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Abstract

We give two generic proofs for cut elimination in propositional modal
logics, interpreted over coalgebras. We first investigate semantic coher-
ence conditions between the axiomatisation of a particular logic and
its coalgebraic semantics that guarantee that the cut-rule is admissi-
ble in the ensuing sequent calculus. We then independently isolate a
purely syntactic property of the set of modal rules that guarantees cut
elimination. Apart from the fact that cut elimination holds, our main
result is that the syntactic and semantic assumptions are equivalent in
case the logic is amenable to coalgebraic semantics. As applications
we present a new proof of the (already known) interpolation property
for coalition logic and newly establish the interpolation property for
the conditional logics CK and CK + ID .

1 Introduction

Establishing the admissibility of the cut rule in a modal sequent calculus
often allows proving many other properties of the particular logic under
scrutiny. If the sequent calculus enjoys the subformula property, the con-
servativity property is immediate: each formula is provable using only those
deductive rules that mention exclusively operators that occur in the formula.
As a consequence, completeness of the calculus at large immediately entails
completeness of every subsystem that is obtained by removing a set of modal
operators and the deduction rules in which they occur. Moreover, cut-free
sequent systems admit backward proof search, as the logical complexity of a
formula usually decreases when passing from the conclusion to the premise
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of a deductive rule to the premise. Given that contraction is admissible in
the proof calculus, this yields – in the presence of completeness – decidabil-
ity and complexity bounds for the satisfiability problem associated with the
logic under consideration [12, 3]. Finally, a cut-free system provides the nec-
essary scaffolding to prove interpolation theorems by induction on cut-free
proofs.

For normal modal logics, sequent calculi, often in the guise of tableau
systems, have therefore – not surprisingly – received much attention in the
literature [1, 7, 22]. In the context of non-normal logics, sequent calculi
have been explored for regular and monotonic modal logics [9], for Pauly’s
coalition logic [10] and for a family of conditional logics [17]. All these log-
ics are coalgebraic in nature: their standard semantics can be captured by
interpreting them over coalgebras for an endofunctor on sets. This is the
starting point of our investigation, and we set out to derive sequent systems
for logics with coalgebraic semantics and study their properties. Given a
(complete) axiomatisation of a logic w.r.t. its coalgebraic semantics, we sys-
tematically derive a (complete) sequent calculus. In general, this calculus
will only be complete if we include the cut rule. We show that cut free com-
pleteness, and therefore eliminability of cut, follows if the axiomatisation is
one-step cut-free complete: every valid clause containing operators applied
to propositional variables can be derived using a single modal deduction
rule. The existence of a cut-free sequent calculus for coalgebraic logics is
then exploited to establish conservativity, complexity, and interpolation for
modal logics in a coalgebraic framework. While conservativity and complex-
ity of coalgebraic logics have already been established in [28] we believe that
the results here offer additional conceptual insight. Regarding interpolation,
we obtain a new proof of the (known) interpolation property for coalition
logic [10] while interpolation for the conditional logics CK and CK + ID [5]
was left as future work for the (different) sequent systems considered in [17]
and appears to be new.

On a technical level, we consider modal logics that are built from atomic
propositions, propositional connectives and modal operators, in contrast
to earlier work (e.g. [13, 18, 24, 28]) where atomic propositions were re-
garded as an optional feature, incorporated into the modal similarity type
as nullary modalities. This does not only provide a better alignment with
standard texts in modal logic [5, 4] but is moreover a prerequisite for for-
mulating the interpolation property. As a consequence, we are lead to work
with coalgebraic models, that is, coalgebras together with a valuation of
the propositional variables, right from the start. Completeness and cut-free
completeness is then proved via a terminal sequence argument, but over the
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extension of the signature functor to the slice category Set/P(V ) where V
is the set of propositional variables. This provides an alternative route to
the shallow proof property of [28].

In this setting, we observe that one-step cut-free completeness corre-
sponds to eliminability of cut. We then isolate purely syntactic conditions
under which cut elimination holds. In essence, the set of modal rules has
to be rich enough so that cuts between conclusions of modal rules can be
absorbed into a single rule. If the rules are moreover strong enough to prop-
agate contraction, we show that cut can be eliminated. This essentially
amounts to completing the rule set so that cuts involving rule conclusions
are in fact absorbed in the rule set, in strong analogy with Mints’ compar-
ison [15] between resolution and sequent proofs. It is interesting to note
that the respective strengths of the syntactic and the semantic approach
are identical: we show that the semantic coherence condition that guaran-
tees admissibility of cut is equivalent to the syntactic requirement which is
needed for cut elimination.

We summarise the coalgebraic semantics of modal logics in Section 2
and introduce modal sequent calculi in 3. Section 4 then establishes cut-free
completeness semantically, while a purely syntactic proof of cut elimination
is given in Section 5. We discuss applications, in particular the interpolation
property, in Section 6 before concluding with two open problems.

Related Work

Sequent systems, and dually tableau systems, for modal logics traditionally
come in two flavours: labelled calculi employ extended formulas that speak
about states and transitions explicitly, while unlabelled calculi work purely
with formulas of the logic. Our generic approach employs unlabelled sys-
tems. A good overview of work on labelled systems for normal modal logics
is found in [16], while unlabelled systems are surveyed in [30]. Tableau sys-
tems for normal modal logics are discussed in [8]. There is, as far as we are
aware, only a limited amount of work on sequent systems for non-normal
logics, with the exception of [17] where labelled sequent systems for condi-
tional logics are studied. We use conditional logic as one of two running
examples; it turns out that the treatment of unlabelled sequent systems
for conditional logics is pleasantly simple, as illustrated also in our further
work on modal sequent systems outside rank 1 [19]. We do not know of a
systematic general study of sequent systems for non-normal modal logics.

Our principle of absorption of structural rules is broadly related to
generic criteria for cut elimination in substructural logics [2, 6], where, how-
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ever, rules are assumed to be of a format that does not fit typical modal
rules — besides the structural rules, there can be only left and right intro-
duction rules for the logical connectives which introduce only one occurrence
of a connective. A general approach to cut elimination which does apply to
modal logics is presented in [21]. The range of application of this method is
very wide and encompasses e.g. first-order logic, the modal logic S4, linear
logic, and intuitionistic propositional logic. This generality is reflected in
the fact that the method as a whole is substantially more involved than
ours; whether it applies also to non-normal logics in principle remains an
open question.

2 Coalgebraic and Logical Preliminaries

Given a category C and an endofunctor F : C → C, an F -coalgebra is a
pair (C, γ) where C ∈ C is an object of C and γ : C → FC is a morphism
of C. A morphism between F -coalgebras (C, γ) and (D, δ) is a morphism
m : C → D ∈ C such that δ ◦m = Fm ◦ γ. The category of F -coalgebras
will be denoted by Coalg(F ).

In the sequel, we will be concerned with F -coalgebras both on the cate-
gory Set of sets and (total) functions and on the slice category Set/P(V ), for
V a denumerable set of propositional variables that we keep fixed throughout
the paper. Working with the slice category Set/P(V ) allows a convenient
treatment of propositional variables. In particular, coalgebras on Set/P(V )
play the role of Kripke models, i.e. they come equipped with a valuation
of propositional variables. Recall that an object of Set/P(V ) is a func-

tion f : X → P(V ) and a morphism m : (X
f→ P(V )) → (Y

g→ P(V ))
is a commuting triangle, that is, a function m : X → Y such that
g ◦ m = f . The projection functor mapping (X → P(V )) 7→ X is de-
noted by U : Set/P(V ) → Set. For the remainder of the paper, we fix
an endofunctor T : Set → Set and denote its extension to Set/P(V ) by
T/P(V ) : (Set/P(V )) → (Set/P(V )); the functor T/P(V ) maps objects
f : X → P(V ) to the second projection mapping TX ×P(V )→ P(V ). We
assume w.l.o.g. that T is non-trivial, i.e. TX 6= ∅ for some set X; it follows
that TY = ∅ only if Y = ∅. Note that an object M ∈ Coalg(T/P(V )) is a
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commuting triangle necessarily of the form

C

ϑ

!!

〈γ,ϑ〉 // TC × P(V )

π2xx
P(V )

or equivalently a triple (C, γ, ϑ) where (C, γ) ∈ Coalg(T ) and ϑ : C →
P(V ) is a co-valuation of the propositional variables. Passing from the co-
valuation ϑ : C → P(V ) to the valuation ϑ] : V → P(C) induced by the
self-adjointness of the powerset functor, we can view T/P(V )-coalgebras
as T -coalgebras (C, γ) together with a valuation of propositional variables.
T/P(V )-coalgebras therefore play the role of T -models (T -coalgebras, which
we see as frames, together with a valuation of propositional variables). In
what follows, we will denote T/P(V )-coalgebras as triples (C, γ, ϑ) as above
and use Mod(T ) to refer to the category Coalg(T/P(V )) of T -models. If
M = (C, γ, ϑ) is a T -model, then we refer to (C, γ) ∈ Coalg(T ) as the
underlying frame of M .

On the syntactic side, we work with modal logics over an arbitrary modal
similarity type (set of modal operators with associated arities) Λ. The set
of Λ-formulas is given by the grammar

F(Λ) 3 A,B ::= p | A ∧B | ¬A | ♥(A1, . . . , An)

where p ∈ V and ♥ ∈ Λ is n-ary. We use the standard definitions of the
other propositional connectives, i.e. we put A∨B = ¬(¬A∧¬B), A→ B =
¬A ∨ B, A ↔ B = (A → B) ∧ (B → A), ⊥ = p ∧ ¬p for some p ∈ V ,
and > = ¬⊥. If S is a set (of formulas or variables) then Λ(S) denotes the
set {♥(s1, . . . , sn) | ♥ ∈ Λ is n-ary, s1, . . . , sn ∈ S} of formulas comprising
exactly one application of a modality to elements of S. We denote the set
of propositional formulas over a set S by Prop(S). The (modal) rank of a
formula A is the maximal nesting depth of modal operators in A (0 if A
does not contain any modal operators). We denote the set of propositional
variables occurring in a formula A by FV(A).

Remark 2.1. Above, we deviate slightly from the approach to propositional
variables used in coalgebraic logics so far [13, 18, 24, 28]: Instead of emu-
lating propositional variables as nullary modal operators, interpreted over
T × P(V )-coalgebras in Set, we treat propositional variables as syntactic
entities in their own right, and interpret them over T/P(V )-coalgebras in
Set/P(V ). As indicated in the introduction, this is motivated by the desire
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to stay as close as possible to the standard treatment of modal logic. In par-
ticular, the distinction between variables and modal operators has a bearing
on the stratification by modal rank that pervades our exposition both se-
mantically and syntactically: traditionally, and also according to the above
definition, a propositional variable p is regarded as ‘non-modal’; in partic-
ular, the formula p has rank 0. Contrastingly, if p is emulated as a modal
operator, then the formula p has rank 1. Further technical implications of
this distinction are discussed in Section 4.

To facilitate induction on the modal rank of a formula, we stratify the set
F(Λ) by modal rank. That is, we put

F−1(Λ) = ∅ and Fn(Λ) = Prop(Λ(Fn−1(Λ)) ∪ V )

for n ≥ 0. It is easy to see that F(Λ) =
⋃
n∈ω Fn(Λ).

An S-substitution is a mapping σ : V → S. We denote the result of
simultaneously substituting σ(p) for every p ∈ V in a formula A ∈ F(Λ)
by Aσ. As usual, substitution associates to the right, i.e. Aσρ = (Aσ)ρ for
formulas A ∈ F(Λ) and substitutions σ, ρ : V → F(Λ).

As in [18, 23], formulas of F(Λ) are interpreted over T -coalgebras pro-
vided that T extends to a Λ-structure, i.e. comes equipped with an assign-
ment of predicate liftings (natural transformations)

J♥K : 2n → 2 ◦ T

to every n-ary modal operator ♥ ∈ Λ. Here 2 : Setop → Set is the contravari-
ant powerset functor, and for any functor F , Fn denotes the n-fold product
of F with itself, i.e. Fn(X) = FX × · · · × FX. Explicitly, the naturality
equation for J♥K translates into the requirement that J♥K commutes with
inverse images, i.e.

J♥KX(f−1[Z1], . . . , f−1[Zn]) = (Tf)−1[J♥KY (Z1, . . . , Zn)]

for all maps f : X → Y and all subsets Z1, . . . , Zn ⊆ Y . We usually leave
the assignment of predicate liftings to modal operators implicit and simply
use T to refer to the entire Λ-structure.

Given a Λ-structure T and M = (C, γ, ϑ) ∈ Mod(T ), the semantics of
A ∈ F(Λ) is inductively given by

J♥(A1, . . . , An)KM = γ−1 ◦ J♥KC(JA1KM , . . . , JAnKM )

and
JpKM = {c ∈ C | p ∈ ϑ(c)}
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for p ∈ V , together with the standard clauses for the propositional connec-
tives.

