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Abstract
Uncertainty and vagueness are pervasive phenom-
ena in real-life knowledge. They are supported in
extended description logics that adapt classical de-
scription logics to deal with numerical probabili-
ties or fuzzy truth values. While the two concepts
are distinguished for good reasons, they combine
in the notion of probably, which is ultimately a
fuzzy qualification of probabilities. Here, we de-
velop existing propositional logics of fuzzy prob-
ability into a full-blown description logic, and we
show decidability of several variants of this logic
under Łukasiewicz semantics. We obtain these re-
sults in a novel generic framework of fuzzy coal-
gebraic logic; this enables us to extend our results
to logics that combine crisp ingredients including
standard crisp roles and crisp numerical probabili-
ties with fuzzy roles and fuzzy probabilities.

1 Introduction
Description logics (DLs) have emerged as a widely accepted
and used knowledge representation framework. By-and-
large, the semantics of DLs is based on relational structures
[Baader et al., 2003]. This provides a good fit for many ap-
plications, but needs to be extended if one requires concepts
that involve degrees of vagueness. Extensions of this kind are
commonly subsumed under the term Fuzzy Description Log-
ics [Lukasiewicz and Straccia, 2008]. The prime example
here is a logic of ‘likes’ where the assertion likes(a, b) may
(semantically and syntactically) receive a fuzzy truth value,
depending on the strength of affection.

Orthogonal to this, many knowledge representation for-
malisms have been extended with probabilities, e.g. propo-
sitional logics [Fagin et al., 1990], DLs (overviews are in
[Baader et al., 2003; Lukasiewicz, 2008; Lutz and Schröder,
2010]), and first-order logics [Halpern, 1990; Jaeger, 2006].
Such logics make crisp statements about probabilities, e.g.
that the incidence rate of a certain disease exceeds some nu-
merical value. Semantically, this is accommodated by assign-
ing probabilities to concepts that can then be compared, but
in contrast to fuzzy logics, these comparisons are bivalent.

The fact that vagueness and probabilistic uncertainty are
notions that deserve to be distinguished [Lukasiewicz and

Straccia, 2008] does not preclude situations involving both.
A point in case is the word probably, a vague qualification of
a degree of uncertainty. In crisp logics, this phenomenon has
been approached by either giving qualitative axiomatizations
of likelihood [Burgess, 1969; Halpern and Rabin, 1987] or by
imposing a threshold probability above which events are con-
sidered probable [Hamblin, 1959; Herzig, 2003]. In a fuzzy
logic over probability distributions, one can define the truth
value of probably C for a fuzzy concept C as the expecta-
tion of C, read as a [0, 1]-valued random variable. This view
goes back to Zadeh [1968] and is also taken in [Hájek, 2007],
where a fuzzy propositional logic of probably is developed
and shown to be in PSPACE.

Hajek’s reading of probably is global in that it depends on
a single probability distribution on the model. Syntactically,
this is reflected in the fact that the probably operator cannot
be nested. Here, we introduce and analyse fuzzy probabilis-
tic DLs that are interpreted locally, i.e. a distribution is asso-
ciated to each point in the model, as in [Fagin and Halpern,
1994]. This allows modelling situations where, e.g., the prob-
ability of exhibiting a certain symptom depends on the dis-
ease. It elevates probability operators to the status of DL op-
erators like existential restriction ∃R, which may be nested
ad libitum, for the same reason: a local set of successors is
associated to each point in the model.

While the logic of probably provides us with new expres-
sive means for vague knowledge, it is clearly necessary to
combine probably with other DL connectives for meaningful
applications. To accommodate this, we formulate our results
in a more abstract framework that also allows treating fuzzy
roles, such as likes, crisp roles, and quantitative uncertainty.
We achieve this by using coalgebraic logic, which encapsu-
lates the precise nature of knowledge operators as well as
their interpretation, making our results applicable in a wide
context by instantiating the more abstract framework.

