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Abstract. The knowledge of the position of a user is valuable for a
broad range of applications in the field of pervasive computing. Different
techniques have been developed to cope with the problem of uncertainty,
noisy sensors, and sensor fusion.

In this paper we present a method, which is efficient in time- and
space-complexity, and that provides a high scalability for in- and outdoor-
positioning. The so-called geo referenced dynamic Bayesian networks
enable the calculation of a user’s position on his own small hand-held
device (e.g., Pocket PC) without a connection to an external server.
Thus, privacy issues are considered and completely in the hand of the
user.

1 Introduction

In order to compute the position of a user, some kind of sensory data has to
be evaluated. Car navigation or out-door localization systems typically use GPS
(Global Positioning System) to determine the coordinates of a user. Unfortu-
nately, GPS does not work properly in in-door environments because of the
fundamental physics of GPS satellite signals, so other technologies have to be
used. Examples are infrared beacons, radio frequency emitters, laser range scan-
ners or video cameras. These senders (and their respective sensors) differ in
various ways, like sending-characteristics, sending-range, accuracy, price, form
factor, and power consumption. Of course there is the usual trade-off between
the obviously technical important factors (accuracy, power consumption) versus
the limiting factors (price, form factor, sending characteristics), so that the deci-
sion, which sender to use, depends heavily on the environment and the planned
application as well as on financial conditions. It may even be the case that an
already existing installation of positioning senders and/or sensors should be im-
proved by installing additional senders with better accuracy. A location system
should therefore not only be able to process different kinds of sensory data but
should also be able to fuse the data together in order to calculate the best pos-
sible position information.

Another problem is the noisy nature of sensors; therefore, a probabilistic ap-
proach for calculating user positions is highly preferable. Commonly Bayesian
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filters [1] are used to estimate the true location of the user out of the received
sensor signals. Several techniques are known to implement Bayes filters, which
differ from each other in complexity and certain restrictions (see [2] for a de-
tailed description of different Bayes filter techniques). Particle filters are such
an implementation and they are widely used in localization systems. Although
overcoming most restrictions of other filters, they still have to be trained or
calibrated for their environment.

We were trying to find a new way how to fuse sensory data and how to
cope with the problem of inaccurate data. This new approach should be low
in calculation and memory costs, so it can be implemented and executed on a
mobile system (e.g. Hewlett-Packard iPAQ). We came up with the idea of geo
referenced dynamic Bayesian networks and we want to share and discuss this
idea with the research community.

The paper is organized as follows: Section 2 describes some technical issues
and design decisions of our localization system. Section 3 explains the idea of
geo referenced Bayesian networks, gives a detailed description of the algorithm
and illustrates it with an example. Our working implementation of the system is
introduced as a proof of concept in Sect. 4. Section 5 resumes our research and
gives an outlook to our future work.

2 Technical Issues

Although our localization system is not the main issue of this paper we will first
explain a few technical details of it because we think that this may be helpful
for understanding the concept of geo referenced dynamic Bayesian networks.

2.1 Exocentric Localization

In localization systems like the Active Badge, the Active Bat or Ubisense (see [3,
4, 5]) the users wear some kind of sender (infrared, ultrasound, ultrawideband
radio) and the respective sensors are installed in the environment. We call these
systems exocentric localization systems, because the sender actively reveals the
user’s position to its surroundings (like calling out ”I’m here, I’m here”). A user
of this system does not know what the collected localization data is used for or
who has access to this data. Of course, functions can be implemented that give
the user a choice on who will be allowed to access his position data, but this
means that the user has to trust the system. If he does not, his only alternative is
not to wear the sender (or to switch it off). By doing this, the user will not only
prohibit others to gain information about his current position, but he will also
be unable to use the system for his own needs (e.g. for navigational purposes).

2.2 Egocentric Localization

An egocentric localization calculates the user’s position on a mobile, personal
device of the user. This can be accomplished by placing the senders in the
environment (now, the senders call out ”You’re near me, you’re near me”) and
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by equipping the user’s mobile device with the respective sensors. With this
technique the position calculation and the location information is literally in
the hands of the user and he can decide if he wants to share this information
through a WiFi-connection with other people or applications. If he does not
trust the systems privacy control, he can switch off his WiFi-Connection and
will still be able to determine his own position for navigational purposes.

We favor this approach and thus we designed our example system in that
way, using infrared beacons and active RFID tags as senders (that are installed
in the environment and not worn by the users).