If M = (C, γ, ϑ) is a T -model, semantic validity JAKM = C is denoted
by M |= A. We write Mod(T ) |= A if M |= A for all M ∈ Mod(T ).

The completeness results that we establish later rely heavily on exploiting
the semantic relation between formulas of Prop(V ) (describing properties of
states) and formulas of Prop(Λ(V )) that describe properties of successors,
in close analogy to coalgebra structures mapping states (elements of C) to
successors in TC. The following notation is convenient for this purpose:

If A ∈ Prop(V ), then every valuation τ : V → P(X) inductively defines a
subset JAKτX ⊆ X by evaluation in the boolean algebra P(X), and we write
X, τ |= A if JAKτX = X. For statements about successor states, i.e. formulas
A ∈ Prop(Λ(V )), we have that every valuation τ : V → P(X) induces a
subset JAKτTX ⊆ TX given by inductively extending the assignment

J♥(p1, . . . , pn)KτTX = J♥KV (τ(p1), . . . , τ(pn))

on atoms to the whole of Prop(Λ(V )). We write TX, τ |= A if JAKτTX = TX.
Our techniques will be illustrated by the following two running examples.

Example 2.2 (Coalition logic and conditional logic).

(i) Coalition logic [20] allows reasoning about coalitional power in games.
We take N = {1, . . . , n} to be a fixed set of agents, subsets of which are
called coalitions. The similarity type Λ of coalition logic contains a unary
modal operator [C] for every coalition C ⊆ N . Informally, [C]A expresses
that coalition C has a collaborative strategy to force A. The coalgebraic
semantics for coalition logic is based on the signature functor C defined by

CX = {(S1, . . . , Sn, f) | ∅ 6= Si ⊆ N finite for all i; f :
∏
i∈N Si → X}.

(In order to enable arguments that use the terminal sequence of C, we restrict
to finite rather than arbitrary sets of strategies to ensure that C is really
set-valued, in contrast to earlier uses of this example where we did not need
to worry about functors being class-valued [28]. We thus obtain a more
restrictive semantics of coalition logic than considered in [20]; however, we
retain weak completeness of the rule set to be introduced in Example 3.6
as discussed in Example 4.16). The elements of CX are understood as
strategic games with set X of states, i.e. tuples consisting of nonempty
finite sets Si ⊆ N of strategies for all agents i, and an outcome function
(
∏
Si) → X. A C-coalgebra is a game frame [20] (with finite strategy

sets.) We denote the set
∏
i∈C Si by SC , and for σC ∈ SC , σC̄ ∈ SC̄ , where
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C̄ = N−C, (σC , σC̄) denotes the obvious element of
∏
i∈N Si. A Λ-structure

over C is defined by the predicate liftings

J[C]KX(B) = {(S1, . . . , Sn, f) ∈ CX | ∃σC ∈ SC . ∀σC̄ ∈ SC̄ . f(σC , σC̄) ∈ B}.

(ii) The similarity type of the conditional logics CK and CK + ID con-
tains the single binary modal operator ⇒ that represents a non-monotonic
conditional. The selection function semantics of CK is captured coalge-
braically via the functor CKX = (2(X) → P(X)) with → representing
function space, and CK-coalgebras are standard conditional models [5]. We
extend CK to a Λ-structure by virtue of the predicate lifting

J⇒KX(A,B) = {f : 2X → PX | f(A) ⊆ B}

which induces the standard semantics of CK . The conditional logic
CK + ID additionally obeys the axiom A ⇒ A and is interpreted over the
functor CKIdX = {f : 2(X) → P(X) | ∀A ⊆ X.f(A) ⊆ A}; note that
CKId is a subfunctor of CK. The functor CKId extends to a Λ-structure by
relativising the interpretation of ⇒ given above, i.e.

J⇒KX(A,B) = {f ∈ CKIdX | f(A) ⊆ B}

for subsets A,B ⊆ X. One possible way to understand a conditional model
ξ : X → (2(X) → P(X)) is to regard ξ(x)(A) as the ‘typical’ worlds for
property A from the perspective of world x; the restriction imposed by CKId

then states that typical A-worlds actually belong to A.

3 Sequent Systems for Coalgebraic Logics

We proceed to define a generic Gentzen-style sequent system for coalgebraic
modal logics, thus complementing earlier work on Hilbert systems [18, 24,
28]. The system will be parametrised over a set of modal rules of the same
format as in the Hilbert systems, so that the same data determine both a
Hilbert and a Gentzen system.

If S ⊆ F(Λ) is a set of formulas, an S-sequent, or just a sequent in case
S = F(Λ), is a finite multiset of elements of S∪{¬A | A ∈ S} (following [29],
we opt to treat sequents as multisets rather than sets in order to make the
crucial issue of contraction more explicit). We write S(S) for the set of
S-sequents, and S for the set of F(Λ)-sequents. As the logics we consider
here are extensions of classical propositional logic, we work with single-
sided sequent calculi and read sequents disjunctively. That is, a sequent
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corresponds to the disjunction of its elements, and we write Γ̌ =
∨

Γ for
the associated formula. We use the standard set-theoretic notation of union
and subset also for multisets, respecting multiplicity; i.e. for multisets Γ, ∆,
we write Γ ⊆ ∆ if every element that is contained in Γ with multiplicity
n is contained in ∆ with multiplicity at least n, and Γ ∪ ∆ denotes the
multiset that contains x with multiplicity n+m whenever Γ contains x with
multiplicity n and ∆ contains x with multiplicity m. We write supp(Γ) for
the support of Γ, i.e. the set of elements of Γ, disregarding multiplicities;
sets, in turn, are implicitly regarded as multisets with all multiplicities at
most 1. E.g., if ∆ ⊆ supp(Γ) for multisets Γ, ∆, then ∆ must be a set,
i.e. cannot contain duplicates. We identify a formula A with the singleton
sequent {A} whenever convenient and denote the multiset union of sequents
Γ and ∆ by Γ,∆. Combining both conventions, we write Γ, A for Γ ∪ {A}.

Substitutions are applied pointwise to sequents: if σ is a substitution
and Γ is a sequent, Γσ = {Aσ | A ∈ Γ}. In our terminology, a sequent rule
is a tuple of sequents, usually written in the form

Γ1 . . . Γn
Γ0

or Γ1 . . .Γn/Γ0

where we silently identify sequent rules modulo reordering of the sequents
in the premise.

Given a set S of sequent rules and a set H ⊆ S of additional hypothe-
ses, the notion of deduction is standard: proofs are finite trees with nodes
labelled by sequents, constructed inductively from the rules in S (the rules
themselves, not substitution instances thereof) and the hypotheses in H.
We write S +H ` Γ, and say that Γ is S +H-derivable, if there exists such
a proof of Γ; in case H = ∅, we write S instead of S + H. The depth of a
proof is its depth as a tree. A sequent rule Γ1 . . .Γn/Γ0 is (depth-preserving)
S-admissible if whenever S ` Γi for all i = 1, . . . , n (with proofs of depth at
most n for some n), then S ` Γ0 (with a proof of depth at most n).

Remark 3.1. Note that the above notion of derivability explicitly does not
allow substituting into sequent rules. This facilitates restriction of the rule
set in inductive proofs, e.g. to rules of bounded modal rank. The full rule
set governing a given modal logic has closure under substitution built in; see
Definition 3.5.

We use the following set G of sequent rules to account for the propositional
part of our calculus

(Ax )
Γ, p,¬p

(∧)
Γ, A Γ, B

Γ, A ∧B
(¬∧)

Γ,¬A,¬B
Γ,¬(A ∧B)

(¬¬)
Γ, A

Γ,¬¬A
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where p ∈ V , A,B ∈ F(Λ) and Γ ∈ S. We adopt the context-free version of
the cut-rule, writing C for the set of rules of the form

(cut)
Γ, A ∆,¬A

Γ,∆

where Γ,∆ ∈ S and A ∈ F(Λ). For the purpose of arguments by induction
on the modal rank of a formula, we write

Sn =
{Γ1 . . .Γk

Γ0
∈ S | Γi ∈ S(Fn(Λ)) for all i = 0, . . . , k

}
for the set of rules in S whose premises and conclusions are restricted to se-
quents over Fn(Λ). In particular, this induces the sets Gn and Cn containing
the propositional rules and instances of the cut rule, applied to formulas of
modal rank at most n. We denote the union of sequent rule sets by juxtapo-
sition; e.g. GC is propositional reasoning with cut, i.e. the system comprised
of the rules of G and those of C. Juxtaposition binds more strongly than
rank restriction; e.g. GCn denotes (GC)n (not G(Cn)).

The system G appears under the name G3c in [29], where the meticulous
reader may find proofs of both soundness and completeness. We note a few
basic completeness properties of G:

Proposition 3.2.

1. The system G is complete w.r.t. propositional validity, i.e. G ` Γ iff
Γ̌ is a propositional tautology

2. The system GC is complete for propositional consequence, i.e. for a
set Φ of sequents, GC + Φ ` Γ iff Γ̌ is a propositional consequence of
{∆̌ | ∆ ∈ Φ}.

Proof. (i): Straightforward induction on the complexity of Γ.
(ii): If Γ̌ is a logical consequence of {∆̌ | ∆ ∈ Φ}, then there exist

∆1, . . . ,∆n ∈ Φ such that ¬∆̌1 ∧ . . .¬∆̌n → Γ̌ is a propositional tautology.
By (i), we have G ` ¬∆̌1, . . . ,¬∆̌n,Γ, and hence GC + Φ ` Γ.

Our next task is to extend G with additional sequent rules to account for
modal deduction. It has been shown in [23] that coalgebraic logics can always
be completely axiomatised in rank 1, i.e. by a (possibly infinite) number of
one-step rules, that is, rules whose premise is a purely propositional formula
and which have a purely modalised conclusion.
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Definition 3.3. A one-step rule over a modal similarity type Λ is an n+ 1-
tuple of sequents Γi ∈ S(V ), i = 1, . . . , n, and ∅ 6= Γ0 ∈ S(Λ(V )), written
as Γ1...Γn

Γ0
or Γ1 . . .Γn/Γ0.

Remark 3.4. It is clear that one-step rules as defined above have the
same expressive power as a more general type of rules where one allows
Γ0 ∈ S(Λ(Prop(V ))), as one can just introduce additional premises that ab-
breviate propositional formulas to single propositional variables. Typically,
however, the natural formulation of the rules already has the format required
above. For instance, the normal modal logic K can be axiomatised by the
family of one-step rules

(RKn)
¬a1, . . . ,¬an, b

¬2a1, . . . ,¬2an,2b
(n ≥ 0)

(where RK0 is the necessitation rule b/2b, and the K-axiom 2(a → b) →
(2a→ 2b), dissolved into the sequent ¬2(a→ b),¬2a,2b, may be derived
by RK2 from the tautologous sequent ¬(a → b),¬a, b). We illustrate this
further in Example 3.6.

One-step rules describe the passage from statements about states (the
premises) to a statement about successors (in the conclusion), analogously
to the way in which the structure map γ : C → TC of a T -coalgebra (C, γ)
provides us with a (structured) successor state for each world c ∈ C of the
model.

The definition above differs slightly from that given in [18, 23] in the
sense that one-step rules in op.cit. are of the form φ/ψ where φ ∈ Prop(V )
is a purely propositional formula and ψ is a clause over atoms in Λ(V ).
By passing from a propositional formula φ to its conjunctive normal form,
every one-step rule in the sense of [18, 23] can be accommodated in the
above definition in a straightforward way.

Every set of one-step rules gives rise to a set of sequent rules by passing
from a one-step rule to all its substitution instances, augmented with an ad-
ditional weakening context. The latter is standardly used in modal sequent
rules in order to make the weakening rule admissible.

Definition 3.5. Let R be a set of one-step rules. The set S(R) of sequent
rules associated with R consists of all (substitution) instances of R, i.e. all
rules

Γ1σ . . .Γnσ

Γ0σ,∆

where Γ1 . . .Γn/Γ0 ∈ R, σ : V → F(Λ) is a substitution, and ∆ ∈ S.
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For our two running examples, the situation is as follows.

Example 3.6 (Coalition logic and conditional logic).

