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Abstract. There is something of a discontinuity at the heart of popular tacti-
cal theorem provers. Low-level, fully-checked mechanical proofs are large trees
consisting of primitive logical inferences. Meanwhile, high-level human inputs
are lexically structured formal texts which include tactics describing search
procedures. The proof checking process maps from the high-level to low-level,
but after that, explicit connections are usually lost. The lack of connection
can make it difficult to understand the proof trees produced by successful
tactic proofs, and difficult to debug faulty tactic proofs.

We propose the use of hierarchical proofs, also known as hiproofs, to help
bridge these levels. Hiproofs superimpose a labelled hierarchical nesting on
an ordinary proof tree, abstracting from the underlying logic. The labels and
nesting are used to describe the organisation of the proof, typically relating
to its construction process. In this paper we introduce a foundational tactic
language Hitac which constructs hiproofs in a generic setting. Hitac programs
can be evaluated using a big-step or a small-step operational semantics. The
big-step semantics captures the intended meaning, whereas the small-step
semantics is closer to possible implementations and provides a unified notion
of proof state. We prove that the semantics are equivalent and construct valid
proofs. We also explain how to detect terms which are stuck in the small-step
semantics, and how these suggest interaction points with debugging tools.
Finally we show some typical examples of tactics, constructed using tactical
combinators, in our language.

Keywords. hierachical proof, hiproof, tactical theorem proving.

1. Introduction

Interactive theorem proving is a challenging pursuit, made additionally challenging
by the present state of the art. Constructing significant sized computer checked
proofs requires struggling with unpredictable automation, grappling with low-level
system specific details, and using primitive and frustrating user interfaces.
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As a way to help improve automation, interactive theorem provers allow users
to write embedded proof procedures, known as tactics, in various prover-specific
languages. Tactics allow the user not only to write shorter proof texts, but can also
increase readability, applicability, and maintainability of proofs, because as well as
proving one specific goal at hand they may be applicable in more situations.

However, writing tactics is not easy. First, there is only a remote connection
between the human inputs and the final low-level proof tree composed of the
primitive rules of the logic. The low-level proof tree is usually invisible to the user,
and in most systems, not updated.

A second reason that tactics are difficult to write is that they are often
expressed in rather general purpose programming languages (such as ML or Lisp),
using a programming interface provided by the proof engine. As a result, tactic
languages vary widely from one theorem prover to the next, locking users into
specific provers they have mastered. Moreover, any attempt to give a semantics
to tactics has to tackle the full programming language, and will thus be based on
the traditional notions of computation instead of a more central notion of proof.

What is needed is a more abstract notion of proof which is independent of a
particular prover or logic, but supports the relevant notions needed to interactively
explore and construct proofs. To help explore and understand large homogeneous
proofs, we seek a way of imposing some modular structure on them. To help
construct and debug modularised proofs, we need tactics which add structure and
can be referenced from the proofs. And ideally, all of this can be independent of
both the underlying logic and the prover being used, just as the basic ideas of
proof tree and proof search are system independent.

In this paper, we study a tactic language Hitac designed for hiproofs, a notion
introduced by Denney et al [7]. Hiproofs allow a hierarchical structure on proofs
which serves as the primary modularisation mechanism. Although any system in
which tactics can be defined from other tactics leads naturally to a notion of
hierarchical proof, this is the first work to study the hierarchical nature of tactic
languages in detail alongside a natively hierarchical form of proof. Hiproofs and
Hitac are very general, building on a simple form of underlying logical framework.

1.1. Introducing Hiproofs

Consider the very high-level view of Gödel’s first incompleteness theorem in Fig-
ure 1: given a sufficiently powerful logic L, we show that it is either incomplete
or inconsistent. This is shown by reductio ad absurdum: assuming the logic is
both complete and consistent, we derive a contradiction. The proof works using a
Gödelisation, i.e., a map p−q from the propositions in L to a subset of the natural
numbers such that φ is derivable iff pφq is true. We then diagonalise, constructing
a proposition σ(x) in L s.t. σ(pφq) is true iff φ is not derivable. Finally, we consider
whether σ(pσq) is true or false, and in both cases derive a contradiction (if σ(pσq)
is true, σ must be false, and vice versa).



Tactics for Hierarchical Proof 3

Reductio ad
 absurdum

Gödelisation  ⎡φ⎤

Diagonalisation  σ(x)

Case Distinction on σ⎡σ⎤

False False

¬σ⎡σ⎤σ⎡σ⎤

Gödel
Incompleteness

Figure 1. The proof of Gödel’s first incompleteness theorem.

The picture in Figure 1 is a graphical representation of the process of this
proof. It is neither precise nor does it give sufficient detail, but it shows enough to
help convey the structure of the reductio. For example, one can see the sequence of
steps and the internal structure which shows the two subgoals to be solved inside.
One can imagine filling out all the boxes with the relevant details to make it a full
proof.

On the other hand, given a fully detailed proof tree, we can get a similar
abstract representation. Consider a natural deduction proof of the easy theorem
that ∀x. x + 0 = x in Presburger arithmetic. In its proof tree (Figure 2, left), we
can discern the relevant structure: the induction step, usage of elementary axioms
P3, P4 and the induction hypothesis ax, etc. By eliding unimportant details such
as transitivity and congruence rules and then turning the deduction tree on its
head, we get a hierarchical proof similar to the outline of Gödel’s theorem.

0 + 0 = 0 P3

k + 0 = x
ax

S(k + 0) = S(k)
cong

S(k) + 0 = S(k)
P4, trans

∀x. x+ 0 = x
Induction

Induction

Base Step

P3 P4

H

Zero-Add-Right

Figure 2. A natural deduction proof of the theorem x+ 0 = x,
and the associated hiproof; S(X) is the successor function.
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These abstract representations of proofs are called hiproofs, and they are the
main objects of our study. Hiproofs have nodes, which correspond to basic proof
rules, procedures or compositions thereof, and directed edges connecting them in
sequence. Nodes may be labelled with a name to make a nested box that contains
further nodes. Conceptually, or inside an actual implementation, navigation in the
hiproof allows “zooming in” by opening boxes to reveal their content. Boxes which
are not open may be visualised by just their labels; details inside are suppressed.

Hiproofs are subject to certain well-formedness constraints which facilitate
navigation and their connection to proof trees. For example, each nesting level
must have a unique root; arrows may only emanate from innermost nodes and
only target outer nodes. Two alternative characterisations of hiproofs have been
studied in previous work [7]: either as a tree with a level function (representing
the nesting depth of nodes), or as a pair of forests on the same set of nodes (one
forest captures containment, the other sequencing).

In this paper we begin by introducing a corresponding formal syntax for
hiproofs. The syntax in fact ensures well-formed hiproofs by construction; we are
more interested in the correctness question: when is a hiproof a correct abstraction
of a real underlying proof? We shall call a hiproof valid if it can be mapped onto
an ordinary proof tree in an underlying derivation system, where nodes are given
by derivable judgements in the normal sense.

The central topic and main novelty, is our tactic language Hitac for con-
structing valid hiproofs. The language is general and not tied to a specific logic
or implementation. It is deliberately minimal: we seek to understand the con-
nection between hierarchical structure and the essential core constructs for tactic
programming, namely, alternation, repetition and assertion.

1.2. Contributions and relationship to existing systems

Our Hitac language is a step towards a rigorous but simple semantic foundation
for interactive hierarchical tactical theorem proving. The contribution we make is
in defining the language and its semantics, and in proving that the definitions are,
in a technical sense, correct.

Our wider goal is to build this foundation in stages, maintaining the ability to
prove correctness and other desirable properties. By doing this at the same time as
studying hierarchical structuring, we hope to shed light on underlying mechanisms
which are not altogether straightforward and at best only partially described in
the existing literature. The language Hitac presented here, therefore, is a core
calculus and omits some features which would be desirable in an implementation.
For example, we do not yet treat meta-variables, and we do not attempt to explain
higher-order tactics. See Section 8 for more comparison and Section 9 for more
discussion of as yet unmodelled features.
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1.3. Outline

The rest of this paper is organised as follows. In Section 2, we introduce a syntax
for hiproofs and explain the notion of validity. By extending this syntax we define
tactics which can be used to construct tactic programs, both described in Section 3.