We work with Łukasiewicz semantics for fuzzy connec-
tives, which avoids some of the counter-intuitive properties of
the simpler minimalistic (or Zadeh) fuzzy logic [Kundu and
Chen, 1998]. Our main technical results are generic satisfi-
ability algorithms that instantiate to yield the first algorithm
for DLs with the probably operator, overcoming difficulties
related to unavailability of the finite model property for some
reasoning problems; this can be combined modularly with a
whole range of DL features involving crisp and fuzzy roles



as well as numerical probabilities and nominals. Depending
on details of the logic, our algorithms run in NEXPTIME or
EXPSPACE, respectively, and in particular match the current
best upper bound for Łukasiewicz fuzzy ALC, NEXPTIME
as implicit in [Straccia, 2005].

Related Work An overview of fuzzy and (quantitative)
probabilistic description logics is given in [Lukasiewicz and
Straccia, 2008]. Early research was focused on fuzzy DLs
with Zadeh semantics, whose complexity is typically that of
their classical counterparts; in fact, logical consequence re-
mains mostly the same as well [Straccia, 2001; Bonatti and
Tettamanzi, 2006; Stoilos et al., 2007]. Fuzzy DLs with
Łukasiewicz semantics are perceived to have better logical
properties and have therefore received increased recent atten-
tion, e.g. [Hájek, 2005; Straccia, 2005; Bobillo and Strac-
cia, 2011], but appear to have significantly higher complexity.
For Łukasiewicz fuzzyALC with general concept inclusions,
even the finite model property fails [Bobillo et al., 2010], so
that we focus on acyclic TBoxes.

2 Fuzzy Description Logics by Example
Fuzzy description logics come in many different flavours.
Roles may be fuzzy, crisp, or probabilistic, and operators
come in various shapes and formats. All extend propositional
logic, which we equip with Łukasiewicz semantics through-
out this work (see Section 3). The syntax of the logics we
consider here is then given by the grammar

F 3 C,D ::= A | C uD | C tD | C �D | ¬C | ♥C

where A is an atomic concept, ♥ ∈ Λ is a generic modal op-
erator, and � is fuzzy implication. For readability, we focus
on single roles here, the extension to multiple roles even with
structurally different interpretations being straightforward.

We take the interpretation of a concept C to be a map
[[C]] : X → [0, 1] that assigns truth values to individuals
in the carrier X of a model. If the structure underlying the
model is crisp, we use thresholds to define the semantics of
operators, given by

[[C]]α = {x ∈ X | [[C]](x) ≥ α}

so that [[C]]α is the set of those individuals that satisfy concept
C with degree at least α.

Fuzzy ALC with crisp roles. The syntax of ALC arises via
Λ = {∃}, i.e. we use existential restriction as single operator.
Models take the shape (X, ξ, π) whereX is a set (of individu-
als), ξ : X → P(X) determines the relational successors and
π is a fuzzy valuation of atomic concepts. Given a concept C
with interpretation [[C]] : X → [0, 1], we put

[[∃C]](x) = sup{α | ξ(x) ∩ [[C]]α 6= ∅}

using the threshold notation introduced above. The primary
purpose of this logic, called ALCL(C) in the sequel, is to
import relational knowledge into a fuzzy setting.

Fuzzy ALC. The syntax of fuzzy ALC is as above (∃ is
the only operator) but interpreted over fuzzy relations. Thus,
models are of type (X, ξ, π) as above but ξ : X → (X →

[0, 1]) is fuzzy and relates x and x′ with degree ξ(x)(x′). The
interpretation of ∃ now takes the form

[[∃C]](x) = sup{ξ(x)(y) u [[C]](y) | y ∈ X}
where u is Łukasiewicz conjunction. It agrees with the stan-
dard semantics of fuzzy ALC [Lukasiewicz, 2008] (and is
compatible ith the semantics ofALCL(C)). We call this logic
ALCL(F ).

