
Experiences in Applying
Formal Verification in Robotics?

Dennis Walter, Holger Täubig, and Christoph Lüth

Deutsches Forschungszentrum für Künstliche Intelligenz
Bremen, Germany

{Dennis.Walter,Holger.Taeubig,Christoph.Lueth}@dfki.de

Abstract. Formal verification efforts in the area of robotics are still
comparatively scarce. In this paper we report on our experiences with
one such effort, which was concerned with designing, implementing and
certifying a safety function for autonomous vehicles and robots. We out-
line the algorithm which was specifically designed with safety through
formal verification in mind, and present our verification methodology,
which is based on formal proof and verification using the theorem prover
Isabelle. The necessary normative measures that are covered are dis-
cussed. The algorithm and our methodology have been certified for use
in applications up to SIL 3 of IEC61508-3 by a certification authority.
Throughout, issues we recognised as being important for a successful ap-
plication of formal methods in the domain at hand are highlighted. These
pertain to the development process, the abstraction level at which speci-
fications should be formulated, and the interplay between simulation and
verification, among others.

1 Introduction

While in some areas such as avionics, formal verification is well established in the
development process, in other areas its use is still rare. One such area is robotics,
in particular service robotics. This paper reports on our experiences when apply-
ing formal verification techniques to the certification of an algorithm calculating
dynamic safety zones for an autonomous vehicle or robot which prevent it from
colliding with stationary obstacles. Robotics as an application area offers its own
challenges. Algorithms, often based on approximations and heuristics and imple-
menting rather sophisticated computations such as the area covered by a braking
robot in our case, play a central role. This leads to an increase in the importance
of functional correctness. Further, the development process should be flexible,
and allow us to iteratively develop both algorithms and specifications from the
overall safety requirements. This can be contrasted to a rigid V-model with its
strict separation of development phases which makes it expensive to ‘go back’
to earlier phases of the development when one discovers that the implemented
algorithm is, in fact, safe but unusable in practice.
? This work was funded by the German Federal Ministry of Education and Research
under grants 01 IM F02 A and 01IS09044B.

2

Our methodology for specifying and verifying functional properties empha-
sises proving as well as testing. We demonstrate which measures can be covered
by formal proof, even though the relevant standard IEC61508-3 [10] focuses on
testing, and argue that formal proof, on the other hand, allows us to relax the
bureaucratic elements of the development process without losing reliability.

This paper is structured as follows: in Sec. 2, we give an overview over the
project, showing the actual algorithm, the formal domain model, and our ap-
proach to specification and verification. In Sec. 3, we review our experiences
made during the certification of the algorithm, pertaining to formal verifica-
tion in the robotics domain and the development process we used, and highlight
benefits and limitations of our approach.

2 The SAMS Project

2.1 The Safety Algorithm for collision avoidance

The algorithm which has been verified in SAMS is a collision avoidance algo-
rithm, which protects a vehicle moving in a plane, e.g. an automated guided
vehicle or service robot, from colliding with statical obstacles. For that purpose,
a safety zone is computed using the algorithm described in this section and then
checked via a laser scanner whether there is an obstacle inside the safety zone.
If so, the moving vehicle has to stop, otherwise it can safely continue its move-
ment. The purpose of the verified algorithm is to compute a safety zone that is
a superset of the braking area covered by the vehicle during braking (Fig. 1a).

Input. The algorithm takes as input intervals [vmin, vmax] and [ωmin, ωmax]
which safely cover the measured translational and rotational velocities v and
ω of the vehicle, a set of points [Ri]ni=1 which define the robots shape as their
convex hull, and a list (v1, s1), . . . , (vm, sm) of braking measurements for straight
forward movements of the vehicle. Each pair consists of a velocity vj and the
corresponding measured braking distance sj . We assume there is at least one
measurement, taken at maximum speed. Furthermore, a latency t is given which
parameterises the time the vehicle continues to drive with velocity (v, ω) before
it starts to brake; it comprises the sum of the safety functions cycle time as well
as any latency in the input data and the reaction time of the brakes.