(i) In [28], coalition logic has been axiomatised by the rules∨k
i=1 ¬ai∨k

i=1 ¬[Ci]ai

∧k
i=1 ai → b ∨

∨l
j=1 cj∧k

i=1[Ci]ai → [D]b ∨
∨l
j=1[N ]cj

subject to the side condition that the Ci are pairwise disjoint; the second
rule additionally requires that Ci ⊆ D for all i = 1, . . . , k. These rules
are one-step rules if we dissolve premise and conclusion into sequents, i.e.
if we replace propositional clauses

∧
i=1,...,nAi →

∨
j=1,...,mBj by sequents

¬A1, . . . ,¬An, B1, . . . , Bm. The arising set RC of one-step rules is most
economically presented if we abbreviate A = A1, . . . , Ak for A1, . . . , Ak ∈ V
and C = (C1, . . . , Ck) for C1, . . . , Ck ⊆ N ; in this case [C]A represents the
sequent [C1]A1, . . . , [Ck]Ak. In this notation, RC consists of the rules

(A)
¬A

¬[C]A
(B)

¬A, B,A′

¬[C]A, [D]B, [N]A′

where N = N, . . . , N and ¬∆ = {¬A | A ∈ ∆} for ∆ ∈ S. Both rule
schemas are subject to the side condition that the coalitions appearing in C
are disjoint; rule (B) moreover requires that their union is a subset of D.

(ii) The axiomatisation of the conditional logic CK in [5] consists of the
rules

(RCK)

∧
i=1,...,n bi → b0∧

i=1,...,n(a⇒ bi)→ (a⇒ b0)
(RE)

a↔ a′

(a⇒ b)→ (a′ ⇒ b)

from which we obtain a set RCK0 of one-step rules by replacing a↔ a′ with
the sequents ¬a, a′ and ¬a′, a in (RE). Merging these rules yields the rule
set RCK consisting of the one-step rules

(C)
¬b1, . . . ,¬bn, b0 ¬a0, a1 . . . ¬a0, an ¬a1, a0 . . . ¬an, a0

¬(a1 ⇒ b1), . . . ,¬(an ⇒ bn), (a0 ⇒ b0)

for every n ∈ ω. (It is clear that these rules are derivable from (RCK)
and (RE). Conversely, RCK contains (RE) as the case for n = 1, and
(RCK) can be derived using the axiom rule of G.) As above, we abbreviate
B = B1, . . . , Bn, A = A1, . . . , An and A ⇒ B = A1 ⇒ B1, . . . , An ⇒ Bn.
The rules (C) can then be written in the form

(C)
¬B, B0 ¬A0, A1 . . . ¬A0, An ¬A1, A0 . . . ¬An, A0

¬(A⇒ B), A0 ⇒ B0
.
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The rules (C) express that the second argument of ⇒ obeys normality
whereas the first behaves like the modal 2 of neighbourhood frames. The
set of one-step rules needed to axiomatise CK + ID contains the additional
rule

(ID)
¬A0, A1 ¬A1, A0

A0 ⇒ A1

which is equivalent to the identity axiom A ⇒ A used in Hilbert-style for-
mulations of CK + ID . Integrating (C) and (ID) into a single rule schema,
we let the set RCKId consist of the rules

(CI)
¬A0,¬B, B0 ¬A0, A1 . . . ¬A0, An ¬A1, A0 . . . ¬An, A0

¬(A⇒ B), A0 ⇒ B0
.

It is the special format of one-step rules that facilitates inductive arguments
over the modal rank of formulas. For the case of one-step rules, we have the
following characterisation:

Lemma 3.7. Let R be a set of one-step rules. Then

S(R)n =
{Γ1σ . . .Γkσ

Γ0σ,∆
| Γ1 . . .Γk/Γ0 ∈ R, σ : V → Fn−1(Λ),∆ ∈ S(Fn(Λ)

}
(using the notation Sn for sets S of sequent rules introduced earlier).

Proof. Immediate from the definitions.

In the remainder of the paper, we will use sequent calculi that are induced
by several different rule sets. In particular, we will consider sequent calculi
with and without cut, and also calculi whose rules are restricted to formulas
of fixed modal rank. This is reflected by the following convention:

Convention 3.8. If S1, . . . ,Sn are sets of sequent rules and H1, . . . ,Hk ⊆ S
is a set of additional hypotheses, we use the short form and write

S1 . . .Sn +H1 + · · ·+Hm ` Γ

in case (S1 ∪ · · · ∪ Sn) + (H1 ∪ · · · ∪Hm) ` Γ for Γ ∈ S. Moreover, if R is
a set of one-step rules, we write GR for the the rule set G ∪ S(R). As a
consequence, note that GRn = Gn ∪ (S(R))n for n ∈ ω.

We start our analysis of the provability predicate GR ` by establishing
that weakening and inversion are admissible in the relativised calculi GRn.
This is most easily established using the following characterisation of GRn-
provability: a sequent is GRn-provable iff it is Gn-provable from the set of
conclusions of S(R)n-rules whose premises are GRn−1-provable. That is,
we have the following:
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Lemma 3.9. Let R be a set of one-step rules and n ∈ ω. Then GRn ` Γ
iff

Gn + {Γ0σ,∆ | Γ1 . . .Γk/Γ0 ∈ R,∆ ∈ S(Fn(Λ)),

σ : V → Fn−1(Λ), ∀1≤i≤k(GRn−1 ` Γiσ)} ` Γ

whenever Γ ∈ S(Fn(Λ)).

The proof relies on the following fact:

Lemma 3.10. For Γ ∈ S(Fn(Λ)), GR ` Γ iff GRn ` Γ.

Proof. ‘If’ is trivial. ‘Only if’ is a standard induction on the GR-proof of
Γ where we use that backwards application of the rules in GR does not
increase modal rank.

Proof of Lemma 3.9. ‘If’ is trivial. To prove ‘only if’, we proceed by induc-
tion on the GRn-proof of Γ. The cases for the propositional rules, i.e. the
rules of Gn, are trivial. So assume that GRn ` Γ has been established using
a modal rule in S(R)n. By Lemma 3.7 we find a one-step rule Γ1 . . .Γk/Γ0,
a substitution σ : V → Fn−1(Λ) and ∆ ∈ S(Fn(Λ)) such that Γ = Γ0σ,∆
and GRn ` Γiσ for all i = 1, . . . , k. Then Γiσ ∈ S(Fn−1(Λ)), whence
GRn−1 ` Γiσ for i = 1, . . . , k by Lemma 3.10. This proves the claim.

One ingredient in the construction of sequent rules from one-step rules was
the addition of a weakening context (∆, in the notation of Definition 3.5)
to the conclusion of every substituted one-step rule. As a consequence,
weakening is admissible:

Lemma 3.11 (Weakening lemma). Let R be a set of one-step rules. Then
GRn ` Γ, A whenever GRn ` Γ and A ∈ Fn(Λ).

Proof. Immediate from Lemma 3.9 and the fact (proved by a straightforward
induction over proofs) that weakening is admissible in Gn +H for a set H
of hypotheses, provided that H is closed under weakening.

The same argument allows us to prove that inversion, i.e. converse applica-
tion of the rules (∧), (¬∧), and (¬¬) for the propositional connectives, is
admissible. For future reference, we formulate admissibility of inversion for
propositional reasoning with hypotheses explicitly:

Lemma 3.12. Let H ⊆ S(Fn(Λ)) be closed under inversion (i.e. if A∧B ∈
H then A ∈ H and B ∈ H, etc.). Then
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1. Gn +H ` Γ, A and Gn +H ` Γ, B whenever Gn +H ` Γ, A ∧B

2. Gn +H ` Γ, A whenever Gn +H ` Γ,¬¬A

3. Gn +H ` Γ,¬A,¬B whenever Gn +H ` Γ,¬(A ∧B)

with proofs of at most the same depth.

Proof. This is as in [29], where the hypotheses in H play the role of axioms.

The modal inversion lemma can now be formulated as follows:

Lemma 3.13 (Inversion lemma). Let n ∈ ω, and let R be a set of one-step
rules. Then all instances of the inversion rules

Γ,¬¬A
Γ, A

Γ,¬(A1 ∧A2)

Γ,¬A1,¬A2

Γ, A1 ∧A2

Γ, A1

Γ, A1 ∧A2

Γ, A2
,

where A1, A2 ∈ Fn(Λ) and Γ ∈ S(Fn(Λ)), are depth-preserving GRn-
admissible.

Proof. Immediate from Lemmas 3.9 and 3.12, noting that the set of hy-
potheses in the statement of Lemma 3.9 is trivially closed under inversion,
as conclusions of one-step rules never contain top-level propositional con-
nectives except isolated occurrences of ¬.

Finally, we show that GRC-derivability is closed under uniform substitu-
tion. Again, this is carried out relative to the modal rank of formulas. From
now on, we denote the set of non-atomic axioms of rank at most k by

Axk = {¬A,A,Γ | A ∈ Fk(Λ),Γ ∈ S(Fk(Λ))}.

Lemma 3.14 (Substitution lemma). Let R be a set of one-step rules, let
H ⊆ S(Fn(Λ)), and suppose that GRCn +H ` Γ. If σ : V → Fk(Λ), then
GRCn+k + Axk + {Aσ | A ∈ H} ` Γσ.

Proof. Induction on the proof of GRCn + H ` Γ, where the hypotheses
Axk take care of the case for the rule (Ax ).

By Lemma 3.10, Lemma 3.11 and Lemma 3.13 entail the admissibility of
weakening and inversion also in the full calculus GR; we refrain from stating
this formally as we shall need only the bounded-rank versions in the sequel.

Finally, we note a weaker form of Lemma 3.10 that applies to the system
with cut:
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Proposition 3.15. Let R be a set of one-step rules, and let Γ ∈ S. Then
GRC ` Γ iff GRCn ` Γ for some n ∈ ω.

Proof. As GRC is finitary, any proof in GRC can be simulated in GRCn

where n is large enough, i.e. such that all formulas occurring in the proof
are elements of Fn(Λ). (Formally, this argument amounts to a simple proof
by induction over the structure of proofs in GRC.)

This concludes our discussion of the basic properties of sequent systems
induced by one-step rules. The next two sections are devoted to establish
admissibility of cut and contraction, first semantically in the next section
and then by a purely syntactic argument.

4 Soundness and Cut-Free Completeness

We now study the relationship between GR-derivability and semantic va-
lidity. As in previous work, soundness and completeness will be implied
by one-step soundness and one-step completeness, respectively of the rule
set R. The proof of this known fact that we present here will, however,
shed additional light on the structure of proofs. In particular, we will see
that a one-step complete rule set in general necessitates the use of cut to
obtain completeness, while eliminability of cut amounts to one-step cut-free
completeness.

We recall the definition of one-step soundness and one-step completeness,
adapted from [18, 23] to a sequent calculus setting . Here, we liberally extend
notation introduced for formulas in Section 2 to sequents in the obvious way
by regarding sequents as disjunctions of formulas; e.g. FV(Γ) = FV(Γ̂), and
JΓKM = JΓ̂KM for a T -model M .

Definition 4.1. A set R of one-step rules is one-step sound (w.r.t. the Λ-
structure T ) if, whenever Γ1 . . .Γn/Γ0 ∈ R, we have TX, τ |= Γ0 for each set
X and each valuation τ : V → P(X) such that X, τ |= Γi for all i = 1, . . . , n.
The set R is one-step complete if

GC1 + {Γ0σ,∆ | ∆ ∈ S(Λ(V )),Γ1 . . .Γn/Γ0 ∈ R,

σ : V → Prop(V ), ∀1≤i≤n(X, τ |= Γiσ)} ` Γ (1)

whenever TX, τ |= Γ for a set X, Γ ∈ S(Λ(V )), and a P(X)-valuation τ .
Finally, R is one-step cut-free complete if it satisfies the same condition, but
with GC1 replaced by G1.
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Remark 4.2. In the definition of one-step completeness, we may equiva-
lently omit the weakening context ∆ appearing in the entailment (1), since
weakening is derivable under the cut rule. For one-step cut-free complete-
ness, however, the weakening context is essential.

In the sequel, we will work with the following reformulation of one-step
cut-free completeness.

Lemma 4.3. A set R of one-step rules is one-step cut-free complete iff
whenever TX, τ |= Γ for Γ ∈ S(Λ(V )), we have

Γ0σ ⊆ Γ

for some Γ1 . . .Γn/Γ0 ∈ R and some renaming σ : V → V such that X, τ |=
Γiσ for all i = 1, . . . , n.

Proof. ‘If’ is trivial. ‘Only if’: By the definition of one-step cut-free com-
pleteness, we have G+Ψ ` Γ for Ψ = {Γ0σ,∆ | ∆ ∈ S(Λ(V )),Γ1 . . .Γn/Γ0 ∈
R, σ : V → Prop(V ),∀1≤i≤n(X, τ |= Γiσ)}. As Γ ∈ S(Λ(V )), the ‘last’ step
in the corresponding proof cannot involve any of the rules of G1 (including
the axiom rule, because none of the formulas in Γ is atomic). Therefore, Γ
must be one of the hypotheses in Γ0σ,∆ ∈ Ψ, where necessarily σ(a) ∈ V
for all a ∈ FV(Γ0); this proves the claim.

