
diploma thesis

Extending Hierarchical Temporal Memory
for Sequence Classification

Klaus Greff

Technische Universität Kaiserslautern
AG Wissensbasierte Systeme

Prof. Dr. Prof. h.c. Andreas Dengel

Dr.Gunnar Aastrand Grimnes

Diploma thesis at the
AG Wissensbasierte Systeme

Technische Universität Kaiserslautern
Fachbereich Informatik

Klaus Greff
Extending Hierarchical Temporal Memory

for Sequence Classification

Supervisors
Prof. Dr. Prof. h.c. Andreas Dengel

Dr.Gunnar Aastrand Grimnes

Eidesstattliche Erklärung
Ich versichere hiermit, dass ich die vorliegende Diplomarbeit mit dem Thema “Extending

Hierarchical Temporal Memory for Sequence Classification” selbstständig verfasst und
keine anderen als die angegebenen Hilfsmittel benutzt habe. Die Stellen, die anderen
Werken dem Wortlaut oder dem Sinn nach entnommen wurden, habe ich durch die Angabe
der Quellen, auch der benutzten Sekundärliteratur, als Entlehnung kenntlich gemacht.

Kaiserslautern, 10. November 2010

Contents

1. Introduction 1

2. Hierarchical Temporal Memory 3
2.1. Overview . 3
2.2. Structure . 3
2.3. Training and Inference . 4
2.4. Nodes . 4
2.5. Problems Related to Sequence Learning 7

3. State of Art 8
3.1. HTM Related Work . 8
3.2. Hidden Markov Models . 10
3.3. Conditional Random Fields . 10
3.4. Neural Networks . 11

4. Hierarchical Learning 12
4.1. Premises . 12
4.2. Building up a Temporal Hierarchy . 14
4.3. Temporal Grouping . 16
4.4. Prediction . 18
4.5. Feed-Forward Data . 21
4.6. Feedback . 23
4.7. Unfolding . 25
4.8. Putting it All Together . 28

5. Implementation 30
5.1. Basic Architecture . 30
5.2. Network . 31
5.3. Batches . 34
5.4. HTM Implementation . 36
5.5. Extensions . 38
5.6. Graphical User Interface . 40

I

6. Results 42
6.1. Artificial Hierarchical Data . 42
6.2. NuPIC Results . 45
6.3. Predictions . 46
6.4. Top-Node Classification . 53
6.5. Classification through Reconstruction . 56
6.6. Comparison . 59

7. Conclusion and Perspective 67

A. Algorithms 69
A.1. Original HTM . 69
A.2. Improved Algorithms . 72

B. Nomenclature 77

Bibliography 79

II

List of Figures

1.1. Hierarchical structure within music. W. A. Mozart: “Eine kleine Nacht-
musik”. 2

2.1. Simple HTM network and a schematic drawing of a node. 4
2.2. Spatial pooling example for a 2-dimensional problem space. 5
2.3. Simple temporal pooling example. 6

4.1. Comparison of the structure of a Numenta node and the one we develop in
this thesis. 13

4.2. Overview of the building process of a temporal hierarchy and the associated
notation. 15

4.3. Schematic visualization of the division of time. 16
4.4. Average prediction entropy over all possible sub-sequences. 17
4.5. The prediction-entropy for an artificial data set consisting of the letters

A,B, and C. 18
4.6. Comparison of the different prediction-approaches under uncertainty. . . . 20
4.7. Feed-forward data example with a Markov-order bound of 3. 22
4.8. Extract from a simple network to illustrate the two kinds of feedback. . . 23
4.9. Example for the unfolding process. 26
4.10. Schematic overview of the operations of the modified spatial pooler node

and the new sequencer node. 27

5.1. Simplified part of the UML diagram showing the Network class. 31
5.2. Simplified part of the UML diagram showing the AbstractNode class. . . 32
5.3. Simplified part of the UML diagram showing the Sensor class. 33
5.4. Simplified part of the UML diagram showing the AbstractEffector class. 34
5.5. Simplified part of the UML diagram showing the Batch and the Setting

class. 35
5.6. Screenshot of the graphical user interface. 41

6.1. The NuPIC network with two layers used for the experiments. The sequence
is shown as a string of As,Bs and Cs at the bottom. 45

6.2. Results for NuPIC network from figure 6.1 on page 45. 47
6.3. More results for NuPIC network from figure 6.1. 48
6.4. Probability density function for the noisy ABC data. 49
6.5. Average log-loss of the prediction utilizing different orders for the VOMM

predictor. 50

III

6.6. Average log-loss of the coincidence-distribution calculated by the spatial
pooler. 51

6.7. Three-layered network used for measuring the effect of multiple layers upon
prediction. 51

6.8. Effect of multiple layers of predictors on the log-loss of the prediction. . . 52
6.9. Comparison of training with clean and with noisy data for a three-layered

network with k = 3. 53
6.10. Conceptual visualization of classification using a top node. 54
6.11. Classification accuracies for the 3364 data set using a network with one,

two, and three layers and a supervised mapper on top. 55
6.12. Results for the unfolding approach. In both cases a one-layer network with

a Markov-order of 3 is used. 57
6.13. Results for the unfolding approach. In both cases a one-layer network with

a Markov-order of 2 is used. 58
6.14. Results for our data sets using Conditional Random Fields. 60
6.15. Results for our data sets using Conditional Random Fields continued. . . 61
6.16. Results for our data sets using Hidden Markov Models. 62
6.17. Results for our data sets using Hidden Markov Models continued. 63

B.1. Overview over the used notation. 78

IV

List of Tables and Algorithms

Tables

6.1. Overview comparing the NuPIC Results to those created by a network
with one, two and three layers and a supervised mapper on top. 64

6.2. Overview comparing the NuPIC Results to those created by a network
with one, two and three layers unfolding the class-labels. 65

6.3. Comparison of one representative per method. 66

Algorithms

A.1. BottomSpatialPooler training . 69
A.2. BottomSpatialPooler inference . 69
A.3. MidSpatialPoolerNode preprocessing for training 70
A.4. MidSpatialPoolerNode inference . 70
A.5. TemporalPoolerNode training . 70
A.6. TemporalPoolerNode temporal grouping . 71
A.7. TemporalPoolerNode connectivity . 71
A.8. TemporalPoolerNode inference . 71
A.9. SupervisedMapperNode training . 72
A.10.SupervisedMapperNode inference . 72
A.11.QSpatialPoolerNode prepareFeedback . 72
A.12.QSpatialPoolerNode split . 73
A.13.QSpatialPoolerNode unfold . 73
A.14.QSequencerNode train . 73
A.15.QSequencerNode switchToInference . 74
A.16.QSequencerNode prepareFeedForwardData 75
A.17.QSequencerNode prepareFeedback . 75
A.18.QSequencerNode unfold . 76

V

VI

1. Introduction

This thesis tackles the problem of sequence learning using Hierarchical Temporal Memory
as a first step towards a framework for combined temoral and spatial inference. Sequence
learning is a crucial part of intelligence. Sun [2001] even considered it “the most prevalent
form of human and animal learning”. There are many applications where sequences are the
pivotal elements including natural language processing, speech recognition, video analysis,
planning, robotics, adaptive controls, time series prediction, finance, DNA sequencing,
compression and many more. A large variety of methods deal with all the different forms of
sequence learning. They include time-series analysis, regression, compression, grammars,
symbolic planning, hidden Markov models, conditional random fields, recurrent neural
networks et cetera.
However, in most real world applications, the temporal component is not the only

dimension of the problem. Often, there is also a spatial1 problem to solve, like object
recognition in the case of video analysis or identifying phonemes for speech recognition.
While classification of spatial patterns is well studied, the combination of both, spatial
and temporal classification, is not. In most cases, they are performed separately, i.e. first
do the spatial classification and then do sequence learning on those classes. Well known
examples are hidden Markov models and conditional random fields. Only few methods
exist that combine both spatial and temporal learning in a very tight way (e.g. recurrent
neural networks do this).
The problem is that useful information is lost due to this separation. Temporal

classification could support spatial classification at various levels of abstraction. For
example, to filter background noise or to track multiple objects and predict their mutual
occlusion. Sequence learning enables the powerful ability to make predictions, which
could be applied to verify the interpretation and to disambiguate input. This is, up to a
certain point, also true for a simple concatenation of spatial and then temporal learning,
but it would be much stronger for a real joint inference. Therefore, it is an important
issue to figure out how to tightly combine both methods.