Assumptions. First and foremost, we assume the robots braking trajectory to
be a straight line or a circular arc; in other words, the steering of the vehicle
remains fixed until the vehicle has completely stopped. A second assumption of
the braking model is an energy consideration. It allows to transfer the braking
distance measurement from straight motion to motion along a circle or even
turning on the spot. Together, both assumptions establish the main braking
model computation, which takes the initial velocity vector (v, ω) and delivers the
so called braking configuration (s, α). The braking configuration (s, α) consists of
arc length s and angle α of the robots circular braking trajectory. In the case of
ω = 0, the angle α becomes zero and the braking configuration (s, α) describes a

3

(a) (b) (c)

Fig. 1. Calculating the safety zones: (a) area covered by the vehicle during braking with
a single braking configuration (s, α); (b) safety zone covering all braking configurations
[smin, smax]× [αmin, αmax]; (c) safety zone transformed into a laser-scan.

straight line of length s. Finally, besides static obstacles we assume the braking
behaviour of the vehicle to be time-independent and location-independent.

Algorithm. First, conservatively transform [vmin, vmax] × [ωmin, ωmax], the ve-
locity configuration area, into the braking configuration area [smin, smax] ×
[αmin, αmax]. The transformation braking-configuration(v, ω) describes a move-
ment consisting of moving for time t with velocity (v, ω), and then braking on a
circular arc that retains the radius defined by v and ω.

[Step 1] For (v, ω) in {vmin, vmax} × {ωmin, ωmax}, compute the braking con-
figuration (s, α) as follows, and determine minimum and maximum smin, smax,
αmin, and αmax of the four results:

(s, α) = braking-configuration(v, ω) (1)

Then, compute the safety zone in terms of a finite set of points [Pk]Kk=1 and
a buffer radius q (Fig. 1b). The safety zone is an area A+ ([Pk]Kk=1; q

)
, given by

the union of the convex hull of [Pk]Kk=1 and the set of all points having distance
of at most q > 0 to any point of that convex hull:

A+ ([Pk]Kk=1; q
)

=
{
P+Q

∣∣ P ∈ conv
{

[Pk]Kk=1
}
, |Q| ≤ q

}
(2)

[Step 2a] To compute points Pk: For all (s, α) ∈ {smin, smax} × {αmin, αmax},
compute the safety zone for the single braking configuration (s, α) in terms of a
set of n · (L+ 2) points1 as the convex hull of

Hs,α =
{

[U1
i,s,α, U

2
i,s,α, V

0
i,s,α, . . . , V

L−1
i,s,α]ni=1

}
,

where Ui,s,α and Vi,s,α are given as follows (for i in 1, . . . , n):

U1
i,s,α = Ri U2

i,s,α = T (sL ,
α
L) ·Ri

V 0
i,s,α = U1 +Q(αL) 1

2 (U2 − U1) V ji,s,α = T (j·sL ,
j·α
L) · V 0 (3)

1 The parameter L determines the number of auxiliary points when computing the
convex hull of an arc.

4

with T (s, α) =
(

cosα − sinα s sinc α2 cos α2
sinα cosα s sinc α2 sin α2

0 0 1

)
and Q(α) =

(
1 tan α2 0

− tan α2 1 0
0 0 1

)
.

Now, [Pk]Kk=1 is the result of a standard convex hull algorithm like Graham
scan applied to the union of the Hs,α for all (s, α) {smin, smax}× {αmin, αmax}.

[Step 2b] The buffer radius q includes a conservative error approximation for the
algorithm, and is given as

q = 1
6
(
αmax−αmin

2
)2 max {|smax|; |smin|}+

(
1− cos αmax−αmin

2
)

max
1≤i≤n

{|Ri|} (4)

[Step 3] Finally, [Pk]Kk=1 is transformed into scanner coordinates, and the safety
zone A+ ([Pk]Kk=1; q

)
is sampled into a laser-scan like representation (Fig. 1c).

Output and guarantees. If the vehicle satisfies the assumptions described above
and if the input parameters are correct or at least conservative, the algorithm
guarantees the correctness of the safety zone. This means that the vehicle will
always be able to stop within the area defined by the braking zone. More pre-
cisely, no part of the vehicle will leave that area at any time while first driving
with constant velocity (v, ω) for time t and then braking down to standstill.

The guarantee given consists of two major properties: first, correctness of
the braking model computation (Step 1), and second, the correct and strictly
conservative computation of the area A+ ([Pk]Kk=1; q

)
(Step 2). Both properties

have been formally proven in the Isabelle theorem prover.