In Sections 4 and 5 we study the notion of evaluation with operational se-
mantics: a tactic can be applied to a goal and, if successful, evaluated to produce a
valid hiproof. There are two operational semantics: a big-step relation (Section 4)
which lays down the meaning of our constructs, and a finer-grained small-step
semantics (Section 5) which provides a notion of proof state that evolves while the
proof is constructed.

A proof state can be examined to determine the progress of a proof. Section 6
considers this in more detail, to examine the parts of a proof which will not succeed;
we call these proof parts futile. Futile subterms can be inspected to determine the
cause of failure.

In Section 7 we demonstrate how our language can be used to define some
familiar tactics, and show how our evaluation works on them. Finally, Section 8
describes some of the related work, and Section 9 concludes.

2. Hiproofs and derivation systems

Hiproofs have a concise syntax, introduced next. They add structure to an under-
lying derivation system, which is a simple form of logical framework introduced in
Section 2.2 and furnished with examples in Section 2.4. A hiproof is only useful if
it is valid, which means that it models a proof in the underlying derivation system.
Validity is described in Section 2.3.

2.1. Syntax of hiproofs

The concrete syntax is defined by the following grammar:

s ::= a atomic
id identity
[l] s labelling
s ; s sequencing
s ⊗ s tensor
〈〉 empty

Hiproofs are ranged over by s. We assume a ∈ A where A is the set of atomic
tactics to be given by an underlying derivation system. Labels l ∈ L are taken
from an unspecified set of identifiers. In the hiproof [l] s, the label l may be freely
reused in s; labelling is not a binder. A term which has no subterm of the form
[l] s is called label-free. By convention, a labelled subterm extends as far right as
possible, and tensor binds more tightly than sequencing.
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The hiproof terms provide the structure described in the introduction. La-
belling introduces named boxes (which can be nested arbitrarily deeply); sequenc-
ing composes one hiproof after another, and tensor composes two hiproofs in par-
allel, operating on two separate groups of goals. The identity hiproof has no effect,
but is used for “wiring”, to fill in structure. It can be applied to a single (atomic)
goal. Finally, the empty hiproof is the vacuous proof for an empty set of goals.

The connection between the concrete syntax for hiproofs and their graphical
presentation is intuitively straightforward. Labelling corresponds to labelled boxes
we can zoom into and atomic tactics are boxes which cannot be zoomed; sequencing
corresponds to the arrows, and tensor puts boxes side-by-side. In principle one
might give a formal mapping between the graphical and linear notations, but we
resist doing so here. For this paper the reader should take the linear syntax as
primary and the graphical representation for illustration only.

Hiproofs have a denotational semantics [7] mentioned above; our syntax above
serves as an internal language for models in that semantics. The denotational
semantics justifies certain equations between terms; in particular, identity is a
unit for sequencing, empty is a unit for the tensor, and tensor and sequencing are
associative.

Figure 3 shows an example hiproof, and its graphic representation. Notice
the role of id corresponding to the line exiting the box labelled l. We will use this
example as a test case later.

s = ([l] a ; b ⊗ id) ; [m] c

c
m

l
a

b

Figure 3. A hiproof and its graphical representation.

2.2. Derivation systems

For us, a derivation system is a very simple form of logical framework. It defines sets
of atomic goals γ ∈ G and atomic tactics a ∈ A. Our nomenclature is influenced
by the forthcoming application in the tactic language: typically, what we call an
atomic goal is a judgement form in the underlying derivation system and an atomic
tactic is an elementary rule of inference.

Elementary rules of inference in the underlying derivation system can be seen
as atomic tactics of the following form

γ1 · · · γn
γ a
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which says that the tactic a, given goal γ returns goals γ1, . . . , γn; intuitively, given
proofs of γ1, . . . , γn it produces a proof of γ (as in [10]). Formally, we do not make
any assumptions about the notion of proof in the underlying system.

We intend atomic tactics to stand for rules rather than rule instances. Thus
for a particular atomic tactic a, there may be a family of goals γ to which it applies.
Moreover, there may be a choice of the precise γ1, . . . , γn which are introduced
as subgoals, particularly in the case of elimination rules whose premises are not
determined by their conclusion. We shall not formalise how rules and rule instances
are related, but we make the important restriction that every instance of a must
have the same arity, i.e., the same number of premises n.

By composing atomic tactics, we can produce proofs in the underlying deriva-
tion system. These are ordinary, non-hierarchical proof trees. We describe how
these proofs are related to hiproofs next, then return in Section 2.4 to give some
explicit example derivation systems.

2.3. Hiproof validation

For most of the paper, we will suppose a fixed underlying derivation system, occa-
sionally specifying it when we want to be concrete. Given a proof in this underlying
derivation system, we may want to decorate it with additional structure and ab-
stract from concrete rule instantiation, describing it with a hiproof s. Conversely,
a hiproof s may correspond to a family of underlying proofs which consist of ap-
plications of instances of the underlying atomic tactics.

This relationship is captured by validation. To formalise this, we work with
finite lists g ∈ G∗ of atomic goals [ γ1, . . . , γn ] where γi ∈ G. The empty list is
written [ ], and given two lists g1 and g2, their concatenation is written g1

∧ g2. We
will sometimes abuse notation and write γ to stand for the single element list [ γ ];
we will often abuse terminology and call goal lists simply goals. To indicate that
the length of g is n, we write g : n, and call n the arity of g.

We say that s validates proofs from g2 to g1, written s ` g1 −→ g2, when
the composition of atomic tactics described by s indeed corresponds to a valid
underlying derivation. Validation is defined by the rules in Figure 4.

Validation is a well-formedness check: it checks that atomic tactics are applied
properly to construct a proof, and that the structural regime of hiproofs is obeyed.
Notice that, although g1 and g2 are not determined by s, the arity restriction
means that every underlying proof that s validates must have the same shape, i.e.,
the same underlying tree of atomic tactics. This underlying tree is known as the
skeleton of the hiproof [7].

For tactic programming, the aspect of the skeleton which interests us is the
number of goals that are solved, and the number that remain. We define the (input)
arity of a hiproof s with s ` g1 −→ g2 to be n where g1 : n. This is also written
as s : n. Note that by the restriction on atomic tactics, a hiproof has a unique
arity, if it has any.
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γ1 · · · γn

γ a ∈ A

a ` γ −→ [ γ1, . . . , γn ]
(V-Atomic)

id ` γ −→ γ (V-Id)

s ` γ −→ g

[l] s ` γ −→ g
(V-Label)

s1 ` g1 −→ g s2 ` g −→ g2

s1 ; s2 ` g1 −→ g2
(V-Seq)

s1 ` g1 −→ g′1 s2 ` g2 −→ g′2

s1 ⊗ s2 ` g1
∧ g2 −→ g′1

∧ g′2
(V-Tensor)

〈〉 ` [ ] −→ [ ] (V-Empty)

Figure 4. Validation of Hiproofs.

Example 1. Suppose we have a goal γ1 which can be proved like this:

γ2
b γ3

c

γ1
a

Then ([l] a ; b ⊗ id) ; [m] c ` γ1 −→ [ ], and has arity 1.

2.4. Example derivation systems

To show how the abstract hiproofs may be used with real underlying derivation
systems, we give three examples with different sorts of underlying goals.

Example 2. Simple propositional logic has formulae given by

P ::= ⊥ P → P P ∧ P X

where X stands for a propositional variable. Goals in propositional logic have the
form Γ ` P , where Γ is a set of propositions, the assumptions. The atomic tactics
are given by the well-known natural deduction rules

Γ, P ` P
ax

Γ ` P
Γ ∪ {Q} ` P

wk
Γ ∪ {P → ⊥} ` ⊥

P
raa

Γ ` ⊥
P

false

Γ ∪ {P} ` Q
Γ ` P → Q

impI
Γ ` P → Q Γ ` P

Γ ` Q
mp

Γ ` P Γ ` Q
Γ ` P ∧Q

andI
Γ ` P ∧Q

Γ ` P
andEL

Γ ` P ∧Q
Γ ` Q

andER

Atomic tactics are rule instances (e.g.,, ax{X}`X), which are viewed as being ap-
plied backwards; they have the obvious arities.
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{P ∧Q} ` P ∧Q
ax

{P ∧Q} ` Q andER

{P ∧Q} ` P ∧Q
ax

{P ∧Q} ` P andEL {P → Q→ R} ` P → Q→ R
ax

{P → Q→ R,P ∧Q} ` Q→ R
mp

{P → Q→ R,P ∧Q} ` R
mp

{P → Q→ R} ` P ∧Q→ R
impI

` (P → Q→ R)→ (P ∧Q)→ R
impI

Figure 5. Derivation tree for ` (P → Q→ R)→ (P ∧Q)→ R.