Quantitative fuzzy ALC is interpreted over local probabil-
ity distributions and asserts likelihoods. We use operators
Mp, read ‘with probability more than p’, where p ∈ [0, 1]∩Q.
Again, models take the form (X, ξ, π), but now ξ : X →
D(X) associates a discrete probability distribution ξ(x) to
each x ∈ X (i.e. D(X) = {µ : X → [0, 1] |

∑
x∈X µ(x) =

1}). For a concept C we have

[[MpC]](x) = sup{α | ξ(x)([[C]]α) > p}
where [[C]] : X → [0, 1]. Informally, if the truth value of
MpC at x is α, then the local measure at x assigns probabil-
ity > p to the set individuals that satisfy C with degree ≥ α,
and Mp picks the largest such α. The interpretation of Mp

depends on the local probability distributions, thus, e.g., al-
lowing us to model the mentioned fact that the probability of
exhibiting a given symptom varies between diseases. E.g., we
can express that encephalitis will show up as a headache with
probability of more than 0.8 (encephalitis�M0.8headache).
We use ALCL(Q) to refer to this logic, and ALCL(Qfin) to
denote the variant that is interpreted w.r.t. finitely supported
probability distributions.

The logic of probably lifts the logic of fuzzy probability
[Hájek, 2007] to a description logic context that allows arbi-
trary nesting of the probably operator. Syntactically, we have
a single operator P (read ‘probably’), interpreted over proba-
bility distributions as above, where

[[PC]](x) = Eξ(x)([[C]]) =
∑
y∈X [[C]](y) · ξ(x)(y);

i.e. PC is the expectation of C under the local distribution
ξ(y). Under a causal reading (different from the previous ex-
ample), headache � Phead trauma asserts the vague prob-
ability judgement that an observed head trauma is probably
the cause of a headache. We write ALCL(P ) for the logic
with the probably operator, and ALCL(Pfin) to designate an
interpretation over finitely supported distributions.

The logic of generally. This logic, similar to ALCL(P ),
has a single operator G, read ‘generally’, or ‘with high prob-
ability’. Again, models are of the form (X, ξ, π) where
ξ : X → D(X). The interpretation of G uses an explicit
conversion function h : [0, 1] → [0, 1] (monotone, continu-
ous, and piecewise linear) associating to a probability p the
degree h(p) to which p is ‘high’. We stipulate that

[[GC]](x) = sup{α u h(ξ(x)([[C]]α))}.
Here, α is a threshold value for membership in C, and the
truth value of GC depends on both this threshold (the left
conjunct) and the degree to which the likelihood of member-
ship in C being ≥ α is considered high (the right conjunct).
In this logic, denoted by ALCL(G) (and ALCL(Gfin) for its
finitely supported semantics), we can express that headaches
generally respond to analgesics.



Combinations and multiple roles. The heart of the seman-
tics of all logics discussed above is coalgebraic, i.e. models
are defined in terms of observations X → TX where T can
be varied as needed. This makes it easy to combine features
and roles: if roles Ri are interpreted w.r.t. structures of shape
X → TiX (i = 1, 2), then models X → T1X × T2X inter-
pret their combination by projecting to the respective compo-
nent.

3 Preliminaries
To account for various different reasoning principles and
compositionality, we parametrize our exposition syntactically
over a set Λ of unary modal operators (higher arities are
straightforward). The set F(Λ) of concepts is given by

F(Λ) 3 C,D ::= A | C uD | C tD | ¬C | ♥C
(with C �D := ¬C tD), where ♥ ∈ Λ and A is an atomic
concept. The size |C| of a concept C counts the number of
logical operators and atomic concepts in C. As we can em-
ulate atomic concepts by modal operators that ignore their
argument, we omit them in the following. Substitutions are
maps σ : V → F(Λ) for a typically finite set V of variables;
the size of σ is |σ| =

∑
v∈V |σ(v)|.

