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State-based systems and modal logics for reasoning about them often heterogeneously combine a
number of features such as non-determinism and probabilities. Here, we show that the combination
of features can be reflected algorithmically and develop modular decision procedures for
heterogeneous modal logics. The modularity is achieved by formalizing the underlying state-based
systems as multi-sorted coalgebras and associating both a logical and an algorithmic description to
a number of basic building blocks. Our main result is that logics arising as combinations of these
building blocks can be decided in polynomial space provided that this is the case for the
components. By instantiating the general framework to concrete cases, we obtain PSPACE decision
procedures for a wide variety of structurally different logics, describing e.g. Segala systems and
games with uncertain information.

1. Introduction

Modal logics appear in computer science in a variety of contexts. They are the formalism of
choice for reasoning about reactive systems and feature prominently in areas related to artificial
intelligence such as knowledge representation and reasoning with uncertainty (Halpern 2003).
The semantics of modal logics typically involves a notion of state and transition, which can
take a number of different forms. Transitions can be probabilistic or weighted, as in probabilis-
tic modal logic (Larsen and Skou 1991; Heifetz and Mongin 2001) and graded modal logic
(Fine 1972; D’Agostino and Visser 2002), induced by joint actions of agents as in coalition
logic or alternating-time logic (Pauly 2002; Alur, Henzinger, and Kupferman 2002), or non-
monotonically conditioned as in conditional logic (Chellas 1980). An attractive aspect of many
of these logics is that they are decidable in comparatively low complexity classes — e.g., in
the absence of fixpoint operators and global assumptions typically in PSPACE (Tobies 2001;
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Pauly 2002; Schröder and Pattinson 2009), i.e. the same as the standard modal logic K (Black-
burn, de Rijke, and Venema 2001) and not dramatically worse than propositional logic.

Features like non-determinism, probabilistic choice or joint actions are often combined, lead-
ing to systems that incorporate more than one type of transition. Moreover, features can be com-
bined in different ways: E.g. in the alternating model of probabilistic transition systems (Hansson
and Jonsson 1990), states may have either non-deterministic or probabilistic transitions, whereas
simple Segala systems (Segala 1995) have a two-layered structure where non-deterministic tran-
sitions lead to probability distributions over successor states. Bartels et al. (2003) discuss 12
different types of probabilistic transition systems arising in the literature that come about as such
combinations of basic features.

Here, we introduce a simple calculus that formalizes the combination of features and establish
that combined logics typically inherit properties of their building blocks in a straightforward
way; as an example, we show that shallow models and decidability in PSPACE according to the
method of strictly one-step complete rule sets (Schröder and Pattinson 2009) transfer from the
components to the combined logic. Our results and algorithms are generic and use the same
algorithmic template to realize decision procedures at the level of each individual feature. This
is achieved by formalising the combined logics in a multi-sorted extension of coalgebraic modal
logic (Pattinson 2004) whose semantics is parametric in a set functor T ; models then appear
as T -coalgebras. This pushes the generic PSPACE-decision procedure of Schröder and Pattinson
(2009), which works uniformly for such diverse logics as Hennessy-Milner logic, coalition logic,
graded modal logic, and probabilistic modal logic, to the level of combined logics that integrate
several features.

Formally, a feature consists of a set of modal operators together with a set of associated proof
rules. On the semantic level, a structure for a feature is an endofunctor of type Setn → Set,
where n is the arity of the feature (e.g. choice, fusion, and conditionality are binary features).
The notion of gluing formalizes specific ways of combining given features. Syntactically, gluings
define multi-sorted modal logics. Semantically, gluings induce endofunctors T : Setn → Setn

such that T -coalgebras are models of the combined logic. The single sorted case n = 1 is of
special interest since it captures the standard models of combined systems, including e.g. the
ones presented by Bartels et al. (2003), which equip multi-sorted logics with a single-sorted
semantics.

The central technical contribution of this work is the construction of a logically equivalent
flattening of a given gluing, where flat gluings assign to each occurrence of a feature an individ-
ual sort in the semantics. Flat gluings are technically more tractable than general gluings, and in
fact the extension of generic results in coalgebraic modal logic from the single-sorted case to flat
gluings typically requires no more than accommodating some notational overhead for the sorts.
We demonstrate this by establishing the shallow model property and a generic PSPACE algorithm
for flat gluings, in generalization of previous results for the single-sorted case (Schröder and Pat-
tinson 2009). Together, these results imply PSPACE upper bounds for satisfiability over general
gluings, including the standard single-sorted semantics of multi-sorted modal logics such as the
logic of simple Segala systems (Jonsson, Yi, and Larsen 2001).

Related Work. Our work is closely related to several previous approaches (Cı̂rstea and Pattinson
2007; Jacobs 2001), which focus on completeness issues, with the main difference that our re-



Modular Algorithms for Heterogeneous Modal Logics 3

sults make the multi-sorted nature of heterogeneous logics explicit by considering multi-sorted
models. Our treatment of typed formulas resembles the concept of ingredients (Jacobs 2001),
but the multi-sorted semantics avoids the use of the next-operator of op.cit. One advantage of the
new framework is that constructions such as Cartesian product or disjoint union no longer have
to be treated separately but are covered as special cases by the overall framework, which needs
to talk only about polyadic set functors and their predicate liftings. Moreover, generic results in
coalgebraic modal logic such as the decision procedures of (Schröder 2007; Schröder and Pat-
tinson 2009), and many others as listed in more detail in Section 6, generalize straightforwardly
to the multi-sorted case. The multi-sorted approach to the complexity of composite modal log-
ics complements transfer results obtained for the fusion of modal logics (Hemaspaandra 1994;
Wolter 1998) in the sense that our framework currently covers logics with iterative axioms (Lewis
1975) (i.e. axioms that nest modalities) only in a somewhat limited way via a multi-sorted exten-
sion of the results of (Schröder and Pattinson 2008a), but allows more flexible logic composition
and especially applies also to logics that are not amenable to Kripke semantics.

Outline We begin with a brief informal discussion of a few examples of multi-sorted modal
logics (Section 2) before we proceed to give a formal syntactic definition of our logic composition
mechanism in Section 3. We then define the multi-sorted coalgebraic semantics of composite
modal logics in Section 4, where we also present the main result of this work, the flattening
construction which reduces functor composition to multi-sortedness. Finally, we demonstrate
the straightforward extension of single-sorted results to the multi-sorted setting in Section 5,
using the above-mentioned generic PSPACE-algorithm as an example. This work is an extended
and revised version of (Schröder and Pattinson 2007).

2. Multi-Sorted Modal Logics by Example

We proceed to present examples of logics that combine reasoning mechanisms in various ways, to
motivate the technical definitions that follow. We discuss both the standard definitions of system
types and their coalgebraic rephrasing. Readers unfamiliar with coalgebraic terminology can
safely ignore this coalgebraic aspect for now, as we will recall the basic notions of coalgebra in
Section 4. The coalgebraic treatment of probabilistic systems follows (Bartels, Sokolova, and de
Vink 2003).

2.1. Logics for Probabilistic Systems

Segala systems (Segala 1995) and alternating systems (Hansson and Jonsson 1990) both com-
bine probabilistic transitions and non-determinism. In Segala systems, each system state can
non-deterministically perform actions that lead to probability distributions over states. Contrast-
ingly, alternating systems have two kinds of states engaging in purely probabilistic transitions
and non-deterministic actions, respectively, that may end up in either kind of state. In the exam-
ple below, the non-deterministic states are represented by solid circles •, and the probabilistic
states by hollow circles ◦. Note that we have also represented the intermediate probability distri-
butions occurring in Segala systems as hollow circles, although these do not as yet correspond to
actual states of the system — it is the main message of the current work, to be elaborated in the
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following sections, that nothing is changed if we do eventually promote them to states in their
own right.
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Alternating systems

Formally, a simple Segala system over a set A of actions consists of a set X of states and for
each state x ∈ X and each action a ∈ A, a set ξ(x)(a) of probability distributions on X . In
coalgebraic terms, this means that we have a coalgebra

ξ : X → (A→ P(D(X)))

for the functor T defined by TX = (A → (P(D(X)))), where → denotes function space, P
denotes powerset, and D(X) is the set of discrete probability distributions on X . In contrast, an
alternating system consists of a set X of states and, for each state x ∈ X , either a probability
distribution ξ(x) on X or a map ξ(x) assigning to each action a ∈ A a set ξ(x)(a) of successor
states. In other words, we have a coalgebra

ξ : X → D(X) + (A→ P(X))

where + denotes disjoint sum.
It has been shown that a suitable variant of probabilistic modal logic (Larsen and Skou 1991)

over a setA of actions characterizes states of image-finite Segala systems up to bisimilarity (Jon-
sson, Yi, and Larsen 2001, Theorem 8). This logic has two sorts n and u of non-deterministic
and probabilistic (‘uncertain’) formulas, respectively, and two families of modal operators

�a : u→ n (a ∈ A) and Lp : n→ u (p ∈ [0, 1] ∩Q),

where Lp reads ‘with probability at least p’. The sets Ln and Lu of non-deterministic and prob-
abilistic formulas, respectively, are thus defined by the grammar

Ln 3 φ ::= > | φ1 ∧ φ2 | ¬φ | �aψ (ψ ∈ Lu, a ∈ A)

Lu 3 ψ ::= > | ψ1 ∧ ψ2 | ¬ψ | Lpφ (φ ∈ Ln, p ∈ [0, 1] ∩Q).