Figure 5 shows an example derivation. We can use the hiproof mechanisms to
impose some explicit structure on the derivation by marking up the introduction
rules as intros, and the combination of modus ponens and conjunction elimination
on the left as conj-mp, which eliminates both a conjunction and implication. The
hiproof is

h = ([intros] impI ; impI) ;
([conj-mp] mp ; id ⊗ andER) ;
(([conj-mp] mp ; id ⊗ andEL) ; ax ⊗ ax) ⊗ ax

and its graphical representation is shown in Figure 6.

ax

impI

impI

mp

andER

conj-mp

intros

mp

andEL

conj-mp

ax

ax

Figure 6. Hiproof for derivation in Figure 5.

Example 3. Equational logic is specified by a signature Σ, giving a set of terms
TΣ(X) over a countably infinite set of variables X, together with a set of equations
E of the form a = b with a, b terms. Goals in this derivation system are equations of
the same form. These can be established using the following atomic tactics (where
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a, b, c, d ∈ TΣ(X)):

a = a
refl

a = b b = c

a = c
trans

a = b

b = a
sym

a = b c = d

a[c/x] = b[d/x]
subst

Here, a[c/x] denotes the term a with the variable x replaced by term c throughout.
For example, the more usual substitutivity rule

a = b

a[c/x] = b[c/x]
subst′

can be derived with the hiproof h1 = subst ; id ⊗ refl , whereas the usual congru-
ence rule say for a binary operation f

a1 = b1 a2 = b2
f(a1, a2) = f(b1, b2)

ctxt

can be derived with the hiproof h2 = subst ; (subst ; refl ⊗ id) ⊗ id.

Example 4. First-order predicate logic combines propositional logic and equational
logic, adding universal (and existential) quantification:

P ::= . . . ∀X.P ∃X.P

The rules for the quantifiers are

Γ ` P X 6∈ FV(Γ)
Γ ` ∀X.P

allI
Γ ` ∀X.P

Γ ` P [t/X]
allE

Γ ` P [t/X]
Γ ` ∃X.P

exI
Γ ` ∃X.P Γ ∪ {P} ` Q X 6∈ FV(Q)

Γ ` Q
exE

In predicate logic, we can formulate the five axioms of Presburger arithmetic, in-
cluding the induction rule used in Section 1.1. With these axioms, we can formalise
arithmetic proofs as in the example from Figure 2. We use boxes to label the base
and step case of the induction rule; the full hiproof corresponding to the proof on
the left is induction ; ([Base]P3) ⊗ ([Step] trans ; P4 ⊗ (cong ; ax)). Note that the
graphical representation in Figure 2 on the right is an abstraction of this hiproof,
not a faithful representation.

3. Tactics and programs

The hiproofs introduced in Section 2 are static proof structures which we want
to use to represent the result of executing a tactic. We now present a language of
tactics which can be evaluated to do that.
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3.1. Tactics

The tactics are the main object of study. They are defined by extending the gram-
mar for hiproofs with four new cases:

t ::= a id [l] t t ; t t ⊗ t 〈〉 as for hiproofs
t | t alternation
assert γ goal assertion
T (t, . . . , t) defined tactic, applied to tactics
X tactic variables

The new cases allow proof search: alternation allows alternatives, assertion allows
controlling the control flow, and defined tactics and tactic variables allow us to
build up a program of possibly mutually recursive definitions.

Syntactic conventions for hiproofs are extended to tactics, with alternation
having lowest precedence below sequencing, and then tensor (highest). Alternation
is also associative. For a defined tactic with no arguments, we will elide the empty
argument list, writing just T instead of T ().

For a tactic variable X and tactics t and t′, the substitution of X in t by t′

is written as t [t′/X] and is defined easily in the absence of variable bindings and
other technical complications; this will be used when applying a tactic below.

3.2. Tactic programs

A tactic program in Hitac is a set Prog of parametrised definitions of the form

Ti(Xi,1, . . . , Xi,ni
)

def
= ti,

together with a goal matching relation on atomic goals γ . γ′ which is used to
define the meaning of the assertion expression. The definition set must not define
any T more than once, and no label may appear more than once in the whole
program.

The uniqueness requirement on labels is so that we can map a label in a
hiproof back to a unique origin within the program. We will see that although
labels are unique in programs, because of recursion the same label may appear
many times in a hiproof which is produced when a program is evaluated.

We do not make restrictions on the goal matching relation. In some cases it
may simply be an equivalence relation on goals. In equational logic, a pre-order
is more natural: the matching relation can be given by instantiations of variables,
so a goal given by an equation b1 = b2 matches a goal a1 = a2 if there is an
instantiation σ : X → TΣ(X) such that bi = aiσ.

Example 5. We can give a tactic program for producing the hiproof shown in
Figure 3 by defining:

Tl
def
= [l] a ; b ⊗ id

Tm
def
= [m] c

Tu
def
= assert γ3 ; Tm | Tl ; Tu
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If we evaluate the tactic Tu applied to the goal γ1, we expect to get a hiproof
similar to the one shown earlier. Intuitively, Tu repeatedly tries to solve a goal
that matches γ3 using tactic c, or uses the tactic a to split the goal, solves the first
subgoal with b, and then repeats.

The next sections provide operational semantics to define a suitable notion
of evaluation.

4. Big-step operational semantics

To give a meaning to Hitac programs, we will consider an operational semantics
as primary. This is in contrast to some other formalised approaches which model
tactics as the original LCF-style tactic programming does, i.e., using a fixed-point
semantics to explain recursion. An operational semantics is desirable because we
want to explain the steps used during tactic evaluation at an intensional level: this
gives us a precise understanding of the internal proof state notion, which allows
us to explore mechanisms for tactic debugging. At the same time, an operational
semantics is closer to a direct implementation by an interpreter.

We begin by defining a big-step semantics that gives meaning to expres-
sions without explicitly specifying the intermediate states during evaluation. Then
we prove a correctness theorem which establishes that evaluation produces valid
hiproofs. In Section 5 we give a small-step semantics which provides a notion of
intermediate proof state.

4.1. Big-step evaluation

The big-step evaluation relation 〈g, t〉 ⇓ 〈s, g′〉 is defined inductively by the rules
in Figure 7. The rules explain how applying a tactic t to the list of goals g results
in the hiproof s and the remaining (unsolved) goals g′. A tactic t proves a goal, g,
therefore, if 〈g, t〉 ⇓ 〈s, [ ]〉, for some hiproof s. The relation is defined with respect
to a tactic program Prog containing a set of definitions.

The rules directly capture the intended meaning of tactics. To explain an
example rule, (B-Label) evaluates a labelled tactic [l] t, by first evaluating the
body t using the same goal γ, to get a hiproof s and remaining goals g. The result
is then the labelled hiproof [l] s and remaining goals g. Like (V-Label), this rule
reflects one of the key restrictions in the notion of hiproof, namely that a box has
a unique entry point, its root, accepting a single (atomic) goal.

In (B-Assert), assertion terms evaluate to identity if the goal matches, or
they do not evaluate at all. Similarly, (B-Atomic) only allows an atomic tactic a to
evaluate if it can be used to validate the given goal γ. Hence, failure is modelled
implicitly by the lack of a target for the overall evaluation (i.e., evaluation fails iff
there is a subterm 〈g, t〉 for which there is no 〈s, g′〉 it evaluates to).