The semantics is then determined by the following data.
Firstly, we fix the underlying type of structures by choosing
a set functor T , i.e. a construction that assigns to each set X
a set TX of clusters over X , and to each map f : X → Y a
map Tf : TX → TY , preserving identities and composition.
Concepts are interpreted over (coalgebraic) T -models M =
(X, ξ) consisting of a setX of states and a map ξ : X → TX
assigning to each state x a cluster ξ(x) of successor states.
E.g., if TX = [0, 1]X × [0, 1]At where At is a set of atomic
concepts, then T -models are fuzzy Kripke models. Second,
all operators♥ ∈ Λ are assigned a fuzzy predicate lifting [[♥]],
i.e. a family of maps

[[♥]]X : [0, 1]X → [0, 1]TX for all sets X
that lifts fuzzy subsets of X to fuzzy subsets of TX , subject
to the naturality condition [[♥]]X(A◦ f) = [[♥]]Y (A)◦Tf for
f : X → Y , A ∈ [0, 1]Y . The extension [[C]]M : X → [0, 1]
of a concept C in M = (X, ξ, π) is defined recursively by
pointwise application of the underlying propositional connec-
tives according to Łukasiewicz semantics

[[C uD]](x) = max{0, [[C]](x) + [[D]](x)− 1}
[[C tD]](x) = min{1, [[C]](x) + [[D]](x)}

[[¬C]](x) = 1− [[C]](x)

and the clause
[[♥C]] = [[♥]]X([[C]]M ) ◦ ξ.

We fix Λ, T , and the assignment of liftings throughout, and
refer to these data collectively as a logic L.
Example 3.1 (Fuzzy coalgebraic description logics). All ex-
amples presented in Section 2 and their modular combina-
tions can be expressed in the coalgebraic framework. E.g. for
the probably-operator, TX = D(X) as in Section 2, and we
have the lifting

[[P]]X(A)(µ) =
∑
x∈X A(x) · µ(x)

that recovers the semantics introduced in Section 2.

We are concerned with satisfiability problem for DLs, which
comes in a number of variants (that may lead to different com-
plexity classes [Bonatti and Tettamanzi, 2006]) depending on
how we deal with truth values.
Definition 3.2 (Constraints). A comparison operator is one
of =, <,>,≤,≥. A constraint σ ./ κ consists of a substi-
tution σ : V → F(Λ), a valuation κ : V → [0, 1], and a
comparison operator ./. We say that σ ./ κ is satisfiable if
there exists a T -model M = (X, ξ) and a state x ∈ X such
that for all v ∈ V , [[σ(v)]]M (x) ./ κ(v). The ./-satisfiability
problem is to decide whether a constraint σ ./ κ is satisfiable.
Note that a constraint σ ./ κ is essentially a conjunction∧
v∈V σ(v) ./ κ(v). Evidently, ./-satisfiability reduces to ≤-

satisfiability for ./ ∈ {=,≥}, and >-satisfiability reduces to
<-satisfiability. None of ≤-satisfiability and <-satisfiability
seem to reduce to the other. Note that <-satisfiability sub-
sumes the dual of the validity problem, i.e. to decide whether
a formula is always satisfied with truth degree 1.

4 Generic Closed Interval Satisfiability
We now develop generic reasoning procedures for coalge-
braic fuzzy description logics, which we mainly instantiate to
fuzzy probability. A substantial technical role is played by the
distinction between closed and open truth degree intervals,
i.e. <-satisfiability and ≤-satisfiability. Our generic algo-
rithms are of high complexity (NEXPTIME and EXPSPACE)
but match existing algorithms for fuzzyALC, which produce
exponential-size mixed integer linear programming problems
[Straccia, 2005]. The model constructions that witness cor-
rectness of our algorithms remove operators layer-by-layer,
leading to the following notion of decomposition.
Definition 4.1 (Top-level decomposition). A top-level de-
composition of a substitution σ : V → F(Λ) is a decom-
position σ = σ]σ[ where σ[ : W → F(Λ), σ] : V →
Prop(Λ(W )), and every variable in W occurs exactly once
in σ]. Here, Prop(W ) denotes propositional combinations of
elements of W and Λ(W ) = {♥w | w ∈ W} are operator-
prefixed formulas over W . This determines σ], σ[ uniquely
up to renaming the variables in W .
In other words, the arguments of the top-most modal oper-
ators in σ are replaced with variables in σ], and σ[ records
which formulas these variables stand for.
Definition 4.2 (Theory of a substitution). Let σ : V → F(Λ)
be a substitution. The theory of σ is the set

Th(σ) = {κ : V → [0, 1] | σ = κ satisfiable}.