2.2 Formalising the Domain Model

In order to be able to state and verify safety properties about the algorithm
introduced in Sec. 2.1, we need a formal model of the domain of the algorithm,
that is the world of two-dimensional moving objects. This model is used for the
specification and verification of the concrete source code. Therefore, by formal
model we mean a collection of theories of the theorem prover Isabelle [14], and
not merely a pen-and-paper formalisation.

The contour of the robot, for instance, is modelled as a convex polygon, and
obstacles are simply connected sets of points. The main safety property we will
need to formalise is that the area traversed by the robot while braking from
velocity (v, ω) is covered by the safety zone calculated for that velocity, given by
equation (2) above. In the notation of Sec. 2.1, we require the following to hold:

braking-area(v, ω) ⊆ A+ ([Pk]Kk=1; q
)

(5)

Isabelle provides a rich base of theories concerned with concepts such as real
numbers, polynomials, or set theory. In the process of domain formalisation this
base is extended with the concepts and theorems relevant to our concrete model.
For example, the following shows the definition of the property of convex sets of
points; this definition has been copied verbatim from the corresponding Isabelle
theory file (∗R denotes scalar multiplication):

5

definition
convex :: "Point set ⇒ bool"

where
"convex K ≡ (∀ x∈K. ∀ y∈K. ∀ t. (0≤t ∧ t≤1) −→

(t *R x + (1-t) *R y)∈K)"

Or in words, a set of points is convex iff for any two points x, y all points on
the line between them are in the set as well. We can now define the convex hull
of a set of points X as the intersection of all convex sets K containing X:
definition

convex_hull :: "Point set ⇒ Point set"
where

"convex_hull X =
⋂

{K . convex K ∧ X⊆K}"

These definitions are almost identical to what one can find in mathematical
textbooks. This is particularly valuable in a certification context, as theory files
can be reviewed without an in-depth knowledge of Isabelle syntax. The Isabelle
equivalent of (5) involves slightly too many concepts whose definitions we must
elide for reasons of brevity. To give the reader a taste of a more involved model
concept, we present a theorem about the approximation of an arc by the convex
hull of three points:
lemma arcpoint_in_convex_hull’:

" [[|ϕ| < pi; 0≤t ∧ t≤1;
Q = arcendpoint s ϕ P; K = convexpoint P Q ϕ]]
=⇒ arcendpoint (t*s) (t*ϕ) P - P ∈ convex_hull {K-P, Q-P, 0}"

If Q is the endpoint of a circular arc (defined by its length s and angle
ϕ), starting at P , then the convex hull of P,Q and a third point K (whose
computation via convexpoint is irrelevant here) will contain every point on the
arc (computed via arcendpoint by scaling s and ϕ).

Our domain modelling consists of 11 theory files, containing about 110 defi-
nitions and 510 lemmas and theorems. It was developed in about five months by
a researcher with a good background in mathematics, but no previous knowledge
of Isabelle, supporting the claim that mathematics is the key, and the technical-
ities of Isabelle do not distract one unduely from the actual formal development.

2.3 Specification & Verification

Certifying a software module involves verification on several levels: design re-
quirements need to be traced back to system (safety) requirements, code needs
to be verified according to the V&V plan and against the design specification,
and during integration there are several verification activities based on require-
ments set forth in the corresponding specification phase. For each of these levels
a well-defined procedure for specifying requirements is needed. In the SAMS
project we stressed functional correctness, the verification of the functional be-
haviour of concrete code. This comprises both the absence of runtime errors like
array-out-of-bounds or division-by-zero (a property we call program safety), and
correctness of the results of computations, as defined by formal specifications.

6

We consider functional correctness important because it is mandated by stan-
dards like IEC61508-3 to ensure program safety properties on the code level, and
moreover, because robotics algorithms as the one described in Sec. 2.1 involve
very complex computations whose correct implementation is hard to verify by a
mere code review. In the terminology of Heitmeyer et al. [8] they deserve a thor-
ough and detailed analysis which is not possible in operational models (e. g. state
machine models) and for which an axiomatic approach like the one presented
here is well suited.2 We consider a purely operational analysis insufficient, be-
cause it is equally important to analyse the data-related and the control-related
aspects of software systems in robotics, where operational models focus on the
latter. The former lends itself ideally to a declarative, ‘axiomatic’ specification.
Moreover, models for robotics require non-discrete data as measurements of real
world entities are involved.