Notice that tactic variablesX do not reduce at all; they have to be substituted
for actual tactics when a parameterised definition is applied in rule (B-Def). The
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γ1 · · · γn

γ a ∈ A

〈γ, a〉 ⇓
〈a, [ γ1, . . . , γn ]〉

(B-Atomic)

〈γ, id〉 ⇓ 〈id, γ〉
(B-Id)

〈γ, t〉 ⇓ 〈s, g〉
〈γ, [l] t〉 ⇓ 〈[l] s, g〉

(B-Label)

〈g1, t1〉 ⇓ 〈s1, g2〉
〈g2, t2〉 ⇓ 〈s2, g3〉

〈g1, t1 ; t2〉 ⇓ 〈s1 ; s2, g3〉
(B-Seq)

〈g1, t1〉 ⇓ 〈s1, g′1〉
〈g2, t2〉 ⇓ 〈s2, g′2〉
〈g1 ∧ g2, t1 ⊗ t2〉 ⇓
〈s1 ⊗ s2, g′1 ∧ g′2〉

(B-Tensor)

〈[ ], 〈〉〉 ⇓ 〈〈〉, [ ]〉 (B-Empty)

〈g, t1〉 ⇓ 〈s, g′〉
〈g, t1 | t2〉 ⇓ 〈s, g′〉

(B-Alt-L)

〈g, t2〉 ⇓ 〈s, g′〉
〈g, t1 | t2〉 ⇓ 〈s, g′〉

(B-Alt-R)

γ . γ′

〈γ′, assert γ〉 ⇓ 〈id, γ′〉
(B-Assert)

T (X1, . . . , Xn)
def
= t ∈ Prog

〈g, t [ti/X1] · · · [tn/Xn]〉 ⇓ 〈s, g′〉
〈g, T (t1, . . . , tn)〉 ⇓ 〈s, g′〉

(B-Def)

Figure 7. Big-step semantics for Hitac.

parameter list must have the right length: if a definition T (X1, . . . , Xn) = t is not
applied to n arguments it simply fails to reduce. Similarly, if the definition contains
a variable X on the right-hand side t which does not occur in {X1, . . . , Xn}, it
may (in a subterm) reduce to the uninstantiated variable X which fails to reduce.

The rules for alternation allow an angelic choice, as they allow us to pick
the one of the two tactics which evaluate to a hiproof (if either of them does). If
both alternatives evaluate, the alternation is non-deterministic. While this is the
obvious source of non-determinism, the tensor rule also allows the (perhaps angelic)
splitting of an input goal list into two halves g1

∧ g2, including the possibility that
g1 or g2 is the empty goal list [ ].

Example 6. Returning to Examples 1 and 5, we can indeed derive 〈γ1, Tu〉 ⇓ 〈s′, [ ]〉,
where s′ = ([l] a ; b ⊗ id) ; id ; [m] c. This hiproof is equal to the one shown earlier.

4.2. Correctness property

The crucial property is correctness of the semantics: if a hiproof is produced, it is
a valid hiproof for the claimed input and output goals.

Theorem 1 (Correctness of big-step semantics).
If 〈g, t〉 ⇓ 〈s, g′〉 then s ` g −→ g′.

Proof. By induction on the derivation of 〈g, t〉 ⇓ 〈s, g′〉. The reduction rules (B-
Atomic) to (B-Empty) directly match the validation rules (V-Atomic) to (V-Empty).
In the rules (B-Alt-L) and (B-Alt-R), the expression in the conclusion which we
evaluate appears in the precondition, and hence can be validated. For (B-Assert),
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we can use rule (V-Id), and for (B-Def), we directly use the induction assumption.
�

A further useful property is the label origin provision.

Proposition 2 (Label origin). If t is label-free, 〈g, t〉 ⇓ 〈s, g′〉 and the label l appears
in s, then l has a unique origin within some tactic definition T (X1, . . . , Xn) from
Prog.

Proof. Follows immediately by the definition of program and the observation that
evaluation can only introduce labels taken from the program. �

This property means that we can use labels as indexes into the program to find
where a subproof was produced, which is a key motivation for labelling, and allows
a source level debugging of tactical proofs. This could not be done if tactics were
viewed merely as denotational functions from goals to goals.

5. Small-step semantics

Besides the big-step semantics given in the previous section, it is desirable to
explain tactic evaluation using a small-step semantics. In programming languages,
the usual reason for providing small-step semantics is to give meaning to non-
terminating expressions. In principle we don’t need to do this here, since non-
terminating tactics do not produce proofs. But in practice we are interested in
debugging tactics during their evaluation, including ones which may fail or loop.
A big-step semantics provides no direct help for that, since the inductive relation
is undefined in both cases.

Our small step-semantics provides a notion of intermediate state which has
the potential to help in tactic debugging, identifying proof failure points as places
where evaluation gets stuck.

5.1. Proof states

The small step semantics needs to keep track of the stages of evaluation consisting
of goals partially applied to tactics, which do not correspond to a well-formed
hiproof. Describing this turns out to be rather tricky: we must record which tactics
have been evaluated and which not, and rearrange terms to move left over goals in
subtrees out of their hierarchical boxes. The graphical intuition for the language
helps here: we can imagine goals moving along the edges of the graph, in and out
of the boxes, and interacting with the atomic tactics.

Using this idea, we define an evaluation relation which evolves a proof state
configuration in each step, eventually producing a hiproof. The reduction is non-
deterministic; some paths may get stuck or not terminate. Compared with the big-
step semantics, the non-determinism in alternation does not need to be predicted
wholly in advance, but the rules allow exploring both alternation branches of a
tactic tree in parallel to find one which results in a proof.
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This suggests a unified notion of proof state, where goals appear directly in
the syntax with tactics. To this end, we define a compound term syntax for proof
states which has hiproofs, tactics and goal lists as sublanguages. The syntax for
this intermediate syntax is:

p ::= g . t p . t s / p [l] p p ⊗ p p | p v
v ::= s / g

A proof state, p, consists of a mixture of open goals, g, active tactics, t, and
successfully applied tactics, i.e., hiproofs, s. The new operators . and / have higher
precedence than alternation, but lower than sequencing; intuitively these represent
forms of sequencing involving partially evaluated proofs. Composing proof states
can be understood as connecting, or applying, the tactics of one state to the
open goals of another. The notion of value, i.e., a normal form for the small-step
reduction, is a fully reduced proof state with the form s / g′, which symbolises the
resulting left over goals g′ after the hiproof s has been produced.

The general judgement form is p ⇒ p′, defined by the rules shown in Fig-
ures 8 and 9, where the second set of rules simply close reduction under congruence.
A successful reduction starts with the application of tactic t to goal g, and ends
with a value:

g . t ⇒∗ s / g′.

What happens is that the goals g move through the tactic t, being transformed by
atomic tactics, until (if successful) the result is a simple hiproof s and remaining
goals g′. The intermediate states consist of terms p . t and s / p, where p is not a
value but contains an incomplete proof (goal entering a tactic), or a result state
where goals have yet to exit nested constructs.

To see the semantics at work, consider the tactic program from Example 5.
The resulting reduction of Tu applied to the goal γ1 is shown in Figure 10.

Note that the rules are careful to distinguish between syntactic categories for
proof states, p, and the sublanguages of tactics t, hiproofs s and goals g, which can
be embedded into the language of proof states. For example, in the rule (S-In-Alt),
g has to be a goal and t1, t2 must be tactics.

The appearance of constrained subterms, and in particular, value forms s/g,
restricts the reduction relation and hints at evaluation order. Intuitively, joining
tensors in (S-Out-Tens) only takes place after a sub-proof state has been fully
evaluated. Similarly, in (S-Out-Lab), when evaluation is complete inside a box,
the remaining goals are passed out on to subsequent tactics. Alternatives are only
discarded in (S-Out-Alt-L) or (S-Out-Alt-R) after a successful proof has been found.