That is, Th(σ) records the possible joint truth values that the
formulas σ(v) can attain.
Definition 4.3 (Local constraints and models). A local con-
straint Γ = (γ, σ ./ κ) over sets V,W of variables consists
of a set γ ⊆ (V → [0, 1]) of valuations for V , a substitution
σ : W → Prop(Λ(V )), a valuation κ : W → [0, 1], and a
comparison operator ./. A local model M = (X, τ, t) over
V consists of a set X , a valuation τ : V → (X → [0, 1]),
and a cluster t ∈ TX . We say that Γ is satisfiable if there
exists M as above such that M |= Γ in the sense that for all



x ∈ X , τT (x) ∈ γ, where τT (x)(v) = τ(v)(x), and for
all w ∈ W , [[σ(w)]]M ./ κ(w). Here, evaluation [[φ]]M of
φ ∈ Prop(Λ(V )) over M is defined by extending the assign-
ment

[[♥a]]M = [[♥]](τ(a))(t)

to (Łukasiewicz) propositional combinations.

Definition 4.4 (Local small model properties). We say that L
has the local finite (polysize) ./-model property for a compar-
ison operator ./ if whenever a local constraint (γ, σ ./ κ) is
satisfiable, then it is satisfiable in a local model (X, τ, t) with
X finite (|X| polynomially bounded in |σ|).
Remark 4.5. It is clear that the local finite (polysize) ./-
model properties for ./ ∈ {=,≤,≥} are equivalent, simi-
larly for ./ ∈ {<,>}. Moreover, the local finite (polysize)
≤-model property implies the local finite (polysize) <-model
property. It is unlikely that the converse holds; a possible
counterexample is preciselyALCL(P ) (Example 4.6). More-
over, despite the implication between the respective local
small model properties, it does not seem to be the case that
<-satisfiability can easily be reduced to ≤-satisfiability.

Example 4.6. It follows from results of [Hájek, 2007] that
ALCL(P ) has the local polysize <-model property. The
proof relies on continuity arguments and on approximating
infinite sums by finite partial sums. Essentially the same ar-
guments work for the other probabilistic logics ALCL(Q),
ALCL(G). No similar result is known for ≤ in place of
<, even relaxing polysize to finite. Of course, the local fi-
nite ≤-model property holds trivially for any finitely branch-
ing logic, including the finitely branching probabilistic logics
ALCL(Xfin) for X ∈ {Q,P,G}; the local polysize≤-model
property then follows by results from linear programming as
carried out for P in [Hájek, 2007].

Fuzzy ALC (ALCL(F )) and ALCL(C) do have the local
finite ≤-model property, which can be proved rather easily
from the fact that solvability of systems Ax ≤ b of linear
inequalities (for a matrix A and a vector b) is closed un-
der infima in b; again, the polysize sharpening follows. (For
ALCL(F ), the local finite ≤-model property follows alterna-
tively from results of [Hájek, 2005], which however employ
heavy-weight methods from fuzzy first-order model theory.)

Theorem 4.7 (Local reduction). Let σ : V → F(Λ) be a
substitution with top-level decomposition σ = σ]σ[, let ./∈
{=, <,>,≤,≥}, and let κ : V → [0, 1] be a valuation. Then
σ ./ κ is satisfiable iff the local constraint

(Th(σ[), σ] ./ κ)

is satisfiable.