Remark 4.4. Note that the above definition of one-step (cut-free) com-
pleteness deviates slightly from definitions of (strict) one-step completeness
we have used previously [24, 28] in that the axiom rule is excluded in propo-
sitional reasoning over Λ(V ). As a consequence, one-step complete rule sets
in the sense of the present work always implicitly contain the congruence
rule

¬a1, b1 . . . ¬ak, bk ¬b1, a1 . . . ¬bk, ak
¬♥(a1, . . . , an),♥(b1, . . . , bn)

for every k-ary modal operator ♥ ∈ Λ. This is formulated and proved
explicitly for the case of one-step cut-free completeness in Section 5; the
situation is similar with one-step completeness.

The above notions of one-step soundness, completeness and cut-free com-
pleteness may equivalently be restricted to finite sets, i.e. the relevant condi-
tions are required to hold for all finite sets X rather than for all sets X. We
indicate the corresponding restricted notions by the qualification ‘on finite
sets’. For later use, we note this explicitly for one-step completeness:
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Proposition 4.5. A set R of one-step rules is one-step complete iff R is
one-step complete on finite sets.

(Up to adaptation of terminology and notation, the above statement has
appeared, without proof, as Proposition 3.10 in [25].)

Proof. ‘Only if’ is trivial. To prove ‘if’, let TX, τ |= Γ for a (possibly
infinite) set X, Γ ∈ S(Λ(V )), and a P(X)-valuation τ . Let 2 denote the
set {⊥,>}. The valuation τ induces a map X → 2FV(Γ), whose image
we denote by Xτ , so that we have a surjective map τ̄ : X → Xτ . As
FV(Γ) is finite, Xτ is a finite set. We define the P(Xτ )-valuation τ∗ by
τ∗(a) = {κ ∈ Xτ ⊆ 2FV(Γ) | κ(a) = >}. Then τ̄−1[τ∗(a)] = τ(a): we have
x ∈ τ(a) iff τ̄(x)(a) = > iff τ̄(x) ∈ τ∗(a) iff x ∈ τ̄−1[τ∗(a)]. Using naturality
of predicate liftings and commutation of preimage with Boolean operations,
we thus obtain that TXτ , τ

∗ |= Γ. By assumption, this implies

GC1 +
{

Γ0σ |
Γ1 . . .Γn

Γ0
∈ R, σ : V → Prop(V ), ∀1≤i≤n(Xτ , τ

∗ |= Γiσ)
}
` Γ.

By commutation of preimage with Boolean operations, Xτ , τ
∗ |= Γiσ iff

X, τ |= Γiσ, which implies the claim.

It is best to understand the notions introduced above as coherence condi-
tions between the axiomatisation of a particular logic using one-step rules
and its semantics, given in terms of predicate liftings. In particular, they
can be checked without reference to (coalgebraic) models, by comparing the
interpretation of propositional formulas (premises of one-step rules) over a
set X with the interpretation of purely modalised formulas (the conclusions)
over the set TX. In a nutshell, one-step soundness asserts that a rule con-
clusion is valid over the set TX of structured successors whenever all its
premises are valid over the set X. Dually, one-step completeness requires
that whenever a purely modalised sequent is valid over TX, it can be de-
rived – with the help of cut – from the conclusions of one-step rules whose
premises are valid over X. Finally, one-step cut-free completeness asserts
that valid sequents can be obtained from the conclusion of a one-step rule
purely in terms of weakening. The following example highlights the differ-
ence between one-step completeness and one-step cut-free completeness.

Example 4.6. We consider the modal logic K (see e.g. [4]) interpreted over
coalgebras for the powerset functor TX = P(X). The syntax of K is given
by the similarity type Λ = {2} that contains a single, unary operator. The
functor T extends to a Λ-structure by putting

J2KX(A) = {B ∈ TX | B ⊆ A}
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which gives rise to the standard semantics of K. We show that the rule set

(K)
¬p1, . . . ,¬pn, p0

¬2p1, . . . ,¬2pn,2p0
(n ≥ 0)

is one-step cut-free complete, leaving the routine verification of one-step
soundness to the reader. Thus let X be a set, let τ : V → P(X), and let
Γ = ¬2p1, . . . ,¬2pn,2q1, . . . ,2qk ∈ S(Λ(V )) such that TX, τ |= Γ, i.e.⋂

i=1,...,n

J2KX(τ(pi)) ⊆
⋃

j=1,...,k

J2KX(τ(qj)).

By the definition of J2K, we have
⋂
i=1,...,n τ(pi) ∈

⋂
i=1,...,nJ2KX(τ(pi)), so

that by the above set inclusion there exists j ∈ {1, . . . , k} such that

(†)
⋂

i=1,...,n

τ(pi) ⊆ τ(qj).

This means that X, τ |= ¬p1, . . . ,¬pn, qj , and applying (K) we derive the
sequent ¬2p1, . . . ,¬2pn,2qj which is contained in Γ as required.

Contrastingly, consider the rule set consisting of necessitation (N) and
distribution (D)

(N)
p

2p
(D)

¬p,¬qj , r
¬2p,¬2qj ,2r

.

This set is one-step sound (being a subset of the previous one) and one-
step complete, but not one-step cut-free complete. One-step completeness
follows from the fact that, as shown by a simple induction, all rules of
(K) are derivable using (N) and (D); however, this requires cut. We refrain
from proving the failure of strict one-step completeness formally, and instead
illustrate how cut comes up in the proof of one-step completeness. Consider,
e.g., the case n = 3 in the above proof. Then we have that X, τ |= ¬(p1 ∧
p2),¬p3, qj and X, τ |= ¬p1,¬p2, p1 ∧ p2. By two applications of (D), we
derive ¬2(p1 ∧ p2),¬2p3,2qj and ¬2p1,¬2p2,2(p1 ∧ p2), and we need to
use (cut) to derive ¬2p1,¬2p2,¬2p3,2qj .

It is an easy exercise to show that both GR and GRC are sound provided
the rule set R is one-step sound. Recall that the interpretation of a sequent Γ
w.r.t. M ∈ Mod(V ) is the semantics of the associated propositional formula,
i.e. JΓKM = JΓ̌KM , and accordingly M |= Γ iff M |= Γ̌, Mod(T ) |= Γ if
Mod(T ) |= Γ̌.

Theorem 4.7 (Soundness). Let R be one-step sound for T . Then
Mod(T ) |= Γ if GRC ` Γ and, a fortiori, Mod(T ) |= Γ if GR ` Γ.
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Proof. We proceed by induction over the length of the derivation, where
the only interesting cases are applications of rules Γ1 . . .Γn/Γ0 ∈ S(R).
So suppose that M = (C, γ, ϑ) ∈ Mod(T ) and that Γ has been derived
via an application of Γ1 . . .Γn/Γ0. That is, we have Γ′1 . . .Γ

′
n/Γ

′
0 ∈ R and

a substitution σ : V → F(Λ) such that Γi = Γ′iσ for i = 1, . . . , n and
Γ0 = Γ′0σ,∆ for some ∆ ∈ S. By the induction hypothesis, JΓiσKM =
> for all i = 1, . . . , n. Let τ be the P(C)-valuation defined by τ(p) =
Jσ(p)KM ; note that JΓ′0σKM = γ−1[JΓ′0K

τ
TC ]. We obtain C, τ |= Γ′i for all

i = 1, . . . , n, and one-step soundness implies TC, τ |= Γ′0. Consequently,
JΓ0KM = JΓ′0σ,∆KM ⊇ JΓ′0σKM = γ−1[JΓ′0K

τ
TC ] = γ−1[TC] = C.

We now proceed to establish completeness and cut-free completeness di-
rectly by means of a semantic argument, and present a purely syntactic re-
construction in the following section. For the semantic approach, we prove
completeness using a terminal sequence argument in the style of [18], which
ties in well with the proof of cut elimination in the next section. As we are
dealing with models, i.e. coalgebras equipped with a valuation, we consider
the terminal sequence of the endofunctor T/P(V ) in the category Set/P(V ).
We briefly recapitulate the terminal sequence construction, as used in [18]
but phrased in a general categorical setting.

If F : C → C is an endofunctor on a category C with terminal object 1
and unique morphisms A → 1 denoted !A (or just ‘!’), the finitary part of
the terminal sequence of F is the diagram consisting of

• the objects Fn1 for n ∈ ω, where Fn denotes n-fold application of F ,
and

• the morphisms pn : Fn+11→ Fn1 defined for n ∈ ω by pn = Fn(!F1).

Every F -coalgebra (C, γ) gives rise to a canonical cone (C, (γn : C →
Fn1)n∈ω) over the finitary part of the terminal sequence defined by γ0 =
!C : C → 1 = F 01 and γn+1 = Fγn ◦ γ. The terminal sequence of the
functor F = T/P(V ) is visualised in the following diagram (observing that
the terminal object of Set/P(V ) is 1× P(V )).

S0︷ ︸︸ ︷
1× P(V )

π2

��

S1︷ ︸︸ ︷
TS0 × P(V )

π2

��

p0=!×idoo

S2︷ ︸︸ ︷
TS1 × P(V )

π2

��

p1=Tp0×idoo . . .
p2=Tp1×idoo

P(V ) P(V ) P(V ) . . .
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Remark 4.8. At first sight, the upper row of the above diagram looks iden-
tical to the terminal sequence of the functor T ×P(V ) on Set. Note however
that the above sequence begins with 1 × P(V ), thus already capturing the
interpretation of propositional variables at S0, while the terminal sequence
of T × P(V ) begins with 1.

The key technique in the proof of completeness via a terminal sequence ar-
gument is to associate to every formula A of modal rank ≤ n an n-step
semantics JAKn over the n-th approximant (T/P(V ))n1 of the terminal se-
quence. In our case, we take a predicate over (T/P(V ))n1 to be a subset of
Sn = U((T/P(V ))n1). The formal definition is as follows:

Definition 4.9. The n-step semantics of A ∈ Fn(Λ) ⊆ Sn is inductively
defined by S0 = P(V ) and

JpK0 = {S ∈ P(V ) | p ∈ S},

and Sn = TSn−1 × P(V ) together with

JpKn = π−1
2 [{S ∈ P(V ) | p ∈ S}]

and
J♥(A1, . . . , Ak)Kn = π−1

1 [J♥KSn−1(JA1Kn−1, . . . , JAkKn−1)]

for n > 0, A1, . . . , Ak ∈ Fn−1(Λ) and ♥ ∈ Λ a k-ary modality.

Note that Sn = U((T/P(V ))n1). We can mediate between the n-step se-
mantics and the semantics w.r.t Mod(T ) as follows:

Lemma 4.10. Let A ∈ Fn(Λ), let M = (C, γ, ϑ) ∈ Mod(T ), and let
(M, (γn)n∈ω) be the canonical cone of M over the terminal sequence of
T/P(V ). Then JAKM = (Uγn)−1[JAKn] for all A ∈ Fn(Λ).

Proof. By induction on n. For n = 0 we have Uγ0 = ϑ and ϑ−1[JpK0] =
ϑ−1[{S ⊆ V | p ∈ S}] = {c ∈ C | p ∈ ϑ(c)} = JpKM . For n > 0, we
obtain inductively Uγn = 〈TUγn−1 ◦ γ, ϑ〉 : C → TSn−1 ×P(V ). This gives
(Uγn)−1[JpKn] = (π2 ◦ 〈TUγn ◦ γ, ϑ〉)−1[{S ⊆ V | p ∈ S}] = ϑ−1[{S ⊆ V |
p ∈ S}] = {c ∈ C | p ∈ ϑ(c)} = JpKM as above. The cases for boolean oper-
ators are easily discharged using commutation of preimage with boolean set
operations. For modal formulas ♥(A1, . . . , Ak) with A1, . . . , Ak ∈ Fn−1(Λ)
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we obtain

(Uγn)−1[J♥(A1, . . . , AkKn)]

= 〈TUγn−1 ◦ γ, ϑ〉−1[π−1
1 [J♥KSn−1(JA1Kn−1, . . . , JAkKn−1)]]

= γ−1[(TUγn−1)−1[J♥KSn−1(JA1Kn−1, . . . , JAkKn−1)]]

= γ−1[J♥KC((Uγn−1)−1[JA1Kn−1]× · · · × (Uγn−1)−1[JAkKn−1])]

= γ−1[J♥K(JA1KM , . . . , JAkKM )]

= J♥(A1, . . . , Ak)KM

using the induction hypothesis and naturality of J♥K.

We recall the following lemma, whose proof directly translates to a general
categorical setting, from [18]:

Lemma 4.11. Let f0 : 1→ F1 be a morphism of C and let fn = Fn(f0) :
Fn1 → Fn+11, an F -coalgebra on Fn1. Then the component fnn of the
canonical cone (Fn1, (fnk : Fn1→ F k1)k∈ω) is idFn1 for all n ∈ ω.

This immediately implies that validity of a sequent Γ ∈ S(Fn(Λ)) is equiv-
alent to validity w.r.t. the n-step semantics:

Corollary 4.12. Let Γ ∈ S(Fn(Λ)). Then Mod(T ) |= Γ iff JΓKn = >.

