types of data: individual mapping data and
common static data. Individual mapping data refers to parts
of the whole main input data, which can be worked on in
parallel by individual map tasks. Static data refers to data
which is common to all map and reduce tasks. It must not
be split and is accessable by all tasks. The distinction of those
two types of data is not made by “classical” MapReduce, but
is meaningful when considering how data can be distributed
across processing nodes: Individual mapping data must be
stored (at least) once, ideally at the location where the
map computation takes place in order to improve access-
time consumption. Static data on the other hand should
be accessible by all map tasks, which implies to have it
replicated several times across the cluster, at best once for
every processing node.

MapReduce can be applied to many algorithms and tech-
niques (and also to other applications) in a straightforward
manner, and by this it is possible to transparently gain com-
putation perfomance for these techniques within a distributed
environment. The components of the developed system, es-
pecially the MapReduceSpecification interface, provide this
MapReduce functionality to RapidMiner, PaREn and other
Machine Learning developers in a meaningful and easy to
use way.

B. Functionality

Before the user starts computation, he specifies input data
by means of the Datalayer. First, the whole data must be
split into individual parts which serve as input to the parallel
map tasks. How to split the whole data into such parts is left
to the user. By not dictating how to split data to provide
map inputs, the system stays flexible and gives a more fine-
grained control over how input is worked with in the map
tasks. The use cases in the performance evaluation section

'In Google’s programming model also the reduce step is abstracted in a
way that there may be many reduce tasks which run in parallel.



provide examples on how to split data: a list of images can
be split into single images, a set of vectors (ExampleSet) can
be split into single vectors or subsets of vectors.

The map and reduce tasks can access the DatalLayer during
computation and fetch corresponding data. The input data
for a single map task can consist of several data units,
which may be logically independent in the first place, but
group together to a complex input data entity. Data units,
which group together as input for an individual map task, are
all referencing this map task and therefore can be handled
together by the system, so that each map task receives exactly
the input data units which correspond to it. The results of the
map tasks are forwarded to the reduce task and aggregated
to a single result, which is then returned to the user who
invoked the MapReduce computation.

C. Integration with RapidMiner

The DisPaRe system may be embedded into the context of
RapidMiner without any changes for the user. The only thing
the user might be aware of is that there are other processing
nodes involved, but he will use the system transparently with-
out realizing how distribution is realized, just recognizing
that certain methods or components of RapidMiner run faster.

Within RapidMiner, the type of realization can be chosen
by means of a Factory pattern [9]. The class Distribution-
Factory takes care of the proper instantiation of imlemen-
tations of the Distribution component, in case of this paper
with GridGain and Coherence. By this design, decoupling
of RapidMiner, DisPaRe, and the underlying distribution
frameworks is fostered and further implementations can
easily be integrated.

The DistributionFactory can be used within RapidMiner
Operators to instantiate and utilize the capabilities of Dis-
PaRe. In this context, an abstract class named Abstract-
DistributionOperator has been developed, which can be
used as a foundation or just as example for implement-
ing concrete distribution-enabled Operators. It allows any
type of input and output data, especially the types which
implement the RapidMiner IOObject interface. Therefore
the input and output objects within RapidMiner can be
directly used within DisPaRe. Furthermore, the AbstractDis-
tributionOperator provides an abstract method named split().
By implementing this method the developer can specify
how data is divided into parts, which then serve as input
for the individual map jobs. At last, the developer must
provide a MapReduceSpecification for his implementation of
the AbstractDistributionOperator. This will then be used to
perform the computation within the MapReduce framework
of DisPaRe.

Summarizing, the AbstractDistributionOperator embodies
an easily reusable component for quickly enabling computa-
tions to be executed in a parallelized and distributed manner,
which also can be seemlessly embedded into existing Rapid-
Miner processes. Figure 2 illustrates how the AbstractDistri-
butionOperator fits into the context of RapidMiner.
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Fig. 2. Integration of the developed system within RapidMiner by means

of the AbstractDistributionOperator. The DistributionFactory instantiates
concrete implementations of the Distribution interface, in this case with
GridGain and Coherence. The whole functionality can be transparently used
as Operator within RapidMiner processes.

D. Realization with GridGain and Coherence

The components of DisPaRe can be realized by using
external frameworks: on the one hand GridGain for con-
trolling computations within the MapReduceSpecification
component, on the other hand Oracle Coherence for the
Datalayer.

GridGain [3] is an open source Grid Computing frame-
work, which focuses on easy development and deployment
of Grid Computing and Cloud application software. It is
purely written in Java, and is a software middleware that
allows to develop complex grid applications on the cloud
infrastructure [10]. In the context of Grid Computing, it can
be seen as so called computational grid, since its main focus
is on managing computational tasks within a distributed
environment, and explicitely leaves data management to
underlying data grids. GridGain supports MapReduce like
computations similar to the one proposed by Google, but
less complex.