In the presence of the local finite ≤-model property, the local
reduction theorem immediately implies a shallow tree model
property. While in the classical case and in the very simi-
lar case of Zadeh logics [Straccia, 2001] the tree structure of
models can often be exploited to obtain PSPACE decision pro-
cedures that explore one branch of the tree at time, this does
not seem to be possible for Łukasiewicz logics, in which the
branches are arithmetically entangled. We thus state only the
arising exponential model property:

Corollary 4.8 (Exponential model property). Let L have the
local polysize ≤-model property. Then every satisfiable con-
straint σ ≤ κ is satisfiable in a model with at most exponen-
tially many states in |σ|.
One then typically obtains a translation of the satisfiability
problem into an exponential sized constraint in a suitable for-
malism, depending on the nature of the modalities:

Definition 4.9. We say thatL is polynomially existential first-
order if for every finite set X ,

1. the set TX of clusters over X can be represented by a
polynomial-sized existential first-order formula φX over the
reals (i.e. TX ∼= {(y1, . . . , yn) | φ(y1, . . . , yn)}), and

2. for every ♥ ∈ Λ and every comparison operator ./,
the formula [[♥]]X(A)(t) ./ a is expressible as an existential
first-order formula over the reals in the variables a and Ax,
x ∈ X , the latter representing the truth values A(x), and
additional variables yi describing t ∈ TX according to 1), of
polynomial size in |X|.
If, additionally, all atoms in the mentioned first-order formu-
las are linear inequalities, then L is polynomially MILP.

Example 4.10. The logicALCL(P ) is polynomially existen-
tial first-order: µ ∈ D(X) u [[P]]X(A)(µ) = a is expressed
by the existential (in fact, quantifier-free) first-order formula

φX :=
∧
x∈X µx ≥ 0 u

∑
x∈X µx = 1 u

∑
x∈X Axµx = a

involving variables a and Ax as in Definition 4.9 and vari-
ables µx representing probabilities µ(x); the size |φX | is
clearly polynomial in |X|. The logics ALCL(X), for X ∈
{C,F,Q,G}, are even polynomially MILP.

Since mixed integer linear programming is in NP and the ex-
istential fragment of the first order logic of the reals is in
PSPACE [Canny, 1988], we obtain

Corollary 4.11 (Complexity of ≤-satisfiability). Let L have
the local polysize ≤-model property, and let ./ ∈ {<,≤}.
Then ./-satisfiability is in EXPSPACE if L is polynomially ex-
istential first-order, and in NEXPTIME if L is polynomially
MILP.

Example 4.12. By the above, ./-satisfiability in ALCL(C)
and ALCL(F ) is in NEXPTIME for ./ ∈ {<,≤}. For
fuzzy ALC (ALCL(F )), this is exactly the complexity of
the existing algorithms [Straccia, 2005]; we do not know of
any matching lower bound. Moreover, ./-satisfiability for
./ ∈ {<,≤} in the finitely branching probabilistic logics
ALCL(Xfin) is in EXPSPACE forX = P , and in NEXPTIME
for X ∈ {Q,G}.

5 Generic Open Interval Reasoning
We now analyse the case where the local finite≤-model prop-
erty and hence Corollary 4.8 are not available, a case that we
are particularly interested in as it includes the general forms
of the probabilistic logics ALCL(X), X ∈ {Q,P,G}. The
main reason for studying the infinitely branching case instead
of just assuming finite branching is to ensure that restricting
to the finite does not introduce artifacts into the mechanisms
of logical consequence (see, e.g., [Schockaert et al., 2009] for



the effects of just restricting Łukasiewicz semantics to finitely
many values).