Proof. The ‘if’-part is a consequence of Lemma 4.10 above. For the ‘only if’-
part assume that Mod(T ) |= Γ and pick f0 : 1→ (T/P(V ))(1) in Set/P(V )
where 1 is the terminal object of Set/P(V ) (f0 exists by our global assump-
tion that T is non-trivial). Consider M = (C, γ) ∈ Coalg(T/P(V )) where
C = (T/P(V ))n(1) and γ = (T/P(V ))n(f0). As Mod(T ) |= Γ we have that
M |= Γ, and by Lemmas 4.10 and 4.11, it follows that JΓKn = >.

The proof of (cut-free) completeness relies on the stratification of the prov-
ability predicate GRn ` of GR, indexed by modal rank. The following
proposition is the key stepping stone in the completeness proof, relating
validity in the n-step semantics to derivability in rank n.

Proposition 4.13. Let Γ ∈ S(Fn(Λ) be a sequent over Fn(Λ) such that
JΓKn = >. If R is one-step complete, then GRCn ` Γ, and if R is one-step
cut-free complete, then GRn ` Γ.

Proof. By induction on n. If n = 0 the statement follows from completeness
of G. By the inversion lemma (Lemma 3.13), it suffices to consider, for
n > 0, the case

Γ = ¬♥1A1, . . . ,¬♥kAk,¬q1, . . . ,¬qm,♥′1A′1, . . . ,♥′k′A′k′ , q′1, . . . , q′m′
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where the Ai, A
′
i′ are tuples of formulas in Fn−1(Λ) according to the arity of

♥i and ♥′i′ and qj , q
′
j′ ∈ V . By the definition of J·Kn and elementary boolean

algebra, we deduce that either

J¬♥1A1, . . . ,¬♥kAk,♥′1A′1, . . . ,♥′k′A′k′Kn = >

or, alternatively,
J¬q1, . . . ,¬qm, q′1, . . . , q′m′Kn = >

holds. In the latter case, it follows from the definition of J·Kn that
¬q1, . . . ,¬qm, q′1, . . . , , q′m′ is a propositionally valid sequent, hence neces-
sarily an axiom and thus provable as required. So assume that the upper
identity holds. This allows us to write Γ = ∆τ where

∆ = ¬♥1p1, . . . ,¬♥kpk,♥′1p′1, . . . ,♥′k′p′k′

where pi, p
′
i′ are tuples of propositional variables according to the arity of ♥i

and ♥′i′ , respectively, and τ : V → Fn−1(Λ) is a substitution mapping every
component of pi to the corresponding component of Ai, and similarly for p′i.
Write τn−1 for the P(Sn−1)-valuation p 7→ Jτ(p)Kn−1. Then TSn−1, τn−1 |=
∆.

We first prove the second part of the statement. Thus assume that R
is one-step cut-free complete. Then from TSn−1, τn−1 |= ∆ we conclude by
Lemma 4.3 that there exist a one-step rule Γ1 . . .Γm/Γ0 ∈ R and a renaming
σ : V → V such that Sn−1, τn−1 |= Γiσ for i = 1, . . . ,m, and Γ0σ ⊆ ∆. This
means that JΓiστKn−1 = > for i = 1, . . . ,m, so that GRn−1 ` Γiστ for
i = 1, . . . ,m by induction. Since Γ0σ ⊆ ∆ we can find Σ ∈ S(Fn(Λ))
such that Γ0στ,Σ = ∆τ = Γ, which implies that there is a sequent rule
Γ1στ . . .Γmστ/∆τ ∈ S(R). We thus obtain GRn ` Γ as required.

This finishes the proof of the second claim. To prove the first claim,
assume that R is one-step complete. Then there exist k ≥ 0 and one-step
rules Γl1 . . .Γ

l
ml
/Γl0 ∈ R together with substitutions σl : V → Prop(V ) for

each l = 1, . . . , k such that

(i) GC1 + {Γl0σl | l = 1, . . . , k} ` ∆, and hence GCn + Axn−1 + {Γl0σlτ |
l = 1, . . . , k} ` ∆τ by the substitution lemma 3.14

(ii) S, τn−1 |= Γlmσl for all l = 1, . . . , r and all m = 1, . . . ,ml.

As above, we obtain from (ii) by induction that GRCn−1 ` Γlmσlτ for all
l = 1, . . . r and m = 1, . . . ,ml, whence GRCn ` Γl0σlτ for 1 ≤ l ≤ r,
and thus, by (i) and the fact that all elements of Axn−1 are derivable by
induction hypothesis, that GRCn ` ∆τ = Γ.
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Completeness is now an easy corollary.

Corollary 4.14 (Completeness and cut free completeness). Let R be one-
step complete for T and Mod(T ) |= Γ for a sequent Γ ∈ S(F(Λ)). Then
GRC ` Γ. If moreover R is one-step cut-free complete, then GR ` Γ.

In particular, this gives us a semantic proof of cut elimination and admissi-
bility of contraction.

Theorem 4.15. Let R be one-step cut-free complete. Then all instances of
the cut and contraction rules

Γ, A ∆,¬A
Γ,∆

and
Γ, A,A

Γ, A

where Γ,∆ ∈ S and A ∈ F(Λ), are admissible in GR.

Proof. This follows directly from soundness and completeness. Clearly, both
the contraction rule and the cut rule are sound. To see that they are ad-
missible, suppose that X contains all instances of cut and contraction. If
GR +X ` Γ, we have that Mod(T ) |= Γ hence GR ` Γ.

One may argue that the above semantic proof yields a slightly weaker result
than the syntactic proof of Section 5, as we pre-suppose soundness and com-
pleteness w.r.t. a given Λ-structure. However, for every rule set R satisfying
the absorption conditions used in Section 5, we can construct a Λ-structure
for which R is one-step sound and one-step cut-free complete using results
of Section 5 and of [26]. We conclude the section by re-visiting our two
running examples.

Example 4.16. (i) The set RC of one-step rules axiomatising coalition
logic is one-step cut-free complete; we defer the proof to Example 5.13. As
a consequence, cut is admissible in GRC.

(ii) We leave it to the reader to show that RCK0 is one-step complete
either directly or as a corollary to one-step cut-free completeness of RCK,
which we now set out to prove. Let Γ = {¬(pi ⇒ qi) | i ∈ I} ∪ {p′j ⇒ q′j |
j ∈ J}, and let τ be a P(X)-valuation such that CK(X), τ |= Γ. We claim
that there exists j ∈ J such that⋂

i∈Ij

τ(qi) ⊆ τ(q′j), (∗)
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where Ij = {i ∈ I | τ(pi) = τ(p′j)}. Assume, for a contradiction, that this is
not the case. Then, for every j ∈ J ,

⋂
i∈Ij τ(qi) 6⊆ τ(q′j). Define the function

f : 2(X)→ P(X) by

f(S) =

{⋂
i∈Ij τ(qi) S = τ(p′j)

∅ otherwise.

(This is well-defined since Ij = Ik whenever τ(p′j) = τ(p′k).) Then f(τ(pi)) ⊆
τ(qi) for all i ∈ I and f(τ(p′j)) 6⊆ q′j for all j ∈ J , contradicting CK(X), τ |=
Γ. Having thus proved the claim, we pick j ∈ J satisfying (∗). Writing
Ij = {i1, . . . , ik}, we now derive Γ using a single instance of the RCK-rule

{¬qi | i ∈ Ij}, q′j ¬p′j , pi1 . . . ¬p′j , pik ¬pi1 , p′j . . . ¬pik , p′j
{¬(pi ⇒ qi) | i ∈ Ij}, pj ⇒ qj

,

whose premises hold in X, τ by (∗) and the definition of Ij .
This proof is easily modified to establish that also the rule set RCKId is
one-step cut-free complete for CKId: if Γ is as above, one proves that there
exists j ∈ J satisfying the weaker condition

τ(p′j) ∩
⋂
i∈Ij

τ(qi) ⊆ τ(q′j). (+)

This is proved by constructing f as above, but with

f(τ(p′j)) = τ(p′j) ∩
⋂
i∈Ij

τ(qi),

which defines an element of CKId(X). From j satisfying (+), one obtains
an instance of (CI) that proves Γ. As a consequence, cut is admissible in
GRCK and GRCKId.

5 Cut Elimination, Syntactically

In the previous section, we have seen that one-step cut-free completeness
is a sufficient criterion to ensure that an ensuing sequent calculus enjoys
cut-free completeness, and we have deduced admissibility of contraction on
the way. We now complement these results with a purely syntactic criterion
for admissibility of congruence, cut and contraction. As we will see, syn-
tactic conditions imposed on the set of modal rules under scrutiny will be
equivalent to one-step cut-free completeness.
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We start with admissibility of congruence and contraction, which is –
unlike weakening and inversion – not automatic, and only holds if the un-
derlying rule set satisfies an additional property. Recall that GC0 consists
of all propositional sequent rules and the cut rule, but restricted to purely
propositional formulas.

Definition 5.1. A set R of one-step rules absorbs congruence if for ev-
ery n-ary ♥ ∈ Λ and all p1, . . . , pn and q1, . . . , qn ∈ V , there exists a
rule Γ1 . . .Γk/Γ0 and a substitution σ : V → Prop(V ) such that Γ0σ ⊆
{¬♥(p1, . . . , pn),♥(q1, . . . , qn)} as multisets, and

GC0 + ¬p1, q1 + · · ·+ ¬pn, qn + p1,¬q1 + · · ·+ pn,¬qn ` Γiσ

for all i = 1, . . . , k.

The requirement of absorption of congruence essentially amounts to the fact
that the congruence rule (Remark 4.4) is contained in the given set of one-
step rules, up to possible weakening of the premises. It is easy to see that this
indeed holds in our examples. As we will see later, absorption of congruence
implies that the congruence rule is admissible in the ensuing sequent system.

Example 5.2. We consider the rules presented in Example 4.6. First,
suppose that R consists of (N) and (D) only. We claim that R does
not absorb congruence. If this were the case, there would be a rule
R = Γ1 . . .Γn/Γ0 ∈ R and a substitution σ : V → Prop(V ) such that
Γ0σ ⊆ ¬2p,2q as multisets and GC0 +¬p, q+p,¬q ` Γi for all i = 1, . . . , n.
Owing to the fact that R consists of (N) and (D) only, and the inclusion
Γ0σ ⊆ ¬2p,2q is required to hold in the sense of multisets, the only choice
for R and σ is to take r as necessitation p/2p and σ with σ(p) = q. But
clearly the substituted premise pσ ≡ q of the necessitation rule is not prov-
able from the assumptions ¬p, q and p,¬q.

The situation is different for the rules (K), as the substitution instance
¬p, q/¬2p,2q of (K) fulfils the requirements of the definition.

Definition 5.3. A set R of one-step rules absorbs contraction if for every
rule Γ1 . . .Γn/Γ0 ∈ R and every renaming σ : V → V , there exists a rule
∆1 . . .∆m/∆0 ∈ R and a renaming ρ : V → V such that ∆0ρ ⊆ supp(Γ0σ)
(in particular, the multiset ∆0ρ is a set, i.e. ∆0 is a set and ρ does not
identify any literals occurring in ∆0) and

GC0 + {Γiσ | 1 ≤ i ≤ n} ` ∆jρ

for all j = 1, . . . ,m.
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Given any rule r = Γ1 . . .Γn/Γ0, a renaming σ : V → V may identify literals
in the conclusion Γ0σ of r. In this case, Γ0σ is a proper super-multiset of its
support, and the contraction rule would be needed to conclude supp(Γ0σ)
from Γ0σ. If the rule set R absorbs contraction, these two deduction steps
can be absorbed into the application of a single modal rule: we can find a
(generally different) one-step rule s = ∆1 . . .∆m/∆0 together with a renam-
ing that proves the contracted conclusion supp(Γ0σ) of the original rule with
the help of weakening (this amounts to the condition ∆0ρ ⊆ supp(Γ0σ)). In
order to replace an instance of r by an instance of s, we furthermore need
to require that all premises ∆jρ of s are provable, given the premises Γiσ of
r. Since the premises of a one-step rule have a strictly smaller modal rank
than the conclusion, we are inductively permitted to use the cut rule in order
to prove the conclusions ∆jρ from the set of premises {Γ1σ, . . . ,Γnσ} of s.
Formally, this is captured by the condition GC0 + {Γiσ | 1 ≤ i ≤ n} ` ∆jρ
for j = 1, . . . ,m. We make this argument precise when we we prove ad-
missibility of cut and contraction by induction on the modal rank of the
endsequent (Proposition 5.6). For the basic modal logic K, the situation is
as follows:

Example 5.4. Consider the rule set R consisting of (N) and (D) introduced
in Example 4.6. It is easy to see that R does not absorb contraction: con-
sider a substitution σ with σ(p) = σ(q) = p and σ(r) = r. This substitution
identifies the literals ¬2p and ¬2q in the conclusion of (D). If R were closed
under contraction, there would be a rule R = ∆1 . . .∆m/∆0 and a substi-
tution ρ such that ∆0ρ ⊆ {¬2p,2r} as multisets and GC0 + {¬p,¬p, r} `
∆jρ} for all j = 1, . . . ,m. Then R must be the necessitation rule p/2p,
and ρ(p) = r, but of course ¬p,¬p, r does not propositionally entail the
substituted premise r of the necessitation rule.