As an example from our own code: one subroutine of the algorithm of Sec. 2.1
approximates the arc along which the vehicle brakes by a polygon. The complete
specification (roughly stating that the arc is included in the area covered by the
polygon) invariably leads to the use of mathematical concepts like convex sets of
points, set intersection, etc. Furthermore, the correct execution of the system’s
safety function crucially depends on the correct design and implementation of
this approximation. In particular, a flaw in this subroutine can be very hard
to detect. This is an important difference to, e. g., program crashes (which an
external watchdog may detect) or Boolean circuits (whose input domain can be
tested much more thoroughly).

To express the functional properties of interest we designed a formal lan-
guage for the high-level specification of the functional behaviour of C programs.
The language lies in the tradition of design by contract languages like JML [4]
or ACSL [2], where program functions are annotated with preconditions, post-
conditions and a modification frame limiting the effect of function execution on
memory changes. Our language additionally allows to include higher-order logic
expressions in the syntax of the theorem prover Isabelle in specifications. This
gain in language expressivity is the crucial ingredient for allowing more abstract
specifications in which program values are put in relation to their corresponding
domain values. The desired properties of functions are then expressed in terms
of the domain language as it was formalised in Isabelle.

An example specification is given in Fig. 2: it uses the concepts is-RT and
RT from the domain formalisation as well as the function composition opera-
tor ◦ of Isabelle/HOL to concisely express that comp_transform is an operation
that composes two rigid body transforms. RT is what we call a representation
function, which lifts a C value of type RigidTransform into its domain equivalent.
is-RT is a predicate that recognises all C values that actually represent rigid
body transforms. (The internal representation of RigidTransform are 3 × 3 ma-

2 We observe a slight collision of terminologies here: in the theorem proving commu-
nity, an axiomatic approach is distinguished from a definitional approach, in which
theories are derived from first principles and new concepts are built on top of existing
ones. We do not use this interpretation of ‘axiomatic’ in this paper.

7

/∗@
@requ i res $! is_RT (a2b) && $! is_RT (b2c)
@memory \ v a l i d {a2b , b2c , a2c } &&

∗ a2c <∗> (∗ a2b <+> ∗b2c)
@ensures $! is_RT (a2c) &&

${ ^RT{ a2c } = ^RT{b2c} o ^RT{a2b} }
@modif ies ∗ a2c
@∗/

vo id comp_transform (const Rig idTrans fo rm ∗ a2b ,
const Rig idTrans fo rm ∗ b2c ,
R ig idTrans fo rm ∗ a2c) ;

Fig. 2. An example specification of a C function, directly using the domain vocabulary
as defined by the formalisation in Isabelle/HOL. The @memory annotation requires
that a2c is not aliased with a2b nor with b2c and that all three are valid pointers.

trices, which hence include other transformations, too.) Further details about
the specification language and how functions can be proven correct in Isabelle
w. r. t. their specification have been described in a previous paper [12].

We now sketch the steps that are taken in the specification and verification
workflow. To reiterate our setting: To attach specifications to code, there must
be code; while in the classic V-model, code enters rather late in the process, to
specify we merely need the function interfaces, not the complete implementation.
Moreover, in our case implemented prototypes are available early in the devel-
opment, a point we elaborate on in Sec. 3.2. Assuming that the code for those
parts of the program that are put under formal scrutiny are available, and that
the domain model has been sufficiently formalised so that at least the relevant
definitions that will be used in specifications exist, our workflow looks as follows
(see also Fig. 3): (1) C function interfaces (declarations) are annotated with
their respective specifications: those functions that implement operations with
an analogue in the domain, like geometric transformations, are specified with the
help of the domain vocabulary given by the formalisation; (2) In specification re-
views both the completeness of the specification w. r. t. more high-level, natural
language specifications as well as implementation-related issues are discussed.
The latter include issues like the restructuring of code to ease verification, or
the elimination of language constructs that are not supported by the verification
environment; (3) After the functions have been implemented, they are checked
for obvious deviations from their specified behaviour in code reviews. At least
one programmer, one specifier or domain expert and one verifier takes part in
these meetings. Such meetings give the verifier an understanding of how the code
works, which is crucial for the verification to succeed. (4) The translation of C
functions into the Isabelle formalisation is done modularly: to translate function
foo for a verification attempt, only its source code and the specifications of all
functions called by foo as well as obviously that of the function itself are re-
quired. A front-end parses and analyses these entities and emits Isabelle terms

