
An evaluation of HMM-based Techniques for the Recognition of
Screen Rendered Text

Sheikh Faisal Rashid1, Faisal Shafait2, and Thomas M. Breuel1
1Technical University of Kaiserslautern, Kaiserslautern, Germany

2German Research Center for Artificial Intelligence (DFKI), Kaiserslautern, Germany
s rashid09@informatik.uni-kl.de, faisal.shafait@dfki.de, tmb@informatik.uni-kl.de

Abstract—Segmentation and recognition of screen rendered
text is a challenging task due to its low resolution (72 or 96 ppi)
and use of anti-aliased rendering. This paper evaluates Hidden
Markov Model (HMM) techniques for OCR of low resolution
text–both on screen rendered isolated characters and screen
rendered text-lines–and compares it with the performance
of other commercial and open source OCR systems. Results
show that HMM-based methods reach the performance of
other methods on screen rendered text and yield above 98%
character level accuracies on both screen rendered text-lines
and characters.

Keywords-Low resolution text recognition; Screen rendered
text; OCR; Hidden Markov Model (HMM)

I. INTRODUCTION

Most OCR systems are developed for text recognition
from scanned document images. However, recognition of
low resolution text is quite interesting due to wide range of
applications and occurrence of low resolution text in screen-
shots, images and videos. For example, recognition of screen
rendered text can facilitate dictionary or language translation
tools [1] to provide meanings or translation of text from
screen-shots of documents or web images. Other possible
applications may include:

• Augmenting screen reading tools for blind or visually
impaired people for reading text from screen images
where ASCII text is not available on clipboard.

• Recognizing low resolution text in videos [2].
• Automating GUI testing tools for correcting the

spelling mistakes on GUI screen-shots.
• Useful for correcting web page rendering errors due to

bad foreground and background color combination.
• Enabling web indexing tools to capture semantically

important information from web images.
• Protection against phishing [3] attacks by verifying

URLs of potentially important websites against similar
looking characters that have different Unicode.

OCR of screen rendered text is challenging due to low
resolution (72 or 96 ppi) and small font size. For example
the x-height of most of lower case letters can only be
four pixels and width can only be two pixels. For better
visual perception, the rendering process also smooths the
low resolution text by means of anti-aliasing. This smoothing

Figure 1. Exmples: screen-rendered text images

process causes another problem of segmentation. As most of
the OCR methodologies are based on recognition of isolated
characters, the smoothed and small sized screen rendered
characters are difficult to segment due to touching or noise.
Figure 1 shows some example images taken from screen
rendered text-lines.

In this paper, we evaluate segmentation free HMM-based
techniques for the recognition of screen-rendered characters
and text-lines and compare their performance with current
state-of-the art open-source and commercial OCR engines.
We use edit distance [4] to compute character level recog-
nition accuracy. Results show a promising performance of
the proposed HMM based method in recognition of screen
rendered low resolution text.

A. Related Work

Although majority of existing research in optical character
recognition (OCR) deals with standard (300 dpi) printed text,
a few techniques handle the special case of low resolution
text recognition. Wachenfeld et al. [5] presented a hybrid
classification approach for recognition of screen rendered
characters and words. They normalized and over segmented
the gray scaled word pixels into small subcomponents. Their
approach is inspired by Breuel’s method [6] for handwritten
text segmentation using dynamic programming but with
different cost criteria. During over-segmentation, the result-
ing segment is instantly classified by using a gray scale

character classifier. Further splitting is stopped if a character
is classified with higher plausibility. They evaluate their
method on a public database of screen-rendered character
and words [7]. By using leave-one-out validation technique
they achieved 98.91% recognition accuracy on 15,808 non-
italic, non-bold characters. Einsele et al. [8], [9] proposed
HMM based techniques to recognize isolated characters and
words taken from screenshots of web pages. The potential
application is to provide an OCR facility for web indexing
tools to extract and index semantic information present in
web images. They evaluate performance of their system on
a dataset of 3,000 word images using two font families
in variable sizes. They achieved overall 96% recognition
accuracy at 10 pts font size, but the accuracy drops to
90% at 6 pts font size. Jacobs et al. [10] presented a
convolutional neural network approach for recognition of
low resolution text captured by 1024x768 web-cam and 10
pts font size. The overall performance of their system is
in between 80% to 95% word level recognition accuracy.
Yanadume [11] proposed a method that uses multi-frame
images taken by DV or phone camera. Their method is based
on subspaces and they achieved 92% recognition rate with
phone camera and 99.9% with DV camera that provides
good quality images. Krämer [12] employed HMM based
techniques to recognize screen rendered text using simple
pixel based features.