The situation is different if we adopt the rule set (K), which does absorb
contraction as we now show. For the sake of readability, we treat only the
case of a renaming σ that identifies precisely two literals in the conclusion
of (K) (it is readily seen that this is in fact generally sufficient); w.l.o.g. we
may thus assume that σ identifies the variables pn and pn−1 and acts as the
identity on all other propositional variables, so that we obtain a substitution
instance of (K) of the form

¬p1, . . . ,¬pn−1,¬pn−1, p0

¬2p1, . . . ,¬2pn−1,¬2pn−1,2p0
. (∗)

Then we take ∆1 . . .∆m/∆0 to be ¬p1, . . . ,¬pn−1, p0/¬2p1, . . . ,¬2pn−1,2p0,
and ρ to be the identity substitution. Then ∆0ρ ≡ ¬2p1, . . . ,¬2pn−1,2p0 ⊆
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supp(¬2p1, . . . ,¬2pn−1,¬2pn−1,2p0) as multisets, and the premise
¬p1, . . . ,¬pn−1, p0 of the new rule instance is propositionally entailed by
(in fact equivalent to) the premise ¬p1, . . . ,¬pn−1,¬pn−1, p0 of the original
rule instance (∗), as required.

The definition of absorption of cut is modelled on the same idea: an applica-
tion of cut to the conclusions of two one-step rules r1, r2 can be replaced by
a different one-step rule r0 such that all the premises of r0 are propositional
consequences of (i.e. can be derived with the help of cut from) the premises
of r1, r2.

Definition 5.5. A set R of one-step rules absorbs cut if for all Γ1 . . .Γn/Γ0

and all ∆1 . . .∆m/∆0 ∈ R and all renamings σ, ρ : V → V such that Γ0σ =
Γ, A and ∆0ρ = ∆,¬A, there exists a rule Σ1 . . .Σl/Σ0 and a renaming
κ : V → V such that supp(Σ0κ) ⊆ Γ,∆ and

GC0 + {Γiσ | 1 ≤ i ≤ n}+ {∆iρ | 1 ≤ i ≤ m} ` Σjκ

for all j = 1, . . . , l.

We note that all absorption properties defined above are local in the sense
that they can be checked by considering just the set of modal (one-step)
rules, without having to take into account cuts involving propositional rules.

We formulate admissibility of cut, contraction, and the non-atomic axiom
rule in relativised form as follows.

Proposition 5.6. If R absorbs cut, contraction, and congruence, then

• GRn ` Γ, A,¬A

• GRn ` Γ, A whenever GRn ` Γ, A,A

• GRn ` Γ whenever GRCn ` Γ

for all Γ ∈ S(Fn(Λ)) and all A ∈ Fn(Λ).

Proof. We proceed by induction on n, where the base case n = 0 is just
a collection of known statements about G. For n > 0, we note that, as a
consequence of Lemma 3.9, GRn ` Γ iff Gn +H ` Γ where

H = {Γ0σ,∆ | Γ1 . . .Γk/Γ0 ∈ R, σ : v → Fn−1(Λ), ∀1≤i≤k(GRn−1 ` Γiσ)}

for all Γ ∈ S(Fn(Λ)).
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We first show that GRn ` Γ, A,¬A. By definition of Fn(Λ), we have that
Γ, A,¬A ∈ S(Prop(Λ(Fn−1(Λ)∪V ))) and therefore Γ, A,¬A = Γ′σ,Bσ,¬Bσ
for a formula B ∈ Prop(V ), a sequent Γ′ ∈ S(Prop(V )), and a substitution
σ : V → Λ(Fn−1(Λ)) ∪ V . By admissibility of the non-atomic axiom rule in
G, we have G0 ` Γ′,¬B,B. The claim will thus follow from the more general
statement that G0 ` ∆ implies that GRn ` ∆σ for all ∆ ∈ S(Prop(V )) and
all σ : V → Λ(Fn−1(Λ)) ∪ V , which we prove by induction on the proof of
G0 ` ∆. The interesting case, in which absorption of congruence is needed,
is ∆ = ¬p, p,∆′, i.e. ∆ is an axiom. We show that GRn ` pσ,¬pσ,∆′σ, for
which it suffices to establish that that GRn ` ¬pσ, pσ by admissibility of
weakening (Lemma 3.11). As σ takes values in Λ(Fn−1(Λ))∪V and the case
σ(p) ∈ V is readily discharged by the (atomic) axiom rule, we may assume
that σ(p) = ♥(A1, . . . , Ak) where A1, . . . , Ak ∈ Fn−1(Λ). By absorption
of congruence, we may find a rule Γ1 . . .Γl/Γ0 and a substitution ρ : V →
Prop(V ) such that GC0 +¬p1, q1 + · · ·+¬pk, qk+p1,¬q1 + · · ·+pk,¬qk ` Γiρ
for i = 1, . . . , l, and Γ0ρ ⊆ ♥(p1, . . . , pk),¬♥(p1, . . . , pk). By substitutivity
(Lemma 3.14) this entails that GRCn−1 + Axn−1 ` Γiρτ for i = 1, . . . , l
where τ(pi) = τ(qi) = Ai. By the induction hypothesis, cut may be elimi-
nated and all elements of Axn are GRn−1-derivable, hence GRn−1 ` Γiρτ .
Therefore, GRn ` Γ0ρτ , and hence GRn ` ♥(A1, . . . , Ak),¬♥(A1, . . . , Ak)
by weakening (Lemma 3.11). This finishes the inductive case for the axiom
rule. The cases for the other rules are standard; as an example, we deal
with the case that (∧) is the last rule applied in the proof of G0 ` ∆.
Then ∆ = (B0 ∧ B1),Γ and both G0 ` B0,Γ, G0 ` B1,Γ. As these
proofs are shorter, we may apply the induction hypothesis to obtain that
GRn ` B0σ,Γσ and GRn ` B1σ,Γσ, whence GRn ` (B0 ∧ B1)σ,Γσ as
required.

We now deal with contraction. So suppose that GRn ` Γ, or equiva-
lently, Gn + H ` Γ with H as above. Strengthening the claim, we show
that GRn ` supp(Γ) by induction on the Gn-proof of Γ from the addi-
tional assumptions in H. First suppose that Γ ∈ H, that is, Γ = Γ0σ,∆ for
Γ1 . . .Γk/Γ0 ∈ R, H ∈ S(Fn(Λ)), and σ : V → Fn−1(Λ). We may factorise
σ = σm ◦ σe where σe : V → V is a renaming and σm : V → Fn−1(Λ)
is an injective substitution. As R absorbs contraction, we can find a rule
∆1 . . .∆l/∆0 and a renaming ρ : V → V such that ∆0ρ ⊆ supp(Γ0σe)
and GC0 + {Γiσe | i = 1, . . . , k} ` ∆jρ for j = 1, . . . , l. By substitutivity
(Lemma 3.14) this entails

GRCn−1 + Axn−1 + {Γiσeσm | i = 1, . . . , k} ` ∆jρσm

for j = 1, . . . , l.
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As all elements of Axn−1 as well as the additional assumptions Γiσeσm
are GRn−1-derivable, we conclude that GRCn−1 ` ∆jρσm for all j =
1, . . . , l, and hence GRn−1 ` ∆jρσm by induction. Thus, GRn `
∆0ρσm. As σm is injective and ∆0ρ ⊆ supp(Γ0σe), we have ∆0ρσm ⊆
supp(Γ0σeσm) = supp(Γ0σ). By weakening (Lemma 3.11) we finally obtain
GRn ` supp(Γ).

The remaining cases, where Γ has been proved using rules of Gn, are
standard, and we exemplify the argument for the case of the (¬∧)-rule.
Suppose that Gn +H ` Γ has a proof of depth h and (¬∧) was the last rule
applied in this proof. Then Γ = ∆,¬(B∧C) and Gn+H ` ∆,¬B,¬C with
a proof of depth < h. We distinguish two cases. First, if ¬(B ∧C) /∈ ∆, we
have, by induction hypothesis (and possibly an application of weakening),
that Gn + H ` supp(∆),¬B,¬C whence Gn + H ` supp(∆),¬(B ∧ C) =
supp(∆,¬(B∧C)) = supp(Γ). Now consider the case ¬(B∧C) ∈ ∆, i.e. the
multiplicity of ¬(B∧C) in ∆ is m > 0. By repeated application of inversion
(Lemma 3.12) we have that Gn + H ` ∆0,∆1 where ∆1 consists of m + 1
copies each of ¬B and ¬C and ∆0 arises by removing all m occurrences
of ¬(B ∧ C) from ∆, with a proof of depth < h. By induction, it follows
that Gn +H ` supp(∆0),¬B,¬C whence Gn +H ` supp(∆0),¬(B ∧C) =
supp(∆0,¬(B ∧ C)) = supp(∆,¬(B ∧ C)) as required.

We turn to admissibility of cut, where it suffices to show that GRn `
Γ,∆ whenever GRn ` Γ, A and GRn ` ∆,¬A. If this is the case, we find
that Gn + H ` Γ, A and Gn + H ` ∆,¬A with H as above. We show
that Gn+H ` Γ,∆ using the classical double induction method, with outer
induction on the rank of the cut formula A and inner induction on the sum
of the size of the proof trees of Gn + H ` Γ, A and Gn + H ` ∆,¬A. We
distinguish three different types of cut: (a) cuts between elements of H, (b)
cuts between elements of H and conclusions of Gn-rules and (c) cuts between
conclusions of Gn-rules. As regards (a), we have that Γ, A = Γ0σ,Γ

′ and
∆,¬A = ∆0ρ,∆

′ for two substitutions σ, ρ : V → Fn−1(Λ) and two rules
Γ1 . . .Γk/Γ0 and ∆1 . . .∆l/∆0 ∈ R. In case A ∈ Γ′ or ¬A ∈ ∆′, we are
done immediately as Γ,∆ ∈ H. To see this in the case A ∈ Γ′ suppose that
Γ′ = A,Γ′′. Then Γ,∆ = Γ0σ,Γ

′′,∆ ∈ H. The case ¬A ∈ ∆′ is entirely
analogous.

The remaining case is that A ∈ Γ0σ and ¬A ∈ ∆0ρ. As R absorbs cut,
we may use the substitution lemma 3.14 to find a rule Σ1 . . .Σm/Σ0 and a
substitution κ : V → Fn−1(Λ) such that supp(Σ0κ) ⊆ Γ,∆ and

GCn−1 + Axn−1 + {Γiσ | i = 1, . . . , k}+ {∆jρ | j = 1, . . . , l} ` Σjκ

for all j = 1, . . . ,m. As all elements of Axn−1 and all assumptions Γiσ (i =
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1, . . . k) and ∆jρ (j = 1, . . . , l) are GRn−1-derivable and cut is admissible
in GRn−1 by induction hypothesis, we have that GRn−1 ` Σjκ for all
j = 1, . . . ,m. As contraction is admissible in GRn, we finally obtain GRn `
supp(Σ0κ0) ⊆ Γ,∆, and GRn ` Γ,∆ follows from the relativised weakening
lemma 3.11.

We now look at cuts of type (b), that is, cuts between propositional rules
and hypotheses in H. We treat the case that Γ, A = Γ0σ,Γ

′ ∈ H and ∆,¬A
has been derived using a propositional rule (the case Γ,¬A ∈ H is almost
identical but slightly simpler, as it leaves fewer cases for A). If A ∈ Γ′, that
is, Γ′ = Γ′′, A, the cut happens on a formula in the weakening context Γ′

and we have Γ,∆ = Γ0σ,Γ
′′,∆ ∈ H whence Gn + H ` Γ,∆. Now suppose

that A ∈ Γ0σ, i.e. Γ0σ = A,Γ′′. We proceed by a case distinction over the
last rule applied in the proof of Gn +H ` ∆,¬A.

Rule (∧): Since A occurs in the conclusion of a modal rule, A is not
of the form B ∧ C, so that necessarily ∆ = ∆′, B ∧ C, and we have
Gn + H ` ∆′, B,¬A and Gn + H ` ∆′, C,¬A with shorter proofs. By
the inner induction hypothesis, cutting the latter two endsequents with Γ, A
is admissible, that is, Gn +H ` Γ,∆′, B and Gn +H ` Γ,∆′, C. Applying
(∧) yields Gn +H ` Γ,∆′, B ∧ C = Γ,∆.