5.2. Equivalence with big-step semantics

Our main result is that the two semantics we have given coincide. This shows that
the small-step semantics is indeed an accurate way to step through the evaluation
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γ1 · · · γn

γ a ∈ A

γ . a ⇒ a / [ γ1, . . . , γn ]
(S-Atomic)

γ . id ⇒ id / γ (S-Id)

γ . [l] t ⇒ [l] γ . t (S-In-Lab)

[l] s / g ⇒ ([l] s) / g (S-Out-Lab)

g . t1 ; t2 ⇒ (g . t1) . t2 (S-In-Seq)

(s / g) . t2 ⇒ s / (g . t2) (S-Move-Seq)

s1 / (s2 / g) ⇒ s1 ; s2 / g (S-Out-Seq)

g1
∧ g2 . t1 ⊗ t2 ⇒ (g1 . t1) ⊗ (g2 . t2) (S-In-Tens)

(s1 / g1) ⊗ (s2 / g2) ⇒ s1 ⊗ s2 / g1 ∧ g2 (S-Out-Tens)

[ ] . 〈〉 ⇒ 〈〉 / [ ] (S-Empty)

g . (t1 | t2) ⇒ g . t1 | g . t2 (S-In-Alt)

s1 / g | p2 ⇒ s1 / g (S-Out-Alt-L)

p1 | s2 / g ⇒ s2 / g (S-Out-Alt-R)

γ . γ′

γ . assert γ′ ⇒ id / γ
(S-Assert)

T (X1, . . . , Xn)
def
= t ∈ Prog

g . T (t1, . . . ,n ) ⇒ g . t [t1/X1] · · · [tn/Xn]
(S-Def)

Figure 8. Small-step semantics for Hitac.

p ⇒ p′

[l] p ⇒ [l] p′ (S-Lab)

p ⇒ p′

p . t ⇒ p′ . t (S-Seq-L)

p ⇒ p′

s / p ⇒ s / p′ (S-Seq-R)

p1 ⇒ p′1

p1 ⊗ p2 ⇒ p′1 ⊗ p2 (S-Tens-L)

p2 ⇒ p′2

p1 ⊗ p2 ⇒ p1 ⊗ p′2 (S-Tens-R)

p1 ⇒ p′1

p1 | p2 ⇒ p′1 | p2 (S-Alt-L)

p2 ⇒ p′2

p1 | p2 ⇒ p1 | p′2 (S-Alt-R)

Figure 9. Small-step semantics for Hitac (congruence rules).



Tactics for Hierarchical Proof 17

γ1 . Tu

⇒ γ1 . (assert γ3 ; Tm | Tl ; Tu) (S-Def)
⇒ γ1 . assert γ3 ; Tm | γ1 . Tl ; Tu (S-In-Alt)
⇒ . . . | (γ1 . Tl) . Tu reduce on right, (S-In-Seq)
⇒ . . . | (γ1 . ([l] b ; c ⊗ id)) . Tu (S-Def)
⇒ . . . | ([l] γ1 . b ; c ⊗ id) . Tu (S-In-Lab)
⇒ . . . | ([l] (γ1 . b) . c ⊗ id) . Tu (S-In-Seq)
⇒ . . . | ([l] (b / [ γ2, γ3 ]) . c ⊗ id) . Tu (S-Atomic)
⇒ . . . | ([l] b / ([ γ2, γ3 ] . c ⊗ id)) . Tu (S-Move-Seq)
⇒ . . . | ([l] b / (γ2 . c) ⊗ (γ3 . id)) . Tu (S-In-Tens)
⇒ . . . | ([l] b / (c / [ ]) ⊗ (γ3 . id)) . Tu (S-Atomic)
⇒ . . . | ([l] b / (c / [ ]) ⊗ (id / γ3)) . Tu (S-Id)
⇒ . . . | ([l] b / (c ⊗ id / γ3)) . Tu (S-Out-Tens)
⇒ . . . | ([l] (b ; c ⊗ id) / γ3) . Tu (S-Out-Seq)
⇒ . . . | (([l] b ; c ⊗ id) / γ3) . Tu (S-Lab-Out)
⇒ . . . | ([l] b ; c ⊗ id) / (γ3 . Tu) (S-Move-Seq)
⇒ . . . | . . . / (γ3 . (assert γ3 ; Tm | Tl ; Tu)) (S-Def)
⇒ . . . | . . . / (γ3 . assert γ3 ; Tm | [ γ3 ] . Tl ; Tu) (S-Alt)
⇒ . . . | . . . / ((γ3 . assert γ3) . Tm | . . .) (S-In-Seq)
⇒ . . . | . . . / ((id / [ γ3 ]) . Tm | . . .) (S-Assert)
⇒ . . . | . . . / (id / (γ3 . [m] c) | . . .) (S-Move-Seq), (S-Def)
⇒ . . . | . . . / (id / ([m] γ3 . c) | . . .) (S-In-Lab)
⇒ . . . | . . . / (id / ([m] c / [ ]) | . . .) (S-Atomic)
⇒ . . . | . . . / (id / (([m] c) / [ ]) | . . .) (S-Out-Lab)
⇒ . . . | . . . / ((id ; [m] c) / [ ] | . . .) (S-Out-Seq)
⇒ . . . | ([l] b ; c ⊗ id) / ((id ; [m] c) / [ ]) (S-Out-Alt-L)
⇒ . . . | (([l] b ; c ⊗ id) ; id ; [m] c) / [ ] (S-Out-Seq)
⇒ (([l] b ; c ⊗ id) ; id ; [m] c) / [ ] (S-Out-Alt-R)

Figure 10. Reduction of tactic from Example 5. The steps name
the major rule applied at each point.

of tactics; moreover, reduction using the small-step relation does not limit the
language.

Theorem 3 (Completeness of small-step semantics).
If 〈g, t〉 ⇓ 〈s, g′〉, then g . t ⇒∗ s / g′

Proof. Straightforward induction on big-step derivation. Each big step reduction
rule can be given by a sequence of small-step reductions. For example, for (B-Seq):

g1 . t1 ; t2 ⇒ (g1 . t1) . t2 ⇒ (s1 / g2) . t2
⇒ s1 / (g2 . t2) ⇒ s1 / (s2 / g3) ⇒ s1 ; s2 / g3.

Other rules are similar. �
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Soundness is the harder direction of the equivalence proof. We make use of
an auxiliary lemma given later below, which needs to be proved using a stronger
induction than merely induction over the inductive relation.

Theorem 4 (Soundness of small-step semantics).
If g . t ⇒∗ s / g′ then 〈g, t〉 ⇓ 〈s, g′〉.

Proof. By induction on the length of the derivation. Assume the derivation has
length n, and the proposition holds for all derivations of length m < n. Now do
a case distinction on t, considering all possible rules starting a reduction, using
Lemma 5 for the remainder of the reduction if necessary.

As an example, consider t = t1 ; t2. All possible reductions from g . t1 ; t2
have to start with (S-In-Seq) (other rules are not possible), and are hence of the
form g . t1 ; t2 ⇒ (g . t1) . t2 ⇒∗ s / g′. By Lemma 5 (case 3), we have s1, s2, g1

s.t. s = s1 ; s2, and g . t1 ⇒∗ s1 / g1 and g1 . t1 ⇒∗ s2 / g
′ in m steps with

m < n− 1. By the induction assumption (since m < n), we have 〈g, t1〉 ⇓ 〈s1, g1〉,
and 〈g1, t1〉 ⇓ 〈s2, g

′〉. By rule (B-Seq), we get the reduction 〈g, t1 ; t2〉 ⇓ 〈s1 ; s2, g
′〉

as required. Other cases are similar using other parts of Lemma 5. �

Lemma 5 (Structure preservation).

1. If [l] p ⇒∗ s / g then for some s′, s = [l] s′ and there exists a reduction
p ⇒∗ s′ / g with strictly shorter length.

2. If p1 ⊗ p2 ⇒∗ s / g and p1, p2 6= 〈〉, then for some s1, s2, g1 and g2, we
have s = s1 ⊗ s2 and g = g1

∧ g2 and there exist reductions pi ⇒∗ si / gi
with strictly shorter lengths.

3. If p . t ⇒∗ s / g where p is not a goal, then for some s1, s2, g1, we have
s = s1 ; s2 and there exist reductions p ⇒∗ s1 / g1 and g1 . t ⇒∗ s2 / g each
with strictly shorter length.

4. If s/p ⇒∗ s′ /g where p is not a goal, then for some s2, we have s′ = s ; s2,
and there exists a reduction p ⇒∗ s2 / g of strictly shorter length.

5. If p1 | p2 ⇒∗ s/g then there exists a strictly shorter reduction of p1 ⇒∗ s/g
or of p2 ⇒∗ s / g.

Proof. The lemma is proven by simultaneous induction on the lengths of sequences
involved, and a case distinction on the constructors of the term starting the re-
duction.

For example, in case (3), we have to consider all possible reductions from p.t.
The rules (S-In-Seq), (S-Id), (S-Assert) and others are not applicable, as p cannot
be a goal; the only two rules which can start a reduction are (S-Move-Seq) and (S-
Seq-L). For (S-Move-Seq), we have p = s′/g′, and (s′/g′).t ⇒ s′/(g′/t) ⇒∗ s/g.
We can apply the induction assumption, case (4), to s′ / (g′ / t) ⇒∗ s / g (in n−1
steps), and obtain s2 such that s = s′ ; s2 and g′ . t ⇒ s2 / g in m < n− 1 steps.
Then we have s1 as s′, s2 as was, g1 as g′, with p ⇒∗ s1 / g1 in 0 steps, and
g1 . t ⇒∗ s2 / g in m < n− 1 steps as required.