Given a Segala system (X, ξ) as above, the semantics of the two sorts of formulas is given by
satisfaction relations |= between distributions P on X and probabilistic formulas and between
states x ∈ X and non-deterministic formulas, respectively, defined by mutual recursion with the
obvious clauses for Boolean operators and

x |= �aψ iff ∀P ∈ ξ(x)(a). P |= ψ

P |= Lpφ iff P ({x | x |= φ}) ≥ p

for the modal operators. Alternating systems, on the other hand, can be captured by a logic
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comprising three sorts n, u, and o of non-deterministic, probabilistic, and alternating formulas,
respectively, and modal operators

+ : u, n→ o Lp : o→ u �a : o→ n

that induce the three-sorted grammar

Lu 3 φ ::= > | φ1 ∧ φ2 | ¬φ | Lpχ (χ ∈ La, p ∈ [0, 1] ∩Q)

Ln 3 ψ ::= > | ψ1 ∧ ψ2 | ¬ψ | �aχ (χ ∈ La, a ∈ A)

La 3 χ ::= > | χ1 ∧ χ2 | ¬χ | φ+ ψ (φ ∈ Lu, ψ ∈ Ln)

which defines the sets Ln, Lu, and La of non-deterministic, probabilistic, and alternating for-
mulas, respectively. The binary modal operator + implements the choice between probabilistic
and non-deterministic transitions, which is a case statement: φ + ψ demands that φ holds if the
present state is probabilistic whereas ψ holds if present state is non-deterministic. Formally, the
semantics of the logic over an alternating system (X, ξ) is given by satisfaction relations be-
tween maps f : A → P(X) and non-deterministic formulas, between distributions P ∈ D(X)

and probabilistic formulas, and between states x ∈ X and alternating formulas, respectively,
defined by mutual recursion, with the clauses for the modal operators being

P |= Lpχ iff P ({x | x |= χ}) ≥ p
f |= �aψ iff ∀x ∈ f(a). x |= ψ

x |= φ+ ψ iff

{
ξ(x) |= φ if ξ(x) ∈ D(X)

ξ(x) |= ψ if ξ(x) ∈ (A→ P(X)).

E.g., a state x in an alternating system satisfies the formula

L1/2(⊥+�a⊥) +�a⊥

(where ⊥ ≡ ¬>) if either x behaves probabilistically, and with probability at least 1/2 leads to
a non-deterministic state where a is blocked, or x behaves non-deterministically and blocks a.

2.2. Fusion of Modal Logics

Both logics described above wire up the component logics in a restricted way, by imposing layer-
ing and choice, respectively. The unrestricted combination of logics La and Lb can be modelled
by a logic with sorts a, b, f and modal operators with associated source and target sorts

[π1] : a→ f [π2] : b→ f � : f → a ♥ : f → b

where � ranges over the modal operators of La and ♥ over those of Lb. This gives rise to an
obvious three-sorted grammar. The semantics of [π1] and [π2] (given in Section 4) will ensure that
both operators commute with all Boolean operations. Taking into account the typing information
for the modal operators, this means that formulas of sort f are essentially just the well-known
fusion La ⊗Lb (see, e.g., (Kurucz 2006)). Recall that the fusion disjointly combines the axioms
and modalities of La and Lb, giving rise to a one-sorted grammar. One can translate back and
forth between the fusion and formulas of sort f by translating the operator � of the fusion to
the composite operator [π1]�, and the operator ♥ to [π2]♥; a converse translation works by first



L. Schröder and D. Pattinson 6

distributing [π1] and [π2] over Boolean connectives and then replacing [π2]♥ with ♥ and [π1]�
with �. Thus, fusion is an instance of the multi-sorted combination of modal logics.

As fusion does not impose any well-typedness constraints on formulas, it can be regarded as
the maximally permissive way of combining two modal logics. However, as shown by the pre-
vious example, formulas of the fusion do not in general have an interpretation over the intended
type of systems, so that it is for many purposes preferable to work with the more restrictive
well-typed combinations considered here. Moreover, although the theoretical complexity of the
fusion typically does not exceed that of well-typed fragments, excluding ill-typed formulas still
does reduce the search space for purposes of practical implementations.

2.3. Conditional Logic

The standard conditional logicCK (Chellas 1980) has a binary modal operator⇒, where φ⇒ ψ

is read as a non-monotonic conditional ‘if . . . then normally . . . ’. In the right hand argument,⇒
behaves essentially like the � of the normal modal logic K, and in particular obeys the usual
K-axiom when the left argument is fixed. Indeed we can embed CK into a two-sorted extended
conditional logic with sorts c, k and modal operators

•⇒: c, k → c � : c→ k

by translating α ⇒ β to α •⇒ �β. Here, •⇒ represents a rudimentary conditional, and � is
the standard box modality of K. The semantic and syntactic details of this combination will be
made explicit in Sections 3 and 4. This shows how a given complex logic can be broken down
into simpler building blocks.

3. Compositional Syntax of Multi-Sorted Modal Logic

For our purposes, it is convenient to present the syntax of multi-sorted modal logic in a way that
provides explicitly for a decomposition into building blocks. The building blocks, which we call
features, are collections of (possibly polyadic) modal operators and associated proof rules that
capture specific properties of a logic, such as the ability to describe choice, non-determinism, or
uncertainty.

Definition 3.1. An n-ary feature is a pair F = (Λ,R) consisting of a (modal) similarity type Λ,
i.e. a set of modal operators ♥ with profiles ♥ : i1, . . . , ik → ∗, where 1 ≤ i1, . . . , ik ≤ n are
formal argument sorts and ∗ is a formal target sort, and a setR of one-step rules of the form

R = (φ1; . . . ;φn)/ψ,

where for i = 1, . . . , n, φi is a propositional formula over a set Vi of propositional variables, and
ψ is a clause over atoms of the form ♥(a1, . . . , ak) with ♥ : i1, . . . , ik → ∗ in Λ and aj ∈ Vij ,
j = 1, . . . , k. Here, we use the standard terminology for propositional logic: a literal over a set Z
of atoms is either an element of Z or the negation of such an element; a clause over Z is a finite
disjunction of literals over Z; and a conjunctive clause over Z is a finite conjunction of literals
over Z. Given a substitution σ of the variables in R by elements of Z, we refer to the substituted
rule Rσ = (φ1σ; . . . ;φnσ)/ψσ as a Z-instance of R. Finally, by phrases such as propositional
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reasoning, propositional entailment, propositional equivalence etc. we refer to reasoning using
propositional tautologies and modus ponens.

Although this does not play a crucial role in the present development, we moreover impose
the technical condition needed in other contexts that rules be injective, which means that every
propositional variable can occur at most once in the conclusion of a rule (Schröder and Pattinson
2009). This is not an actual restriction, since different variables a, b can be made to carry the
same interpretation by introducing a premise a ↔ b, and keeps the rules in synchrony with the
presentation elsewhere.

Note that the rule format disallows nested modalities in the conclusion, so that rules describe the
one-step behaviour of a system. As in the single sorted case (Schröder 2007), this format always
suffices to completely axiomatize the features of interest, as long as no global conditions (such
as transitivity) are imposed on the coalgebraic models.

Example 3.2. We describe the features used in the Examples of Section 2, as well as the standard
features that implicitly occur in previous treatments of compositional coalgebraic logics (Jacobs
2001; Cı̂rstea and Pattinson 2007). The similarity types are as follows (with intuitive meanings
supported by the respective semantics to be given in Section 4).

Non-Determinism: Given a set A of actions, the unary feature NA has modal operators �a :

1 → ∗ for a ∈ A, read ‘all a-successors satisfy . . . ’. If A is a singleton, we write K instead
of NA, and � instead of �a.

Uncertainty: The unary feature U has modal operators Lp : 1→ ∗ for p ∈ [0, 1]∩Q, read ‘with
probability at least p, the next state satisfies . . . ’.

Coalition: Given a set N of agents, the unary feature GN has modal operators [C] : 1 → ∗ for
all coalitions C, i.e. all subsets ofN , read ‘coalition C has a collaborative strategy to enforce
. . . ’.

Choice: The binary feature S has a single binary modal operator + : 1, 2 → ∗, where φ + ψ

reads ‘if the next state is in the left alternative, then it satisfies φ, and if the next state is in the
right alternative, then it satisfies ψ’.

Fusion: The binary feature P has two modal operators [πi] : i → ∗, i = 1, 2, read ‘the i-th
component satisfies . . . ’.

Conditionality: The binary feature C has a binary modal operator •⇒: 1, 2→ ∗, read ‘if . . . then
normally . . . ’.

Input: Given a set I of inputs, the unary feature II has modal operators (i) : 1 → ∗ for i ∈ I ,
read ‘upon input i’.

Output: Given a finite set O of outputs (infinite sets can be handled as well but have a slightly
different rule set), the nullary feature OO has nullary modal operators (i.e. flexible constants)
o :→ ∗ for o ∈ O, read ‘the current state outputs o’. For the special case of O1, where 1 is a
singleton output set, we write 1 for O1.

Figure 1 shows the associated proof rules, already in a special format needed in Section 5. The
rules for non-determinism and uncertainty are taken from (Schröder and Pattinson 2009), where
we use an obviously equivalent simplification of the rule for uncertainty; the others are obtained
by the same principles. The sum expression in the uncertainty rule refers to the arithmetic of
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Nondeterminism :

∧n
j=1 αj → β∧n

j=1�aαj → �aβ
(n ≥ 0, a ∈ A)

Uncertainty :

∑n
i=0 riai A

∑n
i=0 ripi∨

0≤i≤n sgn(ri)Lpiai

(
n ≥ 0; r0, . . . , rn ∈ Z− {0};A∈ {>,≥};
A is > if rj < 0 for all j, and ≥ otherwise.

