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ABSTRACT

This papers presents a new system using circular markers to
estimate the pose of a camera. Contrary to most markers-
based systems using square markers, we advocate the use of
circular markers, as we believe that they are easier to detect
and provide a pose estimate that is more robust to noise. Un-
like existing systems using circular markers, our method com-
putes the exact pose from one single circular marker, and do
not need specific points being explicitly shown on the marker
(like center, or axes orientation). Indeed, the center and ori-
entation is encoded directly in the marker’s code. We can
thus use the entire marker surface for the code design. After
solving the back projection problem for one conic correspon-
dence, we end up with two possible poses. We show how to
find the marker’s code, rotation and final pose in one single
step, by using a pyramidal cross-correlation optimizer. The
marker tracker runs at 100 frames/second on a desktop PC
and 30 frames/second on a hand-held UMPC.

1. INTRODUCTION

Markers can be used in many applications, like e.g. Aug-
mented Reality (see Figure 1). Since the early years of marker-
based pose estimation, several marker designs and pose esti-
mation approaches have been proposed. Among them, a vast
majority uses square markers [1, 2, 3, 4], as the pose esti-
mation algorithms for points or lines are easier to implement
and to maintain. However, we believe that the use of circular
markers has several advantages over square markers. First,
the perspective projection of a circle is an ellipse, which is
easy to detect and to fit in the image. Second, the pose esti-
mation of a square marker relies on a good estimation of only
four points (the four corners) whereas the whole ellipse can be
used in the case of circular markers. Third, the case of occlu-
sion is easily treated for circular markers, as an ellipse fitting
algorithm does not require the entire contour to be visible.

In this paper, we present our circular markers, and show
how to use them to compute the pose of the camera. The
novelty of our approach resides in the fact that our markers
are defined only by their circular contour and a 16-bit code
(see Figure 2). No indication of the marker’s center nor the
marker orientation on its underlying plane is needed. This
was made possible thanks to our new code extraction strat-
egy, which solves several issues at the same time: identifica-

Fig. 1. Circular marker for Augmented Reality

tion of the marker through its code, disambiguation in a small
set of hypothetical poses and extraction of the correct local
orientation. These steps are completed efficiently thanks to a
pyramidal search of the best cross-correlation among possible
marker codes.

Related work. Most systems use square markers [2, 1, 4,
3]. To the best of our knowledge, only two systems use cir-
cular markers: Intersense’s VIS-Tracker ([5]) and a subpart
of Cantag [3]. In [5], the system treats the markers as sin-
gle points, and at least four markers have to be recognized in
an image to recover the camera pose. Moreover, the marker
center is approximated by the center of the ellipse. The subse-
quent error can be neglected if the markers are small, but leads
to wrong poses when markers are seen in close up scenes.
On the contrary, our method can recover the pose with any
number of visible markers, and we use the correctly projected
center of the marker to recover the pose. Moreover the marker
design proposed by Foxlin et al. explicitly shows the center of
the marker as a white disk, and the two axes of the ellipse are
given by black disks (“eyes” in the marker). This inevitably
reduces the payload of the marker, as less space is left for the
marker’s code.

The use of circular markers is also possible in [3]. The
marker design has a white disk in the center, which is used to
recover the camera pose. Cantag has been specified to com-
pare different markers designs, and the authors suggest that
circular markers give better results than square ones. Several
methods have been proposed to calibrate a camera and com-
pute its pose from circular patterns. In [6], a camera is cali-
brated using two concentric circles. [7] use the image of the
absolute conic to compute the pose from one imaged circle.
However, the center of the circle has to be provided. In [8],
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Fig. 2. (left) Marker design. (right) Our pipeline

two concentric circles and a extra orientation mark are nec-
essary to find the pose of the camera. [9] proposes the com-
putation of the camera pose and calibration from the image
of circles, but at least two circles have to be visible in the im-
age. In [10], a camera is calibrated using two coplanar circles.
Our approach is different from these, in that we use only one
circle without explicit orientation nor center to compute the
camera pose. The main idea is that a one-dimensional family
of possible poses can be computed from one single ellipse.
We then find the correct pose in this family while identifying
the marker.

The remainder of this paper is organized as follows: Sec-
tion 4 presents the pose estimation algorithm from one marker.
Section 3 shows how the correct marker identification is found
along with the final pose and rotation. In Section 4 we show
how ton compute the pose of a set of markers. We show our
results in Section 5 before concluding.