2.3 Infrared Beacons

We use infrared beacons that are manufactured by eyeled GmbH1. These beacons
are powered by batteries and send out a 16-bit wide identification code that
can individually be adjusted for each beacon. The emitted infrared beam has
a range of about 6 meters and has, due to the physical attributes of light, a
conical sending characteristic. The price for such a beacon is about 80 Euro. The
required infrared sensor is often already integrated in a PDA for data exchanging
purposes.

2.4 Active RFID Tags

Radio Frequency IDentification (RFID) tags are available as passive and active
parts. In both forms, the tags store some identification code that can be read out
with a special RFID reader that sends out a radio signal. The passive tags get
their power out of the reader’s radio signal and therefore have a very low range
(usually up to 15 cm). Active RFID tags have their own power supply through
a battery. We use active RFID tag from Identec Solutions AG2, which have
a range of up to 10 meters. Due to the physical attributes of radio waves, the
sending characteristic is radial. One active tag costs about 20 Euro. The reading
devices for active RFID tags come in various form factors. In conjunction with
the PDA, we use a PCMCIA reader card, which costs about 1500 Euro. (The
high costs mainly arise from the fact that these readers are manufactured in very
low quantities.)

In [6] the authors describe a localization system that uses active RFID tags.
Their system fits more into the exocentric localization approach (see 2.1), be-
cause they install the readers in the environment and equip the user with a tag.
The authors also describe an experiment, where they find out that receiving ac-
tive RFID tags highly depends on different factors, like static obstructions and
human movement. Therefore, they also install reference tags in the environment
to improve their system’s accuracy.

A system that fits in the category of egocentric localization is described in [7].
Their approach is similar to ours, because they install the tags in the environment

1 http://www.eyeled.de
2 http://www.identecsolutions.com
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(on the floor, we place our tags at the ceiling) and let the user wear one or more
readers. They derive the user’s position at time t by calculating the sum of the
known positions of the received RFID tags and the previous known location of
the user, followed by a division through the number n of received tags plus one
(for the previous location):

UserPos(t) =
1

n + 1

(
UserPos(t − 1) +

n∑

i=1

Coord (receivedTag[i])

)
(1)

(The equation is simplified and adapted to our notation, for the original version
see [7].) Our experience with active RFID tags shows that the reader often
detects tags that are far away from the user. Therefore, we try to cancel out
these false readings with the use of dynamic Bayesian networks.

3 Geo Referenced Dynamic Bayesian Networks

In the following, we describe the idea of geo referenced dynamic Bayesian net-
works and how they can be used for sensor fusion and to cancel out false readings.

3.1 Idea

Bayesian Networks (BNs) are a computational framework for the representation
and the inference of uncertain knowledge. A BN can be represented graphically
as a directed acyclic graph (see Fig. 1). The nodes of the graph represent proba-
bility variables. The edges joining the nodes represent the dependencies among
them. For each node, a conditional probability table (CPT) quantifies these de-
pendencies.

Dynamic Bayesian networks (DBNs) are an extension of Bayesian networks.
With a DBN, it is possible to model dynamic processes: Each time the DBN
receives new evidence a new time slice is added to the existing DBN. In principle,
DBNs can be evaluated with the same inference procedures as normal BNs; but
their dynamic nature places heavy demands on computation time and memory.
Therefore, it is necessary to apply roll-up procedures that cut off old time slices
without eliminating their influence on the newer time slices.

Our idea is to let such a DBN represent the characteristics of the used senders
(in our case IR beacons and RFID tags). Note that we do not use the DBN
to represent all the senders that are actually installed in the environment. We
use one small DBN that prototypically describes the reliability of the sender
types (assuming that all senders of a certain type have the same reliability).
This prototypical DBN gets instantiated several times during the runtime of the
system and each instantiation gets assigned to a geo coordinate GeoPos.

Figure 1 shows the network that we use in our example application. The top
right node (labeled UserPos=GeoPos?) represents the probability that the user
is standing at the assigned geo coordinate GeoPos. The node to the left of it
(UserPos=GeoPos? 1) is the probability that was calculated in the previous time
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Fig. 1. Screenshot of JavaDBN with directed graph (DEA) and time slice schemata

(TSS 1 and TSS 2)

slice. The two bottom nodes (IRSensor and RFIDSensor) represent the probability
that an IR beacon and/or a RFID tag installed at GeoPos can be detected under
the condition that the user is standing at GeoPos.

Receiving an infrared signal gives very high evidence that the user is stand-
ing near the respective beacon (the infrared sensory data is nearly noise free).
Receiving a RFID tag gives smaller evidence that the user is standing near the
tag (the reader data is very noisy). These characteristics are coded in the CPTs
of the IRSensor- and RFIDSensor-nodes. The actual geoDBN that we use in our
example application is described in more detail in Section 3.3.