II. SYSTEM DESCRIPTION

A. Hidden Markov Models

Hidden Markov Models (HMMs) have been successfully
used in continuous speech, handwritten and cursive script
text recognition tasks [13], [14], [15]. The advantage of
HMMs in cursive or handwritten text recognition is to
recognize connected characters without segmenting them
into smaller units. As segmentation of low resolution text
is hard due to anti-aliasing, therefore we evaluate HMM
based techniques on this specific task. HMMs are statistical
models in which system being modeled is considered as a
Markov process that have unobserved or hidden states [16].
In a Hidden Markov Model, state is not directly visible but it
is associated with a probability distribution over all possible
output values. Each state is associated to an input pattern and
is modeled by a probability distribution function (pdf). All
the experiments for building HMMs are done using Hidden
Markov Toolkit (HTK) [17]. HTK is a portable toolkit that
is preliminary developed for building speech recognition
systems and is also used for optical character recognition
tasks [18].

B. Problem Description

HMMs can model the variability of underlying data as
function of one independent variable. In speech processing
systems, time is the natural independent variable but in case
of images which have 2-dimensions horizontal axis has been

taken as an independent variable by most of researchers. A
text-line can be considered as sequence of characters and
each character can be represented by a sequence of features
or observations O, defined as O = o1, o2,oN where
ot is the observation or feature vector at pixel position t
along horizontal axis. The character recognition problem is
regarded as computing the argmaxi{P (ci/O)}. where ci
is the specific character to be recognized. By using Bayes
theorem, we have P (ci/O) = P (O/ci)P (ci)

P (O) and thus for
a given set of prior probabilities P (ci), the most probable
character is given by the likelihood P (O/ci).

C. Data Sets

We use two different datasets of screen rendered text for
evaluation of proposed HMM based methods and current
state-of-the art OCR engines. A dataset of screen rendered
characters has been develped by Wachenfeld et al. [7].
This dataset contains 28,080 upper and lower case Roman
characters both in different font styles and sizes. We use
a subset that have 15,808 no-italic and non-bold characters
for evaluation of all the participating OCR techniques. This
subset is also used by Wachenfeld et al. [5] for the evaluation
of their own method. Due to visual ambiguity in some
lowercase and uppercase characters, these characters are
merged into lowercase characters. These merged characters
are: c/C, o/O, p/P, s/S, v/V, w/W, x/X and z/Z. This character
level dataset is limited (isolated characters only) and is
not sufficient for the true evaluation of OCR techniques.
A screen rendered text-line could be a better choice because
of having all the variations and challenges of the screen
rendered text. The choice of text-lines is to avoid complex
layout analysis, as the focus is only to measure text recogni-
tion accuracy for screen rendered data. Due to unavailability
of proper text-lines dataset, we have generated our own
dataset of screen rendered text-lines. We use mixture of
public serif and sans-serif fonts for rendering text-lines from
Project Gutenberg [19] e-book. Text-lines are rendered with
different line heights ranging from 10 to 20 pixels high. This
dataset comprises of 2,873 text-lines having upper and lower
case Roman alphabets, numerals, punctuations and brackets.

D. Preprocessing and Features Extraction

The preprocessing mainly concerns with text image height
normalization. The screen rendered character images are nor-
malized to a height of 10 pixels. This is the average height
of all characters in the dataset. In case of screen rendered
text-lines, we first remove extra white space around the text-
line and then normalize it to height of 20 pixels. The text-
line image height normalization is empirically determined.
We get better recognition accuracies with 20 pixels height
normalized text-lines because at this height, the x-height of
lower case characters present in the text-line is sufficient
for recognition. After text image height normalization, we

extract two different kind of features from gray scale text
images using traditional sliding window approach.