8

Specify Implement

Spec review Code review

Verify

clarify/
refer

resolve resolve

spec
errors

code
errors

Execute

applicability
issues

Safety
Requirements

Fig. 3. The specification and verification workflow, not enforcing a temporal depen-
dency between design specification and code, which is ensured by the final verification.

representing their abstract syntax; (5) Making use of the domain formalisation
and a couple of automatic procedures written in Isabelle, a human verifier inter-
actively proves these functions correct. This is a labour-intensive part, and the
core of formal verification. (6) In the case that a function cannot be verified, a
specification or code review is called and as soon as the error has been under-
stood, modifications on either the design specification, the code, or the proof
script are undertaken, leading to a reiteration of the process just described.

3 Lessons Learnt

3.1 Formal Verification in the Robotics Domain

Challenges. The functionality of robotics systems is mainly implemented in soft-
ware, making use of increasingly complex algorithms. With growing system func-
tionality the difficulties of ensuring safety increase, in particular in the face of
moving towards mixed human-robot work places instead of physically separat-
ing machine operators and robotic devices. Functional correctness occupies a
growing fraction of the overall integrity of systems. This requires deep analyt-
ical safety considerations and makes formal verification an eligible tool in the
robotics domain. Characterised from a safety point of view, the domain stands
out by its rich specifications, which usually are not as simple as “temperature
never exceeds 90 ◦C”, and its rich domain involving high level concepts from
mathematics, kinematics, and other areas of physics.

In practice, applying formal verification in the robotics domain faces the
conflict between real-world applications involving unstructured environments
and inaccurate sensors, and their idealised modeling in specifications and the
formalised domain. Addressing this problem is not unique but especially impor-
tant for projects applying formal verification in real world applications. Safety
requires that reality conforms to the assumptions made in the model.

Another challenge in the robotics domain is the conflict between safety and
practical issues like availability. It is quite easy to design a safe algorithm which

9

is unusable in practice. For example, a service robot will not be able to navigate
through doors anymore if its safety zones are calculated too large. Avoiding
these safe but non-applicable results as well as identifying the aforementioned
kind of conflicts between models and reality is mainly done by evaluating parts
of the implementation in practice. Occuring conflicts may result in changes of the
design specifications. For that reason, our development process is very iterative
and code-centric. Availability is not verified, it is tested in practice and in
simulations, so it is important to be able to run the algorithm early in the
development process.

Successful design and verification of robotics algorithms. Two concepts that
proved helpful were the explicit use of intervals to accommodate for impreci-
sion, and algorithms and representations from computational geometry.

To overcome the discrepancy between the real world and the idealised do-
main, and to account for imprecise measurements, our algorithm calculates safety
zones for sets of velocities [vmin, vmax]× [ωmin, ωmax] instead of single ones.

Another benefit came from the representation of objects as sets of points,
which not only led to efficient computations, but also allowed for mathematically
pleasing proofs for major parts of the algorithm. This seems to hold true for many
representations and algorithms from computational geometry. Of course, other
proofs were pure grind work, such as the proof of the following (for ω 6= 0):√(

ω − sinω
ω2 − 1− cosω

ω

)2
+
(
− sinω

ω
+ 1− cosω

ω2 − ω − sinω
ω3

)2
≤ 2

3

Domain. Robotics is well suited for formal verification. Formalising high-level
concepts is admittedly very time-consuming. Nevertheless, much can be taken di-
rectly from textbooks so that the formalisation in Isabelle went rather smoothly.
Moreover, the effort is worthwhile, as it allows simpler specifications and veri-
fication. The domain modelling is reusable for other projects, independent of a
reuse of the implementation.