)

Coalition :

∨n
i=1 ¬αi∨n

i=1 ¬[Ci]αi

∧n
i=1 αi → (β ∨

∨m
j=1 cj)∧n

i=1[Ci]αi → ([D]β ∨
∨m

j=1[N ]cj)

(m,n ≥ 0;Cj ⊆ D for j = 1, . . . ,m;Ci ∩ Cj = ∅ for i 6= j)

Choice :
(
∧m

j=1 αj →
∨n

k=1 βk) : 1 (
∧m

j=1 γj →
∨n

k=1 δk) : 2∧m
j=1(αj + γj)→

∨n
k=1(βk + δk)

(m,n ≥ 0)

Fusion :
(
∧m

j=1 αj →
∨n

k=1 βk) : i∧m
j=1[πi]αj →

∨n
k=1[πi]βk

(i = 1, 2;m,n ≥ 0)

Conditionality :

(γi ↔ γj) : 1 (i, j ∈ {1, . . . ,m+ n})
(
∧m

j=1 αj →
∨n

k=1 βk) : 2∧m
j=1(γi

•⇒ αj)→
∨n

k=1(γk+m
•⇒ βk)

(m,n ≥ 0)

Input :
(
∧m

j=1 αj →
∨n

k=1 βk) : i∧m
j=1(i)αj →

∨n
k=1(i)βk

(i ∈ I;m,n ≥ 0)

Output :
o1 ∧ o2 → ⊥

(o1, o2 ∈ O; o1 6= o2) ∨
o∈O o

Figure 1. Proof rules for the features of Example 3.2

characteristic functions (Schröder and Pattinson 2009); explicitly,∑
i∈I

riφi ≥ k ≡
∧
J⊆I
r(J)<k

( ∧
j∈J

φj →
∨
j /∈J

φj

)
,

where r(J) =
∑
j∈J rj . Moreover, sgn(r)φ ≡ φ when r > 0, and sgn(r)φ ≡ ¬φ otherwise.

We note that the above list of features is by no means exhaustive. In particular, we can see
every modal logic that is axiomatized by a set of one-step rules (Schröder and Pattinson 2008b,
Definition 2) as a unary feature. Other natural features that arise in this way are for instance
monotonicity, neighbourhoods, or integer weights, where the associated proof rules can be found
in (Schröder and Pattinson 2009, Example 3.19 and Example 6.2).

Remark 3.3. In the nondeterminism feature, we have opted not to decompose the feature further
into K and the input feature; this is both to illustrate that we are not forced to use the finest
possible granularity in our choice of basic features, and to keep the running examples in tune
with the introduction in Section 2.

The examples from Section 2 demonstrate that features can be combined in different ways. This
is formalized by the notion of gluing.
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Definition 3.4. Let Φ be a set of features, and let S be a set of sorts. Feature expressions t (over
S) are terms over the set S of variables where the features appear as function symbols, i.e.

t ::= a | F(t1, . . . , tn) a ∈ S, F ∈ Φ n-ary.

A gluing of Φ over S is a family G = (ta)a∈S of feature expressions, denoted by (a1 →
ta1 , . . . , an → tan) for S = {a1, . . . , an}; in this case we also write ai → tai ∈ G.

A gluing G = (ta)a∈S induces a multi-sorted modal logic, as follows. The set Types(G) of
types consists of the proper subterms of the ta, where the sorts a ∈ S are called base types and
the expressions t ∈ Types(G) \ S are the composite types. The reason the ta themselves are not
in general regarded as types is that we can instead represent them by their index sort a; this is
related to the semantic interpretation of the association a→ ta as a component of a multi-sorted
coalgebra map, to be defined in Section 4. The types are related to the ingredients of (Jacobs
2001), and will serve to type modal formulas in our logic. In some sense, they also correspond
to types of states, an intuition that will be made explicit in our flattening construction. We call a
gluing flat if S = Types(G), i.e. there are no composite types, which is the case if every term ta
is of the form F(a1, . . . , an); intuitively, a gluing is flat if all types of states are already explicit
in the sort set S.

Typed G-formulas φ : s, where s ∈ Types(G), are inductively generated by closure under
Boolean operators ⊥, ¬, ∧ at each type (with further Boolean operators ∨, >,→,↔ defined in
the standard way) and by the following typing rules for composite types (left) and base types
(right)

φ1 : s1 . . . φn : sn
♥(φi1 , . . . , φin) : F(s1, . . . , sn)

φ1 : s1 . . . φn : sn
♥(φi1 , . . . , φin) : a

,

where the left hand rule has side condition F(s1, . . . , sn) ∈ Types(G) and the right hand rule has
side condition a → F(s1, . . . , sn) ∈ G, and in both cases ♥ : i1, . . . , in → ∗ in F. The special
status of base types is related to the fact that for a → F(s1, . . . , sn) ∈ G, the feature expression
F(s1, . . . , sn) is not in general a type, being instead thought of as represented by the base type a.
We write Fs(G) for the set of G-formulas of type s and denote the family (Fs(G))s∈Types(G) by
F(G).

Similarly, a gluing induces a typed proof system, described in terms of a Types(G)-indexed
family of derivability predicates `s⊆ Fs(G). These predicates are defined inductively by closure
under propositional reasoning at each type and the deduction rules for composite types (left) and
base types (right), distinguished only by the type discipline in the same way as the above typing
rules for formulas,

`s1 φ1σ . . . `sn φnσ
`F(s1,...,sn) ψσ

`s1 φ1σ . . . `sn φnσ
`a ψσ

where F(s1, . . . , sn) ∈ Types(G) in the left hand rule, a→ F(s1, . . . , sn) ∈ G in the right hand
rule, and in both cases, (φ1; . . . ;φn)/ψ is a rule of F and σ is a substitution mapping variables
a ∈ Vi to formulas σ(a) : si.

Remark 3.5. Formulas and proofs induced by a gluing G = (ta)a∈S need not have unique types,
namely in case ta is a subterm of tb for some a, b ∈ S. We therefore disambiguate formulas
explicitly by their type when we define the semantics in Section 4.
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A given logic can be syntactically generated by different gluings, typically including both flat
and non-flat ones, determining different classes of semantic structures (see Section 4). One of the
main contributions of this paper is the proof of logical equivalence for the respective semantics.
Flat gluings are technically more tractable, while logics occurring in the literature, including the
ones described in Section 2, are typically non-flat.

Example 3.6. From the features S, U, and NA (Example 3.2), we can form gluings

G1 ≡ (o→ S(U(o),NA(o))) and G2 ≡ (o→ S(u, n), u→ U(o), n→ NA(o)).

Here, G1 has types o, NA(o), U(o), whereas G2 is flat with types o, n, u. Modulo identifications
NA(o) = n and U(o) = u, both gluings give rise to the (typed) formulas describing alternating
systems (Section 2.1). To illustrate the typing system, we briefly show how the formula Lpα +

�aβ is typed in the non-flat gluing G1, assuming α : o, β : o:

α : o
Lpα : U(o)

β : o

�aβ : NA(o)

Lpα+�aβ : o

Here, the last derivation step uses the typing rule for base types and the other derivation steps use
the typing rule for composite types.

The remaining example logics from Section 2 are captured by the following gluings:

Probabilistic modal logic of Segala Systems: This is the single-sorted gluing n → NA(U(n)).
It has types n and U(n), the latter corresponding to the sort u in the discussion in Section 2.
We can generate the same logic from the flat gluing (n→ NA(p), p→ U(n)).

Fusion: The fusion of logics La and Lb as in Section 2.2, regarded as features, is f →
P(La(f),Lb(f)).

Extended conditional logic: This may be captured by the single-sorted gluing c → C(c,K(c)).
Note in particular that in the induced proof system, we can derive the standard rule

(RCK )

∧n
i=1 αi → β∧n

i=1(γ ⇒ αi)→ (γ ⇒ β)
(n ≥ 0)

of the conditional logic CK (Chellas 1980) (presented for the sake of readability in non-
injective form, i.e. with repeated occurrences of γ), where γ ⇒ α abbreviates γ •⇒ �α, as
follows:

`c γ ↔ γ

`c
∧n
i=1 αi → β

`K(c)

∧n
i=1�αi → �β

`c
∧n
i=1 γ

•⇒ �αi → γ
•⇒ �β

Here, the first step in the right-hand branch applies the rule for K following the typing dis-
cipline for composite types, and the second step applies the rule for C following the typing
discipline for base types.
The conditional logic CKCEM (see, e.g., (Olivetti, Pozzato, and Schwind 2007)), which
additionally obeys the axiom of conditional excluded middle

(α⇒ β) ∨ (α⇒ ¬β),
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can be captured (in extended form) as the gluing

c→ C(c, S(c, 1)).

Here, we encode the standard conditional arrow φ⇒ ψ as φ •⇒ (ψ +>).
Probabilistic Conditional Logic A probabilistic variant of conditional logic is given by the glu-

ing

c→ C(c,U(c)),

in which formulas such as φ •⇒ Lpψ express ‘if φ, then we can normally expect ψ with
confidence at least p’.

Probabilistic Coalition Logic A combination of quantitative uncertainty and coalition logic is
captured by the gluing

c→ GN (U(c))

that involves the features Uncertainty and Coalition described in Example 3.2. It allows us to
speak about games with elements of chance; e.g. the formula [C]Lpφ expresses that coalition
C has a joint strategy to bring about φ with probability at least p.