Hierarchical Temporal Memory (HTM) possibly offers a solution for this joint inference.
It is a quite new technology (2008) inspired by the human cortex to do (spatial) classifi-
cation. They have shown some promising results including CAPTCHA recognition [Hall
and Poplin, 2007], content-based image retrieval [Bobier and Wirth, 2008] and spoken
digit recognition [van Doremalen and Boves, 2008].

What is interesting about it is that although it is designed to do spatial classification,
it uses the temporal structure of the training data. The idea can roughly be summa-
rized as “observations that are close to each other in time are likely to belong to the
same cause/object”. This is used to build invariant representations at different levels
1In this case, spatial refers to the problem space as a generic term for all dimensions but time. They do
not necessarily have to refer to space.

1

1. Introduction

� �
� � � � � � �� � � � � � � �� � � � � � � �� ��� � � �

� �� ��� � � �

a f g

A CB A
b c d a b e e

Figure 1.1.: Hierarchical structure within music. W. A. Mozart: “Eine kleine Nachtmusik”.

of abstraction within their hierarchical structure. Thereby HTMs utilize yet another
advantage of the connection between spatial and temporal structure. However, when it
comes to classification HTMs discard all the temporal information. So, once the training
is completed, inference relies on spatial information only2. At this point, there is obviously
room for improvement.

The goal of this thesis is to explore the possibilities of combining spatial and temporal
learning by extending Hierarchical Temporal Memory. We will adopt the assumption of
hierarchically structured data, which allows HTMs to have the main classification task
split up into a set of smaller tasks at different levels of abstraction. This allows moving the
separation of spatial and temporal learning to a much smaller scale, so their cooperation
can be much closer. Another advantage of this approach is that we can potentially re-use
any existing algorithms that have been developed for sequence learning and for spatial
classification because we still separate those tasks.
Implicit in approach is the assumption that the data is structured hierarchically in

both, space and time. Otherwise, the described way of splitting will not work. But we
believe that this hierarchical structure is inherent in a wide range of real data. Temporal
hierarchies can be found for example in speech which decomposes in phonemes, syllables,
morphemes, words and sentences, music that can be divided into themes, periods, phrases
and motifs (see also figure 1.1) and movies which consist of frames, shots, scenes and
parts. Spatial hierarchies are even more obviously found: A car consists of a chassis,
wheels, doors and an engine, which consists of cylinders, spark plugs, valves and so forth.
A piece of music often contains different instruments and sometimes one or more voices.
A typical dinner consists of an appetizer, a main course and a dessert, etc..

Considering these examples, we expect the required structure to be inherent in many
interesting real world problems. Therefore a framework that provides a close cooperation
between spatial and temporal learning will probably significantly improve performance
on complicated problems like video analysis or speech recognition with high background
noise. In general, this method could help to tackle very difficult problems that have not
been solved yet.
In this thesis, we extend the theoretical framework of HTMs enabling them to do

sequence classification. The improved framework is implemented and used to evaluate
the algorithms on artificial data. We show this approach to be a viable first step towards
a joint inference.

2There is in fact an attempt to utilize temporal information which is called Time-Based-Inference (TBI).
But it is quite limited and not well documented.

2

2. Hierarchical Temporal Memory

In this chapter, we give a brief introduction to Hierarchical Temporal Memory (HTM)
because understanding its basic concepts is crucial for the rest of the thesis. We will
also discuss its problems related to sequence learning. However, we will concentrate on
the basics. For a further more in-depth discussion of the algorithms, refer to Numenta’s
official documentation [George and Jaros, 2007] and the PhD thesis of George [2008].
The algorithms are based upon the ideas of the Memory Prediction Framework which is
presented by Hawkins and Blakeslee [2005]. The basic concepts are explained by Hawkins
and George [2006]. See Numenta [2007b] for a comparison to existing machine learning
techniques like neural networks and Bayesian networks.
Note that this thesis builds upon the first generation algorithms as in the Numenta

Platform for Intelligent Computing (NuPIC) version 1.5. This release was the last to come
with a comprehensive documentation of algorithms. Changes done in the releases 1.6
and 1.7 as well as the Fixed Density Representation algorithms that Numenta scheduled
for the 2011 are not considered here. For a detailed description of all algorithms and
parameters, refer to the documentation that was included in NuPIC 1.5 release [Numenta,
2007a].

2.1. Overview

HTMs act as a classifier that can be trained in an either supervised or unsupervised
manner. During training, it requires a temporally structured stream of input data while
inference is done independently for every frame. A hierarchical structuring of the data in
both, space and time, is crucial for the algorithm to succeed (see Numenta [2007c] for
more details).

2.2. Structure

A HTM network is organized as a tree-shaped hierarchy. Although uncommon, multiple
parents per node are allowed, therefore letting the receptive fields of the parents overlap
(see for example node N14 in figure 2.1 on the next page). The input data is distributed
amongst the leaves of the tree. Each node then runs some computation on this data and
passes its results upwards to its parent. This process repeats until the information reaches
the top of the tree. The root is also called classifier node because it will output the result
of the inference and also, it receives the categorical information during the process of
supervised learning.

3

2. Hierarchical Temporal Memory

Figure 2.1.: Simple HTM network (left) and a schematic drawing of a node (right) and
its internals. Note that the Network contains a generation-skip (from N11 to
NC) and an overlap (N14 has two parents).

2.3. Training and Inference

Training of the network happens layer-wise. The layers are numbered starting with the
leaves as seen in figure 2.1. Once the first layer is trained, it switches into inference mode,
thus producing an output for the next layer to be trained on. This is repeated until the
classifier-node is reached.

In the unsupervised case the top-node is trained like every other node. If, on the other
hand, categorical information is available, it can also be trained in a supervised way. Note
that even in that case the classifier node is the only node to be trained in a supervised
manner.

2.4. Nodes

Each node in the hierarchy is exposed to a temporal stream of data and, independent
of its position1, performs the same two tasks: finding reoccurring spatial patterns and
common sequences of those patterns. These two operations are called spatial pooling and
temporal pooling.

2.4.1. Spatial Pooling2

During training time, the node performs a clustering of the input data to reduce the
possibly infinite number of different inputs to a small set of so-called coincidences. By
1Actually the spatial pooling algorithm differs for the leaves and the inner nodes.
2The “space” in spatial pooling refers to the problem space, which itself does not need to be spatial.

4

2.4. Nodes

maxDistance

coincidences

input data

unassignable
input

Figure 2.2.: Spatial pooling example for a 2-dimensional problem space. Three coinci-
dences are already stored with their maxDistance indicated as gray circles.
Also a new non-assignable input can be seen which will be made a new
coincidence, given that maxCoincidences is higher than 3.

doing so, it becomes feasible for the next step to find reoccurring sequences in the data
stream. This idea is implemented in two different ways: one for the leaf nodes and one
for all the others.
The leaf nodes operate as follows: For every input that, by euclidean distance, differs

more than a parameter (maxDistance) from every previously found coincidence, a new
one is made. This is repeated until a threshold (maxCoincidences) is reached (compare
algorithm A.1 on page 69).

Spatial pooling in the inner nodes happens in a slightly different way. Before comparing
or storing, the input is sparsified in the following way: The maximum value of every
output vector of each child is determined. The corresponding components are then set to
1 and all the others to 0. After that, the vectors are concatenated. Thus resulting in a
vector that contains as many 1s as the node has children while all the other components
are 0.

That approach is taken because the output vectors of each node (that is the output of
temporal pooling) is a probability distributions. Hence, in the perfectly clean noiseless
case, they would contain exactly one 1 and all the other components would be 0. There-
fore, a winner-takes-it-all procedure is a reasonable technique for noise reduction (see
algorithm A.3 on page 70).

2.4.2. Temporal Pooling

This step is based on the idea that patterns that frequently transit to one another are
likely to belong to the same “cause”. Therefore, treating them in the same way can allow

5

2. Hierarchical Temporal Memory

temporal groups
coincidences

Figure 2.3.: Simple temporal pooling example with seven coincidences that are clustered
into three temporal groups.

useful invariants to be formed. This is implemented by maintaining a transition matrix
T, with every element Tij corresponding to the number of transitions from the i-th to the
j-th coincidence. This matrix is then normalized forming a Markov chain that contains
estimated probabilities for each transition. By using this probabilities as a measure of
similarity, the coincidences are then merged using a Hierarchical Agglomerative Clustering
algorithm. The grouping continues until a pre-defined number of groups (maxGroups) is
reached. Those resulting sets of coincidences are called temporal groups.