These networks with their assigned coordinates are the geo referenced dy-
namic Bayesian networks (geoDBNs). Each geoDBN represents the believe that
the user is standing at the associated coordinate.

The active RFID tags have a small internal memory that can be freely used
to read and write data. We use this memory to store the coordinate of the tag. IR
beacons are always combined with one RFID tag that provides the coordinates
of the nearby beacon and the tag itself. When a tag or beacon is sensed by the
PDA, geoDBNs are instantiated and associated with the induced coordinates.
These induced coordinates depend on the stored coordinate and on the sender
type.

The calculation of the user position is somewhat similar to (1) but we weight
the coordinates with the calculated probabilities of the existing geoDBNs:

UserPos(t) =
n∑

i=1

α w(GeoDBN[i]) GeoPos(GeoDBN[i]). (2)

Here n is the number of existing geoDBNs at time t (n ≥ #ReceivedSenderst),
GeoPos(GeoDBN[i]) is the coordinate and w(GeoDBN[i]) the weight of the ith
geoDBN. α is a normalization factor that ensures that the sum of all weights
multiplied with α is one.

To reduce calculation cost and memory usage the number of instantiated
geoDBNs must be as low as possible. To achieve this goal, geoDBNs with a weight
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lower than thresholduse are marked as unused (these geoDBNs provide only little
evidence that the user is in the vicinity of their geo coordinate). This threshold
should match the a priori probability for the geoDBN at its first instantiation.
To cope with resource restrictions a maximum number of possible geoDBNs can
be specified. If this number is exceeded those geoDBNs that provide the least
estimation will be deleted. To keep the overhead for memory management low
(or to prevent garbage collection if the system is implemented in languages like
Java or C#) GeoDBNs that are marked as unused can be ”recycled” by resetting
them to initial values and new coordinates.

The following section describes the algorithm and explains it with an example.

3.2 Estimation of the User Position

A new estimation of U ’s current position is calculated after each new measure-
ment and is based on the current sensory data as well as on the previous data.
A weighted combination of the old and new data is achieved through inference
in the respective geoDBN. The schematic approach looks like this:

1. Perform a new measurement and store the received coordinates
2. Extend every existing geoDBN with a new time slice and cut off the old time

slice.
3. Insert the new evidences of the sensors:

(a) If there is not already a geoDBN at a received coordinate, create a new
geoDBN and insert the evidence.

(b) If there is a geoDBN at a received coordinate, insert the evidence in the
current time slice.

4. Go through all geoDBNs and calculate the estimation that the user is at the
associated coordinate.

5. Sort the geoDBNs in descending order of their belief.
6. Mark geoDBNs as unused that provide an estimation that is lower than

thresholduse.
7. Calculate the user position by considering only those geoDBNs that provide

an estimation above thresholdconsider.

An example run illustrates the approach and the algorithm (the shown values
are for demonstration purposes only; they do not represent real data):

Let the following table describe the current situation. The array GeoDBN[.]
contains the existing geoDBNs geoDBNa to geoDBNd with their respective co-
ordinates sorted in descending order of their belief.

i GeoDBN[i] GeoPos(.) Belief(.) w(.)
1 geoDBNa (10, 5, 0) (0.7, 0.3) 0.7
2 geoDBNb (12, 5, 0) (0.7, 0.3) 0.7

n = 3 geoDBNc (8, 5, 0) (0.5, 0.5) 0.5
4 geoDBNd (14, 5, 0) (0.1, 0.9) 0.1
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Using (2) the computed user position is (10.21, 5.00, 0.00). Note that only the
first three geoDBNs contribute to the calculation since the belief of the fourth
geoDBN lies below thresholdconsider (Step 7 in the algorithm).

The next measurement (Step 1) receives the senders RFIDb, RFIDd, IRd,
RFIDe, and RFIDf . A quick look at the preceding table reveals that geoDBNs
already exist for the first three senders whereas the last two are new. The new
data is inserted in the geoDBNs (for the first three senders, Step 3b) or new
geoDBNs are created respectively (the last three senders, Step 3a). After an
update of all geoDBNs (Step 4) and the final sorting (Step 5) we get the following
situation:

i GeoDBN[i] GeoPos(.) Belief(.) w(.)
1 geoDBNb (12, 5, 0) (0.85, 0.15) 0.85
2 geoDBNd (14, 5, 0) (0.75, 0.25) 0.75
3 geoDBNa (10, 5, 0) (0.5, 0.5) 0.5

n = 4 geoDBNc (8, 5, 0) (0.25, 0.75) 0.25
5 geoDBNe (20, 5, 0) (0.06, 0.94) 0.06
6 geoDBNf (16, 5, 0) (0.06, 0.94) 0.06