3.2 Specification Process

Verification as a joint effort. One aspect of formal verification is that because
correctness relies on formal proof, it is not that crucial anymore to strictly sep-
arate the roles of tester and implementer. In contrast, the close cooperation
between the verifier and the implementer boosted productivity in our case: ver-
ification became a joint effort. Writing specifications which validate the safety
requirements, and can be formally verified, is not easy; it requires an understand-
ing of the implementation, the domain model, and how the verification works. It
is easy to specify something which is correct but cannot be verified; on the other
hand, it is also a temptation to write low-level specifications which just restate
what the code is doing in elementary terms without the abstraction required to
state useful safety properties.

10

Fig. 4. Two ways of converting a buffered polygon into a laser scan representation.

A somewhat unusual example of a close collaboration between implementer
and verifier is a change of the implementation induced by verifiability consider-
ations. The function abtasten converts the buffered polygon into a sequence of
vectors corresponding to a laser scan (Step 3 from the algorithm presented in
Sec. 2.1; see Fig. 4). Initially, the specification interpreted the resulting sequence
as the rays of an idealised laser scanner. We switched both specification and
implementation to a sector-based interpretation, in which each result describes
the whole area of a sector. This fitted in well with the other specifications and
allowed us to specify the result simply as a superset of the actual safety zone,
and was easier to verify formally.

Code-centric specification and verification. We experienced an interesting inter-
play between specification, implementation and application: at first, the speci-
fication required that if the speed of the vehicle exceeded the maximum speed
for which a braking distance was measured (cf. Sec. 2.1), an emergency stop
should be initiated. However, this turned out to be too restrictive: in typical
applications, the measured maximum velocity vm may be exceeded occasionally
by a small margin, and initiating an emergency stop in these situations would
severely reduce availability. Hence, the breaking distance for speeds larger than
vm was safely overapproximated, and the specification amended accordingly.

The importance of being formal. Formal specification necessitates to state re-
quirements precisely. A beneficial side effect is that it focuses discussions and
manifests design decisions. Besides the well-known issue of the ambiguities in
natural language specifications, it turned out to be easier for specifiers and
implementers to use the vocabulary of the domain formalisation to state these
requirements and to reach agreement on their respective meaning. For quick
sanity checks of specifications written down or modified during meetings, we
provide tool support for the type-checking of specifications. This pertains both
to code-related specification expressions (e. g., types of program variables) as
well as Isabelle expressions used in code specifications. A typical specification
meeting would end with a function specification reviewed and typechecked.

Beyond that, formal verification can uncover hidden assumptions, both in
the specification and even in the domain (see also [6]). As an example, when
verifying the overapproximation for speeds beyond maximum speed, it turned

11

out that the initially defined quadratic approximation was not enough, and a
cubic one was necessary to formally prove the relevant properties.

3.3 Formal Verification in a Certification Process

V-model. The V-model of IEC61508-3 asks for traceability between adjacent
phases on the downward leg, i. e. from the system safety requirements down to
the code, as well as ‘horizontal’ verification on the upward leg from code to the
integrated and validated system, where appropriate tests ensure the satisfaction
of all requirements. The model somewhat neglects model-based analysis and
does not assign it a specific level; it might be considered part of the software
architecture, but in any case has a direct link to the safety requirements. A
definite strength of our methodology is the very strong link between this analysis
level and the concrete source code (at the bottom of the V-model): Formal
code verification in our methodology ensures both traceability between code
and module design, and between module design and the analysis level. The
main reason for this is the high level of abstraction of code specifications, in
which the domain formalisation is directly embedded. For example, take the
basic function computing a polygonal approximation of the curve described by a
single point of the vehicle’s contour during an emergency stop. Its specification
directly expresses that the area described by the returned polygon completely
contains the braking curve in the two-dimensional environment model.

Modularity. Modular verification on a function-by-function basis allowed us to
focus formal verification on those functions which are crucial to functional cor-
rectness; other functions may contain constructs that our tool cannot reason
about, or may not pertain to global correctness (e. g., logging), and can be treated
more adequately by manual review or informal proofs.

