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Abstract

We present a method to geometrize massive data sets froohszayines
query logs. For this purpose, a macrodynamic-like quaiwitanodel of the
Information Retrieval (IR) process is developed, whosegigm is inspired
by basic constructions of Einstein’s general relativitgdty in which all IR
objects are uniformly placed in a common Room. The Room hasietgre
similar to Einsteinian spacetime, namely that of a smoothifol. Docu-
ments and queries are treated as matter objects and sofincateoial fields.
Relevance, the central notion of IR, becomes a dynamiaa issntrolled by
both gravitation (or, more precisely, as the motion in a edrspacetime) and
forces originating from the interactions of matter fieldheBpatio-temporal
description ascribes dynamics to any document or quersg, phaviding a
uniform description for documents of both initially statind dynamical na-
ture. Within the IR context, the techniques presented asedan two ideas.
The first is the placement of all objects participating in Hoia common
continuous space. The second idea is the ‘objectivizatiérihe IR pro-
cess; instead of expressing users’ wishes, we considenvéralblR as an
objective physical process, representing the IR processrins of motion
in a given external-fields configuration. Various semantici®mnments are
treated as various IR universes.
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I ntroduction

The goal of this paper is to provide a framework in which to pane and introduce
new Information Retrieval methods, rather than to propogaréicular retrieval
strategy. In order to enhance the capabilities of searctesgwe need to know
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how well the engines satisfy the user requests. We try to envis question by
trying to understand the user or user group behavior.

New insights can be gained by mining search patterns, omaplementary ap-
proach, by visualizing the click streams in an intelligerstygo that an expert can
make sense of the structures he detects in the visualizafidsual data mining).
Especially in the case of large data sets, a method of geizatt@n from search
engines query logs is very much in demand. To Manage hugedgiara, a proper
theory for its description is required. Once the data areessmted in the database,
two different types of queries can be started, resultingeiry different query pro-
cessing stages. The interpretability of the returned tessildifferent as well. In
Data Retrieval, only exact matches to a query are considevhdreas in Infor-
mation Retrieval, documents with a certain probability eievance to the query
are searched. Information Retrieval queries are, teclyispeaking,k-nearest-
neighbor queries with similarities adopted for the spedifiormation need.

In order to buildan Information Retrieval theory, structured data are to be rep
resented in the data retrieval context in some way. The dataeated as discrete
by nature, but this does not imply that they have to be put irserete environ-
ment (consider, for example, an appropriate analogy intibery of solid states
or liquids: everyone knows that they are composed of disaratlecules). How-
ever, continuous geometrical methods proved high effigiamd predictive power.
This, in turn, is the result of a crucial simplification of theodel by disregarding
its micro-details.

The vector model was the first considerable step in this tiineclt introduced
vector spaces (which are spanned on terms or their geraiatiz) and treated
documents and queries uniformly as vectors in the same sjfd@se spaces are
still discrete.

Theoretical physics and, more generally, the physicaldwainain a source of
inspiration for computer scientists| [8]. The first reallyniauous model was sug-
gested by C. J. Keith van Rijsbergen who introduced Hillqgaites for this purpose
(as in quantum mechanics). By nature, quantum mechanicgesaw@ne combina-
tion of continuous and discrete. In van Rijsbergen’s maithel relevance becomes
the angle or the distance between appropriate continuaisrege This is an effec-
tive illustration of the idea of guantum-like description [[6]: it has nothing to do
with its roots in quantum physics, nonetheless, it effidjenses its mathematical
language and results.

We, however, should strike a new path. Two major fundameh&dries in
modern physics exist which are mutually exclusive to a gesdétnt: Quantum
Mechanics and General Relativity. The former mostly death e microworld,
whereas the latter deals with cosmic distances. Our evernydaition is in be-
tween and called classical physics; both theories admgdbealled classical limit.

2



Vector models are based on a quantum-mechanical, linetwrngeace paradigm
which plays the rdle of a Room to store data and pose queries.

Our basic idea is the following. We consider a smooth cowatirsumanifoldB,
and call it Information Retrieval space. Note tiats neither a document space,
nor a query space; instead, it has a more fundamental andictosed nature. It
may be thought of as the set of all transmitted bits. The etftsnaf B are all the
same; they have no structure. This is a complete analogfodimts of spacetime,
or the configuration space in physical theories.