1) Gray scale raw pixel features: Since we are working
with low resolution text images and in this special case
direct use of gray scale values is possible. The gray scale
raw pixel features are obtained by vertically slicing the
normalized character image or normalized text-line image
into one pixel wide slices. A feature vector is constructed
by simply picking gray scale values in each vertical slice.
The text image is traversed in horizontal direction and a
feature vector is extracted at each pixel position from left
to right. The dimension of feature vector is fixed and is
based on normalized height of each text image. These kind
of features have also been used by Krämer [12].

2) Gradient based gray level intensity features: Gradient
based gray level intensity features are modified form of fea-
tures that have been used for Arabic script recognition [18].
A height normalized text-line image is first divided into a
sequence of overlapping windows in horizontal direction.
These windows are then subdivided into overlapping cells in
vertical direction. Features are extracted by sliding a window
over text image from left to right and concatenating the
gray level intensities and change in gray level intensities
along horizontal and vertical direction of the image. The
gray level intensity values are computed from top to bottom
by counting the numbers of gray values that are greater
than zero in each cell of a particular window. Similarly,
the change in gray level intensities are measured from
top to bottom by counting the numbers of positive and
negative gradients in each cell of a particular window. These
gradients are computed with the help of Sobel operator along
horizontal and vertical axes of the image. Two different
gradient based intensity features are evaluated for screen
rendered text-lines, namely G-3231 and G-3232. In both
features, the width of window and height of each cell is
fixed to three pixels i.e, the dimensions of each cell are 3
x 3. The difference is that, in G-3231, we have two pixels
overlap in consecutive windows (along horizontal axis) and
one pixel overlap in consecutive cells (along vertical axis)
and in G-3232, we have two pixels overlap in consecutive
windows and two pixels overlap in consecutive cells. These
features are computed for text-lines only because some
screen characters are not large enough to have a 3 x 3
window inside. Figure 2 shows an example of text-line
image along with its normalized, and gradient images from
text-lines dataset.

E. HMMs Topology and Training

The presented method models each character with a multi-
state, left to right, continuous density HMM. A text-line is
modeled by concatenating the models for each character in
the text-line. Each state has an associated output probability
distribution over the features and is modeled by Gaussian
mixture densities. A Gaussian mixture is parameterized by

(a) Original Image

(b) Trimmed Image

(c) Normalized Image

(d) Horizontal Gradient

(e) Vertical Gradient

Figure 2. Features extraction steps from screen rendered text-lines

Figure 3. Four states left to right HMM topology for character models

means and variances of component Gaussians. The number
of mixture model densities, number of states and allow-
able transitions among states are system parameters. The
required number of densities in a mixture model depends
on variability in features along vertical axis. The number of
states that are adequate for each character model depends on
horizontal variability of each character. The two parameters–
numbers of state per model and number of Gaussian mixture
densities–are needed to be tuned empirically. In our exper-
iments we used 3 to 6 states HMMs with 256 Gaussian
mixture densities and each class of character is modeled
with same number states. Figure 3 shows a four state, left
to right HMM with self loops and transition to adjacent
states with no skip. The “start” and “end” are non-emitting
states and are used to provide transitions from one character
model to other character model. Text lines are modeled

Figure 4. Ergodic HMM Architecture

(a) Original Image

(b) OCR of Original Image

(c) OCR of Image Text Rendered in Notepad

(d) OCR of Image Text Rendered in Command Prompt

Figure 5. OCR outputs on an example image by Screen OCR 7.9

by concatenating the character models in ergodic structure
as shown in Figure 4. Training or estimating the HMM
parameters is performed using Baum-Welch re-estimation
algorithm [20], which iteratively aligns the feature vectors
with the character models in maximum likelihood sense.