2.4.3. Inference

During inference, every node starts by determining the distance of the new input to
every coincidence. This vector of distances is, in the second step, turned into a “belief
distribution” by calculating the probability that the input belongs to each coincidence
utilizing a Gaussian distribution (with mean 0 and σ as fixed parameter). Note that the
result is, in general, not a probability distribution because it does not necessarily sum to
one.

This vector is then used to calculate a belief distribution over all temporal groups. The
belief for a temporal group is determined by simply taking the maximum belief of all
coincidences belonging to that group. The resulting vector is then passed upwards to the
node’s parent(s).

2.4.4. Supervised Training

In case of a supervised training the temporal pooling algorithm of the classifier node is
substituted with a SupervisedMapper or a support vector machine to form groups that
match the categories best.

6

2.5. Problems Related to Sequence Learning

2.5. Problems Related to Sequence Learning

HTMs, during training, rely on the temporal structure of the data. Even so, they partially
throw this information away once the temporal groups are built. They perform their
classification task on single frames of data only, ignoring the temporal context of the
data. This is obviously harmful to any kind of sequence classification where most of the
semantics is due to the order.

So if we, in spite of that, want to classify sequences with the help of HTMs, we have to
transform the problem to a “regular” classification task. We could, for example, move a
fixed-sized window over the sequence and at every step feed all the frames within into
the network. That way, a part of the sequential context can be used to perform a purely
spatial classification task. This, however, has several drawbacks:

1. The window size imposes some restrictions upon the length of recognizable sequences.
Problems arise if sequences are so small that more than one fit into a window or if
they are so long that the window does not cover them completely.

2. The size of the window is a parameter that has to be chosen by hand and remains
fixed.

3. Because of the window-shifting over the sequence, all the bottom-layer nodes perform
basically the same task. This implies a lot of overhead due to duplication.

4. Information collected for one step is lost for the next one. Hence, classification for
the bottom level is redone several times as well as the disambiguation of input data.

5. As the window is shifted from one sequence to another, it will cover both of them
for some time, thus leading to a blurred transition.

These problems partially arise because none of the nodes maintains memory of its history
during inference. Also the temporal pooling ignores the order of its elements and therefore
possibly merges different sequences. We will need to overcome these limitations in order
to do successful sequence classification.
Another possibility would be to run a preprocessing which extracts temporal features

from the data. The success of this approach is highly dependent on the type of features
used. Therefore domain-specific knowledge is needed limiting the scope of this method.

7

3. State of Art

The following sections give a comprehensive overview of related work that considers
Hierarchical Temporal Memory. Also a brief overview of alternative well known sequence
learning algorithms is given.

3.1. HTM Related Work

Although the interest in HTMs is growing, only a few publications utilize them for sequence
learning. This might be due to the problems pointed out in section 2.5 and the fact that
all available implementations1 by default only learn to classify spatial information. Also
Numenta recommends not to use their framework for any kind of problem where “specific
timing” [Numenta, 2007c] is required. Nevertheless, as mentioned in section 2.5, there
are different approaches to still use HTMs for sequence classification tasks. Some kind of
windowing or feature extraction could be used to turn the temporal information into a
spatial representation that can be worked on with HTMs. Alternatively, the algorithms
could be modified to fit the problem. All those approaches have been tried. There are
three publications that utilize the first two techniques to overcome the limitations of the
Numenta framework:

Firstly, Schey [2008] uses HTMs for song classification. Their training data consist of 5
different MIDI songs. For testing, every song is cut into approximately 20 pieces. Those
excerpts are to be mapped back to their source by the network. Two approaches are
taken to achieve good classification accuracy. The first one tries to classify the slightly
pre-processed data directly without using any windowing or special feature extraction
techniques while the second one utilizes both. As a result, the first approach fails obtaining
less than 50% of accuracy while the second one works perfectly. However, this is not
particularly surprising since there is no noise involved and the testing data is part of the
training data. Therefore, the network does not have to do any abstraction and there is
no guarantee against overfitting.

The technique of windowing is also applied by Sassi et al. [2009] who are using HTMs to
boost the classification performance of SVMs in the field of motion capture data. A single
device that captures accelerations is attached to the chest of a human. The resulting
three-dimensional (one dimension for every axis) data is then used to tell apart different
common movements like “standing”, “walking”, “jumping” and “falling”. They use a 2-layer
HTM network which receives a three-seconds window of the data that slides over the
sequence. On top of the network, a Support Vector Machine is trained to do the actual

1There is the Numenta Platform for Intelligent computing available at http://www.numenta.com and
also an open-source project called Neocortex available at http://sourceforge.net/projects/neocortex/.

8

http://www.numenta.com
http://sourceforge.net/projects/neocortex/

3.1. HTM Related Work

classification. Thus the HTM essentially acts as a pre-processor for feature transformation.
Unlike to the previous work, this one examines in detail the effects of white noise to the
classification accuracy and HTMs are proved to be slightly improving the performance of
a SVM in the case of noisy data.
The work of van Doremalen and Boves [2008] utilizes a set of features calculated by

the Auditory Toolbox [Slaney, 1993] that encode the temporal information. That way,
they were able to have an HTM produce reasonable results on spoken digit recognition.

While these three cited publications modified the data (feature extraction) or the way
the data was read (windowing), there are also two groups that directly changed the HTM
algorithms to better suit the task of sequence classification. The first one is Rozado et al.
[2010] which studies the capabilities of HTMs to recognize signs from the Australian
sign language. The different gestures were recorded using a data-glove that records both,
the position of the hands as well as the position of the fingers. However, many of those
signs share the same or at least very similar positions and the major difference between
them is encoded in the order. To capture this temporal structure, they placed a modified
node on top of their network. The behavior of this node is changed to store sequences
during training instead of building temporal groups that disregard order. To decide
which sequence is active, a variant of the Levenshtein distance is used as a metric. This
modification basically utilizes an ordinary HTM network as a means to recognize the
different poses, processing sequential information only on top of that. However for the case
of the Australian sign language, this approach worked out quite well, yielding accuracies
of over 90 %.
Maxwell et al. gave the algorithms a more general overhaul. By now, they have two

publications [Maxwell et al., 2009a,b] and a third one [Maxwell et al., 2010] to come,
dealing with their Hierarchical Sequential Memory for Music (HSMM). Although the
focus of their system is sequence generation, in contrast to classification, the work is of
particular interest for this thesis. Since most of the learning in HTMs happens in an
unsupervised fashion, modeling the training data in a way that allows generation is also
half the work for any classification task2.

The modifications applied to the HTM algorithms are substantial. Briefly summarized,
the temporal pooler of each node is substituted with a so-called sequencer which is able to
extract reoccurring sequences from the training data and to match them with perceived
sequences. Thereby, it is, in contrast to the Numenta temporal pooler, strictly keeping
the sequential information. The whole setup is also enhanced by adding a feedback
mechanism, thus allowing the network to generate low-level patterns from more abstract
patterns at the higher levels. Furthermore, the execution policy is changed so that a node
is only activated upon change, in contrast to activating every node at every time-step.
The new system is trained with pitch, velocity and rhythmic information extracted

from a set of classical music MIDI files. The HSMM thereby builds up a model of that
kind of music enabling it to generate similar melodies. Note that the network does not do
any classification. It just tries to complete fragmentary melodies or to generate new ones.
Therefore evaluation is difficult. In this case the authors personally judged the quality of

2For more details on this, refer to section 6.5 on page 56.

9

3. State of Art

the created sequences lacking objective criteria. Though, according to their expertise3,
the results are promising.
In summary, these are all steps towards sequence classification with HTMs. But as

the results show, the field is still in its infancy. The major problem of HTMs with this
subject is to disregard the temporal order during inference. This problem has hardly been
tackled. The work of Maxwell et al. is outstanding in this regard, but does not provide
any classification capabilities.

3.2. Hidden Markov Models

Hidden Markov Models (HMM) are a popular model for sequence classification. They are
used as a basis for many commercial speech recognition systems and have been successfully
applied to problems from the sector of bio-informatics, visual recognition, finance and
many others. Only recently have they been replaced by Conditional Random Fields in
some of those applications.