For the time being, let us return to van Rijsbergen’s geanstmodel. The
documents in his approach are vectors, but, if we look at theeiin more detalil,
we see that if we multiply a vector by a number, we do not getadmument. As
in quantum mechanics, only unit vectors are of physical f@jpenalistic) meaning.
These vectors, in turn, form a smooth manifold — the unit splirethe appropri-
ate vector space. Therefore, even in van Rijsbergen’s appracurved spaces
are already implicitly used as document spaces. In quanteshamics, quantum
dynamics have been successfully described as classicedhgign mechanics on
unit vectors|[1]. It should be mentioned that all this has meal relevance to our
approach, but shows that what we suggest is a natural dewefupof standard,
conventional approaches.

To be more specific, we treBt as an analogon to physical spacetime. We place
both documents and queries iy providing them with both temporal and spatial
dimensions. As a consequence, the idea that a document raageltn time is
automatically incorporated in the theory. The second aqunsece is that the static
documents, and those generated on-the-fly, are describadtiiss of exactly the
same nature, differing only in ‘shape’ in our IR spacetiBie

1 Information retrieval as dynamics

In this section we develop one of the idea highlighted in thgifining, namely the
objectification of the IR process. Information Retrievatmmonly treated as an
analogy to data search: there is a user with a (more or lefigjtdegoal wishing
to gain this or that knowledge from the retrieved informatio

We suggest an alternative approach: When we are speaking @bage com-
munity of users, we no longer treat their behavior as irgeiit. This contrasts with
the viewpoint of ‘intelligent crowd behavior’, but the commity of users in our
setting is a large collection of autonomous individual®eathan a crowd, and we
dwell on their average behavior. This gives us the right i #ne focus of our
research from the task of finding a good way to satisfy usexuests to the task
of analyzing typical user behavior. From this perspectvgpical user of a search



environment is not more intelligent than an elementaryi@arbr a molecule, and
we may apply the good old principle of least action, whichmstdrom the work
of Fermat and Euler. They proved its efficiency by providiimge and strongly
predictive models. The power of the least action principlthat we do not have to
make any difference between users and resources—we ate fretude anything
we like in a uniform way to describe the dynamics.

IR environment. This notion is informal; we need it to link the mathematical
model with practical situations. Within a mathematical mipthe IR environment
is specified by the IR spadB, a collection of effective fields on it, and the La-
grangian (which is a concrete expression for the action).sédan as all this is
specified, the IR process itself is represented by trajestan B which show the
behavior of users.

The standard IR paradigm treats the IR process as a searahisTthe initial
condition is posing a query, then, according to this or tioatniula, the indexed
documents are ranked. Subsequently, the results arereliteethe user according
to the ranking. But, typically, the user never makes a siqgkry and the process
is usually progressive. After parsing the results and dmmgig their relevance,
the user poses further queries, repeating the procestvisdya

Our suggestion is to get above these particularities. Weaceghe notion of
relevance feedback by that of least adliofihis can be drawn as follows

£

Figure 1. A point on IR surface together with users’ intemti@ctor.

and interpreted as geodesic motion. The dynamics replaaeation of relevance,
and the displacement of a user from pdinto pointt, is what replaces relevance
feedback making it, in a senserehevance feedforward.

Users. We should not treat users literally as persons. In our ggtinuser is
just an entity which pursues a particular goal. This meaas dhsingle physical

A similar approach appears in the ostensive model of inftiomaretrieval [2]. Within this
model, there is an implicit unobservable entity—state afwdedge, or awareness of a user—and
the behavior of the user is interpreted as the change of thesugowledge. The user acquires
knowledge after performing a certain action.



person can represent a number of simultaneously acting asdr conversely, there
may be a group of people whose retrieval behavior looks hia¢ of a single user
from the outside. Later we shall examine the problem of dieigaisers and user
clickstreams in more detail.