F. Recognition

After height normalization and feature extraction, as de-
scribed above, recognition process searches for character
models or a sequence of character models that has the
highest probability of having generated the given sequence
of feature vectors. This search process requires trained
character models, a possible word lexicon or dictionary, and
a statistical language model. The recognition is performed
using a variant of Viterbi algorithm called “Token Passing
Model” [20] to perform best path search in combinations of
different character level models. The choice of lexicon and
language model is optional. In presented system, we employ
lexicon free, open-vocabulary approach by building HMM
model with ergodic topology at character level. This ergodic
structure, as shown in Figure 4, has an implicit character
level bi-gram. Higher level language modeling at character
or word level can be possible and its use generally results
in a lower error rate. For simplicity, we are not providing
any explicit language model at this stage but this can be a
potential future step in system enhancement.

III. EXPERIMENTAL RESULTS AND EVALUATIONS

We evaluate state-of-the-art open-source and commer-
cial OCR engines for low resolution text recognition
and compare their performance with the proposed HMM
based method. The participating OCR engines are ABBYY
FineReader 10 professional [21] and Tesseract OCR en-
gine [22]. We also evaluate the specialized screen cap-
ture and recognition tools like Screen OCR 7.9 (trial ver-
sion) [23] and ABBYY FineReader built in Screenshot
Reader utility on some example text-lines. The evaluation of
these utilities are performed on limited test examples due to
lack of batch processing support for large number of images.

We obtain almost same results for both ABBY Screenshot
Reader utility and ABBY FineReader. The OCR results of a
sample text-line from Screen OCR 7.9 are shown in Figure 5.
Screen OCR 7.9 did not perform well on actual text-line
images but it gives good recognition for text rendered with
black background.

The performance evaluation is carried out by computing
character recognition accuracy percentage (CRA%) with the
help of following formula

CRA% =
N − ED

N
∗ 100 (1)

where N = Total number of characters and
ED = Edit Distance = Nos. of deletions + Nos. of
insertions + Nos. of substitutions (with equal cost).

Table I and Table II present experimental results for
both screen rendered characters and text-lines datasets re-
spectively. HMM based techniques are evaluated with three
different kind of features and we obtain above 98% character
level recognition accuracies for these two datasets. In our
experiments we model HMMs with different number of
states, varying from 3 to 6 states per character model. We
obtain better results with 3 state HMM for isolated character
dataset and with 4 state HMM for text-line dataset. Experi-
mental results show that HMM based OCR techniques reach
the performance of commercial OCR engine–ABBYFine
Reader–with around 1% less recognition accuracy for screen
rendered text-lines. In the case of screen rendered characters,
HMM based OCR techniques perform better than other
participating OCR engines but we have around 0.5% less
recognition accuracy in comparison to method proposed by
Wachenfeld et al.[5]. We use 20% from each dataset for the
evaluation of all participating methods and 80% is used for
HMM training. Tesseract OCR does not perform well on
these special low resolution screen rendered text datasets,
therefore we rescale the images to 2 times and 3 times
of their original sizes. After rescaling we re-evaluate the
performance of participating OCR engines. This rescaling
improves the recognition accuracies of Tesseract. ABBYY
FineReader behavior is consistent with these rescaled images
due to built in normalization mechanism that enhances the
resolution of these low resolution screen images to 300 dpi.

IV. CONCLUSION

In this work we evaluate the HMM based techniques
and existing state-of-the-art OCR engines for recognition
of screen rendered characters and text-lines. Due to very
low resolution and small size, OCR of screen rendered
text requires specialized approaches. Segmentation of screen
rendered text lines is also challenging due to touching of
characters with each other. This touching appears as a side
effect due to anti-aliasing in rendering process. Recognition

Table I
RECOGNITION ACCURACIES FOR SCREEN RENDERED CHARACTERS DATABASE

Standard 2 times Rescaled 3 times Rescaled

Algorithms Merged Classes Non-merged Classes Merged Classes Non-merged Classes Merged Classes Non-merged Classes

HMM 98.35 na na na na na

Wachenfeld 98.91 na na na na na

ABBYY 52.63 42.1 39.17 29.52 46.67 35.68

Tesseract 53.78 45.84 68.89 58.22 69.46 58.16

Table II
RECOGNITION ACCURACIES FOR SCREEN RENDERED TEXT-LINES

Algorithms Standard 2 times Rescaled 3 times Rescaled

HMM-Pixels 98.54 na na

HMM-G3231 98.27 na na

HMM-G3232 98.30 na na

ABBYY 99.73 99.67 99.57

Tesseract 75.32 97.24 98.41

results show that HMM based, open vocabulary, segmenta-
tion free techniques performs quite well in recognition of
low resolution text. ABBY FineReader gives almost perfect
recognition and Tesseract significantly improves from 76%
to above 98% at 3 times size rescaling using Lanczos
interpolation.

