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Abstract. The aim of this paper is to present CookIIS1, a Case-Based
Reasoning (CBR) system that provides recipe suggestions. The sugges-
tions are created based on a given set of recipes that the system modifies
according to a user’s specification. For the adaptation of recipes CookIIS
relies on its knowledge model, a set of 342 rules as well as substitution
suggestions mined from cooking communities on the WWW. The paper
describes how CookIIS processes the competition queries and masters
the challenges of the Computer Cooking Contest 2009.

1 Introduction

Retrieving and reusing recipes that are correct and delicious is a difficult task
and the participation in last years Computer Cooking Contest (CCC) showed us
that the challenges we had to bear are interesting research topics. In this paper
we present insights how our system CookIIS is realized and which methodologies
and techniques we use to cover the expected areas of competences.

This year the CCC contains three main challenges that we all address with
CookIIS. The Compulsory Task focusses on the type of meal and type of cuisine
as well as extended dietary practises and the modification of recipes. There-
fore we extended and improved last years knowledge models, added new dietary
practices and we are now using additional knowledge that has been extracted
from cooking communities on the WWW. For participation in the new Adapta-
tion Challenge, CookIIS has an own adaptation component which only contains
pasta recipes with more detailed and structured information of the preparation
processes. The third task, the Menu Challenge, focusses, like last year, on the
composition of a three course menu and we use the findings and further develop-
ments made for the Compulsory Task and Adaptation Challenge to also improve
the retrieval and adaptation in the Menu Challenge.

Overall CookIIS is a Case-Based Reasoning (CBR), more precisely a struc-
tured CBR system that uses techniques like Text Mining and Information Ex-
traction to gather more knowledge and improve the results of our systems.
Moreover, we used the experiences we made with last years system to improve

1 http://cookiis2009.iis.uni-hildesheim.de:8080/ccc



CookIIS, especially its underlying knowledge containers [1]. We realized CookIIS
using the industrial strength CBR based tool Information Access Suite (e:IAS)
from empolis[2], which employs Case Retrieval Nets [3]. The cases that we use
were given by the CCC organizers, so we concentrated on extracting knowledge
for recipe transformation, the coverage of our vocabulary and the computation
of the similarity measures. Based on last years systems we completely revised
the underlying knowledge model: we defined more precise ingredient taxonomies
and (semi-)automatically extended the vocabulary aiming that most of the in-
gredients can be recognized. The more detailed representation of ingredients also
results in a better similarity computation.

We decided to use very user-friendly text based graphical interface what
makes it easy to use CookIIS. According to the three challenges we have got
three components: The CookIIS Recipe Creator is developed to compete in the
Compulsory Task because its underlying case base contains the according recipes.
The CookIIS Pasta Adaptation only contains the pasta recipes and focusses in
the adaptation task. The CookIIS Menu Creator also contains compulsory case
base, but has text fields to specify and explicitly exclude ingredients for each of
the three courses. CookIIS can be queried in German and in English - however
the recipes and the preparation instructions will be in English.

Our paper is structured as follows: Section 2 presents the CookIIS knowledge
models and focuses on improvements compared to last year’s system. According
to the three tasks CookIIS has to perform, section 3 contains the Compulsory
Task queries and explains how we extract type of meal and type of cuisine, how
we retrieve recipes that fit dietary practises and how we compute the similarity
measures. Section 4 presents the adaptation process as well as the integration of
community knowledge to provide more reliable substitutions for ingredients. The
Menu Challenge queries as well as the creation process of a menu is described in
5. The last section gives a summary of the main features of CookIIS and provides
a short outlook on future work.

2 Knowledge Model

Since we use an approach that is based on structured CBR, we implemented a
very detailed knowledge model which describes the cooking domain. The model
is based on the one of the CCCIIS system that competed in last years Computer
Cooking Contest [4]. The main elements of our model are the ingredients that are
required to prepare a meal. They are organized in the following eleven classes:

Basic Ingredients Fish Meat Vegetable
Supplement Fruit Drinks Milk
Minor Ingredients Oil and Fat Spice and Herb

Within these classes we modelled about 1000 different ingredients represented
as concepts that can be used for describing a meal. The most concepts (177) are
contained in the Meat class. Each concept represents one single ingredient and
is modeled with synonyms in English and German language. In most cases the



concepts are ordered in one or more taxonomies. These taxonomies are one
possibility for the calculation of the similarity between a query and a case as
explained in Section 3.4.