4. Multi-Sorted vs. Single-Sorted Coalgebraic Semantics

We now generalize the coalgebraic interpretation of modal logic, introduced in (Pattinson 2004),
to the multi-sorted case. Crucially, we interpret multi-sorted logics over multi-sorted coalgebras.
The parametricity over signature functors for coalgebras is the key feature of our framework that
allows for uniform results that can be instantiated to a large number of structurally different sys-
tems and logics. We recall some basic notions of multi-sorted coalgebra (see, e.g., (Mossakowski
et al. 2006)), generalising the single-sorted setting (Rutten 2000):

Definition 4.1. We write Set for the category of sets and functions. Let SetS denote the cat-
egory of S-sorted sets and S-sorted functions, with objects being families X = (Xa)a∈S (or
just (Xa)) of sets Xa, and morphisms f : (Xa) → (Ya) being families f = (fa)a∈S of maps
fa : Xa → Ya. We shall often introduce S-sorted sets and maps using just one letter, say X ,
and then implicitly understand Xa as a notation for the a-th component of X . We write Setn for
Set{1,...,n}. A functor T : SetS → SetS may be regarded a family T = (Ta)a∈S of functors
Ta : SetS → Set. A T -coalgebra A = (X, ξ) is a pair (X, ξ) where X is an S-sorted set and
ξ = (ξa) : X → TX is an S-sorted function (i.e. ξa : Xa → TaX) called the transition func-
tion. A morphism between T -coalgebras (X, ξ) and (Y, ζ) is an S-sorted function f : X → Y

such that (Tf)ξ = ζf in SetS , i.e. at every sort a ∈ S, the diagram

Xa
fa //

ξa

��

Ya

ζa

��
TaX

Taf
// TaY

commutes.
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We view coalgebras as generalized transition systems: the transition function maps states to
structured sets of observations and successor states, the latter taken from the available sorts as
specified by T .

Assumption 4.2. We can assume w.l.o.g. that T preserves tuples of injective maps, by an easy
extension of a construction from (Barr 1993) from single-sorted to the multi-sorted maps. For
convenience of notation, we will in fact assume that (multi-sorted) subset inclusions X ↪→ Y are
mapped to subset inclusions TX ↪→ TY .

The interpretation of modal operators is based on predicate liftings (Pattinson 2004; Schröder
2008); in the multi-sorted setting, this takes the following shape.

Definition 4.3. A predicate lifting λ of profile λ : i1, . . . , ik
•→ ∗ for a functor T : Setn → Set,

where i1, . . . , ik ≤ n, is a natural transformation

λ : (Q ◦ P opi1 )× · · · × (Q ◦ P opik )→ Q ◦ T op

between functors (Setn)op → Set, where Q denotes the contravariant powerset functor
Setop → Set (i.e. QX = PX , and Q(f)(A) = f−1[A]) and Pi : Setn → Set is the i-th
projection.

We now construct a compositional coalgebraic semantics of the logic F(G) induced by a gluing
G from structures associated with the features combined by G. We first describe the notion of
structure associated with a single feature, and then the combination of such structures along a
gluing.

Definition 4.4. Let F = (Λ,R) be an n-ary feature. A structure for F consists of a functor [[F]] :

Setn → Set and an assignment of a predicate lifting [[♥]] : i1, . . . , ik
•→ ∗ for T to every modal

operator ♥ : i1, . . . , ik → ∗ in Λ, subject to the condition that every rule R = φ1; . . . ;φn/ψ

over V in R is one-step sound: for every n-sorted set X and every assignment τ of subsets
τ(a) ⊆ Xi to the variables a ∈ Vi, if [[φi]]X,τ = Xi for all i, then [[ψ]]TX,τ = TX , where
[[φi]]X,τ ⊆ Xi and [[ψ]]TX,τ ⊆ TX are defined by the usual clauses for Boolean operators and
[[♥(a1, . . . , ak)]]TX,τ = [[♥]]X(τ(a1), . . . , τ(ak)).

When features are equipped with structures, every feature expression t over the set S of sorts
defines a functor [[t]] : SetS → Set by

[[a]] = Pa : SetS → Set (a ∈ S) and [[F(t1, . . . , tn)]] = [[F]] ◦ 〈[[t1]], . . . , [[tn]]〉,

where Pa is projection to the a-th component and 〈·〉 represents tupling. Thus, a gluing G =

(ta)a∈S induces a functor [[G]] = 〈[[ta]]〉a∈S : SetS → SetS . We briefly refer to [[G]]-coalgebras
as G-coalgebras. Strictly speaking, the semantics [[t]] : SetS → Set of a feature expression t
depends on the sort context S; when necessary, we make this explicit by writing [[S B t]] in place
of [[t]]. We have an obvious substitution lemma stating that substitution of feature expressions
corresponds to composition of functors.

The coalgebraic semantics of F(G) is now given w.r.t. G-coalgebras C = (X, ξ). For a type
s ∈ Types(G), an s-state of C is an element x ∈ [[s]]X (recall that [[s]] : SetS → Set denotes
a functor). The semantics of a formula φ : s is a set [[φ]]C ⊆ [[s]]X of s-states. We have the
usual clauses for propositional connectives, and the semantics of modal operators is given by the
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following clauses for composite types (top, assuming F(s1, . . . , sn) ∈ Types(G)) and base types
(bottom, for a→ F(s1, . . . , sn) ∈ G):

[[♥(φ1, . . . , φn) : F(s1, . . . , sn)]]C = [[♥]]([[φ1]]C , . . . , [[φn]]C)

[[♥(φ1, . . . , φn) : a]]C = ξ−1
a ◦ [[♥]]([[φ1]]C , . . . , [[φn]]C)

where, in both cases, ♥ : i1, . . . , in → ∗ in F. We write x |=s
C φ if φ : s and x ∈ [[φ]]C , omitting

sub- and superscripts whenever they are clear from the context.
Note that the requirement that rules are one-step sound immediately yields soundness of the

logic w.r.t. the semantics described above; this is as in (Cı̂rstea and Pattinson 2007).

Example 4.5. The standard semantics for the features of Example 3.2 is induced by the follow-
ing structures.

Non-Determinism: A structure for NA is given by [[NA]] = P(A× ) and

[[�a]]X(C) = {B ∈ P(A×X) | {y ∈ X | (a, y) ∈ B} ⊆ C}.

Note that (single-sorted) coalgebras for P(A × ) are labelled transition systems, as they
associate to each state x a set of pairs (a, y) consisting of an action a and a successor state y,
which we can read as ‘there is an a-transition from x to y’. The lifting associated with �a
gives rise to the usual semantics of Hennessy-Milner logic (Pattinson 2004): a state x satisfies
a formula �aφ iff all states y to which x has an a-transition satisfy φ.

Uncertainty: Put [[U]] = D, where D is the discrete distribution functor D that maps a set X
to the set of discrete probability distributions on X; i.e. P ∈ D(X) is given as P (A) =∑
x∈A p(x) by a map p : X → [0, 1] such that

∑
x∈X p(x) = 1 (which implies that p(x) > 0

for at most countably many x). The modal operators Lp are interpreted by

[[Lp]]X(A) = {P ∈ DX | PA ≥ p}.

(Single-sorted)D-coalgebras are probabilistic transition systems. For G = (n→ NA(U(n)))

(Example 3.6), we have [[G]] = P ◦ D, so that G-coalgebras are precisely Segala systems,
while coalgebras for the corresponding flat gluing (n→ NA(p), p→ U(n)) have an explicit
separation between non-deterministic and probabilistic states, and thus correspond to strictly
alternating systems in the sense of (Hansson 1994).

Coalition: We opt for a semantics with finite strategy sets, following the standard semantics of
alternating-time temporal logic (Alur, Henzinger, and Kupferman 2002). Thus, we put

[[GN ]]X =
{

(d, f) | d : N → N, f :
(∏

a∈N [d(a)]
)
→ X

}
,

where [d(a)] = {0, . . . , d(a)} is the set of strategies available to agent a, and interpret [C]

for a coalition C ⊆ N by

[[[C]]]XA =
{

(d, f) ∈ [[GN ]]X | ∃σC ∈
∏
a∈C [d(a)].

∀σN−C ∈
∏
a∈N−C [d(a)]. f(σC , σN−C) ∈ A

}
where (σC , σN−C) denotes the obvious element of

∏
a∈N [d(a)]. That is, the informal read-

ing of [C]φ, ‘C can enforce φ’, translates into the requirement that there exists a collaborative
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strategy for C such that whatever collaborative strategy is chosen by the opponents N − C,
the outcome satisfies φ.

Choice: Let [[S]] be the disjoint sum functor [[S]](X,Y ) = X + Y , and interpret the modality +

by

[[+]]X,Y (A,B) = A+B ⊆ X + Y.

Thus the condition A applies in the left-hand alternative of the sum, and the condition B ap-
plies in the right-hand alternative, in accordance with the informal reading of the + operator
given in Example 3.2.

Fusion: Let [[P]] be the binary product functor [[P]](X,Y ) = X × Y , and put

[[π1]]X,YA = {(x, y) | x ∈ A} and [[π2]]X,YB = {(x, y) | y ∈ B}.

Again, this definition is in agreement with the informal description of the operators [π1], [π2]

given in Example 3.2.
Conditionality: Define the functor [[C]] by [[C]](X,Y ) = QX → Y , withQ denoting contravari-

ant powerset and→ denoting function space, and put

[[
•⇒]]X,Y (A,B) = {f : QX → Y | f(A) ∈ B}.

For G = (c→ C(c,K(c))) (Example 3.6), we have [[G]]X = QX → PX , and G-coalgebras
are conditional frames (Chellas 1980), i.e. associate to each state x and each proposition A a
set of A-successor states of x.

Input: We put [[II ]]X = I → X , and [[(i)]]XA = {f : I → X | f(i) ∈ A}. Thus, [[II ]]-
coalgebras associate to each state x and each input i a successor state y, and then x satisfies
(i)φ iff y satisfies φ.

Output: We put [[OO]] = O, and [[o]]X = {o}. Thus, for G = (a→ OO), a [[G]]-coalgebra ξ just
maps each state x to an output ξ(x) ∈ O, and then x satisfies o iff ξ(x) = o.