Tactics for Hierarchical Proof 19

For (S-Seq-L), we have p . t ⇒ p′ . t ⇒∗ s / g, with p ⇒ p′. By induction
assumption on p′ . t ⇒∗ s / g, we obtain s1, s2, g1 such that s = s1 ; s2 and
p′ ⇒∗ s1 / g1, g1 . t ⇒∗ s2 / g in length m with m < n− 1. Then s1, s2, g are as
required, with p . t ⇒ p′ . t ⇒∗ s1 / g1 in length at most m+ 1 < n− 1 + 1 = n
as required. �

Theorems 1 and 4 together show that correctness also holds for the small
step semantics:

Corollary 6 (Correctness of small-step semantics).
If g . t ⇒∗ s / g′ then s ` g −→ g′.

6. Proofs that fail

Both operational semantics explain the way that tactics successfully evaluate to
proofs, but what happens when things go wrong? We have suggested that our tactic
language should allow us to examine buggy proofs in detail to understand points of
failure. Informally, a proof fails if it cannot reduce successfully. This may happen
because the reduction is stuck on a non-value, because it only reduces to failing
proofs, or because it only has non-terminating reduction sequences. In this section
we study failing proofs by characterising a set of reduction sequences that cannot
succeed. We consider the small step semantics and classify failure points during
reduction, as they become known. We call such terms futile. Futile terms may be
pruned from the search space during evaluation, and they can be investigated to
explain failure. This also shows the necessity of a small-step semantics; the big-step
semantics does not allow this kind of analysis.

Figure 11 gives an inductive definition of futile terms, by induction over the
structure of proofstates p in the small-step semantics from Section 5. We write
fut p to indicate that p is futile.

The main base cases for futility are the atomic tactic case, where there is
no matching atomic instance of the given tactic a to the input goal γ′, in rule
(F-Atomic), and the assertion case (F-Assert), when the assertion fails. The other
base cases are the five rules for for mis-matched numbers of goals; for example,
(F-Empty-Tac) says that the empty tactic cannot solve a list of goals with length
greater than 0. Unbound variables or improper applications of definitions are also
futile. The remaining structural rules lift futility to larger contexts; notice in partic-
ular that a tensor proofstate is futile if either branch is futile, while an alternation
is only futile if both branches are, reflecting the fact that to reduce a tensor, both
arguments need to reduce, whereas to reduce an alternation, we can reduce either
argument.

Example 7. Suppose we give a tactic program which aims at the hiproof shown in
Figure 3, by defining:

Tl
def
= [l] a ; b
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for all γ,

γ1 · · · γn

γ a ∈ A implies γ 6= γ′

fut γ′ . a
(F-Atomic)

γ 6. γ′

fut γ . assert γ′ (F-Assert)

g : n n 6= 1

fut g . a (F-Atomic-N)

g : n n 6= 1

fut g . id (F-Id-N)

g : n n 6= 1

fut g . [l] p (F-Lab-N)

fut g . t1

fut g . t1 ; t2 (F-Seq)

g : n n > 0

fut g . 〈〉 (F-Empty-Tac) fut g . X (F-Var)

fut p

fut [l] p (F-Lab)

fut p1 fut p2

fut p1 | p2 (F-Alt)

fut p1

fut p1 ⊗ p2 (F-Tens-L)

fut p2

fut p1 ⊗ p2 (F-Tens-R)

fut p

fut p . t (F-Seq-L)

fut p

fut s / p (F-Seq-R)

T /∈ Prog or T (X1, . . . , Xn)
def
= t ∈ Prog for n 6= m

fut g . T (t1, . . . , tm)
(F-Def)

Figure 11. Characterisation of failing proofs.

and Tm and Tu as they were in Example 5. Notice that the program is now buggy
because Tl feeds two subgoals into the 1-ary atomic tactic b.

Because of this, we have fut [γ2, γ3].b, for example. The attempted reduction
of γ1 . T1 is not immediately futile, but can reduce to [l] γ1 . a . b and then to
[l] (a / [γ2, γ3]) . b. However, the next step by (S-Move-Seq) is to [l] a / ([γ2, γ3] . b)
which is futile by (F-Seq-R) and (F-Lab).

The following results establish that this notion of futile behaves as desired.

Lemma 7 (Futile proofs will fail). If fut p, then there is no value v such that
p ⇒∗ v.

Proof. By induction on the structure of p. For base cases, note that fut p implies
that p is stuck. For the inductive step, we apply Lemma 5 to show the congruence
of futility. �
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Observe that, as one would hope, Lemma 7 implies that values are not futile,
so we never have fut v for any value v. However, unlike values, futile terms may still
contain reductions. The next lemma shows that once the reduction has reached a
futile term, then further reductions cannot get us out of this state.

Lemma 8 (Preservation of futility). If fut p and p ⇒ p′, then fut p′.

Proof. By case analysis on the small-step semantics. �

Lemmas 7 and 8 tell us that futility behaves as expected, but do not tell us
that we have an optimal characterisation of futility. One might hope for a converse
to Lemma 7, so we could see that a term is futile as soon as possible, but in the
presence of recursive tactics this would be hard to achieve.

Finally, the main theorem is a progress property for our small-step semantics.
Every proofstate must either have successfully terminated, must be capable of
further reductions, or must be futile. The last two cases may overlap, as we have
pointed out, but we find the contextual closure of futility more convenient to use
than the more restrictive notion of stuckness.

Theorem 9 (Progress). For all p, either

• for some value v, p ≡ v, or
• p is a non-value and for some p′, p ⇒ p′, or
• fut p.

Proof. By induction on the structure of p. �

By the definition of futility, we can isolate the futile subterms in a futile term
and explain their stuck points by looking at the base cases for futility. Futility also
allows early pruning of the search space when more than one reduction is possible.
However, stuck subterms are not the only way tactic programs can misbehave: they
might also loop forever, for example repeatedly applying atomic rules (consider
repeated application of rule sym from Example 3). In general there can be no way
to detect looping, although approximate tests would be useful in practice.

7. Tactic programming

Tactics as above are procedures which produce hiproofs. To help with writing
tactics, most theorem provers provide tacticals, which are tactic functionals or
higher-order tactics. These combine existing tactics into new ones. Our language
is more restrictive, but does admit first-order tacticals.



22 David Aspinall, Ewen Denney and Christoph Lüth

[ γ2, γ2 ] . ALL(b)
⇒ [ γ2, γ2 ] . (b ⊗ ALL(b) | 〈〉) (S-Def)
⇒ [ γ2, γ2 ] . b ⊗ ALL(b) | [ γ2, γ2 ] . 〈〉 (S-In-Alt)
⇒ (γ2 . b) ⊗ (γ2 . ALL(b)) | . . . (S-In-Tens)
⇒ (b / [ ]) ⊗ (γ2 . (b ⊗ ALL(b) | 〈〉)) | . . . (S-Atomic), (S-Def)
⇒ . . . ⊗ (γ2 . b ⊗ ALL(b) | γ2 . 〈〉) | . . . (S-In-Alt)
⇒ . . . ⊗ ((γ2 . b) ⊗ ([ ] . ALL(b)) | . . .) | . . . (S-In-Tens)
⇒ . . . ⊗ ((b / [ ]) ⊗ ([ ] . (b ⊗ ALL(b) | 〈〉)) | . . .) | . . . (S-Atomic),(S-Def)
⇒ . . . ⊗ (. . . ⊗ ([ ] . b ⊗ ALL(b) | [ ] . 〈〉) | . . .) | . . . (S-In-Alt)
⇒ . . . ⊗ (. . . ⊗ (. . . | 〈〉 / [ ]) | . . .) | . . . (S-Empty)
⇒ . . . ⊗ ((b / [ ]) ⊗ (〈〉 / [ ]) | . . .) | . . . (S-Out-Alt-R)
⇒ . . . ⊗ (b / [ ]) | . . . | . . . (S-Out-Tens), b ⊗ 〈〉 = b
⇒ (b / [ ]) ⊗ (b / [ ]) | . . . (S-Out-Alt-L)
⇒ b ⊗ b / [ ] | . . . (S-Out-Tens)
⇒ b ⊗ b / [ ] (S-Out-Alt-L)

Figure 12. Example reduction using the ALL(b) tactic.