Open-minded authorities. To our surprise the external reviewers from the certi-
fication authority were quite open-minded towards the use of expressive (higher-
order) formal logic for specifications and an interactive theorem prover for doing
the actual verification. In our case this was Isabelle/HOL, but its specifics did
not play an important role and HOL4 or Coq or any other well-known prover
with an active research community, proper documentation and a large enough
number of global usage hours would have worked.3

Certification of the tool itself. Even though there are indications that struc-
tured specification and verification actually increase cost-effectiveness [1], their
use is most often induced by the external requirement of a safety certification.
A convincing argument for a tool like ours is that its use covers several items on
the list of required design and verification measures. Concretely, to claim com-
pliance with IEC61508-3, the measures listed in its Annexes A and B have to
3 We actually estimated the number of hours that Isabelle has been in serious use (as

2 · 106 hrs). This technique of showing that a tool is ‘proven in use’ is commonly
applied for non-certified compilers.

12

be considered. As confirmed by the certification authority, our tool covers sev-
eral of these, which we will now briefly discuss. With regard to software design
and development (A.4), four out of six measures are covered: the use of formal
methods, of computer-aided design tools, of design and coding guidelines, and
of structured programming. Missing are defensive programming and modulari-
sation. The standard interprets modularisation structurally, and our tool does
not apply code metrics.4 In contrast, the modularity we do achieve is of a more
behavioural nature: the effect of a function is summarised in its interface specifi-
cation, even though the function body might be of arbitrary size and complexity.

Concerning software verification measures (A.9), we cover formal proofs and
static analysis. The latter includes the measures marginal value analysis, control
as well as data flow analysis and symbolic execution. Whereas our Hoare-logic
style verification resembles a symbolic execution, many properties that are de-
rived from the other analyses, like ensuring that only initialised variables are
read, are also subsumed by formal verification.

However, most of the work in a verification effort goes into testing, so one
would require that the overall amount of functional testing can be reduced in a
development process using formal verification. In our case, the only tests that
had to be performed on the module level were related to over-/underflow and
numerical stability. No functional testing had to be performed for the formally
verified units, due to the level of detail at which both specifications and the
programming language are modelled.

Limitations. Our tool focuses on functional correctness, and does not consider
aspects like execution time analysis and bounds, resource consumption, concur-
rency, and the interface between hardware and software. This is a clear separation
of concerns, as it is becoming common consensus that only the use of multiple,
specialised tools and methodologies can achieve a high level of confidence in soft-
ware [9]. There are further limitations in the realm of functional properties and
run-time errors. Like other formalisations, we idealise the numerical domains
that programs work on from bounded integers and floating-point numbers to
mathematical integers and real numbers, which may in exceptional cases result
in undetected run-time errors (see [12] for an example). The price we had to pay
to obtain a formalisation in which interesting, abstract, functional properties
can be proved with tolerable effort was a slight mismatch between the actual
and the formal semantics.

Some more notes on practical formal verification. There are of course also prob-
lems with using formal verification as described here. A major annoyance is the
fragility of proofs, i. e. their lack of robustness w. r. t. changes in source code. This
particularly hurts in the face of interactive verification: proofs are not generated
automatically by a push-button tool, but proofs scripts are written by humans
– even if they sometimes only consist of a sequence of calls to automatic proof
4 In practice, functions which can be formally verified with tolerable effort adhere to
these structural properties anyway.

13

tactics. We easily support ‘regression verification’, i. e. the automatic checking of
all existing proofs of correctness against modified source code as well as modified
specifications. Unfortunately, however, many proofs ‘break’ even under only mi-
nor modifications like the rearrangement of statements or a semantics-preserving
rewriting of expressions, so that the proof scripts need to be adapted manually.

4 Conclusions

The SAMS project is an example of the successful application of formal verifi-
cation in a certification context. The algorithm and implementation have been
certified as conformant to the requirements of IEC61508-3 Software SIL 3 de-
velopment by TÜV Süd. The same goes for the verification environment, which
has also been confirmed as according to IEC61508-3, covering various measures
in the appendix as elaborated above. Both the tool and the domain modelling
can be reused in other projects.