In the absence of the local finite ≤-model property, we
focus on <-satisfiability, which then brings topological and
metric concepts into play [Hájek, 2007]. Recall that a func-
tion f : X → Y between metric spaces is k-Lipschitz con-
tinuous for k ∈ R if d(f(x, y)) ≤ kd(x, y) for all x, y ∈ X
(where we denote both metrics by d). It is one of the pleas-
ant features of Łukasiewicz semantics that its operators are
Lipschitz continuous (unlike for Gödel or product logic). For
a set X , we regard the set X → [0, 1] as a metric space,
equipped with the supremum metric.
Definition 5.1 (Lipschitz logics). We say that L is Lipschitz
if for every ♥ ∈ Λ there exists k♥ ∈ R (pspace computable
from ♥) such that for every every t ∈ TX , the map (X →
[0, 1])→ V , A 7→ [[♥]]X(A)(t) is k♥-Lipschitz continuous.
(Computability of Lipschitz constants is usually not an actual
issue, and in fact often all operators are 1-Lipschitz.)
Example 5.2. All logics of Section 2 are Lipschitz. To see
this for ALCL(P ), let µ ∈ D(X) be a discrete probability
distribution on a set X . We claim that [[P ]]X(A)(µ) is 1-
Lipschitz in A: We have [[P ]]X(A)(µ) =

∑
x∈X µ(x)A(x),

so if A,A′ : X → [0, 1] such that d(A,A′) < ε, then
|[[P ]]X(A)(µ)− [[P ]]X(A′)(µ)| <

∑
x∈X µ(x)ε = ε.

The following facts are particular for Łukasiewicz semantics.
Lemma 5.3. Let L be Lipschitz. Then for every substitu-
tion σ : V → Prop(Λ(W )) and every t ∈ TX , the map
(W → (X → [0, 1])) → (V → [0, 1]) sending τ to
λa ∈ V. [[σ(a)]]τ (t) is Lipschitz continuous.
Lemma 5.4. Let L be Lipschitz. Then Th(σ) is a compact
subset of V → [0, 1] for every substitution σ : V → F(Λ).
Recall that given ε > 0 and a subset A of a metric space
(X, d), Uε(A) = {x ∈ X | d(y,A) < ε}, where d(y,A) =
supa∈A d(y, a). By Lemma 5.4, local reduction leads back to
≤-satisfiability; we escape from this by
Theorem 5.5 (Local ε-reduction). Let L be Lipschitz and
have the local finite<-model property, and let σ : V → F(Λ)
be a substitution, V finite. Then there exists k, pspace com-
putable from σ, such that for all valuations κ : V → [0, 1],
the constraint σ < κ is satisfiable iff the local constraint

(Uε(Th(σ[)), σ] < κ− kε)

is satisfiable for some ε > 0.

Proof sketch. Let k be the Lipschitz constant of σ]

(Lemma 5.3). Then ‘only if’ is trivial; ‘if’ relies on compact-
ness (Lemma 5.4) and the local finite <-model property.

Theorem 5.6. Let L be Lipschitz and have the local poly-
size model property. Then <-satisfiability (and hence valid-
ity) is in EXPSPACE if L is polynomially first order, and in
NEXPTIME if L is polynomially MILP.

Proof. By recursive translation of σ < κ into an exponential
size existential first-order formula over the reals; the upper
bounds then follow as in Corollary 4.11. The core step in
the translation is local ε-reduction, in which k is explicitly

computed while ε is just existentially quantified. The recur-
sive call is then based on the observation that in the notation
of Theorem 5.5 and Definition 4.3, τT (x) ∈ Uε(Th(σ[)) is
equivalent to satisfiability of the constraint σ[ < τT (x) + ε∧
σ[ > τT (x)− ε.

Example 5.7. By Theorem 5.6,<-satisfiability in the general
forms of the probabilistic logics ALCL(X) is in EXPSPACE
forX = P , and in NEXPTIME forX ∈ {Q,G}, i.e. although
G is intuitively similar to P, it is computationally simpler.
Remark 5.8. The combination of two logics, discussed at
the end of Section 2 inherits the respective conditions of The-
orem 5.6 and Corollary 4.11 from its constituents so that the
combination of two logics satisfying the relevant assumptions
is decidable in NEXPTIME or EXPSPACE, respectively.
Remark 5.9 (Reasoning with acyclic TBoxes). As usual, it
is unproblematic to deal with acyclic TBoxes by on-the-fly
expansion [Lutz, 1999] without affecting complexity.