A hidden Markov model consists of a finite set of states. The system transitions from
one state to another in a stochastic manner and upon entering any state, a symbol is
emitted, also stochastically, according to a probability distribution that is dependent
on the entered state. The states themselves are not observed, neither at training nor
at testing time. They correspond to the desired class labels. The emitted symbols, on
the other hand, are always observed. Common tasks related to HMMs involve decoding,
i.e. which state-sequence is most likely given the observed symbols and therefore which
sequence of class labels corresponds to the data. In the terminology of this thesis decoding
would be inference. Another common task is parameter estimation, i.e. which state
transition and symbol observation probabilities best match the training sequence. Again
in terms of this thesis, this would correspond to training. For a more in-depth discussion
of HMMs see Rabiner and Juang [1986].
While HMMs are proven effective for many real-world problems, they also have some

limitations (compare Kadous [2002] pages 40ff.). For this thesis, the most important
restriction is that they can deal only with a single random variable. Even worse, hidden
Markov models make strong independence assumptions about the distribution of that
variable. Therefore, HMMs are not easily applicable to complex data such as video for
example. This problem is one of the main motivations for this thesis.

3.3. Conditional Random Fields

Conditional Random Fields(CRF) can be viewed as a generalization of logistic regression
to sequentially structured data [Sutton and McCallum, 2007]. They are a discriminative
instead of a generative model which means that they do not model the joint distribution
P (x,y) of their input data x and the class labels y but instead they only model the
conditional probability P (x|y). One important implication of this is, that a discriminative

3James B. Maxwell is a composer and Arne Eigenfeldt is a Doctor of Music

10

3.4. Neural Networks

model does not include a model of P (x). This is not needed for classification because
x is given at both training and testing time. So CRFs need no assumptions about the
input data at all and do only restrict the distribution of the class labels y. In the case of
Linear-chain CRFs, this assumption is that each yi only depends on the corresponding
data xi and the past label yi−1.
The major advantage of Conditional Random Fields in comparison to hidden Markov

models is that they can be applied to a much broader range of data. This is due to
two facts: One, CRFs do not make any assumptions about the distribution of the input
data and two, they utilize a set of feature functions as an interface to the data. The
number of feature functions is fixed, so the size or even the type of the input data can
vary. This makes CRFs very versatile. They have been successfully applied to a wide
range of sequence classification problems including bio-informatics, medicine and intrusion
detection [Liu et al., 2005, Chieu et al., 2006, Gupta et al., 2007]. For a good introduction
see Sutton and McCallum [2007] or Klinger and Tomanek [2007].

3.4. Neural Networks

Neural Networks are a well known technique for classification tasks in general [Zhang,
2002]. However, classic feed forward neural networks such as the Perceptron are stateless,
and therefore they are not directly applicable to temporal classification tasks. However
there is the class of Recurrent Neural Networks(RNN) that seeks to remedy this problem.
Yet, the training of RNNs is more difficult than of feed-forward neural networks but

different algorithms have been developed to solve those problems. Unfortunately, they can
usually only be applied to pre-segmented data in order to produce a series of class labels.
Recently Graves et al. [2006] showed how to overcome these difficulties and to use RNNs
for labeling of unsegmented sequences. They have shown their system to out-perform
different setups of HMMs on the well-known TIMIT corpus4. A main advantage of this
approach is that it combines the spatial classification capabilities of neural networks with
a temporal component. Unfortunately, those algorithms are not easily available so it is
intractable for us to set it up for comparison.

4http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1

11

http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1

4. Hierarchical Learning

The main contribution of this work is to integrate a sequence learning-approach into the
hierarchical structure used by HTMs. In this chapter, the main ideas that precede the
implementation will be developed. We start by summarizing the constraints of our task.
Next, the process of learning a hierarchical representation of the sequence is described
and possible problems are identified. Subsequently, we work out the individual steps of
that procedure. We close this chapter by summarizing the completed algorithm. The
final implementation including all the little details is postponed to the next chapter.

4.1. Premises

This section summarizes the pre-conditions that go with the task of sequence classification,
the ones needed by Hierarchical Temporal Memory and finally, the assumptions we make
about the data.

4.1.1. Sequence Classification

Informally, the task of sequence classification we want to deal with is to partition the
sequence into parts and to assign a category to each of them. Kadous [2002] called
this “strong temporal classification”. Considering speech recognition, the parts could be
phonemes, syllables, morphemes, words or even whole sentences depending on the desired
granularity of classification. In the context of text processing, a common task would be
to decide for each word (or group of words), whether it represents the name of a person,
an institution, a place or something else. There are many other examples reaching from
biology [Liu et al., 2005] to intrusion detection [Gupta et al., 2007].
To formalize the problem, we use the observation that partitioning the data and

assigning a category to each block is the same as assigning a category to every symbol of
the sequence. The partitions are then built indirectly as continuous sub-sequences sharing
the same category label. So for a sequence s with elements si ∈ Σ and category labels
cj ∈ N we can therefore define a sequence classifier as a function f which maps every
given sequence over an alphabet Σ to a category sequence of the same length. Thus:

f : Σ∗ → N∗, with |s| = |f(s)|

Resulting in for example:

s =
f(s) =

s1 s2 s3
c1 c1 c1︸ ︷︷ ︸

s4 s5
c2 c2︸ ︷︷ ︸

s6 s7 s8 s9
c3 c3 c3 c3︸ ︷︷ ︸

. . .

. . .

12

4.1. Premises

Numenta this thesis

Spatial
Pooler

Temporal
Pooler

Sequencer

Spatial
Pooler*

Figure 4.1.: Comparison of the structure of a Numenta node and the one we develop in
this thesis.

Note that we cannot define the classifier as an open-looped one, i.e. one that outputs a
category every time it receives a new symbol. If we did, we would force it to name the
appropriate category as soon as it sees the first symbol. Thinking of an example like
speech recognition, this would mean to know the correct word right after hearing the very
first sound. This is obviously much more difficult than assigning a category afterwards.

4.1.2. HTM Framework

We want to maintain the ability of HTMs to build up a spatial hierarchical model of the
training data. Hence, we keep the spatial pooler, the hierarchical topology of the network
and the layer-wise bottom-up manner of training. Regarding the changes, we split the
nodes, the temporal pooler will be replaced and we add a feedback mechanism.
The spatial pooling algorithm together with the hierarchical structure of the network

are crucial for the learning process. They are used to mirror the spatial hierarchy in
the data and model it accordingly. We also keep the general infrastructure. That is,
input data is fed to the bottom layer nodes which perform their computation and pass
the results upwards to their parents and so on. The unsupervised bottom-up manner of
training is tied to the spatial pooler and the infrastructure. Thus, we adopt the Numenta
fashion of training, too. Finally, we take over the idea of a common algorithm for all
nodes1. Thus, all the nodes will perform both, spatial and temporal learning tasks.
These concepts we take over build a framework for all the changes we discuss in this

chapter. It will be helpful to keep this in mind while keep on reading. Figure 4.1 highlights
the modifications that will be done. We can see the main change is a substitution of
the temporal pooler with a new component called sequencer. We also decided to split
the node up. Furthermore, we add a feedback mechanism and (because of that) slightly
adjust the behavior of the spatial pooler.
1This idea plays a major role in the Memory Prediction Framework, which is the foundation of Hierarchical
Temporal Memory. However, the Numenta implementation is flawed in this respect. In the supervised
case, the top-node performs a separate task. Furthermore does the behavior of the bottom spatial
poolers differ from those of the others. Nonetheless will we adopt this idea.

13

4. Hierarchical Learning

4.1.3. Assumptions on Data Structure

Both, the sequence learning task and the HTM framework make assumptions about the
structure of the data. Therefore, as we plan to combine both of them, we implicitly make
those, too. Obviously the most important one is, the data having sequential nature with
semantics inherent to the order of the frames within that sequence. Single sounds, out of
any spoken language for example, carry only very few information about the text that is
articulated. Even if all the sounds are given in a random order, they are nearly useless.
Therefore it is clear that a major part of the semantics of speech is encoded through the
order of the data frames.
Two more complex assumptions are made by the HTM framework. These are the

hierarchical structure of both, space and time. Roughly summarized, this means that the
patterns within the problem space can be split into a hierarchy of “sub-patterns”. Analo-
gously for time, the sequences consist of a hierarchy of sub-sequences. The individual parts
are characterized by an increased auto correlation. Both concepts are explained in detail
by Hawkins and George [2006]. Although undocumented, there is another assumption
Numenta’s approach requires: Considering the random Variable Xt representing the input
data frame at time t and the hidden variable Y t representing the corresponding pattern
(or coincidence to use Numenta’s nomenclature) the following holds:

P (Y t|Y t−1, Y t−2, . . . , Y 1, Xt, Xt−1, Xt−2, . . . , X1) = Pr(Y t|Y t−1, Y t−2, . . . , Y 1, Xt).