Related Work. We are not aware of many other formalisations in the robotics
domain, except for specific, idealised algorithms like Graham scan[13]. Other cer-
tification efforts using formal verification in our sense include [1], which also use
pre-/postconditions, but in a discrete domain; cf. also recent work concerning the
verification of operating systems using Isabelle [16], or the VCC framework [5].
Most of these results idealise floating-point numbers to reals; an exception are
Boldo and Filliâtre [3], who verify floating-point computations with exact error
margins, something which in the robotics domain would be particularly valuable.
Peleska [15] integrates formal approaches and testing, using abstract interpreta-
tion. It would be interesting the reuse the results of analyses like these for the
formal verification, in particular to discharge program safety proof obligations.
Haddadin et al. [7] perform a systematic evaluation of safety in human-robot in-
teraction, quantifying injury risks based on experiments and classifying contact
scenarios. Their work is upstream to ours, as it contributes important data for a
hazard analysis and helps to improve safety by construction, while our approach
assumes the criticality of collisions and aims at avoiding them. Krisha et al. [11]
claim to develop provably safe motion strategies for mobile robots, but provide
validation merely in terms of classical simulation and experimental results.

Summary. This paper has presented our experiences when conducting the for-
mal verification and certification of a robotics algorithm. To close, we would like
to recap our three main points. Firstly, we have argued that functional correct-
ness is a key aspect of system integrity in robotics applications. Secondly, it is
important to have a strong link from safety concepts down to the executable
code. This was achieved by including domain model concepts directly in the
specifications. Thirdly, because the correctness of all proofs are checked by Is-
abelle, we could relax some of the formalities of the development process to the
benefit of all. Instead of using a rigid V-model, we had a convergence of both
design specifications and implementation down to verified implementation in an
iterative process starting from the initial safety requirements.

14

Besides the tool itself, we hope that the experiences laid out in this paper
might be of use to other researchers and practitioners. We envisage a similar
approach, using our tool or similar ones, to be applicable in all areas concerned
with functional correctness to the degree that robotics is.

References

1. J. Barnes, R. Chapman, R. Johnson, J. Widmaier, D. Cooper, and B. Everett. En-
gineering the tokeneer enclave protection software. In ISSSE’06. IEEE Computer
Society, 2006.

2. P. Baudin, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy, and V. Prevosto. ACSL:
ANSI C specification language. http://frama-c.cea.fr/download/acsl_1.4.
pdf, Oct. 2008. Version 1.4.

3. S. Boldo and J.-C. Filliâtre. Formal verification of floating-point programs. In
ARITH18, Montpellier, France, June 2007. IEEE Computer Society.

4. L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T. Leavens, K. R. M.
Leino, and E. Poll. An overview of JML tools and applications. Int. J. STTT,
7(3):212–232, June 2005.

5. E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen,
W. Schulte, and S. Tobies. VCC: A practical system for verifying concurrent C.
In TPHOLs 2009, volume 5674 of LNCS. Springer, 2009.

6. U. Frese, D. Hausmann, C. Lüth, H. Täubig, and D. Walter. The importance of
being formal. In SafeCert’08, ENTCS. Elsevier Science, 2008.

7. S. Haddadin, A. Albu-Schaffer, and G. Hirzinger. Requirements for safe robots:
Measurements, analysis and new insights. Int. J. Robot. Res., 28(11–12):1507–1527,
2009.

8. C. Heitmeyer, R. Jeffords, R. Bharadwaj, and M. Archer. RE theory meets software
practice: Lessons from the software development trenches. In RE’07, pages 265–
268. IEEE Computer Society, 2007.

9. C. Hoare. Viewpoint retrospective: an axiomatic basis for computer programming.
Commun. ACM, 52(10):30–32, 2009.

10. IEC. IEC 61508 – Functional safety of electrical/electronic/programmable elec-
tronic safety-related systems. IEC, Geneva, Switzerland, 2000.

11. K. M. Krishna, R. Alami, and T. Simeon. Safe proactive plans and their execution.
Robot. Auton. Syst., 54(3):244–255, 2006.

12. C. Lüth and D. Walter. Certifiable specification and verification of C programs.
In FM 2009, volume 5850 of LNCS, pages 419–434. Springer, 2009.

13. L. I. Meikle and J. D. Fleuriot. Mechanical theorem proving in computational
geometry. In Automated Deduction in Geometry, volume 3763 of LNCS, pages
1–18. Springer, 2006.

14. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

15. J. Peleska. A unified approach to abstract interpretation, formal verification and
testing of C/C++ modules. In ICTAC’08, volume 5160 of LNCS, pages 3–22.
Springer, 2008.

16. H. Tuch. Formal verification of C systems code. J. Autom. Reasoning, 42(2–4):125–
187, Apr. 2009.