Satisfaction operators and ABox reasoning For the sake
of readability, we have omitted ABox reasoning from the pre-
sentation so far. It is easy to extend our results to cover
not only ABoxes, but even nominals i, j, . . . taken from a
fixed set N , and satisfaction operators @i, i ∈ N . Nom-
inals are designated atomic concepts which are interpreted
as crisp singletons, i.e. individual states in a model, which
are then called named states. Concepts @iC evaluate to the
truth value of C in the state i. We can then express con-
cept assertions C(i) ./ a, where C is a concept, i ∈ N ,
and a ∈ [0, 1], by conjuncts @iC ./ a in a constraint. By
using nominals in concepts, we can express also role asser-
tions; e.g., in fuzzy ALC, (@i∃R. j) ./ a is equivalent to
R(i, j) ≥ a (and we can indeed also express role constraints
of the form R(i, j) ≤ a, which are excluded, e.g., in [Strac-
cia, 2005]). We do not impose the unique name assumption;
distinctness of nominals i, j is expressed by (@i¬j) ≥ 1 or
by (@i¬j) > 0.

The extension of our results to the arising fuzzy coalge-
braic hybrid logic follows the lines of [Myers et al., 2009].
This requires adapting the notion of local constraint and local
model to accommodate nominals, and restructuring the lo-
cal reduction theorem. Details are omitted for lack of space;
we note only that where the truth values of subformulas of
the target formula and the ABox at named states are non-
deterministically guessed in the crisp setting, we instead in-
troduce existentially quantified real variables in the fuzzy set-
ting. With these modifications, the generic complexity re-
sults obtained so far (Corollary 4.11, Theorem 5.6) extend to
the hybrid case, and their instantiation to our example log-
ics requires only minor adaptation of the proofs of the local
small model properties. Taking into account modularity (Re-
mark 5.8), we obtain the following specific upper complexity
bounds:

1. Fuzzy ALCO: Reasoning with ABoxes and acyclic
TBoxes in the fuzzy version of the description logic ALCO
(ALC with nominals) is in NEXPTIME, even when satisfac-
tion operators are included. To our knowledge, this logic
was not previously known to be decidable (previous algo-
rithms for fuzzy description logics with nominals [Bobillo



and Straccia, 2011] are limited to the finitely-valued version
of Łukasiewicz semantics).

2. Fuzzy probability: The upper bound NEXPTIME re-
mains valid if we extend fuzzyALCO with crisp roles, quan-
titative probability operators Mp, and the generally operator
G. If we add the probably operator P, the upper bound jumps
to EXPSPACE. Here, the comparison operators admissible in
the ABox are the same as for satisfiability checking, i.e. unre-
stricted in the finitely branching case, and >, < in the count-
ably branching case.

6 Conclusion
We have shown decidability of fuzzy description logics with
an operator probably and variations thereof, generalizing
previous results on a propositional fuzzy logic of proba-
bly [Hájek, 2007] to a full-blown description logic featuring
nested probability operators, ABoxes, acyclic TBoxes, and
nominals, as well as crisp and fuzzy relational roles. The key
tool here is an extension of the generic framework of coal-
gebraic logic [Myers et al., 2009] to the fuzzy setting, which
not only enables us to prove results that apply to whole ranges
of logics at once, but also allows us to use modularity results
in order to obtain results for combined logics that mix various
modal operators for free. An important new technical aspect
that is brought into play here is the use of metric concepts
such as compactness and Lipschitz continuity.

Although no tight lower bounds are known, there appears
to be a substantial hitch in computational complexity caused
by the arithmetic character of Łukasiewicz semantics. In fu-
ture research, we will investigate the prospect of optimized
reasoning in Łukasiewicz description logics, e.g. using col-
umn generation [Klinov and Parsia, 2009] and Gröbner bases.
Moreover, we intend to extend the range of reasoning ser-
vices, in particular to top-k query answering [Lukasiewicz
and Straccia, 2007], which would, e.g., determine which can-
didates are most likely to be suitable for a given job.
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