This means that the current coincidence depends only on the history of coincidences and
the current frame but not directly on previous data frames.
Let us further assume that the borders of the desired category partitions coincide

with the borders of some of the hierarchy components. So consider again the language
example split into words and syllables. Then, the classes to learn would refer to groups of
words and/or syllables but not to anything else. So for example classifying double-letters
would not be feasible while part of speech classification would. We believe that this is a
reasonable assumption and it will help us to use the hierarchical structure to perform
classification.

4.2. Building up a Temporal Hierarchy

Let us now investigate the process of building a temporal hierarchy2. As we train in a
bottom-up fashion, we start with the input data, split into frames along the time axis.
We then group those into sequences that are then recursively grouped into sequences of
sequences and so on. A schematic overview including the most important terminology can
be seen in 4.2. To start in a simple way, we consider only one-dimensional data. Later on,
we will extend that concept to higher dimensional data.

2What we mean by temporal hierarchy is really a hierarchical representation of the temporal structure
of the data. But for the sake of readability, we will simply refer to it as temporal hierarchy.

14

4.2. Building up a Temporal Hierarchy

input data

layer 1

time

groupings

layer 2

transition between
two layer 2 sequences

layer 3

sequence

sequence

frames

subsequences of

Figure 4.2.: Overview of the building process of a temporal hierarchy and the associated
notation.

Considering for example speech recognition, would mean to group the audio-signal into
phonemes that can then be grouped into syllables, words, sentences, and so forth.

The period of time represented by those groups grows as we ascend within the hierarchy
and thus those groups also change less frequently. Consider for example the word
“Singapore”: The phonemes change quickly as it has nine different letters. But there
are only three syllables and it is only one word. So the highest level concept does not
change at all while the concepts of the lower levels may change quickly. Numenta calls
this process “coalescing of time”, Hawkins and George [2006].
Note that this procedure can only produce an efficient representation of the data if

the shorter sequences can often be reused in different contexts. If we built a hierarchy
on top of pure random data, we would find every possible sequence of a given length.
Also, the next layer could find every possible combination of those sequences within the
data and so on. Saving all of them is not more effective than storing the sequence as a
whole. But if the assumption of a temporal hierarchical structure of the data holds, we
will find only a few different sequences per layer that occur over and over again. This
way we are able to reduce the complexity of the data at every layer of abstraction. This
can furthermore improve the ability for generalization. For more details refer to Hawkins
and George [2006].
To make the finished temporal hierarchy effective, a few conditions must be met:

1. The grouping must be (easily) computable.
This is an obvious restriction since every node must be able to complete its task.
Otherwise the whole procedure fails.

2. On average, each group has to consist of more than one frame/sub-sequence.
This ensures that a coalescing of time takes place.

15

4. Hierarchical Learning

time

space

k
time

space

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod

a) b)

c)

Figure 4.3.: Schematic visualization of the division of time in equal-sized partitions (a),
dynamically depending on the data (b) and with a concrete text example (c).

3. Groups should not “hide” higher level transitions.
This is a guideline to avoid inefficient representation at the higher layers. Consider
two frames that get grouped together even though they belong to different groups
at some higher level of abstraction in the hierarchical structure of the data. Then
the groups of that layer cannot be built properly because the necessary transition
has been “hidden” by the lower layers.

4. Remain invariant against temporal translation.
Invariance with respect to temporal translation is a property of almost every time-
dependent task. It simply means that the absolute starting time of a sequence does
not affect its semantics. Note that we only refer to the absolute position in time,
not to relative translations of sequences as this obviously can change the meaning,
at least for some higher level concept.

To sum up, we have explained the concept of a temporal hierarchy and discussed some of
the pitfalls when trying to build one.

4.3. Temporal Grouping

From the perspective of a single node, the problem reduces to a stream of coincidences3

which is to be grouped into sequences according to the guidelines given in the last section.
We refer to this task as temporal grouping. In this section, we will study how this task
can be solved.

3Coincidences are found by the spatial pooler. Each coincidence can either represent a frame or a
sub-sequence found by a child node. But in the end this distinction doesn’t matter for the task the
node has to perform.

16

4.3. Temporal Grouping

1 4 7 10 13 16 19 22 25 28
0.0

0.2

0.4

0.6

0.8

1.0

p
re

d
ic

ti
o
n
 e

n
tr

o
p
y

Order 1
Order 2
Order 3

Figure 4.4.: Average prediction entropy using a k-th order Markov Model for a sequence
composed of three different sub-sequences over an alphabet size of 3. The
average is formed by all possible sub-sequences.

The first and most simple idea we could think of is to pack the coincidences into equally
sized sequences (compare figure 4.3a). That way, the grouping would be easily computable
and we can guarantee that on average each group consists of more than one coincidence.
So the first two conditions from section 4.2 are met. On the other hand, transitions
between blocks are almost randomly hidden (such as for example the word transitions
in figure 4.3c). Even worse, it is not invariant with respect to temporal translations. So
this procedure is not an option at all. It also becomes clear that any data-independent
partitioning will suffer from these two problems. Hence, we need to adjust the grouping
dynamically to the actual data (see figure 4.3b for illustration).
To solve these problems, we adopt the concept of statistical segmentation of Golcher

[2006]. Roughly, the idea is to suspect a group transition every time the predictability of
the next coincidence is low. To understand this approach, we have to study the impact
the temporal hierarchical structure has upon the predictability.
We have already seen, that small sequences that occur often in different contexts are

building blocks of such a hierarchy. That in mind, we will consider the conditional
probability for a symbol given a small context of k symbols before. That is a k-th order
Markov Model used for prediction of the next symbol. What we notice is that on average
the prediction is much stronger for a symbol in the end of a block than for a symbol at
the beginning. Intuitively this is clearn because each block occurs several times. If we are
therefore able to recognize such a block using the k-symbol context, then guessing the
next coincidence will be easy until the end of that sequence. Once it ends though, we
might have trouble predicting the next sequence being limited to such a small scope. We
will not prove this correlation here but figure 4.4 shows some empirical evidence. We can
see that the entropy is the highest for the first symbol of every block. Also the difference
increases with the order of the Markov model.

As a measure of “predictability”, consider the entropy H of a discrete random variable
Y with possible values {y1, y2, . . . , yn}:

H(Y) :=
n∑
i=1

P (yi) ∗ log2(P (yi)).

Entropy is commonly used as a measure of uncertainty. We can normalize it by using
the logarithm with base n instead of 2, thus making it reach from 0 to 1. The closer

17

4. Hierarchical Learning

ABCBBACACBBABBAABCCACABCCAC
p

re
d

ic
ti

o
n

en
tr

o
p

y
...

Figure 4.5.: The prediction-entropy for an artificial data set consisting of the letters A,B,
and C. Those are arranged in a hierarchical way to appear only in the groups
ABC, BBA, and CAC. The plot shows the entropy of a prediction with a context
length of 3 and the entropy-induced separation in groups.

to 1 the entropy is the less information we have about the next coincidence. An entropy
of 1 corresponds to the equal distribution over all possible values. On the other hand,
the more the entropy approaches 0, the stronger is the prediction, reaching 0 only if the
probability for any symbol is exactly 1.

Following our thoughts from above, we conclude that a coincidence with a high entropy
is likely to be the onset of a new group. Therefore, it is a reasonable choice to partition
the input data according to the entropy, starting a new group every time the entropy
passes a certain threshold. The coincidence whose prediction-entropy was high becomes
the first symbol in the new group (compare figure 4.5). Note that the order of the
Markov-predictor does not correspond to the length of the groups. The groups may be
much longer than the order if the symbols within are easily predictable using only a
context of k symbols. Likewise shorter sequences are possible.

4.4. Prediction

As we have seen, prediction plays an important role for the process of temporal grouping.
This section explains which assumptions are needed to make appropriate predictions,
what algorithms we use to calculate them, how to deal with uncertainties in the input
data and, finally, how they can be used in addition to the temporal grouping.

4.4.1. Assumptions

The most important question when dealing with predictions is which assumptions to
make. Because without assumptions, no future values can be foretold. In our case
two assumptions are made: First, the sequence is discrete taking only values that also
appeared in the training-data. Second, as we have seen, some context is needed in order
to make useful predictions for the process of temporal grouping. Thus, we assume the
Markov property for a small order of 2 ≤ k ∈ N with k as a node-parameter. This means
that the value of the random variable Y t+1 at time-step t + 1 only depends on the k
values before. Thus:

P (Y t+1|Y t, Y t−1, . . . , Y 1) = Pr(Y t+1|Y t, Y t−1, . . . , Y t−k+1).