2 Anoutline of differential geometry.

The aim of this section is to present the basic geometrietignts for our model
and introducing the notation. We start by presenting th&chastions of a smooth
manifold, followed by the Riemannian and pseudo-Riemanniatrics and geodesics.
A smooth manifold A is an analogon to a curved surface with the difference
that it is consideregyer se, not merged into any outer spaddetric in differential
geometry has a double meaning, a global and a local one. Dhalghetric is a
distance function ascribed to any pair of points and satigfthe triangle inequal-
ity. Locally, a metric is a nondegenerate quadratic fgim, v) which defines the
scalar product for any pair of tangent vectors. If the quiadifarm g is positive-
definite, the appropriate metric is callRtkmannian. However, the metric is called
pseudo-Riemannian when squared lengths of vectors maybe both positive and neg-
ative (and zero as well). The latter is the mathematical mpldar special relativity
as spacetime is assumed to define such a metric; that is ditreated as complex-
valued distance.
A geodesic line is an analogon to a straight line on a plane. This is the lo-
cally shortest curve, shortest with respect to the definadgicren the manifoldA.
For instance, circumstances are geodesics on a sphere. xjpliwtdormula for
geodesics is as follows: Given a metricfix a coordinate system, thentakes
matrix formg = g;;, each matrix entry is a function defined on the manifdld
Combine their derivatives, introducing the coefficients:

_ Ogik 99k Ogwi
c%cj + c%cl axj ’ (1)

When the coefficients are calculated, the equation of géodestion x(¢) along
the manifoldA is the following second-order differential equation:

i = 1]ak )

Here, the dot above indicates the derivative over a pararoetmting the points of
the trajectoryi’ = dx7 /0t, and the summation over repeated indices is assumed.
This means the expressidH, i*i' is in facty", , Iy, &% i,



In a local sense the metric is connected to the global onellasvio Given a
curvez(t), its length is given by the integral

T T .
/ g (1), #(1) dt = / g (1), () dt 3)
0 0

where (i) the summation is carried over repeated indiceqigngi. = g;x(a) are
functions, defined at each poimtc A.

Dynamics. As stated above, we replace the study of users’ needs witht tioky
of users’ behaviors in a way analogous to the study of a détestic physical
processes. For that, we introduce the notioaabifon as a function which evaluates
every curve (the basic example of action is the length of thwe). Given an
action, we then use the well-known fundamental physicalqgipie of least action:
Among all possible trajectories it happens that (only) ¢hgiglding the minimum
to the action are realized. In our approach, all the variégvaluating relevance is
assumed to be hidden in the calculation of the action.

Describing manifolds. How can we generally describe infinite, continuous ob-
jects? This immediately brings us to the question of how wedesscribe a function
which, in turn, has commonly accepted answers. We treaineséts of functions
as elementary and construct new functions from them usergehtary operations.
What is elementary? This is a matter of the particular sefupeproblem to be
defined individually.

In our case we are going to deal with regular geometrical atbjand sim-
ply treat smooth manifolds as surfaces in Euclidean spaf@eti by appropriate
smooth functions. In particular, when we reconstruct simeotrfaces from dis-
crete data, we use standard approximations such as the gz snethod with
respect to Euclidean distance.

3 Building IR spaces

We begin by drawing an analogy between IR spaces and diffatareometry,
in the context of smooth manifolds. When we just say ‘given anifold’ this
still means nothing unless we specify it. We have alreadgeat=d a method of
building IR spaces by representing them as graphs of smaaotttibns. Another
way to represent IR spaces is to specify a manifold by desgrithe set of all
smooth functions on it. (These sets are different. For ht&aany such function
on a circle attains its maximal value, which is no longer tasecfor a straight
line.) An algebra is a linear space with an extra operatiomuoitiplication. One
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can easily observe that, given a space, the set of all fureba it is closed under
pointwise addition and multiplication. That is, the setwfétions is a linear space
equipped with an extra operation of multiplication, suchcgs are calledgebras.

3.1 Dimensionality reduction

A dimension can be defined as one of a number of parameteredédescribe
an object. This may sound abstract, but there are paralithsowr everyday expe-
rience. A cake recipe, for example, may be defined by the atrafithe various
ingredients in grams. If one writes down the amounts of flsugar, butter, eggs,
and baking powder in the form (200, 100, 80, 20, and 3), thenrédpresentation
contains the most important information. So, there is esnnothing compli-
cated with five dimensions from a common sense point-of-{@mve may even use
this example to explain the vector space model for IR).

Mathematical methods of dimensionality reduction can bedu®r feature
transformation. Feature selection, for example, focusesneovering subsets of
variables predictive of a prespecified target variable. un @ntext, dimension-
ality reduction comes into consideration when we want tarobrthe number of
parameters for the results of visualization.