Coherence is a commercial distributed memory data man-
agement solution [4]. It provides a reliable distributed data
tier with a single, consistent view of the data. This data
tier, also called Distributed Cache, represents itself as a
key/value-store, which is partitioned and/or fully replicated
across several processing nodes. It provides several different
cache topologies, which are highly configurable.

The global architecture of the realization of DisPaRe
with GridGain and Coherence can be seen in Figure 3.
The MapReduceSpecification can be executed by using the
MapReduce capabilites of GridGain. It is designed to have
many parallel map tasks and exactly one reduce task. It
therefore fits the needs of the MapReduce model of DisPaRe.
The maps must be aligned with the locality of data within
the Coherence cache. GridGain provides functionality which
allows to realize this “data affinity” by aligning jobs with
the data given in a cache. This is an important performance
aspect, because computations should always be located to
corresponding data, not vice versa.



The Datal.ayer component specifies two types of input
data, which can be stored in two ways in Coherence. In-
dividual mapping data can be stored within a “partitioned
cache. By using this type of cache, the input for a single
map task can only be stored once” in the cluster, i.e. on the
machine where the map computation takes place. Fast access
is guaranteed since data is kept in memory by the cache.
Static data can be stored within a second cache, which is
configured as a “replicated cache”. Data is then replicated to
all nodes and therefore accessible by all tasks.
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Fig. 3. Realization of DisPaRe with GridGain and Oracle Coherence.

GridGain ships with integration of Coherence out of the
box. That means each processing node appears as a con-
junction of GridGain and Coherence. Ideally, it is possible
to just start a script on a different machine to initiate a new
processing node. This node would join the cluster automat-
ically without doing any configuration®. A RapidMiner user
can do this without knowing any concepts of GridGain or
Coherence.

Furthermore, by using GridGain and Coherence, many im-
portant aspects of distributed computing are already covered.
Requirements like proper load balancing, fault-tolerance,
automatic deployment of new software, data replication and
backups, serialization and monitoring are very difficult to re-
alize by hand. GridGain and Coherence provide sophisticated
mechanisms to fulfill these requirements. RapidMiner users
and developers therefore can concentrate on parallelizing and
performing their tasks instead of thinking about distributed
computing issues.

III. PERFORMANCE EVALUATION

The performance of DisPaRe has been evaluated by mea-
suring computation times for two different tasks which are
typical for Pattern Recognition and Machine Learning. The

2This not considers backups.
3Network and environment (e.g. firewall settings) must support this.

first task is the extraction of interest points from a fixed
collection of images. The number of images is 1500, each
with a resolution of 320x240 pixels. The images themselves
are provided via NFS on all machines, access time to
them is therefore negligible. The interest point detector and
descriptor used for extraction are both SURF [11]. The total
number of extracted interest points for all images is 188176,
each point given as field of 128 double values, making
the whole result dataset 184 MB large. The overall time
for extraction of interest points of the whole collection in
sequence on a single machine has been measured as 15.8
min in average. Parallelizing an interest point extraction
task is easily possible within MapReduce by performing
the extraction as a map task on each image (or a subset
of images) and collecting the interest points in the reduce
step.

The second task under consideration is k-Means clustering
according to Lloyd [12]. In this setting, the output of the
interest point extraction serves as input to the clustering,
ie. 188176 samples, each with 128 dimensions. K-Means
parallelization also is straightforward within MapReduce:
extract the relevant information within the map step in
parallel for subsets of the data and compute the new means
within the reduce step. This computation can be done in
every optimization iteration of the algorithm. In contrast
to interest point extraction, the input data is given directly
and not referenced on NFS. This means the data must be
appropriately distributed to all nodes before execution. This
can be seen as initialization, which consumes additional time
in contrast to the standard non-distributed implementation in
RapidMiner. However, this must only be done once before
starting to iteratively optimize the means, and therefore is
amortized by speedup after few iterations. Initialization time
in the presented setting is about 2-3 minutes, depending on
the number of machines in the cluster. On a single machine
with one thread, it takes about 80 seconds for k=100 and
170 seconds for k=200 to perform one optimization iteration.
For each experiment, at least ten optimization iterations have
been measured, outliers have been removed and the results
have been averaged.

First, the experiments have been conducted on a single
machine, while varying the number of working threads for
execution. Second, the number of machines has been varyied
while staying with two threads per machine. The machines,
each equipped with Intel Atom CPU 330 1.60GHz Dual
Core with Hyperthreading, 512KB Cache and 3 GB RAM,
are connected over a 1GBit full duplex intra-network. As
the machines are all equally equipped, they build up a very
homogenous environment. Furthermore, the used hardware
can be seen as commodity hardware, which for example can
be found in offices.