18

4.4. Prediction

Note that none of these are new assumptions. They all derive from those discussed
in section 4.1.3 on page 14. The data is discrete and takes only known values because
the spatial pooler converts the sequential data into a sequence of coincidences. And
although the Markov property does not necessarily hold for the whole data, it certainly
does within the blocks of our hierarchy. In fact, one could say that we even make use of
the circumstance that it does not hold in between blocks to detect transitions.

4.4.2. Algorithm

The class of Markov models is well studied. It is therefore not surprising that there are
many good prediction algorithms based on those assumptions. In particular Variable
Order Markov Models(VOMM) have some prominent representatives in the field of lossless
data compression. As shown in Feder and Merhav [2002], data compression has a tight
relation to sequence prediction. Six of them are compared in Begleiter et al. [2004]
with respect to their sequence-prediction capabilities: Context Tree Weighting (CTW),
Prediction by Partial Match (PPM), Probabilistic Suffix Trees (PST), Lempel Ziv 78
(LZ78), and an Improved Lempel Ziv (LZ-MS). Because of the very good results of PPM,
we chose to utilize this algorithm for prediction.

4.4.3. Dealing with Uncertainties

The mentioned algorithms all operate on discrete sequences. Hence, they have no built-in
ability to deal with uncertainties in the input data. But the data received from the spatial
pooler is a probability distribution over coincidences and not a discrete sequence. So we
must find a way for our Prediction algorithm to deal with this fuzzy data. The correct way
would be to calculate a prediction for every possible context and average them weighted
with the probability for the associated context. Let us formalize this:

Let C = {1, 2, . . . , |C|} be the set of possible coincidences recognized by the spatial
pooler. We can then define the context c for the prediction as a k-tuple of coincidences:
c = (c0, c1, . . . , ck−1) with ci ∈ C thus c ∈ Ck. Let Xt be the random variable representing
the pattern at time step t. Let further pti = P (Xt = i) be the probability, calculated by
the spatial pooler that the coincidence at time step t is i. The probability for any context
c at time t > k follows as:

P (c) =
k−1∏
i=0

pt−ici .

The prediction function f : Ck × C → [0, 1] provided by the PPM algorithm maps a
probability to every combination of context and pattern. Thus:

f(c, i) = P̂ (Xt+1 = i|(Xt−k+1, Xt−k+2, . . . , Xt) = c).

Of course
∑

d∈C f(c, d) = 1 must always hold. The above described prediction for any
coincidence d ∈ C under uncertainty follows as:

P̂ (Xt+1 = d) =
∑
c∈Ck

[P (c) · f(c, d)] . (4.1)

19

4. Hierarchical Learning

0.0 0.5 1.0 1.5 2.0
Noise σ

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

A
ve

ra
ge

L
og

-L
os

s

guessing

Average
Weakened
Winner

Figure 4.6.: Comparison of the different prediction-approaches under uncertainty. The
“Average” line shows the results for equation 4.1, “Weakened” corresponds to
equation 4.3 and “Winner” shows the results for equation 4.2.

Now, at the latest, it becomes clear that this approach is intractable because |Ck| = |C|k.
Thus, the number of calculations quickly becomes too big to be manageable. At the other
extreme we could just ignore all the uncertainties and use only the most likely context c∗:

c∗ = arg max
c∈Ck

k−1∏
i=0

pt−ici = (arg max
c0∈C

ptc0 , arg max
c1∈C

pt−1
c1 , . . . , arg max

ck−1∈C
pt−k+1
ck−1

).

And thus:

P̂ (Xt+1 = d) = f(c∗, d). (4.2)

The calculations become very easy with this approach. Yet, experiments show that by
doing so, the predictions quickly turn very bad in the case of noisy data. The reason is
that any small error that changes the context might yield a completely wrong prediction.

20

4.5. Feed-Forward Data

A compromise between the two is to average the most likely context with the equal
distribution, thus weakening its effect on the input data. This means calculating the final
prediction as follows:

P̂ (Xt+1 = d) = P (c∗) · f(c∗, d) + (1− P (c∗)) · 1
|C|
. (4.3)

Although not as exact as equation 4.1, this approach proves to be robust against noise
while still being easy to calculate. This strategy can easily be generalized to work with
an arbitrary number of different contexts taken into account. That way the trade-off
between precision and calculation effort can be adjusted smoothly. Consider a sub-set of
all contexts C∗ ⊆ Ck. Then, analogous to equations 4.1 and 4.3, we can define:

P̂ (Xt+1 = d) =
∑
c∈C∗

[P (c) · f(c, d)] + (1−
∑
c∈C∗

P (c)) · 1
|C|
. (4.4)

The effects of the different prediction approaches are shown in figure 4.6 on the preceding
page. As we can see, all three start with an average log-loss of ≈ 0.6. But as the level of
noise increases, they become worse. The “Average” line stays consistently the best while
the “Winner”-line even exceeds the value of ≈ 1.6 which would result from pure guessing.

4.4.4. Feedback for the Spatial Pooler

So the node will try to predict the next pattern at every time step. This information can
be used to help the spatial pooler disambiguate its input in case of noisy data. This can
simply be done by multiplying the prediction with the probability distribution the spatial
pooler has calculated. The result is a combined belief using both, the spatial and the
temporal structure of the data.

4.4.5. Prediction as a Measure of Success

Using a prediction-based temporal pooling algorithm has another advantage. Since we
cannot calculate a classification accuracy in a unsupervised context, we essentially lack a
method of measuring the performance of a single node. But since it makes predictions all
of the time, we can measure its success in modeling the input data. This will help us to
study the impact of modifications and the effect of feedback.

4.5. Feed-Forward Data

In this section, we will work out the details for the feed-forward data the new node sends
to its parent. We have already seen, how the node can group its input data into sequences.
Now we want to find a way to encode these information into some vector the next layer
can use to repeat the sequencing task. So let us start by summarizing the goals:

1. The feed-forward data must be a vector of real numbers. This ensures that it can
be used by the spatial pooler of the next layer.

21

4. Hierarchical Learning

prediction
entropy

patterns

a b c d e f g

feed-
forward

groups

entropy threshold

Figure 4.7.: Feed-forward data example with a Markov-order bound of 3. We can see a
sequence of schematic patterns at the bottom formed into seven groups in
the second line. Above that, there is a plot of the corresponding prediction-
entropy and the entropy threshold. On top, we can see arrows indicating the
timing of the feed-forward message. Notice that only a maximum of three
patterns identify each group although it actually might be bigger.

2. It should be suited to discriminate all the sequences. That way, the next layer can
build up a model of how to combine those into even bigger sequences.

3. Feed-forward data should only be sent once every sequence. Otherwise, the layer
above cannot make proper use of the grouping because from its perspective every
incoming data represents a frame/sub-sequence.

4. We want to be able to encode uncertainties.

We choose a representation, similar to the one the spatial pooler and the temporal
pooler use to have one component for each group. The value of that component represents
the degree of certainty the node has about this sequence being active. After normalization,
it will be a probability distribution.

Since the groups can have common prefixes, it might be impossible to tell them apart
if they have not yet finished. So in order to give an accurate distribution we have to wait
for the very last time-step of a sequence to send information upwards. This moment can
easily be recognized by calculating the entropy of the prediction for the next symbol. If
this entropy is higher than the average, the current group ends instantly. This moment
is still early enough to ensure that the parent node has the possibility to send some
disambiguating feedback just in time. At that point, this kind of feedback is highly
welcome because the prediction is not well suited to resolve ambiguities (it has a high
entropy). An example for the feed-forward timing can be found in figure 4.7.
The final question we need to answer is: How should we compute the certainty of a

sequence being active? They can differ in length which makes comparing them difficult.
We choose to restrict calculation to the first k symbols of a sequence. The reason for
this is simply that if two groups shared a common prefix of k symbols, they would be
completely equal from the perspective of the predictor. So their predictive entropy would
be exactly the same. This also means that they would not have been regarded distinct
during grouping. Therefore, from the perspective of the sequencer, they are equal. So for
our purpose those first k symbols suffice to distinguish sequences.

22

4.6. Feedback

Sequencer

Spatial
Pooler

Sequencer Sequencer Sequencer

a)

b)

Figure 4.8.: Extract from a simple network to illustrate the two kinds of feedback. a) From
a sequencer down to its spatial pooler child and b) from a spatial pooler to
its children.