For this years contest we manually revised our existing model from last year,
cleaned a lot duplicates, added a lot of concepts and synonyms and reworked all
of our taxonomies. The remodeling and completion of classes is mainly based on
[5]. For example, we split the class ’liquids’, which contained drinks as well as
non-drinkable fluids into the classes ’Drinks’ and ’Oil and Fat’ since those two
classes have almost nothing in common. Any fluids not fitting in those classes
we added to other existing and fitting ones. For example water is now a basic
ingredient and only mineral water is a drink. Since there is a special focus on
pasta recipes for this years adaptation challenge we also modeled about 40 kinds
of different pasta in an additional class.

Besides the ingredients, preparation methods and tools required for the prepa-
ration are often mentioned in a recipe. We modeled each in an own class. The
preparation methods are not only used to compute the similarity between a
query and a case, but it is also used to determine the type of meal (e.g. dessert)
as described in the following section. For the Computer Cooking Contest it also
important to determine the origin of a recipe. We modeled 48 possible origins
and ordered them in a taxonomy to use them for similarity calculation too.

Overall we modelled about 2000 different concepts in 25 different classes.
We weighted each class in relation to the importance of the class for finding the
right recipe. We built two different case bases using two different aggregates, but
the same model: one with the compulsory task recipes and one with the pasta
recipes.

3 Compulsory Task

In the Compulsory Task, single recipes have to be retrieved according to auto-
matically computed meta information like the type of ingredients, the type of
meal, the type of cuisine while also considering some dietary practices.
The type of ingredients is automatically recognized based on the classes in our
knowledge model presented in the previous section. We will explain in the fol-
lowing two sections how we computed other meta information.

3.1 Type of Meal

One type of meta information needed for the recipes is the type of meal, which
describes whether a dish is for example a main course or a dessert. We defined
a class in which most concepts (i.e. types of meal) are ordered in a taxonomy.
We implemented some in order to assign the types of meals to the recipes. We
based the implementation on two main aspects:

– indicative keywords in the recipe title,
– indicative ingredients or combination of ingredients.



In the first approach, we extract the type of meal from the title of a recipe. For
example, a recipe which contains the indicative word ”sherbet” in its title is, with
a high probably, a dessert. In the second approach, we analyze the ingredients
(and also their types) as well as the preparation methods contained in recipes.
The preparation methods are extracted from the given preparation instructions.
For example, a frozen meal with milk, fruits and sugar is probably an ice cream.
We do not use further information from the preparation instructions yet. We
have about 15 rules for the assignment of the type of meal with a precision of
about 90 percent.

3.2 Type of cuisine

Another requirement of the CCC is the identification of the type of cuisine (e.g.
Italian, Chinese, Mediterranean, etc.), which is not given in the recipe itself.
All possible origins are modeled in one class and organized in an taxonomy. For
example the concept ”Mediterranean” is the parent for ”Portuguese”, ”Spanish”
and ”Italian”, while ”Mediterranean” itself is a child node of ”Southern Euro-
pean”. In order to map the recipes to one of our concepts we implemented three
rule-based approaches using rules:

1. identification of the recipe’s origin in the recipe title
2. identification of characteristic strings or meals in the recipe title and map

them to an origin
3. using the occurrences of spices and herbs and other ingredients to find some

elements that are characteristic for a type of cuisine

The first method is based on the finding that many recipes display their
origin in their title (e.g. Chinese Chicken Salad). Here the origin is determined
right away. The second approach needs some background knowledge. It is based
on the fact that some foods or meals are characteristic for a specific type of
cuisine (e.g Sauerkraut is typical for the German kitchen). A set of rules maps
those occurrences to the according type of cuisine. For the third approach we use
ingredients, especially the spices and herbs used in the recipe. For example the
use of curry is a strong hint on the Indian cuisine. Overall CookIIS includes about
28 different rules, which are prioritized according to the different approaches and
map the recipes with a precision of 80 to 90 percent.