Modal logic talks only about the observable behaviour of states; this is formally expressed as
invariance of the logic under morphisms:

Proposition 4.6. Let f : C → D be a morphism of G-coalgebras. Then for each G-formula φ : s

and each s-state x in C, x |=s
C φ iff ([[s]]f)(x) |=s

D φ.

Proof. Induction over the formula structure, with the case of modal operators taken care of by
naturality of predicate liftings.

We can now state the (local) satisfiability problem for multi-sorted modal logics.

Definition 4.7. A G-formula φ : s is G-satisfiable if there exist a G-coalgebra C and an s-state
x in C such that x |=s

C φ.

The central contribution of this paper is to show that for every gluing, we can construct a flat
gluing with an equivalent satisfiability problem. For flat gluings, one can easily generalize exist-
ing model constructions and complexity results for coalgebraic modal logic, e.g. (Schröder 2007;
Schröder and Pattinson 2008c; 2009), essentially by just writing additional indices for the sorts,
and the relevant criteria reduce to the component logics; by way of an example, this is discussed
in more detail in Section 5 for the shallow-model-based PSPACE algorithm of (Schröder and
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Pattinson 2009). We thus obtain compositional algorithmic methods also for the standard single-
sorted semantics present in the literature.

The core of the flattening result is the following construction, which converts a feature expres-
sion s that occurs in a gluing into a new sort. Let G = (ta)a∈S be a gluing over the set S in which
the feature expression s occurs, and pick a fresh sort s (the sort into which the feature expression
s is converted). That is, assume that

ta = t′a[s/s]

for all a ∈ S , where t[s/s] denotes the result of replacing all occurrences of (the fresh sort) s
by (the feature expression) s, and the t′a are feature expressions over S ′ := S ∪ {s}. We then
construct a gluing G′ = (t′a)a∈S′ over S ′ by extending the family (t′a)a∈S of feature expressions
to a gluing (t′a)a∈S′ by putting

t′s = s.

To simplify notation, we regard s as the ‘first’ sort in S ′, and correspondingly denote, for any
S-indexed tuple x = (xa)a∈S (e.g. an S-sorted set or a S-sorted map), the S ′-sorted tuple whose
a-component is xa for a ∈ S and whose s-component is y by (y, x). Conversely, given an S ′-
indexed tuple x = (xa)a∈S′ , we denote the S-indexed tuple (xa)a∈S by x|S .

Example 4.8. Consider the gluing

G = (a→ F (G(b, c), H(a)), b→ G(b, c), c→ F (a, c))

and let s = G(b, c). This allows us to write

G = (a→ F (s,H(a))[s/s], b→ s[s/s], c→ F (a, c)[s/s])

and we obtain a new gluing G′

G′ = (s→ s, a→ F (s,H(a)), b→ s, c→ F (a, c))

over the set S ′ = {a, b, c, s} where we have given the s-component first according to the con-
vention above.

We have a functor Pad from G-coalgebras to G′-coalgebras, which extends a G-coalgebra (X, ξ)

to the G′-coalgebra

Pad(X, ξ) = (([[S B s]]X,X), (id[[SBs]]X , ξ))

(where for a ∈ S, the maps ξa have the right type for a G′-coalgebra due to the choice of the
s-component). Similarly, Pad extends a morphism f of G-coalgebras to the morphism Pad(f) =

([[S B s]]f, f) of G′-coalgebras. In short, Pad adds to (X, ξ) an identity s-component.

Example 4.9. We continue Example 4.8 and assume that each feature is equipped with a struc-
ture, denoted by [[ · ]]. The gluing G induces the functor

[[G]] = ([[F ]] ◦ 〈[[G]] ◦ 〈Pb, Pc〉, [[H]] ◦ Pa〉, [[G]] ◦ 〈Pb, Pc〉, [[F ]] ◦ 〈Pa, Pc〉) : SetS → SetS

whereas [[G′]] is the four-sorted functor

[[G′]] = ([[G]] ◦ 〈Pb, Pc〉, [[F ]] ◦ 〈Ps, [[H]] ◦ Pa〉, Ps, [[F ]] ◦ 〈Pa, Pc〉) : SetS
′
→ SetS

′



L. Schröder and D. Pattinson 16

where again the s-component appears in the first position. The induced functor Pad then acts on
[[G]]-coalgebras by

((Xa, Xb, Xc), (ξa, ξb, ξc)) 7→ ([[s]](Xa, Xb, Xc), Xa, Xb, Xc), (id, ξa, ξb, ξc)),

i.e. by inserting the identity on [[s]](Xa, Xb, Xc) in the first component.

Our next goal is to establish that the semantics of modal logics is invariant under Pad, and we
collect some simple properties.

Lemma 4.10. The functor Pad is full, faithful, and injective on objects.

Proof. The second and third claim are clear. To see that Pad is full, let f : Pad(X, ξ) →
Pad(Y, ζ) be a morphism of G′-coalgebras. Then f = Pad(f |S), as by the morphism property
in the s-component, the diagram

[[s]]X Xs

id

��

fs // Ys

id

��

[[s]]Y

[[s]]X
[[SBs]](f |S)

=[[S′Bs]]f
// [[s]]Y

commutes.

In other words, the category of G-coalgebras can be identified with the full subcategory of G′-
coalgebras with identity s-component. We will show that this subcategory is reflective, which
will give rise to a reflection functor Comp (compose) from G′-coalgebras to G-coalgebras. For a
G′-coalgebra (X, ξ), Comp(X, ξ) is defined as the G-coalgebra (X|S , ξ̄) where

ξ̄a = [[t′a]](ξs, idX|S ) ◦ ξa for a ∈ S,

with type information visualized as follows:

Xa
ξa // [[t′a]]X

[[t′a]](ξs,idX|S )
// [[t′a]]([[s]](X|S), X|S) = [[ta]](X|S),

where the last equality is by the substitution lemma. We have a canonical map

η = (ξs, idX|S ) : (X, ξ)→ Pad(Comp(X, ξ)).

Lemma 4.11. The map η is a morphism of G′-coalgebras, and as such a reflective arrow; i.e.
every morphism of the form f : ξ → Pad(Y, ζ) factors uniquely as f = Pad(f ]) ◦ η for some
f ] : Comp(X, ξ)→ (Y, ζ):

(X, ξ)
η //

f ''OOOOOOOOOOO
Pad(Comp(X, ξ))

Pad(f])

��

Comp(X, ξ)

f]

��
Pad(Y, ζ) (Y, ζ).

Specifically, f ] = f |S .
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Proof. To begin, we check that η is a coalgebra morphism. In the s-component, the morphism
property amounts to the commutation of

Xs
ξs //

ξs

��

[[s]](X|S)

id

��
[[s]](X|S)

[[s]]idX|S

// [[s]](X|S).

Moreover, in the a-component for a ∈ S, the morphism property is the evident commutation of

Xa
id //

ξa

��

Xa

[[t′a]](ξs,idX|S )◦ξa
��

[[t′a]](X)
[[t′a]](ξs,idX|S )

// [[t′a]]([[s]](X|S), X|S).

Secondly, we have to verify the universal property. Let f : (X, ξ)→ Pad(Y, ζ) for a G-coalgebra
(Y, ζ). Then the only candidate for a morphism f ] : Comp(X, ξ)→ (Y, ζ) such that Pad(f#) ◦
η = f is f ] = f |S as in the claim. To see that indeed Pad(f#) ◦ η = f , it remains only to
check commutation in the s-component, i.e. [[s]](f |S)◦ξs = fs. This follows from the morphism
property of f , which in the s-component amounts to commutation of

Xs
fs //

ξs

��

[[s]]Y

id

��
[[s]](X|S)

[[s]](f |S)
// [[s]]Y.

Moreover, we have to verify that f ] is a morphism Comp(X, ξ) → (Y, ζ). For a ∈ S , we have
to prove commutation of

Xa

[[t′a]](ξs,idX|S )◦ξa
��

fa // Ya

ζa

��
[[t′a]]([[s]](X|S), X|S)

[[t′a]]([[s]](f |S),f |S)

=[[ta]](f |S)
// [[t′a]]([[s]]Y, Y )

where the equality on the bottom arrow is by the substitution lemma. Now by the previous dia-
gram, the lower-left path in this diagram equals [[t′a]](f) ◦ ξa, so that commutation follows from
the morphism property of f : (X, ξ)→ Pad(Y, ζ) in the a-component.

The previous lemma implies that Comp extends to a functor from G′-coalgebras to G-coalgebras,
which is a left adjoint of Pad (see e.g. (Adámek, Herrlich, and Strecker 1990)). Since Pad is full
and faithful, the arising co-unit ε : Comp ◦ Pad→ id is necessarily an isomorphism; in fact, we
have Comp ◦ Pad = id, and ε is identity.

Morally, the above means in particular that G-coalgebras are equivalent to G′-coalgebras w.r.t.
the behaviour of states: G-coalgebras can, via Pad, be regarded as G′-coalgebras, and every G′-
coalgebra has a behaviour-preserving map into a G-coalgebra. This will mean in particular that
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G′-coalgebras and G-coalgebras are equivalent w.r.t. satisfiability of modal formulae; we proceed
to make this more precise.

We note that the types of G′ are essentially the same as the types of G, except that we have
introduced a new base type s as a synonym for s, and removed some or all occurrences of
the composite type s. The following lemma, proved by straightforward induction over typing
derivations, states that G and G′ induce essentially the same modal syntax:

Lemma 4.12. The formulas of type s in G′ are precisely the formulas of type s in G; moreover,
for r ∈ Types(G′)− {s}, the formulas of type r in G and G′ coincide.