Hence, we can just multiply the probabilities for the first k symbols of the sequence to
obtain a measure α of certainty for the sequence s = s1s2 . . . :

α(s) =
k∏
i=1

pt−k+isi . (4.5)

Recall that pti denoted the probability received from the spatial pooler for coincidence
i being active at time-step t. If the length of s is less than k, the missing coincidence
probabilities are taken to be 1

|C| with C the set of all coincidences. Finally, the complete
feed forward data xt at time t follows as a normalized vector of certainties over all
sequences sj ∈ S:

xtj =
α(sj)∑|S|
i=1 α(si)

.

4.6. Feedback

As mentioned in the beginning, we want to add a feedback mechanism. Taking a look at
the structure of our network, we will discover two different types of feedback (compare
figure 4.8).

4.6.1. Sequencer to Spatial Pooler

The first kind of feedback is basically the prediction the sequencer makes about the next
frame. This prediction is a distribution over the patterns formed by the spatial pooler.

23

4. Hierarchical Learning

Therefore, they can be passed down unmodified. At the next time-step it will simply be
multiplied with the distribution the spatial pooler calculated helping to resolve potential
ambiguities.
But we can do even better than that. Every time the sequencer passes some data

upwards, its prediction will be weak. We know this because it only passes data upwards
if the entropy of the prediction is high. But we also receive feedback π (see figure B.1 on
page 78 for an overview of the notation) from the parent every time we pass data upwards.
This feedback will essentially be some prediction about the anticipated sequence starting
at the next time-step. So we can translate this into a potentially stronger prediction ψ
about the next coincidence by using the first symbols sj,1 of all sequences weighted by
the probability πj for the sequence4 :

ψi =
|S|∑
j=0

1i(sj,1) · πj .

With:

1i(j) =

{
1 , if i = j

0 , otherwise
.

So we have two cases calculating the feedback for the spatial pooler. If the entropy of
the prediction is lower than average, then the prediction is the feedback. Otherwise the
sequencer waits for the feedback of its parent and transforms it into a distribution over
coincidences. That way, we also ensure that additional layers will have influence on the
disambiguation at the bottom layer. Note, however, that their impact will be smaller the
further they are away from the bottom layer. This is because for most symbols the first
layer will make the predictions. Only occasionally, if it fails to make a good prediction,
the second layer will step in. If the second layer is to provide the prediction and it cannot
make a strong one, only then will the third layer help, and so forth. Informally one could
say that the layer above only helps out in case of doubt.

4.6.2. Spatial Pooler to Sequencers

The spatial pooler does not create feedback on its own. Its task is to translate the
feedback ψ it receives (and uses) from the sequencer into feedback π for its children. This
procedure is pretty straightforward:

π =
|C|∑
i=1

ci · ψi.

Notice that the coincidences ci are vectors, so the summation is a vector addition. Finally,
the resulting π has to be normalized and split up into appropriate chunks for every child.

4Of course the result needs to be normalized.

24

4.7. Unfolding

4.7. Unfolding

We add one more concept that we will call unfolding. The idea is to reverse the abstraction
process done by the network and to project sequences found at the top-level back to
the input-data it would correspond to. So every time the top node passes a distribution
upwards, we send it back through the network and try to reconstruct the input-data
sequence it corresponds to. Because we will only use the stored sequences and coincidences,
this will not match the real input data in general. But it will reflect the internal model
of the input data the network has. If we consider the speech recognition example again,
unfolding would turn the concept of a word (which would have an ID) back into a stream
of sounds that corresponds to that word.

Therefore, unfolding can help us to understand what happens within the network.
Furthermore, it will also allow us to perform some kind of reconstruction of missing or
noisy input data because the internal model of the network is always “clean” and complete.
So by constructing an input sequence according to that model, we will remove noise
and restore missing values. However, this procedure will only remove what the network
thinks of as noise. We can also use this approach as an alternative way of classifying: by
“reconstructing” missing class labels. We will discuss this in detail in section 6.5.

Now, we will present how unfolding works: Every node unfolds its kind of patterns that
is a sequence in case of a sequencer and a coincidence in case of a spatial pooler. The
result is a set of channels where every channel corresponds to one bottom-layer node. So
every channel contains a sequence of input-frames for that node.

For the case of spatial poolers, the unfolding of a coincidence means to take that
coincidence and split it up for all of its children. For each of the parts, the winning
pattern is determined. This corresponds to the ID of the pattern the child is then
instructed to unfold. Each of these yield a set of channels which are unioned. Together,
they correspond to the descendant bottom-layer nodes.

Likewise, a sequencer node determines the coincidences that belong to the sequence to
be unfolded. Then, it successively instructs its child to unfold each of them. The resulting
channels are concatenated, so that the number of channels stays the same but each of
them grows longer in time.

We want to compare the end result to the real input data. Therefore, we have to make
sure that it is exactly the same length as the part of input data we want to compare it
to. Unfortunately, this is not generally the case if we unfold a sequence in the described
way. Length differences can occur for example due to temporal noise in the real data.
While unfolding, we “reconstruct” a sequence with no noise and therefore might end up
with a different duration. In order to enforce the correct length, every sequencer keeps a
memory of all the time steps that it sent data upwards. That way we can tell it to unfold
sequence number i starting at frame t and it will know how long it took in the original
data and hence unfold it appropriately.

25

4. Hierarchical Learning

Spatial Pooler
1: 1
2: 2
3: 3co

in
ci

d
en

ce
s

Sequencer
1: 222
2: 111
3: 333se

q
u

en
ce

s

2 1 3

111 2 2 2 33 3

1 2 311 2 2 3 3

Spatial Pooler
1: A
2: B
3: Cco

in
ci

d
en

ce
s

Sequencer
1: 123
2: 221
3: 313se

q
u

en
ce

s

1 2 3

321 2 2 1 33 1

C B CBA B A C A

Sequencer
1: 313
2: 123
3: 221se

q
u

en
ce

s

1 2 3

2

Spatial Pooler
1: 12
2: 21
3: 33co

in
ci

d
en

ce
s

Figure 4.9.: Example for the unfolding process. We can see a network consisting of six
nodes. The top sequencer is told to unfold sequence number 2. While the
unfolding works its way down the hierarchy, we can see the sequence grow
resulting in channels of length 9 each. These two are the result of the process.
Colors and arrows help to keep track of the sources for the symbols.

26

4.7. Unfolding

feed-forward feedback

*

short-term memory

Predictor

entropy
?

low high

prediction

low high
entropy

?

Sequences

CoincidencesS
p

at
ia

l
P

o
o

le
r

S
eq

u
en

ce
r

feedback

Figure 4.10.: Schematic overview of the operations of the modified spatial pooler node and
the new sequencer node. The cyan colored boxes represent the knowledge
acquired during training. They do not change during inference. On the
contrary, the green colored boxes depict internal variables that are constantly
updated.

27

4. Hierarchical Learning

4.8. Putting it All Together

We finish this chapter by summarizing the new node algorithm as a whole. We will often
refer to figure 4.10 on the preceding page which illustrates the operations of both node
types during inference. The individual steps within that diagram are referenced using the
corresponding circled numbers (ÀÁÂÃÄÅÊËÌÍ)

4.8.1. Spatial Pooler

The spatial pooler has only been added a feedback mechanism. Other than that, it
behaves just like the Numenta one.

Training

During training, the node collects a list of coincidences. Every time the input data differs
more than maxDistance from any coincidence, it is added to the list. This is repeated
until the number of coincidences reaches maxCoincidences or the training is finished. So
far, the algorithm matches exactly the old one.

Inference

During inference, the probability of the input data x to correspond each of the stored
coincidences is calculated À. This is done using a simple mixture of Gaussian model with
means equal to the coincidences and a standard deviation of σ (the node-parameter). For
details compare algorithm A.2 on page 69.
Before that distribution is passed upwards, it is multiplied with the feedback of the

previous time-step (if any) and thereafter normalized again Á. This is sensible because the
feedback received at the last time-step represents a prediction for the current time-step.
The resulting distribution is then passed to the parent.

If feedback from the parent is received, two different things are done. First, it is saved
for the next time-step to be multiplied Ì. Second, it is translated into feedback π for
the children Í. This means calculating an average of all coincidences weighted with the
probabilities from the parental feedback ψ. Note that π is a probability distribution over
all coincidences while ψ is of the same type the input data was which is a probability
distribution for all layers but the bottom-layer.

4.8.2. Sequencer

The sequencer node replaces the Numenta temporal pooler node. There is always one
sequencer on top of every spatial pooler.