2. POSE ESTIMATION FROM ONE MARKER

Marker definition. Our marker is a black circle and consists
on three rings with equal width. The outer ring is always
black and serves for the marker localization. The inner ring is
divided into 4 angular bins and the middle ring into 12 angular
bins. Each bin can be white or black. Thus, the code can store
16 bits of information. When designing markers, care has to
be taken that the code does not have a periodicity (other than
2II), as the marker orientation u# has to be found from the
code itself. Figure 2 shows the marker with its 16 bits and the
principal orientation u.

Image processing pipeline. In this section, we show how
we can recover the marker pose pose from one single view
of the marker. Figure 2 shows the image processing pipeline
we apply to each video frame. In order to better distinguish
the markers even under difficult light conditions, we first ap-
ply a contrast enhancement function to the image, based on
homomorphic image processing [5]. Edges in the image are
then extracted using a Canny filter with non maximal suppres-
sion (NMS). A SVD-based ellipse fitting algorithm is applied
to all found closed contours, and we keep only the found el-
lipses for which the error returned by the fitting function is
small. For each remaining ellipse, we then apply first a par-
tial pose computation, then a marker identification algorithm.

These two steps are further detailed in the next subsections.

Dimensionality reduction from one imaged circle. We
now show how to reduce the pose computation to a one di-
mensional problem when the image of a circle has been found.
In this derivation, we follow the work of [10], where further
details can be found. We assume that the camera follows the
pinhole camera model and is calibrated (the calibration ma-
trix K is known). Without loss of generality, we can therefore
assume that the image plane has equation Z = 1 in the cam-
era coordinate system and that the image is centered on the
principal point (see Figure 3). We define the Marker Coordi-
nate System (MCS) as centered on the marker center, having
a Z axis perpendicular to the supporting plane and a X axis
defined by the marker’s orientation u#. The Intermediate Coor-
dinate System (ICS) is by definition a translation of the MCS
so that the origin is at the camera optical center (see Figure
3).
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Fig. 3. Two views of the oblique elliptical cone

Let us define the unknown transformation from the MCS
to the CCS by the rotation matrix and the translation vector
(R, t), such as a point X5, in the MCS transforms to X¢ in the
CCS as

Xc =RXpy +t (L

We will now show how to retrieve the correct R and ¢ from
image measurements. The idea of the derivation is that the
oblique cone defined by the bundle of straight lines (i.e. the
light rays) passing through the optical center, the ellipse and
the circle can be described in two different manners, once in
the CCS, once in the ICS (see [10] for details).

An ellipse found in the image is defined by a symmetric
matrix C. In the CCS, a point X is on the cone if

XECXc =0 )
In the ICS, a 3D point X7 is on the cone if
X70Xr =0 (3)



where

1 O —JU()/Z()
Q= 0 1 —Y0/%0 Q)
—zo/20 —yo/20 (xF+yd—1r?)/=3

and t = (zg, Yo, 20)". By construction, the rotation matrix R
transforms X¢ to X; as following

Xc =RX; 5)
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where p is a scale factor. Equation (6) is solved using the
eigendecomposition of the matrix C: if A\j, Ao, A3 are the
(sorted) eigenvalues and V the matrix of eigenvectors, then
the one-dimensional family of solutions (R, ¢) is ([10]):
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The free variable « reflects the rotation invariance of the
oblique cone, and fixing « boils down to fixing the rotation
of the marker around its normal. We chose to fix a = 0
and to find the true rotation of the marker in a later step. We
further reduce the number of solutions by stating that among
the 8 possible combinations of the signs S;, exactly two meet
the visibility constraints (the center of the marker must be in
front of the camera, i.e. in the CCS ¢, > 0 and the normal
of the marker must be oriented towards the camera i.e. in the
CCS n, < 0). We end up with exactly two possible poses
(R', t") and (R?, £?) for each ellipse.

3. MARKER IDENTIFICATION

In order to identify the markers among the found ellipses,
we use a one-dimensional Normalized Cross Correlation be-
tween the expected true markers and the image pixel values.
In our application, the user can define which markers are used
by the means of an editable XML file. For each ellipse F;,
we go successively over the 2 poses (R?,t?), kE e [1,2],
and then for each expected marker M; we compute the nor-
malized cross correlation NCC (i, j, k, «) by sampling pixel

values on points regularly distributed over two rings on the
marker. We find the position of these points in the image us-
ing the transformation (R, ¢5) and the camera intrinsic ma-
trix K. Note that we know the pose of the marker only up
to a rotation around its normal, so that we have to sample
several times using different values for the starting rotation
angle «. Sampling for a sufficient number of starting angles
a would require a prohibitive amount of computation time,
and we therefore suggest to use a pyramidal normalized cross
correlation approach as follows: ¢,j and k being fixed, we
compute NCC'(«) for 12 different values: g to 11, starting
at zero and increasing with an angular increment 6 = 27/12.
We keep @par = argmaz,, NCC(ap) and sample again
with 5 values for a around a4, using half of the increment
0. We repeat the last step, halving each time the increment ¢§
until the computed NCC value does not change anymore. This
pyramidal cross correlation is much faster than an exhaustive
search and proves to produce the same results in terms of an-
gular accuracy.