In short, the formulas of G and G′ are the same up to interchange of the types s and s, and we
shall silently identify the two sets of formulas altogether. The same holds, mutatis mutandis, for
proofs in G and G′. By the adjoint situation between Comp and Pad described above, together
with invariance of modal formulas under coalgebra morphisms (Proposition 4.6), it is immediate
that the transition from G to G′ leaves modal semantics invariant:

Corollary 4.13. A formula is G′-satisfiable iff it is G-satisfiable.

For the time being, we now assume that S is finite. This serves to simplify some of the arguments,
and is not a restriction for purposes of the main application pursued in the present work, since a
modal formula to be checked for satisfiability will always involve only finitely many sorts. All
our results below hold also for infinite sets of sorts, as discussed in Remark 4.21.

Under the assumption of finiteness of S, it is clear that we can turn all composite types of a
gluing into sorts, by just iterating the above-described process of promoting a type of a gluing
to a new sort. We thus obtain, given a gluing G, a flat gluing G[ that we call the flattening of
G. Explicitly, G[ is described as follows. The set of sorts is S[ = {s | s ∈ Types(G)}. When
convenient, we identify a with a, and hence regard S as a subset of S[. For a feature expression
over S of the form t = F (s1, . . . , sn), we write t[ = F (s1, . . . , sn), and for a ∈ S, we write
a[ = a. Then

G[ = (us)s∈S[ , where us =

{
(ta)[ for s = a ∈ S
s[ otherwise.

Example 4.14. Given the gluings G1 ≡ (o → S(U(o),NA(o)) and G2 ≡ (o → S(u, n), u →
U(o), n → NA(o)) from Example 3.6, G2 is the flattening of G1, up to renaming the sorts o,
U(o), and NA(o) of the flattening into o, u, and n, respectively.

By iterated application of Lemma 4.12 (and the following comment), the flattening G[ syntac-
tically induces the same logic as G, i.e. the types, formulas, and proof systems coincide (up to
renaming s into s for s ∈ Types(G)). Moreover, iterated application of Corollary 4.13 yields our
main result:

Theorem 4.15. A formula is G-satisfiable iff it is G[-satisfiable.

We observe that the order in which composite types are promoted to sorts in the formation of
the flattening of a gluing G does not matter – not only is it clear that the resulting flat gluing G[

is independent of this order, but also the arising embedding functor from G-coalgebras into G[-
coalgebras is evidently insensitive to the order of steps: the embedding is composed of the rele-
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vant Pad functors, and hence in any case just adds identity components for all new sorts. Unique-
ness of left adjoints then implies that the reflection functor from G[-coalgebras to G-coalgebras
that arises from the relevant Comp functors is independent of the order of steps. We therefore
reuse Pad and Comp to denote also the embedding and reflection functors, respectively, between
G-coalgebras and G[-coalgebras. By picking a definite order in which types are promoted to
sorts, say bottom up and leftmost first, we can turn the iterated construction of the flattening
into a recursive definition. This yields exactly the definition of Comp given in (Schröder and
Pattinson 2007); specifically, the object part of Comp maps a given [[G[]]-coalgebra (X, ξ) to the
[[G]]-coalgebra (X|S , ξ̄), where

ξ̄a = [[F]](ζs1 , . . . , ζsn) ◦ ξa (1)

for a→ F(s1, . . . , sn) in G, and the maps ζs : Xs → [[s]](Xa)a∈S for s ∈ Types(G) are defined
recursively by

ζa = idXa (a ∈ S) and ζF(s1,...,sn) = [[F]](ζs1 , . . . , ζsn) ◦ ξF(s1,...,sn) (2)

(with some simplification using functoriality of [[F]] already applied). The unit η : (X, ξ) →
Pad(Comp(X, ξ)) is then given by ηs = ζs for s ∈ Types(G).

We record explicitly:

Theorem 4.16. Via Pad, the G-coalgebras form a full reflective subcategory of the G[-
coalgebras, with Comp as reflector.

In our running example, the situation is as follows:

Example 4.17. Consider the gluings G1 and G2 over S = {o, u, n} from Example 3.6 and recall
from Example 4.14 that G[1 = G2. Let C = (Y, ζ : X → DX + P(A×X)) be a G1-coalgebra.
Then C can be converted into a G2-coalgebra Pad(C) = (X, ξ) where Xo = Y,Xu = DY ,
Xn = P(A × Y ), ξo = ζ, ξu = idXu , and ξn = idXn ; i.e. Pad just adds identities at the new
sorts u, n.

Conversely, given a G2-coalgebra D = (X, ξ), we construct a G1-coalgebra Comp(D) =

(Y, ζ) (which has a single sort, o) by putting Yo = Xo and ζo = (ξu + ξn) ◦ ξo. The triple
(idXo , ξu, ξs) is a coalgebra morphismD → Pad(Comp(D)), the unit of the adjunction between
Pad and Comp.

Using general properties of reflective subcategories, we obtain the following from Theorem 4.16.

Corollary 4.18. If C is a final G-coalgebra, then Pad(C) is a final G[-coalgebra. Conversely,
if D is a final G[-algebra, then D is isomorphic to Pad(Comp(D)), and Comp(D) is a final
G-coalgebra.

Remark 4.19. In the case of polynomial functors, the dual of the previous corollary is semi-
folklore: nested recursive datatypes can be flattened into mutually recursive datatypes, as done in
the theorem prover Isabelle/HOL (see, e.g., (Berghofer and Wenzel 1999) and references therein).
We do not know of a formal treatment of this fact at the level of generality we employ here, nor
of a statement of the dual of Theorem 4.16 in the literature.
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Remark 4.20. If a final G[-coalgebra exists, one can conclude Theorem 4.15 from Corol-
lary 4.18 alone; however, in many cases of interest final coalgebras do not exist (e.g. already
in the basic case of unbounded non-determinism).

Remark 4.21. Our temporary assumption that S is finite is inessential for our results presented
above, specifically the construction of the flattening, Theorems 4.15 and 4.16, and Corollary 4.18.
The quickest way to see this in the current approach is to use the recursive definition of flattening
(Equations (1) and (2)) directly and then verify the requisite properties by induction, with the
inductive step being a minor generalization of the proof of Lemma 4.11.

Remark 4.22. While we restrict the current development to purely modal logics, mostly in the
interest of readability, we point out that Theorem 4.16 implies also a general invariance result
for coalgebraic hybrid logics, i.e. logics that include additional expressive means for individual
states (Myers, Pattinson, and Schröder 2009; Schröder, Pattinson, and Kupke 2009; Goré et al.
2010), as long as these are restricted to states that live in the base types of the original gluing
G: while such hybrid logics are no longer invariant under arbitrary coalgebra morphisms, they
are certainly invariant under coalgebra homomorphisms that are carried by bijective maps at the
base types, as is the case for the unit and the counit of the adjunction of Theorem 4.16.

Remark 4.23. Our definition of flat gluings admits unguarded sorts, i.e. in a flat gluing G =

(ta)a∈S we may have tb = c for some b, c ∈ S . One can turn such gluings into guarded flat
gluings (where all sorts are associated to composite feature expressions), essentially getting rid
of the sort b, as follows. We have to distinguish two subcases: if b is distinct from c, we can form
a new gluing G−b = (ta[c/b])a∈S−{b}; the equivalence of G and G−b is then just a special case
of Corollary 4.13, applied to s = c and with c renamed to b. The slightly more complicated case
is where b = c. In this case, we can form the new gluing G−b = (ta[1/b])a∈S−{b}, where 1 is
the (trivial) output feature for the singleton output set 1. One easily checks equivalence of G−b

with G. The gluing G−b is not in general flat, but can of course be flattened into a guarded flat
gluing, which in the end means that we replace all sorts b such that b → b ∈ G with a single
sort 1 that we associate with the feature expression 1 (which by the definition given in Section 3
is composite). The intuition behind these constructions is that if b → c ∈ G for b 6= c, then the
observations on b are precisely the ones that arise by transiting to c and then making observations
on c, so that b may be identified with c; if, on the other hand, b→ b ∈ G, then no observations at
all can be made on b, so that b may be identified with 1.

Remark 4.24. It is evident that the preceding development is entirely independent of the choice
of Set as the base category, except that the definition of predicates and predicate liftings as
presented here is somewhat set-oriented; a generalization to arbitrary base categories would, e.g.,
work with fibrations of predicates. Indeed one does not even need to assume that all sorts live
in the same base category. The core message of our flattening construction for a gluing G is that
G-coalgebras can be regarded as particular G[-coalgebras, and every behaviour that is realized
in a G-coalgebra is, via the reflective arrow into the corresponding G[-coalgebra, realized also
in a G[-coalgebra; in summary, G-coalgebras and G[-coalgebras realize the same behaviours.
From the perspective of coalgebraic modal logics, this will mean that over any base category
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(or base categories), modal semantics will be invariant under the transition from gluings to their
flattenings as long as the logic is adequate, i.e. invariant under coalgebra morphisms.

As indicated above, the main benefit of the flattening result is that functor composition van-
ishes from the picture, and is replaced by multi-sortedness. This means that results that have
earlier been phrased as compositionality results, i.e. results that reduce properties of composite
functors to properties of their components, now just become generalizations of single-sorted re-
sults to the multi-sorted setting, which typically require no more than the annotation of previous
results and proofs with sort indices. Roughly speaking, any result on coalgebraic modal logic
(and more generally any property of coalgebras that is invariant under behavioural equivalence)
will generalize to multi-sorted coalgebras provided that it uses only such properties of the base
category that are stable under products of categories.

We conclude this section with a further brief comment on the relationship between Segala sys-
tems and strictly-alternating systems.