The fifth and sixth geoDBN are below thresholdconsider, so only the first
four geoDBNs are used for the calculation (Step 7). Equation (2) evaluates to
(11.78, 5.00, 0.00). Another measurement detects senders RFIDb, RFIDd, and
RFIDf . Updating and sorting gives the following:

i GeoDBN[i] GeoPos(.) Belief(.) w(.)
1 geoDBNd (14, 5, 0) (0.89, 0.11) 0.89
2 geoDBNb (12, 5, 0) (0.85, 0.15) 0.85
3 geoDBNa (10, 5, 0) (0.25, 0.75) 0.25

n = 4 geoDBNf (16, 5, 0) (0.25, 0.75) 0.25
5 geoDBNc (8, 5, 0) (0.05, 0.95) 0.05
6 geoDBNe (20, 5, 0) (0.04, 0.96) 0.04

The beliefs of geoDBNc and geoDBNe are now below thresholduse, so both
are marked unused (Step 6, unused values are gray in the table). Only geoDBNd,
geoDBNb, geoDBNa, and geoDBNf are considered in the calculation, so the user
position is now (13.02, 5.00, 0.00).

The following section is a detailed description of the geoDBN that we use in
our current implementation of the system.

3.3 The Geo Referenced Dynamic Bayesian Network of the
Example Application

To model the time slice schemes of the DBN we use our own developed Java
application called JavaDBN (see Fig. 1). A directed graph (DEA) determines in
which orders the time slice schemes can be instantiated, furthermore the user
can specify the query and evidence nodes of each time slice schema (see the
tabular in each time slice schema window in Fig. 1). Then JavaDBN generates
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source code (so far Java and C++) that represents the DBN and that contains
routines for the inferences. This code permits a constant-space evaluation of
DBNs and contains a non-approximative roll-up method, which cuts off older
time slices and that incorporates their impact without loss of information on
the remaining time slices of the DBN (see [8, 9] for the theoretical background).
To our knowledge, this is the first system that allows DBNs to run on mobile
systems.

The source code has the following additional features: All for the computation
necessary variables are created on initialization of the DBN. No variables are
created or disposed at run-time to minimize overhead for memory management
(C++) or to avoid the activation of a garbage-collection (Java). The inference in
the DBN is optimized regarding the selected query and evidence nodes. Special
functions to set evidence are provided. Since variables are freely accessible from
outside the class, evidence of a node can also be set directly.

The geo referenced DBN consists of a time slice schema for instantiation
of the initial time slice (TSS 1) and a time slice schema for instantiation of
succeeding time slices (TSS 2). TSS 1 and TSS 2 are visualized in Fig. 1. TSS 1
differs from TSS 2 in that it does not contain a node UserPos=GeoPos? 1, which
models the influence of the precedent time slice on the current one. The node
UserPos=GeoPos? in TSS 2 represents the motion model and contains the two
states a1 = ”yes” and a2 = ”no”. The a-posteriori probability distribution over
both these states (also called the belief) represents the network’s estimation of
the knowledge of whether U is located at the associated geo coordinate. The state
”yes” stands for ”knowing if U is located at the geo coordinate” and the state
”no” for ”not knowing if U is located at the geo coordinate”. The conditional

probability table (CPT) of the node is as follows:




a1 a2

a1 0.7 0.001
a2 0.3 0.999



. The conditional

probabilities of the node are adapted to the mean walking speed of a pedestrian,
which causes an accordingly fast decrease of the network’s belief if the respective
sender is not received for a few subsequent measurements (i.e. the user is not in
the vicinity of the sender). The belief increases in an according way if the user
enters (or re-enters) the range of the sender.

The node UserPos=GeoPos? in TSS 1 also contains the two states a1 = ”yes”
and a2 = ”no”, but it lacks the preceding node, so its CPT reduces to the a-priori

probabilities
[
a1 0.05
a2 0.95

]
.