The dimension is one of the main properties of linear spaitasay finite
or infinite. In the case of an algebra of functions on a madjftie dimension is
infinite. What does that mean? Suppose we would like to gpadfraight line. We
might consider the linear space of polynomials, treatedadinctions, but defined
formally, as, say, formal series. The dimension of this spaobviously infinite as
nobody limits the degree of polynomials. In the meantime nakthat the space,
on which these polynomials are defined, is just a straiglket knone-dimensional
object! And it is completely a matter of our choice which o thescriptions of the
straight line we prefer: either functional and infinite-dinsional, or geometrical
and one-dimensional.

After that, we can present to our basic suggestion. By agalatlp algebras we
see that we may define the IR space in terms—thus making it tingensional—
or, rather, observe some ‘massive regularities’ and defirelR space geomet-
rically, as an abstract manifolB. The terms will then become functions @&
exactly as in differential geometry.

Dimensionality reduction is one of the key features of oysrapch. This is
reason why we do not treat terms as basic objects: the ajg@mector space
would have an immense dimension. What we suggest is a kinelofjfaphic
approach. Its closest analogy in image processing is th& JBiat. If we draw
an analogy with image processing, terms will be a counterpapixels, vector



models are then similar to the BMP format; we parameterigesttarch space by
holistic patterns.

3.2 IR Spacefrom discrete skeleton

In this section we will dwell on the first basic principle ofrdechniques: merging
everything—users, queries and data—into a single space.

Return to equatiohnl 2. It is of second order, that is, in ordespecify its partic-
ular solution, we must specify the initial conditions whiafke the initial position
x(0) and the initial ‘intention’z(0). A typical user clickstream will be represented
as aline, whereby the points of the lin&) are associated with the state of know!-
edge the user has gained from interpreting the retrievednrdtion until that point.

Next, let us specifyhat are we going to visualize. The object of our inquiry
is the IR semantic environment, which consists of a typical community of users
with specific needs, using certain information or knowledggeieval techniques.
In fact, this requirement is not crucial, we may take a ranawoifection of users,
and even carry out its visualization, but the point is thas thsualization will
remain a thing in itself. If, conversely, we determine sormenmon features of
the team of users, we may afterwards vary the parameter® @rtblem and the
obtained visualization may give us an immediate trackinthefresults. However,
at present, we may not patpriori restrictions on the contents of the environment.

We study the behavior of an IR environment by analyzing thgs lof user
querying activities. Let us first produce the ‘flesh’ of IR spa Its elementary
constituent, a point, is a click: a query/HTTP request togetvith a body response
(HTML page accessed by a result link — this way we do not take atcount
broken links).

Step 1. Extract theclickstreams. A clickstream is a progressive, ‘continuous’
sequence of user queries and responses which have a ddfnitargl end. The
end of a clickstream is marked by a breach in the continuithefrequests. What
does ‘continuous’ mean? To specify it we need a distancdibmbetween points.
This distance is beyond our exploration in this paper, buthves use one from,
say, vector space model. The result of Step 1 is a collectiatliakstreams, an
ordered sequences of points:



Figure 2. Points on clickstreams are ordered by timestarhgiscks.

Step 2. Creating the discrete pre-space B. At this step, our input is a collec-
tion of clickstreams. Their points are ordered and we knawdistances between
them. We assume that we use certain distance between pbihis threads, and
therefore, any particular relevance formula can be appliéere is a well-defined
distance between the neighbor points of each thread. Thahsndéeside order,
clickstreams acquire metric:

Figure 3. Clickstreams acquire metrics.

Now we make a layered structure. We start with points witteldb(this will be

a starting layer), and, using the same distance functi@cephem as points on a
metric space. Then we pass to label 1, and form the same tisoedric space,
and so on. As a result, we have a sequence of layers labeled. ., forming
altogether a discrete metric space:



Figure 4. Creating transversal layers.

Step 3. Geometrization and dimensionality reduction. At this step we con-
tinue binding the threads and complete the skeleton wittbtirees’ linking nearest
neighbors, now irrespective of the thread, to which thepfg!

Figure 5. Forming the discrete skeleton.

we choose, or set up by force, the dimensios 1 of our IR space. (Since it has

a spatiotemporal structure, we reserve one dimension éteimporal parameter
andn for ‘spatial’.) Oncen is chosen, we project each layer onraimensional
space. Technically, this can be done as follows: when thewsonn is fixed,

we form cells ofn + 1 neighboring points for each point and then treat each such
collection of points as a simplex (simplex is a general@abf a triangle, pyramid
and so on). So, we form a foliation, labeleé®, . . ., together with threads, which
we retained from Step 1. Finally, we treat the resulting sEcIR space.
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Figure 6. IR space is built.