7.1. Tacticals

The simplest examples of tacticals are the alternation and sequencing operations
for tactics. Theorem provers like Edinburgh LCF, Isabelle, HOL or Coq provide
more advanced patterns of applications; we concentrate on a few characteristic
examples.

We write tacticals as parameterised tactic definitions in our tactic program
Prog . A simple example is TRY(t), which applies t and returns the result if it
succeeds, or it does nothing:

TRY(X)
def
= X | id

On the other hand, we may want to apply t to as many goals as possible (possibly
zero), using ALL(t):

ALL(X)
def
= X ⊗ ALL(X) | 〈〉

Figure 12 shows how ALL(b) reduces the goal [ γ2, γ2 ]. A more involved example
applies the tactic t as often as possible. It uses ID, the ‘polymorphic identity’:

ID
def
= ALL(id)

REPEAT(X)
def
= X ; REPEAT(X) | ID

ID applied to any goal g : n reduces to idn, the n-fold tensor of id:

[ γ1, . . . γn ] . ID ⇒∗ idn / [ γ1, . . . γn ] (1)
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` A =⇒ (B =⇒ A) ; IMP-INTRO
⇒ ` A =⇒ (B =⇒ A) . (impI ; REPEAT(impI) | ID) (S-Def)
⇒ ` A =⇒ (B =⇒ A) . impI ; REPEAT(impI) | ` A =⇒ (B =⇒ A) . ID (S-In-Alt)
⇒ (` A =⇒ (B =⇒ A) . impI) . REPEAT(impI) | . . . (S-In-Seq)
⇒ (impI / {A} ` B =⇒ A) . REPEAT(impI) | . . . (S-Atomic)
⇒ impI / ({A} ` B =⇒ A . REPEAT(impI)) | . . . (S-Move-Seq)
⇒ impI / ({A} ` B =⇒ A . (impI ; REPEAT(impI) | ID)) | . . . (S-Def)
⇒ impI / ({A} ` B =⇒ A . impI ; REPEAT(impI) | {A} ` B =⇒ A . ID) | . . .

(S-In-Alt)
⇒ impI / (({A} ` B =⇒ A . impI) . REPEAT(impI) | . . .) | . . . (S-In-Seq)
⇒ impI / ((impI / {A,B} ` A) . REPEAT(impI) | . . .) | . . . (S-Atomic)
⇒ impI / (impI / ({A,B} ` A . REPEAT(impI)) | . . .) | . . . (S-Move-Seq)
⇒ impI / (impI / ({A,B} ` A . (impI ; REPEAT(impI) | ID)) | . . .) | . . . (S-Def)
⇒ impI / (impI / ({A,B} ` A . impI ; REPEAT(impI) | {A,B} ` A . ID) | . . .) | . . .

(S-In-Alt)
⇒ impI / (impI / (. . . | id / {A,B} ` A) | . . .) | . . . reduction of ID (1)
⇒ impI / (impI / (id / {A,B} ` A) | . . .) | . . . (S-Out-Alt-R)
⇒ impI / (impI ; id / {A,B} ` A | . . .) | . . . (S-Out-Seq)
⇒ impI / (impI ; id / {A,B} ` A) | . . . (S-Out-Alt-L)
⇒ impI ; impI ; id / {A,B} ` A | . . . (S-Out-Seq)
⇒ impI ; impI ; id / {A,B} ` A (S-Out-Alt-L)

Figure 13. Example reduction using the IMP-INTRO tactic.

An application of REPEAT is a tactic to strip away all implications in the logic PL,
shown in Example 2. This is defined as:

IMP-INTRO
def
= REPEAT(impI)

An example reduction is shown in Figure 13.
A similar, but more powerful tactic for predicate logic (see Example 4) is

INTROS
def
= REPEAT(impI | andI | allI)

which reduces all conjunctions, implications and universal quantifiers.

7.2. Implementation aspects: non-determinism

Both semantics we have given are deliberately non-deterministic: a tactic t applied
to a goal g may evaluate to different pairs of hiproof s and remaining goals g′. There
can be many unwanted reductions (those producing no proof, or an incomplete
proof) along with successful ones (which produce the desired proof). For example,
γ . REPEAT(t) can always reduce to id / γ, making no progress on solving γ.



24 David Aspinall, Ewen Denney and Christoph Lüth

Non-determinism has advantages: the tensor splitting allows a tactic such as
ALL(b) ⊗ ALL(c) to solve the goal γ2 ⊗ γ2 ⊗ γ3 by splitting the tensor judiciously:

[ γ2, γ2, γ3 ] . ALL(b) ⊗ ALL(c) ⇒ ([ γ2, γ2 ] . ALL(b)) ⊗ (γ3 . ALL(c))
⇒∗ (b ⊗ b / [ ]) ⊗ (c / [ ])
⇒ b ⊗ b ⊗ c / [ ]

Thus, a non-deterministic semantics gives us a precise understanding of the full
power of the language. We can subsequently develop deterministic variations of
the semantics, and investigate whether they retain the same expressiveness.

Clearly, however, the non-deterministic semantics is not pleasant to imple-
ment directly: it requires keeping track of all possible reductions, and selecting
the right ones after the fact. There is a rapid blow up in the number of possible
reductions. Although it is possible in principle to implement this, it may not be
desirable: current tactical languages avoid this by severely reducing nondetermin-
ism or providing mechanisms for controlling search explicitly. For example, the
traditional alternation tactical (ORELSE in the LCF family) selects the first alter-
native if it is successful, and the second otherwise. Alternatively, one may search in
a particular order (perhaps lazily, i.e., only evaluating alternatives when needed)
and allow backtracking. This is how the system Isabelle, for example, handles the
non-determinism arising from the ambiguities of higher-order unification: when a
rule matched on the proof state produces more than one possible unifier, the first
match is chosen, but users can step through the matches manually [22].

In our language we could achieve a simple control mechanism by building a
futility test into the tactic engine, and rewriting eagerly:

p1 | p2 −→ p1 when fut p2

p1 | p2 −→ p2 when fut p1

If we additionally specify left-right evaluation order, we would only use the second
rule. However, these rewrites lose record of the failure points which might be
useful for debugging. A more complete treatment would require exception-like
mechanisms to propagate failure.

Tensor non-determinism might be tamed by introducing some form of a “goal
stack” containing remaining goals to be solved, and evaluating tensor tactic ap-
plications sequentially. In our setting this requires some “rewiring” to ensure that
goals are treated at the right nesting level.

The heart of the problem here (from our point of view) is the crucial difference
between hiproofs and tactics. Because of alternation and repetition, a tactic can
evaluate to many different hiproofs, each of which can validate different proofs, so
we cannot extend the validity notion directly, even for (statically) checking arities.
Tactics with predictable arities would give enough information for tensor splitting,
i.e., predicting the distribution of subgoals in the proof task.

This is one of the things that makes tactic programming difficult. It is inter-
esting to investigate whether richer static type systems could help; perhaps there is
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a useful intermediate ground between ordinary untyped tactics and what could be
called “certified tactic programming” [3, 23], where tactics are shown to construct
correct proofs using dependent typing. Unfortunately we must defer further study
of this, and of deterministic evaluation schemes for our language, to future work.

8. Related work

Our work with hierarchical structure in the novel form of hiproofs is unique, al-
though there are many related developments on tactic language semantics and
structured proofs elsewhere. We highlight some recent and closely connected de-
velopments. For more references to related notions of structured proof, see [7]. One
basic point to bear in mind when comparing Hitac to existing systems is that Hitac
has been devised as a formalism in which to study the mechanics of interactive
tactical theorem proving on a generic level, independent of both an underlying
prover and logic; thus, the relevant question is whether our formalism is powerful
enough to capture the necessary essentials of existing systems.

Since Edinburgh LCF [10], tactic programming has used a full-blown pro-
gramming language for defining new tactics, as is also done in the modern HOL
systems, such as Isabelle [20, 22], HOL [28] and HOL Light [11]. In these systems,
tactics are written as functions in variants of the functional programming language
ML, constructing proof procedures by composing basic inferences. The direct way
of understanding such tactics is as the functions they define over proof states, sug-
gesting a denotational fixed point semantics. This semantics was investigated for
the foundational tactic language Angel [19], which, as its name suggests, is centred
on the idea of angelic nondeterminism. Angel was studied further in the extended
language ArcAngel [21] which added alternation and recursion to Angel to provide
a calculus for program refinement. An advantage of the denotational semantics is
that a number of equational laws about tactics to be derived.