Rule (¬∧): As in the previous case, necessarily ∆ = ∆′,¬(B ∧ C) and
GR ` ∆′,¬B,¬C,¬A with a shorter proof. Again by the inner induction
hypothesis, cuts on A with the latter endsequent are admissible, that is,
Gn+H ` Γ,∆′,¬B,¬C and consequently Gn+H ` Γ,∆′,¬(B∧C) = Γ,∆.

Rule (¬¬): First suppose that ¬A is principal whence A = ¬A′ and
Gn +H ` ∆, A′ with a shorter proof. We may now use the inner induction
hypothesis to obtain Gn+H ` Γ,∆ by an admissible cut on A′. Now suppose
that ¬A is not principal in the application of (¬¬). Then ∆ = ∆′,¬¬B, and
Gn +H ` ∆′, B,¬A with a shorter proof. Again using the inner induction
hypothesis, an admissible cut on A yields Gn +H ` ∆′, B,Γ, and applying
(¬¬) yields Gn +H ` ∆′,¬¬B,Γ = ∆,Γ.

Rule (Ax ): As in the case for (∧), necessarily ∆ = p,¬p,∆′′. Then
Γ,∆ = Γ, p,¬p,∆′′ is again an axiom and Gn +H ` Γ,∆.

This finishes the case of cuts of type (b). The elimination of cuts of type
(c) between conclusions of propositional rules is standard, and follows from
the GRn-admissibility of contraction (that we have already established) and
the inversion lemma 3.13.

The following theorem, which readily follows from Proposition 5.6 and
Proposition 3.15, therefore provides a purely syntactic counterpart of The-
orem 4.15.
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Theorem 5.7. If R absorbs cut, contraction and congruence, then all in-
stances of the cut and contraction rules

Γ, A ∆,¬A
Γ,∆

Γ, A,A

Γ, A
,

where Γ,∆ ∈ S and A ∈ F(Λ), are admissible in GR.

Our last main result in this section is that in the presence of one-step com-
pleteness, the absorption properties are actually equivalent with one-step
cut-free completeness, the condition used in the semantic proof of cut elim-
inability. We split the equivalence into two separate lemmas.

Proposition 5.8. Let R be one-step complete. Then R is one-step cut-free
complete if R absorbs cut and contraction.

Proof. Let X be a set, and let τ be a P(X)-valuation. Consider the set

Ψ = {Γ0σ,∆ | ∆ ∈ S(Λ(V )),Γ1 . . .Γn/Γ0 ∈ R,

σ : V → Prop(V ),∀1≤i≤n(X, τ |= Γiσ)}.

As rule conclusions do not contain top-level propositional connectives, Ψ is
trivially closed under inversion. Moreover, Ψ is closed under weakening, i.e.
Γ ∈ Ψ implies that Γ,∆ ∈ Ψ for ∆ ∈ S(Λ(V )).

We now establish that Ψ is closed under contraction, i.e. Γ ∈ Ψ implies
that supp(Γ) ∈ Ψ. If Γ ∈ Ψ, we can find a rule Γ1 . . .Γn/Γ0 ∈ R and a
substitution σ : V → Prop(V ) such that X, τ |= Γiσ for all i = 1, . . . , n and
Γ = Γ0σ,Γ

′ for some Γ′ ∈ S(Λ(V )). It suffices to show that supp(Γ0σ) ∈ Ψ,
as Ψ is closed under weakening. The idea is to replace every (propositional)
formula A occurring in Γ0σ by a propositional variable pA and then use ab-
sorption of contraction. We therefore choose pairwise distinct propositional
variables pA for all A ∈ {σ(p) | p ∈ V } and consider the renaming σ0 defined
by σ0(p) = pσ(p). We may moreover choose an injective substitution θ that
satisfies θ(pA) = A. This allows us to factor σ = θ ◦ σ0. Using the fact that
R absorbs contraction, we now find a rule ∆1 . . .∆m/∆0 and a renaming
ρ : V → V such that ∆0ρ ⊆ supp(Γ0σ0) and

GC0 + {Γiσ0 | i = 1, . . . , n} ` ∆jρ

for all j = 1, . . . ,m. As X, τ |= Γiσ for all i = 1, . . . , n we have that
X, τ |= ∆jρθ for j = 1, . . . ,m by soundness of propositional reasoning.
Hence ∆0ρθ ∈ Ψ. As ∆0ρ ⊆ supp(Γ0σ0) and θ is injective, we have ∆0ρθ ⊆
supp(Γ0σ0θ) = supp(Γ0σ). This shows that supp(Γ0σ) ∈ Ψ as required.
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Next, we show that Ψ is closed under cut, i.e. assuming that Γ, A and
∆,¬A are in Ψ we show that Γ,∆ ∈ Ψ. By definition, we have rules
Γ1 . . .Γn/Γ0 and ∆1 . . .∆m/∆0 ∈ R and substitutions σ, ρ : V → Prop(V )
such that X, τ |= Γiσ and X, τ |= ∆jτ for i = 1, . . . n and j = 1, . . . ,m, as
well as

Γ, A = Γ0σ,Γ
′ and ∆,¬A = ∆0τ,∆

′

for some Γ′,∆′ ∈ S(Λ(V )). In case A ∈ Γ′ we have Γ,∆ = Γ0σ,Ξ for some
Ξ ∈ S(Λ(V )) so there is nothing to show. By the same argument, we are
done if ¬A ∈ ∆′, so we can assume that A ∈ Γ0σ and ¬A ∈ ∆0τ . Thus, we
have

Γ0 = B,Γ′′ and ∆0 = ¬C,∆′′

with Bσ = A = Cτ . As above, we choose pairwise distinct propositional
variables pA for all A ∈ {σ(p) | p ∈ V }∪{τ(p) | p ∈ V } and pick an injective
substitution θ : V → Prop(V ) such that θ(pA) = A. If σ0, τ0 : V → V are
defined by σ0(p) = pσ(p) and τ0(p) = pτ(p), we can factor σ = θ ◦ σ0 and
τ = θ◦τ0. Moreover, Bσ0 = Cτ0 by injectivity of θ. We may therefore invoke
absorption of cut to find a rule Σ1 . . .Σl/Σ0 and a renaming κ : V → V such
that supp(Σ0κ) ⊆ Γ′′σ0,∆

′′τ0 and

GC0 + {Γiσ0 | i = 1, . . . , n}+ {∆iτ0 | i = 1, . . . ,m} ` Σkκ

for all k = 1, . . . , l. Soundness of GC0 now entails that X, τ |= Σkκθ for
all k = 1, . . . , l as X, τ |= Γiσ0θ and X, τ |= ∆jτ0θ for i = 1, . . . , n and
j = 1, . . . ,m; therefore Σ0κθ ∈ Ψ. Applying θ to the inclusion supp(Σ0κ) ⊆
Γ′′σ0,∆

′′τ0 we obtain supp(Σ0κθ) ⊆ Γ,∆ (recall that Γ, A = Γ0σ,Γ
′ =

A,Γ′′σ,Γ′ and ∆,¬A = ¬A,∆′′τ,∆′). As Ψ is closed under weakening and
contraction, we obtain that Γ,∆ ∈ Ψ as claimed.

Finally, we establish that R is one-step cut-free complete, using the
criterion of Lemma 4.3. So let Γ ∈ S(Λ(V )), and let τ : V → P(X) such
that TX, τ |= Γ. We need to show that there exist Γ1 . . .Γn/Γ0 ∈ R and a
renaming σ : V → V such that Γ0σ ⊆ Γ and X, τ |= Γi, σ, i = 1, . . . , n. As
R is one-step complete, GC1 + Ψ ` Γ. By Lemma 5.9 below, we conclude
Γ ∈ Ψ, which finishes the proof.

To complete the proof of Proposition 5.8 we need to supply the following
lemma.

Lemma 5.9. Let Ψ ⊆ S(Λ(V )) be closed under cut, contraction, weakening,
and inversion. Then GC1 + Ψ ` Γ iff G1 + Ψ ` Γ. In particular, for
Γ ∈ S(Λ(V )), we have GC1 + Ψ ` Γ iff Γ ∈ Ψ.
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Proof. This is a standard cut-elimination proof for G where the fact that Ψ
is closed under cut, contraction, weakening, and inversion allows propagating
instances of the respective rules to the leaves; see [29, Section 4.4] for details.

The converse of Proposition 5.8 requires more semantic considerations. We
start with a simple property of the semantics of propositional logic.

Lemma and Definition 5.10. Let H ⊆ S(Prop(V )). Let X0 = 2V , where
2 is the set {⊥,>} truth values, and let τ0 : V → P(X0) be given by τ(a) =
{κ | κ(a) = >}. The canonical model of H is the pair X, τ defined by
X =

⋂
∆∈HJ∆Kτ0X0

and τ(p) = τ0(p) ∩X. Then X, τ |= Γ iff GC0 + H ` Γ
for every Γ ∈ S(Prop(V )); in particular, X, τ |= ∆ for all ∆ ∈ H.

Proof. The statement reduces immediately to the case that Γ is a single
formula A and H contains a single sequent consisting of a single formula B.
By soundness and completeness of GC0, it suffices to show that X, τ |= A
iff B → A is a propositional tautology. As by construction, X, τ |= A
iff X0, τ0 |= B → A, this reduces to showing that for all A ∈ Prop(V ),
X0, τ0 |= A iff A is a propositional tautology. This follows from the more
general claim, proved by an easy induction over the structure of A, that for
κ ∈ 2V , κ ∈ JAKτ0X0

iff A evaluates to true under the valuation κ.

We can now show that one-step cut-free completeness entails the absorption
properties.

Proposition 5.11. Let R be one-step sound and one-step cut-free complete.
Then R absorbs cut and contraction.

Proof. We first establish that R absorbs contraction. So let Γ1 . . .Γn/Γ0 ∈
R, and let σ : V → V be a renaming. We have to show that there exists a
rule ∆1 . . .∆m/∆0 and a renaming ρ : V → V such that ∆0ρ ⊆ supp(Γ0σ)
and

GC0 + {Γiσ | i = 1, . . . , n} ` ∆jρ

for all j = 1, . . . ,m. Let X, τ be the canonical model of {Γ1σ, . . . ,Γnσ}
according to Lemma 5.10. By one-step soundness, TX, τ |= Γ0σ, and hence
TX, τ |= supp(Γ0σ). Since R is one-step cut-free complete, we can find a
rule ∆1 . . .∆m/∆0 and a renaming ρ : V → V such that X, τ |= ∆iρ for
i = 1, . . . ,m and ∆0ρ ⊆ supp(Γ0σ). By Lemma 5.10,

GC0 + {Γiσ | i = 1, . . . , n} ` ∆jτ
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for j = 1, . . . ,m as required.
We use a very similar argument to show that R absorbs cut. If

Γ1 . . .Γn/Γ0 and ∆1 . . .∆m/∆0 ∈ R and σ, ρ : V → V are renamings
with Γ0σ = Γ, A and ∆0ρ = ∆,¬A, let X, τ be the canonical model of
{Γ1σ, . . . ,Γnσ,∆1ρ, . . . ,∆mρ}. By one-step soundness, TX, τ |= Γ,∆, and
by one-step cut-free completeness we find a rule Σ1 . . .Σl/Σ0 and a renam-
ing κ : V → V such that X, τ |= Σiκ for i = 1, . . . , l and Σ0κ ⊆ Γ,∆. By
Lemma 5.10

GC0 + {Γiσ | i = 1, . . . , n}+ {∆iρ | i = 1, . . . ,m} ` Σjκ

for j = 1, . . . , l as required.

Taken together, Propositions 5.11 and 5.8 establish that under one-step
completeness, one-step cut-free completeness is equivalent to absorption of
cut and contraction. The syntactic proof of cut elimination (Proposition
5.6 and Theorem 5.7) however requires a third condition: absorption of
congruence. We now show that this condition is also implied by one-step
cut-free completeness. (Note that this does not imply that absorption of
congruence follows from absorption of cut and contraction.)

Proposition 5.12. Suppose that R is one-step cut-free complete. Then R
absorbs congruence.

Proof. Let ♥ ∈ Λ be an n-ary modal operator, pick propositional
variables p1, . . . , pn, q1, . . . , qn ∈ V , and let Γ denote the sequent
¬♥(p1, . . . , pn),♥(q1, . . . , qn). Let X, τ be the canonical model of H =
{¬pi, qi | i = 1, . . . , n} ∪ {¬qi, pi | i = 1, . . . , n} according to Lemma 5.10.
Then TX, τ |= Γ. By one-step cut-free completeness, we have a rule
Γ1 . . .Γm/Γ0 ∈ R and a renaming σ : V → V such that X, τ |= Γjσ for
all j = 1, . . . ,m and Γ0σ ⊆ Γ. By Lemma 5.10,

GC0 +H ` Γjσ

as required.