A. Performance on a Single Machine

In the first experiment, the performance of the realization
with GridGain and Coherence has been investigated on a
single machine. This is done by setting up a cluster which
exactly contains one machine. GridGain allows to control
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Fig. 4. Performance of interest point extraction, parallelized on a single

machine: speedup is limited by the number cores.

the number of threads (resp. processes) running on a single
instance, i.e. on one machine. This number is varied in this
experiment. The results for doing interest point extraction are
presented graphically in Figure 4. The number of images per
job has been fixed to 50.

It can be seen that computation performance increases
when increasing the number of threads. Considering enough
threads, the system proves that it can perform better than
the standalone, sequentially working implementation without
distribution. On dual core with Hyperthreading, a speedup of
about 2.5 can be achieved. Having more physical cores may
even lead to better performances.

The second experiment investigates the k-Means algo-
rithm. The experiment has been done with k = 100. The over-
head for initialization and distribution of data is discarded in
the results, but as said before this overhead is negligible when
doing a large number of iterations. The performance results
of doing k-Means clustering on a single machine are shown
in Figure 5.

First of all, it can be seen that the system performs simi-
larly well as in the first experiment. The minor performance
benefit over the standalone version for one thread is due to a
slightly different implementation for the distributed version.

B. Performance on Multiple Machines

In this experimental setting, the number of machines is
varied. This means, in contrast to the former experiment on
a single machine, that this setting really utilizes a distributed
environment, including potential drawbacks of network com-
munication and cluster management. The number of threads
per machine has been chosen as 2 in order to have a “natural”
utilization of the two physical cores on each machine,
trying to avoid affects arising from Hyperthreading or from
having too much threads competing for resources on the
machines. First, interest point extraction has been done on
multiple machines. Figure 6 shows the performance gain
when increasing the number of machines in the cluster. The
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Fig. 5. Performance of k-Means, parallelized on a single machine.

number of images per job has been fixed to 20. By this, the
number of jobs is large enough to appropriately make use of
the available processing slots on all machines.

As can be seen in the Figure, performance increase for
both frameworks has a proportional relationship with the
number of machines. Even though this experiment only
shows performance scalability on five machines, it is reason-
able to assume that adding more machines further increases
performance in a similar way. However, a limit is at least
given by the granularity of the tasks [13]. If the number of
tasks is too small, the job computation cannot be balanced
properly on newly added machines and performance increase
would not be proportional anymore.
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Fig. 6. Performance on multiple machines: for interest point extraction,
speedup increases proportionally with the total number of threads.

In the last experiment, k-Means clustering has been
distributed on multiple machines (Figure 7). Again, each
machine runs with two threads, the parameter k has been set
to 200, the number of tasks is 20 in this setting. The system



reaches a speedup of 7.5 with respect to the standalone
version when using 4 machines (i.e. 8 threads in total), which
is almost a linear speedup. By this result, it is shown that the
developed system can bring almost ideal performance gains
in some cases.
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Fig. 7. Performance on multiple machines: using GridGain/Coherence,
k-Means achieves nearly linear speedup with the total number of threads.
However, load imbalance stops this increase for five machines in this setting.

However, the previously indicated limits due to task gran-
ularity can also be seen in this Figure. In the case of five
machines no more speedup is achieved. As said before there
are 20 tasks in this setting, which implies an optimal load
balancing of 4 tasks per machine. After several repititions
of the experiment, it turned out that some of the machines
were assigned 5 or 6 tasks, which decreased performance
down to the case of four machines. This imbalance is caused
by Coherence, which gives no control over how data is
distributed exactly and which not necessarily aligns data
distribution to the needs of computational aspects.

IV. CONCLUSION

The main goal of DisPaRe has been the integration of dis-
tributed computing frameworks with the Machine Learning
software RapidMiner. The software frameworks GridGain
and Oracle Coherence have been reviewed and integrated
successfully into RapidMiner. DisPaRe provides an intuitive
MapReduce-like interface which takes care of the special
needs arising when applying MapReduce to Machine Learn-
ing techniques. In addition to this, an abstract Operator
has been designed, which seemlessly embeds the systems
functionality into RapidMiner processes, thereby allowing
RapidMiner developers to enable their processes and algo-
rithms to utilize distributed computing capabilities.

The applicability of the system has been shown by imple-
menting two techniques on top of the system, which arise
from the field of Pattern Recognition: interest point extrac-
tion from images and k-Means clustering. The methods could
easily be designed and modified to fit into the MapReduce
model offered by the system. Performance evaluation results

have shown, that by utilizing multiple cores or machines
by DisPaRe, it is possible to significantly accelerate these
processes. Using GridGain and Coherence as distributed
computing framework, the system is able to achieve nearly
linear speedup with the number of threads and machines as
seen for the k-Means clustering.
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