In the last decade, Isabelle has moved from ML-based theory programming
to programming in the custom proof language Isar, which allows users to structure
proofs in a declarative style which follows the logical argument. Declarative proofs
are checked using an operational mechanism based on an evaluation by an abstract
machine [30], although Isar itself currently has only basic facilities for writing
tactics and still relies on underlying ML code to do the heavy lifting.

One system that bears a closer structural resemblance to the notion of a
hiproof is Nuprl [2, 18]. In Nuprl, a proof tree is built with inference rules, and
tactics build inference rules from primitive rules; in contrast to LCF-style tactics,
tactics appear as high-level inference rules in the proof tree. The Nuprl proof editor
allows navigating the tree, expanding previously applied tactics, or refining a proof
by applying a tactic on a node; thus, in Nuprl the proof tree is manipulated more
directly as opposed to LCF-style systems, where the series of inferences leading to
the current proof state is mostly handled behind the scenes. Nuprl can be captured
quite directly in our framework: a proof tree can modelled by a hiproof, and tactics
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(written in Hitac) would always have a label with their name, such that expanding
them produces a label designating the hiproof constructed by applying this tactic.
Of course, writing tactics in a Turing equivalent programming language such as
Nurpl’s ML is both more powerful and hence more difficult to reason about than
using Hitac.

Coq offers the power of OCaml for tactic programming, but also provides a
dedicated functional language for writing tactics, Ltac, designed by Delahaye [6].
This has the advantage of embedding directly in the Coq proof language, and offers
powerful matching on the proof context. However, Delahaye did not formalise an
evaluation semantics or describe a tactic tracing mechanism.

There are several attempts to encode tactical languages in logical frameworks
more powerful than programming languages: Felty using λProlog [8], Appel and
Felty using Twelf [3], or Aboul-Housn [1] embedding tactics into theorems and
proofs without fixing on a particular meta-logic. The latter has the advantage
that users do not need a different language to write tactics, but comes with a loss
of expressiveness. Jojgov and Geuvers [13] define a calculus of tactics based on
higher-order abstract syntax, which has an operational semantics and can handle
phenomena such as meta-variables, but does not account for hierarchical structure,
and, because it uses a particular notion of terms and types, cannot express tactics
in systems which are not compatible.

Kirchner [14] appears to have been the first to consider formally describing a
small-step semantics for tactic evaluation, impressively attempting to capture the
behaviour of both Coq and PVS within similar semantic frameworks. He defines a
judgement e/τ → e′/τ ′, which operates on a tactic expression e and proof context
τ , to produce a simpler expression and updated context. So, unlike our simpler
validation-based scheme, state based side-effecting of a whole proof is possible.
However, the reduction notion is very general and the definitions for Coq and
PVS are completely system-specific using semantically defined operations on proof
contexts; there is a big gulf between providing these definitions and proving them
correct. In subsequent work, Kirchner focused on PVS [15].

Tinycals [24] is another small-step tactic language, implemented in Matita [4].
The main motivation is to allow stepping inside tactics to extend step-by-step
checking of the proof level. Interactive step-by-step checking of proofs was pop-
ularised by Proof General [5] and followed by several other systems including
Matita. Aside from Matita, other common systems do not allow single-stepping of
defined tactics using their source (i.e., source-level debugging); instead, forms of
tracing are possible by interrupting the tactic engine after a step and displaying
the current state. Tinycals allows tracing linked back to the tactic expression, also
showing the user information about remaining goals and backtracking points. The
Tinycals language allows nested proof structure to be expressed in tactics, like
hiproofs (and the language is also somewhat reminiscent of Isar’s style), but there
is no naming for the nested structure in either case.

The Ωmega system [26] is in the same spirit as Nuprl, Coq, or Isabelle, but
also integrates proof planning. It represents proofs and plans by the proof plan data
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structure PDS, which supports operations to abstract over details, and expand,
akin to the zooming facilities of hiproof. An old interface for Ωmega called LΩUI
[27] allowed the user to manipulate the proof tree directly, but the more recent
PlatΩ interface [29] instead requires users to write formalised proofs in textual
form using the TeXmacs editor (in this respect it is similar to the Isar approach,
where Isabelle can produce LATEX source code from formally checked proofs). The
hierarchical structure of PDS is nicely captured by hiproofs, but another similarity
is that Ωmega uses Omdoc internally as document and proof exchange format.
Omdoc [16] is “a content markup scheme for collections of mathematical docu-
ments”, which also offers facilities to express proofs; it is similar to hiproofs in
that it is parametric over an underlying logic, but it aims at interchange between
systems, is much broader in scope, and does not include a tactical language.

9. Conclusions and future work

This paper introduced a tactic language, Hitac, for constructing hierarchical proofs.
We believe that hierarchical proofs offer the chance for better management of for-
mal proofs, in particular, by making a connection between proofs and procedural
methods of constructing them.

In this paper, we have given operational semantics for Hitac. The big-step
semantics gives a meaning to our language, while the small-step semantics consid-
ers the intermediate proof states. We have shown that both semantics coincide,
which shows that our technically intricate definition of the small-step reduction
still produces exactly all the reductions that are needed.

One important result for the small-step semantics is to characterise the nor-
mal forms. This required a careful analysis of the “stuck” states (such as when an
atomic tactic does not match a goal) that can be reached. Isolating failure points
in stuck states will be important to help debugging. However, work still remains
to describe further formal properties of our calculus and its extensions.

The calculus we have presented here represents an idealised tactic language.
We believe that this is a natural starting point for the formal study of tactic
languages. We have kept examples concise on purpose to allow the reader to check
them. Larger examples have been explored using a prototype implementation, but
the calculus needs additional features before it can be exploited for real. Real
tactic languages are considerably richer, for example, including first class and
higher-order tacticals, and binding of goal or logical term expressions; they also
include fixed orders of evaluation and a diversity of methods for controlling search.
At least some of these could be usefully studied in detail in our setting.

Another existing tactic language feature not directly modelled here is the pro-
vision of meta-variables in logical formulae. Meta-variables allow goals to depend
on one another. Instantiation of a meta-variable has an “action-at-a-distance” ef-
fect, potentially altering subgoals in other branches of the proof. This breaks the



28 David Aspinall, Ewen Denney and Christoph Lüth

pure independence property of the tensor product used here and would need fur-
ther machinery to model properly.

Although we have not discussed it in this paper, a topic that we think our
approach may be able to handle well is the reuse of tactics, explicitly addressed in
[1] (and also [9, 17, 25]). Indeed, since the underlying derivation system is rather
generic, we may hope to be able to write tactics which can be reused between dif-
ferent systems, not just different proofs — providing suitable basic atomic tactics
could be represented. However, this suggestion certainly warrants further investi-
gation and experimentation before we can really claim it is valid.

On the practical side, the use of a generic tactic language offers hope that we
may one day be able to write tactics that can be ported between different systems,
to lift the current state of the art in porting proofs a step higher. We plan to
investigate this to see if it is feasible within real interface layers on top of existing
provers; the Proof General system is an appealing vehicle for this. Heneveld [12]
also conducted experiments into building languages at the interface layer rather
than by extending the prover language.

Finally, we would like to exploit the new hierarchical structure we have intro-
duced for real proofs. In associated work by colleagues at Edinburgh, a graphical
tool is being developed for displaying and navigating in hiproofs. Explicitly struc-
tured low-level proofs are likely to be more informative than unstructured ones;
this may even be useful for automatically generated proofs, for example, formal
proofs generated as evidence in the certification of software systems.
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and S. Tahar, editors, Theorem Proving in Higher-Order Logics TPHOLs 2008, vol-
ume 5170 of Lecture Notes in Computer Science, pages 28–32. Springer, 2008.

[29] M. Wagner, S. Autexier, and C. Benzmüller. PLATO: A mediator between text-
editors and proof assistance systems. In S. Autexier and C. Benzmüller, editors,
7th Workshop on User Interfaces for Theorem Provers (UITP’06), volume 174(2) of
Electronic Notes on Theoretical Computer Science, pages 87–107. Elsevier, August
2006.

[30] M. Wenzel. Isar — a generic interpretative approach to readable formal proof doc-
uments. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Théry, editors,
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