Example 5.13. In order to discharge the pending proof of one-step cut-free
completeness for the set RC of one-step rules axiomatising coalition logic,
we can proceed as in [28]. Mutatis mutandis, it has been shown in [28] that
RC absorbs cut and contraction. By Proposition 5.8, it remains to prove
one-step completeness. As noted in [28], one-step completeness follows from
Proposition 3.2 in [20]; however, we now have to pay attention to the fact
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that we modified the semantics of coalition logic by restricting to finite sets
of strategies. For finite sets of outcomes, the proof of Proposition 3.2 in [20]
constructs finite sets of strategies (and then, of course, strategies can be
assumed to be natural numbers). In other words, the said proof shows that
RC is one-step complete on finite sets w.r.t. C. By Proposition 4.5, this is
sufficient to establish one-step completeness.

We conclude the section with a short methodological digression on the con-
struction of cut-free complete rule sets.

Remark 5.14. The syntactic approach to cut elimination provides us with a
methodology to construct cut-free complete rule sets. Any one-step complete
system of rules can be turned into a one-step cut-free complete system by
adding instances of cut and contraction until both cut and contraction are
absorbed (the question is only whether there is a tractable description of
the resulting rule set). It is evident that this preserves one-step soundness.

6 Applications

This section presents, from a syntactic viewpoint, some applications of cut-
free completeness of GR for a one-step cut-free complete set R of one-step
rules. The first application, the subformula property, is immediate:

Theorem 6.1. Let R be a set of one-step rules. Then GR has the subfor-
mula property, i.e. every deduction GR ` Γ only mentions subformulas, or
negations thereof, of formulas occurring in Γ.

Proof. By induction on the derivation of GR ` Γ, where both the case of
propositional connectives and the application of an instance of a one-step
rule are immediate by the rule format.

As a consequence, we obtain alternative proofs of two results of [25] regarding
conservativity and complexity of coalgebraic logics.

Corollary 6.2 (Conservativity). Let Λ0 ⊆ Λ be a sub-similarity type, and
let R be one-step sound and one-step cut-free complete for a Λ-structure T .
If R0 consists of those Γ1 . . .Γn/Γ0 ∈ R for which Γ0 ∈ S(Λ0(V )), then
GR0 is complete for T as a Λ0-structure.

Proof. Let Γ be a valid sequent over F(Λ0). Then GR ` Γ. By the subfor-
mula property, all rules used in this derivation belong to R0.
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As the design of the system GR is such that the logical complexity of the
formula strictly decreases when passing from conclusion to premise, these
systems can be used to establish both decidability and complexity of the
satisfiability problem. Simply put, proof search in GR terminates if for
every sequent Γ there are only finitely many substitution instances of rule
conclusions equal to Γ with properly different premises. If moreover rules
can be represented by codes in such a way that one only needs to consider
rules of polynomial-sized codes in Γ, and the rule set satisfies some additional
sanity conditions, we say that the rule set is PSPACE-tractable; we refer to
[25, Definition 6.12] for the exact definition. Under PSPACE -tractability,
proof search in GR can be performed in polynomial space using a depth-first
strategy. We thus re-prove the main result (Theorem 6.13) of [25], which is
reformulated as follows in the sequent calculus setting used in the present
work:

Theorem 6.3. Let R be one-step sound and one-step cut-free complete. If
moreover R is PSPACE-tractable, then the satisfiability problem for F(Λ)
w.r.t. Mod(T ) is decidable in polynomial space.

Cut-free proof calculi also provide all the necessary scaffolding to prove Craig
interpolation by induction on cut-free proofs. We recall that FV(A) denotes
the set of propositional variables occurring in A ∈ F(Λ), and similarly for
sequents. Interpolation then takes the following form:

Definition 6.4. F(Λ) has the Craig Interpolation Property (CIP) with re-
spect to Mod(T ) if whenever Mod(T ) |= A → B for A,B ∈ F(Λ), then
there exists an interpolant F ∈ F(Λ) such that Mod(T ) |= A → F ,
Mod(T ) |= F → B and FV(F ) ⊆ FV(A) ∩ FV(B).

Syntactic proofs of the CIP proceed by induction on cut-free proofs. The
following definition introduces the necessary terminology.

Definition 6.5. A split sequent is a pair (Γ0,Γ1) of sequents, written Γ0 |
Γ1. We say that Γ0 | Γ1 is a splitting of Γ if Γ = Γ0,Γ1. A formula F is an
interpolant of a split sequent Γ0 | Γ1 if FV(F ) ⊆ FV(Γ0) ∩ FV(Γ1), GR `
Γ0, F , and GR ` ¬F,Γ1. We say that a sequent Γ admits interpolation
if every splitting of Γ has an interpolant. The system GR has the Craig
interpolation property (CIP) if every derivable sequent admits interpolation.

The idea of the syntactic proof of Craig interpolation [29, Chapter 4], in con-
trast to the semantic proofs via amalgamation (see [14] for the case of normal
modal logics and [11] for monotone modal logic) is to construct interpolants
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inductively – clearly this fails in the presence of the cut-rule. Completeness
provides the link between the syntactic and the semantic versions of the
CIP.

Proposition 6.6. Let R be one-step sound and one-step cut-free complete
w.r.t the Λ-structure T . Then GR has the CIP iff F(Λ) has the CIP with
respect to Mod(T ).

Proof. To prove ‘if’, let GR ` Γ, and let Γ0 | Γ1 be a splitting of Γ. By
soundness, Mod(T ) |= (¬Γ̌0)→ Γ̌1. Therefore, we have F ∈ F(Λ) such that
FV(F ) ⊆ FV(Γ̌0) ∩ FV(Γ̌1) = FV(Γ0) ∩ FV(Γ1), Mod(T ) |= (¬Γ̌0) → F , and
Mod(T ) |= F → Γ̌1. By cut-free completeness (Section 4), GR ` Γ0, F and
GR ` ¬F,Γ1, i.e. F is the required interpolant of Γ0,Γ1. ‘Only if’ is proved
similarly.

Inductive proofs of the CIP for GR are often straightforward. Below, we
show that the systems used in our running examples, coalition logic and
conditional logic have the CIP. For coalition logic, this is not a new result
[10] but our proof is shorter due to the smaller number of modal proof rules.
For the conditional logics CK and CK + ID the CIP is – to the best of our
knowledge – a new result which was explicitly left as future work in [17],
where a substantially different proof calculus is used.

The proof of the CIP in both examples benefits from the following no-
tions.

Definition 6.7. A sequent rule Γ1 . . .Γn/Γ0 supports interpolation if Γ0

admits interpolation provided all of Γ1, . . . ,Γn admit interpolation. A set S
of sequent rules supports interpolation if all rules in S support interpolation.

As it is well known (and shown e.g. in [29]) that all (instances of) rules of
G support interpolation, the following is evident.

Lemma 6.8. If S(R) supports interpolation, then GR has the CIP.

Moreover, we may restrict ourselves to rule instances without context for-
mulas:

Lemma 6.9. The set S(R) supports interpolation iff for every rule
Γ1 . . .Γn/Γ0 in R and every substitution σ : V → F(Λ), the sequent rule
Γ1σ . . .Γnσ/Γ0σ supports interpolation.

Proof. Let Γ1 . . .Γn/Γ0 be a one-step rule in R, let σ : V → F(Λ) be a
substitution, and let ∆ be a sequent. Moreover, let Γiσ admit interpolation
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for all i = 1, . . . , n; we have to show that the arising rule conclusion Γ0σ,∆
admits interpolation. Every splitting of Γ0σ,∆ is of the form Γ0

0σ,∆0 |
Γ1

0σ,∆1, where Γ0
0σ | Γ1

0σ is a splitting of Γ0σ and ∆0 | ∆1 is a splitting
of ∆. By assumption, Γ0σ admits interpolation, so that there exists an
interpolant F for the splitting Γ0

0σ | Γ1
0σ. By admissibility of weakening, F

is also an interpolant for the given splitting of Γ0σ,∆.

We turn to our running examples:

Theorem 6.10. Coalition logic, i.e. the system GC, has the CIP.

Proof. By the above lemmas, we only have to check that the given one-step
rules support interpolation.

Rule (A). If S = ¬[C0]A0 | ¬[C1]A1 is a splitting of the (substituted)
rule conclusion (recall the notation of Example 3.6) and F is an interpolant
of ¬A0 | ¬A1, then G = [∪C0]F is an interpolant of S: From ¬F,¬A1, we
deduce ¬G,¬[C1]A1 by rule (A), whose side condition is met as ∪C0 and
the elements of C1 are pairwise disjoint. Moreover, from ¬A0, F we deduce
¬[C0]A0, G by rule (B), where, in the notation of the rule, we match G to
the literal [D]B, and the side condition is met by construction of G.

Rule (B). There are two cases to distinguish, depending on which part
of the splitting the literal [D]B belongs to. First consider splittings of the
rule conclusion of the form

S = ¬[C0]A0, [D]B, [N]B0 | ¬[C1]A1, [N]B1.

If F is an interpolant of ¬A0, B,B0 | ¬A1,B1, then ¬[∪C1]¬F is an in-
terpolant of S: from ¬A0, F,B,B0 we first derive ¬A0,¬¬F,B,B0 and
then ¬[C0]A0,¬[∪C1]¬F, [D]B, [N]B0 using rule (B). Moreover, from
¬A1,¬F,B1 we derive ¬[C1]A1, [∪C1]¬F, [N]B1 using rule (B), and fur-
ther ¬[C1]A1,¬¬[∪C1]¬F, [N]B1.

Now consider a splitting of the rule conclusion of the form

S = ¬[C0]A0, [N]B0 | ¬[C1]A1, [D]B, [N]B1.

In this case, if F is an interpolant of ¬A0,B0 | ¬A1, B,B1,
then [∪C0]F is an interpolant of S: from ¬A0, F,B0, we derive
R¬[C0]A0, [∪C0]F, [N]B0 by rule (B), and from ¬F,¬A1, B,B1 we derive
¬[∪C0]F,¬[C1]A1, [D]B, [N]B1 by rule (B).

By a similar argument we establish the CIP for the conditional logics CK
and CK + ID .
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Theorem 6.11. The conditional logics CK and CK + ID have the CIP.

Proof. First consider GCK; we have to show that rule (C) supports in-
terpolation. First consider splittings of the rule conclusion of the form
S = ¬(A0 ⇒ B0), A ⇒ B | ¬(A1 ⇒ B1). If F is an interpolant of
¬B0, B | ¬B1, then ¬(A ⇒ ¬F ) is an interpolant of S. Now consider
splittings of the form S = ¬(A0 ⇒ B0) | ¬(A1 ⇒ B1), A ⇒ B. If F
interpolates ¬B0 | ¬B1, B then A⇒ F interpolates S.

We now consider interpolation for GCKId, which follows the same pat-
tern. To show that the rule (CI ) supports interpolation, first consider a
splitting of the conclusion of (CI ) of the form S = ¬(A0 ⇒ B0), A ⇒ B |
¬(A1 ⇒ B1). If F is an interpolant of ¬A0,¬B0, B | ¬B1, then ¬(A⇒ ¬F )
is an interpolant of S. Similarly, if S = ¬(A0 ⇒ B0) | ¬(A1 ⇒ B1), A⇒ B
and F interpolates ¬B0 | ¬B1, B,¬A then A⇒ F interpolates S.

7 Conclusions

We have shown that local absorption of congruence, contraction, and cut by
a system of modal one-step rules automatically results in a sequent system
that admits cut, and that under a localised completeness assumption the
sequent system is (cut-free) complete w.r.t. coalgebraic semantics, a result
which applies to many and widely differing examples of modal logics found
in the literature. Cut free sequent systems are the key to a number of typical
applications, including in particular proofs of the Craig interpolation prop-
erty (CIP) which plays an important role in the modularisation of proofs.
We have established the CIP for our two running examples; here, the CIP
for the conditional logics CK and CK + ID is apparently a new result. It
remains an open problem to find a quickly verifiable general criterion for a
set of rules, or, semantically, a coalgebraic modal logic, to have the CIP. It
is worthwhile to point out that for coalition logic, the inductive step in the
proof of the CIP is not entirely straightforward as the newly constructed
interpolant uses a modality that does not necessarily appear in the rule at
hand. We phrase this problem explicitly as

Open Problem 7.1. Find easily verifiable and general semantic or syntac-
tic criteria for a coalgebraic modal logic to have the CIP.

Secondly, we have observed that the crucial notion of absorption of cut by
a set of rules is reflected semantically by what we have termed one-step
cut-free completeness. The purely syntactic approach to cut elimination via
local absorption of cut carries over to logics outside rank 1 [19] (see [27] for
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an exact definition of coalgebraic modal logics with general, i.e. not neces-
sarily rank-1, frame conditions). Contrastingly, it is unclear which semantic
criteria would apply in the general case. We formulate this explicitly as

Open Problem 7.2. Find semantic criteria for a coalgebraic modal logic
with general frame conditions to admit cut elimination.
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