Example 4.25. The flattening of the gluing n → NA(U(n)) is the gluing (n → NA(p), p →
U(n)) (Example 3.6); as discussed in Example 4.5, the corresponding coalgebras are Segala
systems and strictly alternating systems, respectively. The relationship between Segala systems
and strictly alternating systems has received some recent attention (Segala and Turrini 2005;
Segala 2006). Our results show that both types of systems admit an interpretation of the same
variant of probabilistic modal logic (Section 2) and validate the same formulas of this logic.
Moreover, the notion of behavioural equivalence on the sort of non-deterministic states (which
unlike the sort of probabilistic states is explicitly present in both types of systems) is the same
in both cases, and since the distribution functor preserves weak pullbacks (Moss 1999; de Vink
and Rutten 1999; Sokolova, Vink, and Woracek 2009), this equivalence extends to coalgebraic
bisimulation, which captures standard notions of strong bisimulation. In particular, the notions
of strong bisimulation coincide for Segala systems and strictly alternating systems, a result not
apparently claimed in (Segala and Turrini 2005).

5. Applications to Model Construction and Complexity

We have seen in Section 3 that the same multi-sorted logic can arise from different gluings of
given features, where the difference manifests itself only on a semantic level. The different inter-
pretations of the logic are related by Theorem 4.15 which shows that the satisfiability problem
for a given gluing is equivalent to that of its flattening. We now show that the generic shallow
model construction and the ensuing PSPACE decision procedure from (Schröder and Pattinson
2009) generalize to flat gluings; this enables us to derive upper PSPACE bounds for arbitrary
gluings, in particular for heterogeneous logics equipped with their standard single-sorted seman-
tics as in Section 2. The entire point of this exercise is to show that the generalization from the
single-sorted case to the multi-sorted case amounts to no more that additional bookkeeping for
the sorts; the minor differences that do exist between the proof presented below and the one given
in (Schröder and Pattinson 2009) are entirely due to presentational choices made in the context
of op. cit.

The shallow model construction requires the involved structures to be strictly one-step com-
plete in the following sense, where the notation [[ ]]X,τ and [[ ]]TX,τ is as in Definition 4.4.
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(Strict) one-step completeness implies weak completeness of the rule system (Pattinson 2004;
Schröder 2007).

Definition 5.1. An n-ary feature F is strictly one-step complete for a structure T = [[F]] :

Setn → Set if, whenever [[χ]]TX,τ = T (X1, . . . , Xn) for a sorted set V = (V1, . . . , Vn) of
variables, an assignment τ of subsets τ(a) ⊆ Xi to variables a ∈ Vi, and a clause χ over atoms
of the form ♥(ai1 , . . . , aik), where ♥ : i1, . . . , ik → ∗ in F and aij ∈ Vij , then χ is provable
from propositional formulas valid under τ using a single instance of a rule of F; formally: χ is
propositionally entailed by a clause ψσ (i.e. either χ is a propositional tautology, or χ contains
all literals of ψσ), where (φi)/ψ is a rule of F and σ is a (V1, . . . , Vn)-substitution (i.e. σ(a) ∈ Vi
for a ∈ Vi) such that [[φiσ]]X,τ = Xi for all i.

Remark 5.2. In the above definition, we can assume that all Vi are finite and that χ is not a
propositional tautology.

One shows analogously to the single-sorted case (Schröder 2007) that the set of all one-step
sound rules for a given F-structure is strictly one-step complete, so that strictly one-step complete
axiomatizations always exist. Formally:

Proposition 5.3. Suppose F = (Λ,R) is an n-ary feature with an associated structure over
[[F]] : Setn → Set. If R consists of all one-step rules that are one-step sound for [[F]], then F is
strictly one-step complete for [[F]].

Proof. Let T = [[F]] be the underlying functor of the given structure for F. Assume [[χ]]X,τ =

X with X , τ , χ, V as in Definition 4.4 and V assumed to be finite in each sort. For 1 ≤ i ≤ n

let φi be the propositional theory of τ over i, i.e. the finite conjunction of all clauses ρ over Vi
such that [[ρ]]X,τ = Xi. We will now show that the one-step rule R ≡ (φ1; . . . ;φn)/χ over V is
one-step sound; it then follows that χ is derivable as required.

Thus, let Y ∈ Setn and let σ be a PY -valuation such that [[φi]]σ = Yi for all i = 1, . . . , n.
We have to show [[χ]]σ = TY . We claim that for each i and each y ∈ Yi, there exists x ∈ Xi

such that

x ∈ τ(v) ⇐⇒ y ∈ σ(v)

for all v ∈ Vi. Assume, for a contradiction, that i ∈ {1, . . . , n} violates this property. Take ρ to
be the propositional theory of y under σ, i.e. the (finite) conjunctive clause

ρ =
∧

{v∈Vi|y∈σ(v)}

v ∧
∧

{v∈Vi|y/∈σ(v)}

¬v.

Then [[¬ρ]]X,τ = Xi by assumption, and y ∈ [[ρ]]σ by construction, in contradiction to [[φi]]σ =

Yi.
Thus, we have fi : Yi → Xi such that

σ(v) = f−1
i [τ(v)] for all v in Vi.

By naturality of predicate liftings, and since preimages commute with intersections and comple-
ments, we now obtain

[[χ]]σ = (Tf)−1[[[χ]]τ ],

where f = (fi)1≤i≤n. Since [[χ]]TX,τ = TX , we conclude [[χ]]σ = TY as required.
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In (Schröder and Pattinson 2009), rule resolution, a systematic procedure for obtaining strictly
one-step complete rule sets, has been described, which straightforwardly generalizes to the multi-
sorted setting.

Throughout this section, we fix a gluing G of a set Φ of features over a set S of sorts; moreover
we assume that every feature is equipped with a structure.

Definition 5.4. The set MA(φ) of modal atoms of an G-formula φ is defined recursively
by MA(φ ∧ ψ) = MA(φ) ∪ MA(ψ), MA(¬φ) = MA(φ), and MA(♥(ρ1, . . . , ρn)) =

{♥(ρ1, . . . , ρn)}. A pseudovaluation for φ is a subset H of MA(φ). We define satisfaction of
propositional formulas χ over MA(φ) by H (H |= χ) inductively in the obvious way, with
H |= χ ⇐⇒ χ ∈ H for χ ∈ MA(φ).

Assuming that s = F(s1, . . . , sn) ∈ Types(G) if s is composite and a → F(s1, . . . , sn) ∈ G

if s = a is a base type, we say that a rule R = (φ1; . . . ;φn)/ψ associated with the feature F

matches a pseudovaluation H for φ : s if there is a substitution σ such that ψσ is a clause over
MA(φ) with H 6|= ψσ. In this case, the pair (R, σ) is called a matching of H .

The significance of rule matching arises in relation to satisfiability checking; essentially, a match-
ing rule for H is one that threatens to prove unsatisfiability of H . In more detail, given a pseu-
dovaluation H and a rule R = (φ1; . . . ;φn)/ψ that matches H , via a substitution σ, H can only
be satisfiable if ¬ψσ is satisfiable, which by soundness of the rule can only be the case if one the
premises of R, instantiated by σ, is not valid, i.e. if one of the ¬φiσ is satisfiable. This observa-
tion is the basis of both the shallow model construction and of the ensuing decision procedure;
completeness of this principle is guaranteed by strict one-step completeness.

Explicitly, our shallow model theorem now takes the following form.

Theorem 5.5. If every feature in G is strictly one-step complete, then a formula φ : s is satis-
fiable in a G-model iff H |= φ for some pseudovaluation H for φ such that for every matching
((φ1; . . . ;φn)/ψ, σ) of H , one of the formulas ¬φiσ is satisfiable.

Proof. By Theorem 4.15 and Remark 4.23, we can assume that G = (ta)a∈S is a guarded flat
gluing, i.e. S = Types(G), and in particular s = b for some sort b and b → F(a1, . . . , an) ∈ G

for some n-ary feature F and sorts a1, . . . , an.
‘Only if’: If x |=b

C φ, let H = {χ ∈ MA(φ) | x |=b
C χ}; then use soundness of the rules.

‘If’: Let Π be a set of formulas consisting of one satisfiable formula ¬φiσ : ai for each
matching ((φ1; . . . ;φn)/ψ, σ) ofH , as guaranteed to exist by assumption. For each π ∈ Π, there
exists a G-coalgebra Cπ = (Xπ, ξπ) = ((Xπ

a ), (ξπa )a∈S) and xπ ∈ Xπ
ai such that xπ |=ai

Cπ π;
we can assume that for all a, the Xπ

a are pairwise disjoint. Put

Xa =
⋃
π∈Π

Xπ
a for a 6= b, and Xb = {x0} ∪

⋃
π∈Π

Xπ
b ,

where x0 is a fresh element. Let Y be the S-sorted set of the xπ , π ∈ Π. For χ : a, put

χ̂ = [[χ]]Cπ ∩ Ya.

We define a G-coalgebra C = (X, ξ) = ((Xa), (ξa)) as follows. For x ∈ Xπ
a , we put ξa(x) =

ξπa (x) ∈ [[ta]]Xπ ⊆ [[ta]]X . Then (independently of the pending definition of ξb(x0)) for χ : a
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and x ∈ Xπ
a ,

x |=a
C χ ⇐⇒ x |=a

Cπ χ (3)

as Cπ is a subcoalgebra of C. In particular, χ̂ = [[χ]]C ∩ Ya for all χ : a.
Crucially, we show that there exists r ∈ [[F]]Y such that for ♥(ρ1, . . . , ρk) in MA(φ),

r ∈ [[♥]](ρ̂1, . . . , ρ̂k) ⇐⇒ ♥(ρ1, . . . , ρk) ∈ H. (4)

Putting ξb(x0) = r, we then obtain

x0 |=C ρ ⇐⇒ H |= ρ (5)

for all propositional formulas ρ over MA(φ): this follows immediately from (3) and (4) for
ρ ∈ MA(φ), and then extends easily to Prop(MA(φ)). By (5), in particular x0 |=C φ, and we
are done.