REFERENCES

[1] http://www.babylon.com/.

[2] X. Wang, L. Huang, and C. Liu, “A video text location method
based on background classification,” Int. Jour. on Document
Analysis and Recognition, vol. 13, no. 3, pp. 187–207, Sep.
2010.

[3] http://en.wikipedia.org/wiki/Phishing.

[4] V. I. Levenshtein, “Binary codes capable of correcting dele-
tions, insertions and reversals,” Soviet Physics Doklady,
vol. 10, no. 8, pp. 707–710, 1966.

[5] S. Wachenfeld, H.-U. Klein, and X. Jiang, “Recognition of
screen-rendered text,” in Proceedings of the 18th Interna-
tional Conference on Pattern Recognition, vol. 02, 2006, pp.
1086–1089.

[6] T. M. Breuel, “Segmentation of handprinted letter strings
using a dynamic programming algorithm,” in International
Conference on Document Analysis and Recognition, vol. 02,
2001.

[7] S. Wachenfeld, H.-U. Klein, and X. Jiang, “Annotated
databases for the recognition of screen-rendered text,” in Pro-
ceedings of the Ninth International Conference on Document
Analysis and Recognition, vol. 02, 2007, pp. 272–276.

[8] F. Einsele, R. Ingold, and J. Hennebert, “A HMM-based ap-
proach to recognize ultra low resolution anti-aliased words,”
in Proceedings of the 2nd international conference on Pattern
recognition and machine intelligence, 2007, pp. 511–518.

[9] ——, “A language-independent, open-vocabulary system
based on HMMs for recognition of ultra low resolution
words,” in Proceedings of the 2008 ACM symposium on
Applied computing, 2008, pp. 429–433.

[10] C. Jacobs, P. Y. Simard, P. Viola, and J. Rinker, “Text recogni-
tion of low-resolution document images,” in Proceedings of
the Eighth International Conference on Document Analysis
and Recognition, 2005, pp. 695–699.

[11] S. Yanadume, Y. Mekada, I. Ide, and H. Murase, “Recog-
nition of very low-resolution characters from motion images
captured by a portable digital camera,” in PCM (1), 2004, pp.
247–254.

[12] M. Krämer, “Optical character recognition using Hidden
Markov Models,” Master’s thesis, Technical University of
Kaiserslautern, 2007.

[13] F. Jelinek, Statistical methods for speech recognition. Cam-
bridge, MA, USA: MIT Press, 1997.

[14] I. Bazzi, R. Schwartz, and J. Makhoul, “An omnifont open-
vocabulary OCR system for English and Arabic,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 21, pp. 495–504, June 1999.

[15] U.-V. Marti and H. Bunke, Using a statistical language
model to improve the performance of an HMM-based cursive
handwriting recognition systems. River Edge, NJ, USA:
World Scientific Publishing Co., Inc., 2002, pp. 65–90.

[16] L. R. Rabiner, “Readings in speech recognition,” A. Waibel
and K.-F. Lee, Eds., 1990, ch. A tutorial on Hidden Markov
Models and selected applications in speech recognition, pp.
267–296.

[17] http://htk.eng.cam.ac.uk/.

[18] M. S. Khorsheed, “Offline recognition of omnifont Arabic
text using the HMM ToolKit (HTK),” Pattern Recogn. Lett.,
vol. 28, pp. 1563–1571, September 2007.

[19] http://www.gutenberg.org/.

[20] S. J. Young, D. Kershaw, J. Odell, D. Ollason, V. Valtchev,
and P. Woodland, The HTK Book Version 3.4. Cambridge
University Press, 2006.

[21] http://finereader.abbyy.com/.

[22] http://code.google.com/p/tesseract-ocr/.

[23] http://www.screenocr.com/.