3.3 Dietary Practices

In the CCC tasks and challenges, the participating systems have to be able to
retrieve suggestions that are following at least the following two dietary practices
(i.e. gout diet and cholesterol diet) and a seasonal food calendar. We also include
other dietary practices (i.e. vegetarian, nut free and non alcoholic) which were
implemented for our CCCIIS [4] in last year’s contest.
To follow the specification of a gout and cholesterol diet, ingredients as well
as types of ingredients were given, which should or should not be contained in



the retrieved recipes. For each forbidden ingredient, we set a filter so recipes
containing this ingredient are not considered during the retrieval process. We
do this by excluding either single ingredients or categories of ingredients (e.g.
exclude any kind of meat for a gout diet). We also set filters in order to consider
only the recipes that contain at least one of the recommended ingredients. These
two kinds of filter ensure that the retrieved recipes always contain some of the
recommended ingredients and none of the forbidden ones. We use filters instead
of adaptation, because the forbidden ingredients can not be adequately replaced
in a recipe while following a diet.
With the seasonal option, the user can specify a month of which the vegetables
that are included in the suggested recipe are available. If this option is chosen
and some vegetables in the best fitting recipe are not available in the selected
month, the system will give a hint. Further we propose, according to the provided
seasonal food calendar, adaptation candidates for some unavailable vegetables.
The system just proposes candidates that are available in the selected month.

3.4 Similarities (Taxonomies)

As stated before, each recipe is represented as one case consisting of attributes.
Each attribute’s class is defined by the concepts that we introduced in Section
2. The similarity between two cases is calculated as follows:

– local similarity for each attribute and
– a global similarity measure for recipes.

The taxonomies of our knowledge model are used as a first approach for the
computation of the local similarities. By assigning adequate values for the gen-
eralization and the specialization step in the taxonomy, similarities between con-
cepts of a class can be computed. In our taxonomies, those values were assigned
and adjusted manually. When needed, we defined several taxonomies for given
classes. For example, the class meat has two taxonomies. In the first taxonomy
the single meat ingredients are ordered according to their kind (e.g. beef, pork,
poultry) and in the second taxonomy the ingredients are ordered by the part of
the animal they origin from (e.g. fillet, haunch). Since both taxonomies are used
for similarity calculation, chicken breast is similar to turkey breast as well as to
chicken fillet.
The second approach for the computation of local similarities consists of manu-
ally assigning similarity values of some pairs of elements of the class in a similar-
ity matrix. This assignment is only done for pairs of ingredients for which either
they are pretty well known to be very similar or one of the ingredients could not
be ordered in a taxonomy. We use a combined similarity measure in which the
assigned similarity value is the maximal value obtained from both approaches.
The global similarity measure is a weighted sum of the local similarities of the
attributes in the case, following the local-global principle for similarity modeling
(see [6]). The weights assigned to the local similarities reflects the importance
of the corresponding attributes in the cases. The sort of meat used in a meal is,
for example, more important than the type of oil used.



4 Adaptation Challenge

Due to the fact that the given recipe base is not large enough to provide recipes
for the whole variety of desired and favoured ingredients, an adaptation of the
existing recipes to the users needs is necessary. Thereby ingredients which are
excluded by a certain diet or explicitly by a user are considered as forbidden
ingredients. The intersection of forbidden ingredients and ingredients occurring
in a retrieved recipe we call critical and they have to be replaced. Our over-
all assumption is to replace forbidden ingredients with others from the same
ingredient class.

The adaptation of the recipes in CookIIS is mainly done via a set of rules
called after the retrieval of similar cases. According to shortcomings of our first
adaptation approach used at CCC 2008 we discovered in [7] we restructured
our adaptation as a sequence of distinguished steps to pursue different adap-
tation approaches. At the moment the implemented adaptation steps can be
subsumed under two approaches: community-based adaptation and model-based
adaptation. The first executed approach collects concrete pairs of ingredients as
adaptation advices from comments inside cooking communities on the WWW
and is described in section 4.2. For critical ingredients where no replacements
at the first step are found the subsequent adaptation steps are executed (be-
longing to model-based adaptation), which work more general on the designed
knowledge model and similarity measures. The reason for using this approach is
to avoid handcrafting a single adaptation rule for each ingredient with explicit
replacement candidates. It it explained in the next section 4.1. We combine both
adaptation approaches and save intermediate results in extra attributes of the
case. The main advantage of this sequential adaptation is that we can review
and adjust the results of adaptation steps performed before.