It remains to prove that r satisfying (4) exists. Assume the contrary. Let V be the set of propo-
sitional variables bρ, indexed over all formulas ρ that occur as arguments of modal atoms in φ,
i.e. ρ = ρi for some ♥(ρ1, . . . , ρk) ∈ MA(φ) and some i = 1, . . . , k. Let the clause θ over
MA(φ) consist of the literals ¬♥(bρ1 , . . . , bρk) for ♥(ρ1, . . . , ρk) ∈ H and ♥(bρ1 , . . . , bρk) for
♥(ρ1, . . . , ρk) ∈ MA(φ)−H; i.e. letting σ denote the substitution given by

σ(bρ) = ρ for all bρ ∈ V ,

we have

H |= ¬θσ. (6)

Now by non-existence of r satisfying (4),

[[θ]][[F]]Y,τY = [[F]]Y,

where τY is the PY -valuation given by

τY (bρ) = ρ̂.

By strict one-step completeness of F, it follows that θ is derivable using a single rule of F

from propositional formulas over V that are valid under τY ; explicitly: there exists a rule
(φ1; . . . ;φn)/ψ in F and a substitution η such that

[[φiη]]Y,τY = Yai for i = 1, . . . , n (7)

and ψη propositionally entails θ, i.e., assuming w.l.o.g. that θ is not a propositional tautology, θ
contains ψη. In particular, ψη is a clause over MA(φ).

We now prove that

H |= ψησ, (8)

where σ is the substitution taking bρ to ρ. This will finish the proof as it implies H |= θσ, in
contradiction to (6).

We proceed to prove (8) by contradiction. So assume that H 6|= ψησ. By construction of
Π, it follows that π :≡ ¬φiησ ∈ Π for some i; recall that π : ai and xπ |=ai

Cπ π. Let τπ

denote the P(Xπ)-valuation taking bρ to [[ρ]]Cπ . By naturality of predicate liftings, (7) implies
xπ ∈ [[φiη]]Xπ,τπ , because τY (bρ) = τπ(bρ) ∩ Ya for ρ : a. Since [[φiη]]Xπ,τπ = [[φiησ]]Cπ , we
have arrived at a contradiction to xπ |=ai

Cπ π ≡ ¬φiησ.
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From Theorem 5.5, we obtain a multi-sorted version of the generic PSPACE decision procedure
of (Schröder and Pattinson 2009). This requires to compute matchings of given pseudovaluations,
and we require that the rules associated with features are closed under contraction, i.e. it suffices
to consider matchings ((φ1, . . . , φn)/ψ, σ) where ψσ does not contain duplicate literals, with the
consequence that there are only finitely many matches to check in every recursion step. Formally,
these notions are defined as follows.

Definition 5.6. We call a clause contracted if all its literals are distinct. An instance of a rule
is contracted if its conclusion is a contracted clause, and a matching is contracted if the corre-
sponding rule instance is contracted. Finally, a feature F = (Λ,R) is closed under contraction
if every application of a rule instance with duplicate literals in the conclusion can be replaced
by a contracted instance of a (possibly different) rule. Formally, for every V -instance Rσ of
a rule R ≡ (φ1; . . . ;φn)/ψ over V in R, there exists a contracted V -instance R′σ′ of a rule
R′ ≡ (φ′1; . . . ;φ′n)/ψ′ ∈ R such that ψσ and ψ′σ′ are propositionally equivalent and for all i,
φ′iσ
′ is propositionally entailed by φiσ.

To close a feature F = (Λ,R) under contraction, just add a rule (φ′1; . . . ;φ′n)/ψ′ for every
rule (φ1; . . . ;φn)/ψ over V in R and every V -substitution σ, where φ′i is some suitably chosen
propositional equivalent of φiσ and ψ′ is obtained from ψσ by removing duplicate literals. It is
clear that the arising set of rules inherits one-step soundness and strict one-step completeness
fromR.

From Theorem 5.5, one obtains immediately

Corollary 5.7. If every feature in G is strictly one-step complete and closed under contraction,
then a formula φ : s is satisfiable over a [[G]]-structure iffH |= φ for some pseudovaluationH for
φ such that for every contracted matching ((φ1; . . . ;φn)/ψ, σ) of H , one of the formulas ¬φiσ
is satisfiable.

Since rules are generally too large to pass around directly, we assume that every rule is rep-
resented by a code. For the features discussed in Example 3.2, the codes can be taken as the
parameters of the rules. Formal definitions are as follows.

Definition 5.8. Let F = (Λ,R) be a feature. We assume that the rules in R are represented by
codes, i.e. strings over a given finite alphabet. Two rules are equivalent if their conclusions are
identical and their premises are propositionally equivalent.

Under the assumptions of the above corollary, we have the following algorithm on an alternating
Turing machine (Chandra and Stockmeyer 1981), generalising an algorithm from (Vardi 1989).
Essentially, the algorithm just applies the satisfiability criterion of Corollary 5.7 recursively, de-
creasing the modal depth of the formula in every recursion step. To achieve polynomial space
usage, the algorithm proceeds by depth-first search; technically, this is encapsulated in the use of
alternation.

Algorithm 5.9. (Decide satisfiability of a G-formula φ : s, where s = F(s1, . . . , sn) ∈
Types(G) if s is composite and a→ F(s1, . . . , sn) ∈ G if s = a is a base type.)

1. (Initialize) Construct the set MA(φ).
2. (Existential) Guess a pseudovaluation H for φ with H |= φ.
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3. (Universal) Nondeterministically choose a contracted matching ((φ1; . . . ;φn)/ψ, σ) of H .
4. (Existential) Guess i ∈ {1, . . . , n} and a clause χ from the conjunctive normal form (CNF)

of φi and recursively check that ¬χσ : si is satisfiable.

The algorithm succeeds if all possible choices at steps marked universal lead to successful termi-
nation, and for all steps marked existential, there exists a choice leading to successful termination.
Note that the algorithm terminates successfully in Step 3 if there are no matching rules. In par-
ticular, the algorithm terminates either in Step 2 or in Step 3 if φ has rank 0. Step 3 breaks down
into choosing a contracted clause ρ over MA(φ) such that H |= ¬ρ, and then choosing a code of
a rule that matches ρ. Note that it suffices to guess one rule from each equivalence class of rules
(Definition 5.8).

The crucial requirement for the effectivity of Algorithm 5.9 is that Steps 3 and 4 can be per-
formed in polynomial time; the central condition here is that one may restrict oneself to guess
only rule codes of polynomially bounded size in Step 3. Formally, we have the following set of
conditions.

Definition 5.10. A feature F = (Λ,R) is PSPACE-tractable if all contracted matchings have a
code of polynomially bounded size, and it can be decided in NP

— whether a given code is the code of some rule inR;
— whether a rule matches a given pseudovaluation; and
— whether a clause belongs to the CNF of a given premise of a given rule.

Under these conditions, Algorithm 5.9 runs in polynomial time, which proves the following The-
orem 5.11, as APTIME = PSPACE (Chandra and Stockmeyer 1981); details are as in (Schröder
and Pattinson 2009).

Theorem 5.11 (Space Complexity). If every feature in G is strictly one-step complete, closed
under contraction, and PSPACE-tractable, then the satisfiability problem for F(G)-formulas over
[[G]]-coalgebras is in PSPACE.

All rule sets presented in Fig. 1 are strictly one-step complete, closed under contraction, and
PSPACE-tractable (this is either clear or shown in (Schröder and Pattinson 2009)). Thus, the
above theorem guarantees that satisfiability for logics arising through arbitrary gluings of the
features from Example 3.2 are in PSPACE.

Remark 5.12. The recursive structure of the algorithm allows for a modular implementation
which interconnects separate matching routines for each feature. In particular, the same algo-
rithmic structure may alternatively be applied to effective heuristic matching routines, leading to
more efficient overall reasoning.

6. Conclusions

We have introduced a calculus of gluings, which describe ways of combining logical features
like uncertainty, non-determinism, and choice. We have shown that the satisfaction problem of
a gluing is in PSPACE if this is true for the involved features. This has been achieved by equip-
ping the logics under consideration with a multi-sorted coalgebraic semantics. Crucially, we have
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shown that the satisfiability problem of a gluing is equivalent to that of a corresponding flattened
gluing; flat gluings are technically more tractable than general gluings, and essentially allow for
straightforward generalization of arbitrary generic results from single-sorted coalgebraic logic
by just adding multi-sorted notation. As an example, we have carried this out in detail for the
generic PSPACE algorithm for satisfiability (Schröder and Pattinson 2009). However, the same
principle applies without further ado to other results such as generic EXPTIME algorithms for
TBox reasoning in coalgebraic modal and hybrid logics (Schröder, Pattinson, and Kupke 2009;
Goré, Kupke, and Pattinson 2010; Goré et al. 2010) or Hennessy-Milner-type expressivity re-
sults (Pattinson 2004; Schröder 2007); in fact, Schröder, Pattinson, and Kupke (2009) make ex-
tensive use of this mechanism in the examples. Our results thus pave the way for modularized
tool support for a large class of heterogeneous logics. The nature of the type of logic combination
studied here is essentially that of a typed fusion; the study of further combination mechanisms
such as products or E-connections (Kutz et al. 2004) in the coalgebraic framework is the subject
of future work. A further point of interest is to impose frame conditions on heterogeneous coal-
gebras, thus obtaining axiomatic interaction between the component logics; initial results in this
direction may be found in (Pattinson and Schröder 2008). The modularity mechanisms described
here are the basis for proof support for heterogeneous modal logics in the generic modal proof
tool CoLoSS (Coalgebraic Logic Satisfiability Solver) (Calin et al. 2009).
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