4 Possible applications

Here we give a brief overview of the potential benefits of #hhiques we intro-
duce.

IR spaces as comparison tools. Now, how can our geometrical picture serve as
a comparison tool between different IR environments? Ssppee have a kind of
contest. There are, say, two search environments and twiasteams of users
with the same tasks and wishes. After some time we may ragrése results
of the contest for each environment as a geometrical pictire a manifold and
a collection of users’ trajectories on it. Since the teamssars are similar, we
may put them into a correspondence and thus establish a nggpgiween the two
manifolds.

This comparison can also be viewed from a physical persgecBuppose we
have carried out such an experiment with a team of obserVaesn, we change the
circumstances and a new set of relevant documents emerdes iadexed. As a
consequence, the behavior of users will also have chandes rdsult has a direct
physical analogy: Suppose we have a cloud of test particidsaee record their
trajectories. Then, a massive body emerges in the neighbdrhAs a result, the
trajectories will be biased.

In general, this representation is not a way to judge whiclet®&ronment is
better; rather, itis a way to put them together and visualypare them, thus mak-
ing it an instance of visual data mining in the sense of vipadtiern recognition or
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the like.

Geometrodynamicsand relevancefeedback. Our visualization method can also
be used as a relevance feedback tool. We may use it to modifyelevance-
distance function. The idea behind is the following: Sugpe® look at a typical
picture of users’ behavior and discover that there are gheeaigs on the IR surface.
What does that mean? Users typically make big jumps:

/
Ve %
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Figure 7. High peaks on IR surface.

From this we may infer that our distance is not adequatelgutatied and this will
force us to correct the ranking formula.

Here, our goal is to make the surface more smooth and lessyjuanpording
to the requirement to make the ranking function more comsiswith the users
requests and their evaluations of the results the retridvalorks as depicted in
Figures 7, 8: the smoother is the surface, the better the tRgmnized and the
simpler it is for users to achieve their goals.
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Figure 8. Lower peaks after redefining the ranking function.

5 Redated works.

If I have seen further it is only by standing on the shoulders of Giants.- |1.Newton.
In this section we summarize and compare some previous aorkpoint out their
relevance to our model.

Keith van Rijsbergen|7] has already been mentioned in ttredaction. lain
Campell[2] developed an ostensive model of IR. Duality ésswere studied by
R.Rousseau and Leo Egghé [3].

In this paper the duality relation between documents andegjeand between
indexing and retrieval are studied. This is an importar sdevards merging all of
these objects in a unique space. Recently, a gravitatisaebmodel (GBM) of IR
was proposed, wherelevanceis treated as Newtonian gravitation between a query
and a document. This provides not only a holistic view, baba mathematical
background to deduce particular ranking formulas. In paldir, the famous Okapi
BM25 formula

f(Qin) : (k?l + 1)
5 (4)
f(¢i, D) + k- (1—b+b- W)

scoréD, Q) = zn: IDF(g;) -
i=1

is naturally derived within their approach. GBM represatisuments as cylindri-
cal objects and considers only attraction between docwgraet point-like queries,
according to the Newtonian gravity law. These are, howadrantages over GBM
and argumentations in favor of our model:

¢ Right from the beginning one sees that the Newtonian forrfarlgravity is
too rigid and cannot properly capture the subtleties ofvegiee.

e In order to adjust the functiotf in [4 properly, the authors of GBM sug-
gest replacing the Newtonian quadratic law with a differams, varying the
power of the distance. This immediately destroys the beauplicity, and
self-consistence of the Newtonian world.
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e Our suggestion is different. Instead of modifying the lawgoévity, we
modify the geometry of the space, but leave the laws intaggetty as it is
done in Einstein’s General Relativity.

An introduction to the possible applications, the topicsnbérpreting public
search gueries can be found|in [9]}; [4] provide a review of wearching studies,
and [5] address the difficulties when processing web sedictsteams.

Conclusion

We presented a method to geometrize massive data sets fanoh gngines query
logs. For this purpose, a cosmological-like quantitativedsl of the Informa-
tion Retrieval (IR) process has been developed, where destsrand queries are
treated as matter objects and sources of material fields.

One of the peculiarities of our approach is that we pradtiai not use and
do not consider terms as basic entities. We do that delddgriat order to simplify
the construction in some sense.
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