4.1 Model-based Adaptation

The adaptation schema bases on a relaxed intersection function from e:IAS [2]
Rule Engine which determines similar ingredients for the critical ingredients as
replacements. It is explained more in detail in [8].

The replacement of ingredient (concepts) through child concepts of this in-
gredients is not appropriate (e.g. replacing forbidden tomatoes with cherry toma-
toes). Therefore we have to remove the child concepts from the list of replace-
ment candidates. The relaxed intersection function only uses the default simi-
larity measure of a class which is, for CookIIS, the combined similarity measure
explained in Section 3.4. It is not possible to explicitly choose one the given
approaches used for the computation of similarity values. The relaxed intersec-
tion function therefore allows the replacement of forbidden ingredients through
parent concepts as well as child concepts, which is not appropriate under certain
circumstances. In order to eliminate the child concepts of the forbidden ingre-
dients from the list of replacement candidates, we adjusted some values in the
similarity matrices, such that other candidates are more similar than the child
concepts. We execute the intersection function twice, once with a threshold equal



to similarity value resulting from a taxonomy and afterwards with a threshold
slightly above this first threshold and compare the results to separate and ex-
clude the child concepts.
For desired ingredients which do not appear in the recipe yet we execute an addi-
tional adaptation step to replace one of the similar ingredients of the recipe with
the desired ingredient. As a last step we count the amount of replacement candi-
dates. If no adequate ingredients remain, we recommend to omit this forbidden
ingredient.

4.2 Extraction of Adaptation Knowledge from Cooking
Communities

The Internet and the Web 2.0 with its user-generated content is a large source
of any kind of knowledge and experience. This includes knowledge and experi-
ence about cooking and about adapting recipes, which are discussed in cooking
communities. In these communities people upload their favourite recipes for ev-
erybody to use and express their opinion about other peoples recipes. Thereby
they do not only say what they like or what they do not like about the recipe,
they also express the way they adapt the recipe to their needs. This can be for
changing the taste, for following a certain diet or just because they did not have
an ingredient at hand and took a different one. For this years CCC we imple-
mented an approach that makes this knowledge available for our application.

We collected about 70’000 recipes with more than 280’000 comments from a
large German cooking community by crawling the website. This way we got one
HTML source-code page for each recipe with the corresponding comments. From
this source code we extracted the relevant information entities using filters based
on different HTML tags. For the recipe these entities were primarily the recipe
title, needed ingredients and the preparation instructions. If users commented
the recipe, we extracted the text of the comment, checked if the comment was an
answer to another comment and if the comment is marked as a helpful comment
or not. All these informations we stored in an database to have an efficient access
to the data.

In the next step we used the e:IAS and an extended CookIIS knowledge model
to generate two different case bases. One case-base consists of the recipes and
one of the comments. Using the e:IAS TextMiner we extracted the mentioned
ingredients and stored them as a case for each recipe and each comment. Since
our knowledge model is bilingual (English and German) we were able to translate
the originally German ingredient names into English terms during this process
and also took care of used synonyms. This way had the same terms in the case
bases that we use in our CookIIS application.

Having built up the two case bases we first retrieved a recipe, then all of the
comments belonging to the recipe, and finally compared the ingredients of the
recipe with the ingredients mentioned in the comment. This way we classified
the ingredients mentioned in the comments into the following three categories:

– New : ingredients that are mentioned in the comment, but not in the recipe



– Old : ingredients that are mentioned in the comment as well as in the recipe
– OldAndNew : two or more ingredients of one class of our knowledge model,

of which at least one was mentioned in the recipe and in the comment and
at least one other one was only mentioned in the comment, but not in the
recipe

For the CookIIS application the last class is the most interesting. We inter-
preted ingredients with this classification as either an adaptation (e.g. instead of
milk I took cream) or an explanation/specialization (e.g. Gouda is a semi-firm
cheese). For each of these ingredients classified as OldAndNew we also stored
whether it is the new or the old one. We tried to distinguish between adaptation
and specialization by looking for hints in the original comment text and by using
the taxonomies of our knowledge model. Therefore we tried to find terms in the
comment that indicate that an adaptation was described in the comment during
the text-mining process (e.g. instead of, alternative, replaced with,...) and stored
those terms in the corresponding case. Additionally we looked in the taxonomy
of the ingredient class whether the one ingredient is a child of the other (or the
other way around). If an ingredient is a child of the other we interpreted this
as specialization or explanation, because one ingredient is a more general term
than the other. This way we omit to have adaptations like: instead of semi-firm
cheese take Gouda.