For each ellipse E;-marker M; combination, we compute
the score s;; as the maximal NCC over all possible poses &k
and angles a.. This gives us a correlation matrix between el-
lipses and markers that we use as input to an assignment algo-
rithm. In practice, we use the Hungarian assignment method,
and reject the ellipses whose score is below a given threshold
as non-marker. As a result, we have for each marker M; in
the definition file: (1) a one-bit answer to the question is the
marker visible in the image and (2) if the answer is yes, the
pose of the marker (R;,#;) as defined in equation (1), com-
puted as the concatenation of the ellipse pose (Rf’"’””,tf’"’“)
and the rotation around the Z axis with the angle a4

4. POSE OF A SET OF MARKERS

In the previous section, we have shown how to compute the
pose of one single marker. Here, we address the more com-
plex case where several markers are defined in the same rigid
body. A rigid body is a set of markers with a fixed relative
position over time. Our system allows any combination of
markers, including rigid bodies with markers lying on differ-
ent planes and any number of markers per plane. We propose
to compute one global pose using all the available data (in
form of circle-ellipse correspondences). Our algorithm is as
follows: first, for each plane in a rigid body, we compute a ho-
mography between the 3D plane and the imaged plane. Sec-
ond, we use the homographies from all the planes in a rigid
body for computing the global pose of the rigid body.
Homography of an imaged plane from circular mark-
ers. From the marker definition file, we can deduce which
markers belong to the same 3D plane. For each plane of a
rigid body, we count the number of visible markers on that
plane.If one marker only is visible in the image, then we use
the retrieved pose (R; j,t; 5) to compute the plane homogra-
phy H. If more than one marker is visible, we use the method



of [9] to compute the homography of the plane from conic
correspondences. Note that we use two different algorithms
depending on the number of correspondences (see [9] for de-
tails). In case of multiple solutions, we apply visibility con-
straints and choose the remaining solutions that minimizes the
reprojection error (reprojection of the marker center).

Rigid body pose from planar homographies. If only

one plane has visible markers within the rigid body, it is straight-

forward to recover the global pose from the homography, us-
ing the fact that if the plane has equation Z = 0, then the
homography is equal to the matrix K [rq|r2|t], where ry and ro
are the two first columns of the final rotation matrix R. When
several planes have been found with visible marker(s), we ap-
ply following multiple plane pose estimation algorithm: Let
T be a transformation matrix transforming a given plane to a
plane with equation Z = 0 and (T) the same matrix without
its third column. Then we have the homogeneous equation:

R | t(T)H 'K ~ I3x3

where I3y 3 is the 3 x 3 identity matrix.
Calling d;, i = 1...3 the columns of the matrix (T)H~*K and
g7 the (unknown) rows of the matrix[R | ¢], we have:

q7
g3 | (di dy d3) ~1Is.3
a3

This last 3 x 3 matrix homogeneous equation leads to
8 equations in the elements of the ¢;’s. This system can be
solved from 2 planes on.

5. RESULTS

Tracking one marker. In order to assess the developed theo-
retical framework, we implemented the algorithms on a stan-
dard PC. Figure 4 shows the results of tracking one marker
over 500 consecutive frames. The translation vector is pro-
vided in mm and the rotation by means of Euler angles. From
the charts, we can see that the tracking is smooth and regular,
and we can track the pattern from a distance of 200 mm to
750 mm (the marker radius was 35 mm in this experiment).

Time consumption. Our marker tracking algorithm works
in a tracking-by-detection paradigm. This means that we search
for all the markers and compute the pose independently in
each frame, without taking the last frames into consideration.
However, thanks to the fast ellipse detection method and to
the linear algorithms for pose computation, the tracker is very
fast. We achieve about 100 frames per second on a standard
PC and 30 frames per second on a small Ultra Mobile PC.

6. CONCLUSION

In this paper, we presented a new marker design for marker-
based applications. This is the first circular marker design
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Fig. 4. Translation and rotation over 500 frames

Fig. 5. Examples of tracked frames

where the pose can be computed from one single marker. Our
method relies on a pose estimation from conic correspon-
dences and is accelerated by a pyramidal normalized cross
correlation algorithm. In case several markers are used in a
rigid setup, we have shown how to compute the global pose
using all conics in correspondence. Our system is fast and
robust, and can be used as alternative to square markers in
marker-based augmented reality applications.
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