The nodes IRSensor and RFIDSensor correspond to the sensors in the real world.
These nodes will be instantiated with the results of the measurement. The con-
ditional probabilities of the nodes model the reliability of the sensors (perceptual
model) according to the real world situation. The node IRSensor has the states
b1 = ”yes”, and b2 = ”no”. The following CPT is associated with this node:


a1 a2

b1 0.9 0.05
b2 0.1 0.95



. The CPT has the following interpretation: Assumed that the user

is in the vicinity of the IR beacon (up to about 2 m distance) then the sensor of
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the PDA will detect the sender in 90% of all cases and it won’t detect in 10% of
all cases. In reverse, if the user has a greater distance, the sensor will still detect
the IR signal in 5% of all cases but won’t detect it in 95% of all cases. Note that
the IR beacon sends its signal every 500 ms whereas an RFID tag will send only
after receiving a ping-signal from the PDA of the user. Node RFIDSensor, like
Node IRSensor, contains the states c1 = ”yes”, and c2 = ”no”. The lower preci-
sion of the RFID-Sensor compared to the IR-Tag is reflected in the associated

CPT:




a1 a2

c1 0.6 0.3
c2 0.4 0.7



. The imprecision of the RFID signal is, among other things,

due to its high sending range. This accuracy can be increased by decreasing
the transmitting power of the RFID reader, which sends the above-mentioned
ping-signal.

A new time slice is instantiated whenever data arrives and then the estimation
is calculated, followed by the roll-up.

4 Example Application

To test our approach we implemented a localization system and equipped parts
of our lab with IR beacons and RFID tags. The software is running on an
HP iPAQ h5550 with 128 MB ram and Windows CE 4.2 as operating system. The
iPAQ is settled in an expansion pack that provides an additional battery and a
PCMCIA slot that hosts the active RFID tag reader card. IR signals are received
through the internal IR port of the iPAQ. The system itself consists of two
applications, which both run on the iPAQ simultaneously: The first application is
the PositionSensor, which takes a measurement of both sensors every 500 ms and
that reads the stored coordinates of every received RFID tag. The collected data
is then processed via the described calculations and the estimated coordinate
of the user is send to the second application, the BMW Personal Navigator
(see [10]), which visualizes the position to the user.

Figure 2 shows how the PositionSensor is integrated into a framework where
applications only query the layer of the Interaction Manager. This Interaction
Manager is responsible for forwarding raw sensor data to its corresponding clas-
sifiers or DBNs and synchronizing DBN rollups with processing and reading
sensors. It also registers new classifiers and sensors and handles their access.
This separates the development of applications from extending sensors, classi-
fiers, and DBN libraries — which can still be used independently from all other
modules or the framework itself.

Figure 3 shows a test walk of a user U from Room 121 (lower left in Fig. 3) to
Room 119.3 (upper right in Fig. 3) in our lab. The stickman indicates the system’s
estimation of U ’s position. The corresponding circle around each stickman shows
the area of the possible real positions. RFID tags are marked as green squares,
IR beacons as red squares with cones that indicate the sending direction. Both
rooms are equipped with RFID tags in each of the four corners and additional
IR beacons at the entrances. Room 119.3 also contains a bookshelf that bears
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Interaction Manager

DBNs Classifiers
Sensor

Readers

Sensors

Applications

RFID-Tag IR-Beacon…

(a) (b)

Fig. 2. (a) System Architecture and (b) the iPAQ with PCMCIA RFID-Reader Card,

built-in WLAN and IR-Reader (left) and RFID-Tag and IR-Beacon (right)

an IR beacon. The hallway has RFID tags at about every 2 meters and two IR
beacons (one in each direction) at about every 4 meters. U moved with slow to
normal walking speed. The user position is very accurate on room level, i.e. if
U is in a particular room, the system will estimate the position somewhere in
that room. The position in the room itself is rather coarse but the accuracy can
be greatly increased by placing IR beacons at points of special interest (like the
bookshelf in Room 119.3). The position estimation in the hallway varies about
1 meter from the actual position.

5 Conclusion and Future Work

We presented a new approach to estimate a user position by probabilistic sensor
fusion. Our method is low in space and time complexity and can therefore run
completely on a PDA. The calculation of the position does not need a model of
the environment and the time-consuming task of calibration is superfluous. Any
arbitrary environment can be enhanced by simply putting up tags and beacons
and writing the respective coordinates in the memory of these devices. Regions
with coarser or finer granularity can be established by using senders with the
appropriate precision (e.g. IR beacons for higher precision and RFID tags for
lower precision).

We think that the concept of geo referenced dynamic Bayesian networks can
be generalized to referenced dynamic Bayesian networks, because DBNs can also
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IR-BeaconRFID-Tag

565 564 563 562 561 509560

Room 121

Room 119.3

Fig. 3. A test walk through our lab. The stickman indicates the estimated position

and the circle the area of the real positions

be referenced to actions, plans or symbolic locations. Future work will be the in-
tegration of other sensor types (e.g. video cameras, microphone arrays) and a sys-
tem to determine the optimal placing of the senders and sensors. Another project
at our lab researches the usability of biophysiological sensors. Part of that work
(e.g. accelerometers) can be used to adapt the motion model of the geoDBNs to
the current state of the user (e.g. sitting, walking fast or walking slow).
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