For each classified ingredient we assigned a specific score, which depends on
the following factors:

– the number of ingredients found in the comment text
– whether the comment was marked as helpful or not
– whether a term was found that specifies the classification further or not
– whether a term was found that indicates a different classification or not

After assigning the score we aggregated our classification results. For the
CookIIS application we did this in two steps: First we aggregated all classified
ingredients of all comments belonging to one recipe. Thereby we counted the
number of the same classifications in different comments and subsequently added
up the score of the same classifications. Then we aggregated all classifications
without regarding the recipe they belong to. This way we can select the most
common classifications out of all classifications.

For this years CookIIS application we use the overall aggregation of OldAnd-
New -classified ingredients to generate adaptation suggestions. We look up this
ingredient in our ”community knowledge DB”. If this ingredient is categorized
as ”old” we use the corresponding ”new” ingredient to serve as substitution. If
more than one substitution is found, we use the on with the highest score. We
usually try to retrieve two adaptation suggestions to be more manifold. Using
the approach we got more than 5’300 different adaptation suggestions for about
570 different ingredients of which we only use the most common (regarding the
number appearances in the comments and the score). For the future we plan to
use the adaptation suggestions with regard to the recipe they belong to. Our
idea is to find similar recipes to the recipe the adaptation is done at out of our



pool of 70’000 recipes and find an adaptation suggestion from a similar recipe
following the principle that similar recipes need similar adaptations.

The approach described above has a lot of advantages. For finding ingre-
dients we can use our detailed CookIIS knowledge-model. This way we take
care of synonyms and have the same terms in the application as well as in the
adaptation-database. Since we are not looking for exact semantics but do our
own classification we are independent from slang or informal language as often
used in bulletin boards in the Internet. By using a large number of recipes and
comments we hope to balance wrong classifications out and avoid suggesting false
positives. Some more technical details and ideas for the evaluation are described
in [9].

5 Menu Challenge

In this challenge CookIIS designs a three-course menu according to given con-
straints. The user can specify which ingredients should be used, which should
be avoided and the CookIIS Menu Creator will compose a menu containing a
starter, a main dish, and a dessert that fit together. Our underlying assumption
is that each dish of a menu should have the same type of cuisine. The technical
idea behind the Menu Creator is a two step retrieval [10].

Fig. 1. Menu Design: two-query approach

Figure 1 illustrates our approach, in which a main dish is retrieved first to
set the type of cuisine for the whole menu. In the second retrieval step the given
ingredients and the type of cuisine are used to retrieve fitting recipes for starter,
main dish and dessert. Within the second step we also make sure that the types
of meal of the courses differ from each other.

6 Conclusion

In this paper, we presented CookIIS, a case-based system that provides recipe
suggestions. We first presented the underlying knowledge model, which contains



25 classes with about 2000 concepts. We improved the knowledge model by
taking additional knowledge obtained from cooking literature into account as
well as the experience made with our system. In order to meet some of the
requirements of the Computer Cooking Contest, various meta information about
recipes can be automatically computed in CookIIS. We have a set of rules which
is used for the extraction of the needed meta information. We also use a rule
based approach to deal with dietary practices by only considering the recipes
that can be recommended for a given diet. CookIIS uses a sequential adaptation
based on a set of prioritized adaptation rules performing a sequence of steps to
pursue two different approaches: on the one hand the model-based adaptation
and on the other hand the community-based adaptation.
For the future we still have ideas to improve CookIIS. We are actually trying
to consider the amount (i.e. the weight) of ingredients for the retrieval and the
computation of meta information. Another improvement we are aspiring consists
of learning association rules from the recipes in order to refine the adaptation.
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