Training

The sequencer stores the whole stream of input data while it is training. Also for every
received distribution, the winning symbol (coincidence) is determined and it is used to
train a VOMM predictor. After the whole training-sequence has been received, the (now

28

4.8. Putting it All Together

trained) predictor is used to calculate a prediction and hence entropy for every frame. The
whole stream is then partitioned into sequences according to that entropy. More precisely,
a new sequence is started every time the entropy exceeds its average and it is truncated
to k symbols. Finally, duplicates are removed as well as sequences that appeared too
infrequently. So by the time the training has finished, the node has a trained VOMM
predictor and a list of common sequences.

Inference

While inferring, the node appends each incoming y to its short-term memory Â. The
short-term memory holds all the coincidence distributions since the beginning of the
current sequence5 but at least k.

After that, the winning coincidences for the most recent k distributions are determined.
They are used as a context for the Predictor to predict the next symbol and store it in the
prediction field Ã. In addition to that, the entropy of that new prediction is calculated.
If the entropy turns out to be higher than average6, the first k symbols of the current
sequence are taken from the short-term memory Ä. Then they are used to calculate a
distribution over all sequences Å. Recall that the certainty for each sequence is calculated
as the product of the probabilities for its individual symbols (compare equation 4.5 on
page 23). The resulting vector x is normalized and passed upwards as feed-forward data.

Every time feedback π is received from the parent node, it is transformed back into a
distribution over coincidences Ê. This is done by finding the average of the first symbols
of all sequences weighted with the probability for that sequence given by π. Note that π
is a distribution over all sequences while the resulting vector represents a distribution
over coincidences. But this vector is only used as feedback ψ if the entropy of the “own
prediction” is high. Otherwise, the own prediction is used for feedback Ë.

4.8.3. Execution Order

We need to make sure that the feedback from the higher layers arrives at the lower ones
in time. But every layer waits until the current sequence has finished to pass information
upwards. So in the worst case, we have the first layer pass data upwards to the second
one which also passes data upwards to the next layer and so on all the way up to the
top node. The top node, of course, cannot delegate the feedback creation at step Ë, and
hence sends its prediction as feedback downwards. But the entropy of all sequencer nodes
on the way down is high because otherwise, they would not have passed data upwards.
Therefore, all the nodes will use the transformed feedback from above as feedback. So in
summary, we have the input data travel all the way up through the hierarchy and the
feedback travel all the way back down again, all in one frame. Thus, the execution order
must be to first process the feed-forward data (steps ÀÁÂÃÄÅ) of every node and only
then process the feedback (steps ÊËÌÍ) of all the nodes in reverse order.

5Thereby each sequence begins the time-step after the last one has been passed upwards, that is every
time the entropy of the prediction for the current symbol is higher than the average.

6This is the average calculated over the training data.

29

5. Implementation

This chapter gives a brief introduction to the SeQuence Hierarchical Temporal Memory
(QHTM) implementation we have written to test the algorithms. It provides a basic
framework for HTM-like computations and it is easy extensible. The software is available
under the GPL3 license1.

5.1. Basic Architecture

The software is entirely written in Java Edition 6. It relies on the Logback framework2

for logging purposes. The configuration is realized with XML files that are read and
written using the JDom3 library. The graphical user interface is based on Swing and uses
the additional SwingX4 and dockingFrames5 libraries for non-standard components. The
code of Begleiter et al. [2004]6 for the Prediction by Partial Match algorithm is used by
the Sequencer. The SVMTopNode uses the Java version of libSVM7.
The QHTM software is designed to run a given hierarchical network of nodes under

specified conditions. Therefore, the two main parts are:

1. The network which holds all the information about the nodes, their parameters, the
sensors and the topology.

2. The batch tree which cares for the actual process of execution. Which data the
network is trained and tested on, what the accuracy was and so forth.

This modularization allows a flexible combination of networks and tests. Both, the
network and the batch tree are stored in separate XML files. The main application is only
responsible to load them. All the further setup and the computations are then carried
out by those two parts.

An important design decision for this software is to have all the features and configura-
tions accessible via XML files in order to achieve fully featured batching capabilities. The
XML files consist of a standard XML header and a root node corresponding to either the
network or the root of the batch tree. Each component can contain child tags defining
some of its parameters or sub-components. Thereby, the XML tree structure resembles
the structure of the network respectively the batch tree.
1The source-code can be downloaded here: MISSING
2http://logback.qos.ch/
3http://www.jdom.org/
4http://swinglabs.org/
5http://dock.javaforge.com/
6http://www.cs.technion.ac.il/∼ronbeg/vmm/
7http://www.csie.ntu.edu.tw/∼cjlin/libsvm/

30

http://logback.qos.ch/
http://www.jdom.org/
http://swinglabs.org/
http://dock.javaforge.com/
http://www.cs.technion.ac.il/~ronbeg/vmm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

5.2. Network

AbstractNode
Network

Sensor

1..*

sensors

getComponentByRegex(Pattern) : NamedComponent
getAccuracyRate() : double

rootNode

1

accuracyMeterName : String

Figure 5.1.: Simplified part of the UML diagram showing the Network class.

The Parameter annotation is used for fields of any component that should be treated
as parameters. Those can be set for example by the XML file or by the graphical user
interface. Internally, the fields are accessed via reflection using the annotation as a marker
to distinguish parameters from other fields. The static class ParameterAccess handles
all the getting and setting of those parameters.

The main benefits of this approach are that the XML export and import of parameters
can be automatized and that the GUI can easily provide a general interface to view and
edit the parameters of any component without further customization.

An important goal was to create a flexible framework that could be easily extended and
modified. Therefore, a general component conversion from and to XML as well as a GUI
that is able to display every custom implemented component without further adaptions
are crucial. To accomplish this, all the components are instantiated via reflection. This
makes component development painless but imposes some restrictions on the construction
of them. The most important one is that every component must have a parameter-free
constructor. Thus most of the initialization must be separated from construction.

5.2. Network

This section summarizes the structure and the concepts of the network. Its only parameter
is the so called accuracyMeterName which holds the name of the component that should
measure the accuracy. This could be a node, a sensor or an effector as long as it implements
the AccuracyMeter interface.

5.2.1. Structure

The most important purpose of the network is to organize the nodes and the sensors.
Therefore it always contains the top node and a list of all sensors. The connections
between the nodes and those connecting the sensors with the nodes are handled by the
nodes and the sensors themselves. The network component only offers an interface to
find components by name and to remove or add the top node and/or the sensors. In case

31

5. Implementation

AbstractNode

switchToInitializationState()
switchToTrainingState()
switchToInferenceState()
resetInferenceState()

train()
prepareFeedForwardData() : FeedForwardData
prepareFeedback() : Feedback

AbstractEffector
*

1...*children

parent
1MutableTreeNode

FeedForwardData

Feedback

Batch

1

*

Figure 5.2.: Simplified part of the UML diagram showing the AbstractNode class.

of the GUI, the network is enhanced to keep track of all changes amongst its components
to offer a common listener interface.

5.2.2. Message Passing

Data is read by the sensors and then passed to the bottom layer of nodes. Those, in
return, pass information up to their parents. This process is repeated until the top node
is reached. This is the way of the feed-forward data. Some nodes also generate feedback
which can be passed down to their children.

Either way, the data is always passed immediately and then stored at the target node.
This way, the information is concentrated where it is needed. Thus, the nodes can decide
by themselves when they have accumulated enough data to start processing. It will also
help to parallelize the software once it is to run on a distributed system. To ensure that
no data is being lost, every node has a queue for every child to save feed-forward data
and another queue to store feedback messages from its parent.

All the data is conveyed through an instance of either FeedForwardData or Feedback.
They contain an array of double values and a frame counter. The first one encodes the
actual data while the second one is just a timestamp. This helps the higher levels to keep
track of the current time because they might not be activated every frame.

5.2.3. Nodes

All nodes extend the AbstractNode class which provides all the basic functionality for a
node in order to work within a network. First of all, it implements the MutableTreeNode
interface which ensures that the nodes can be arranged as a tree. So every node has a list
of children and a maximum of one parent. Furthermore, it provides interfaces to send

32

5.2. Network

Sensor

SensorLink

1..*

links

startPhase()
readNextFrame() : boolean
endPhase()

capacity : int

forwardData(FeedForwardData)

Figure 5.3.: Simplified part of the UML diagram showing the Sensor class.

and receive both, feed-forward and feedback data. The AbstractNode also takes care of
the queuing of the received data. Every time it receives data, it checks if it is able to
produce feed-forward data. If it is ready, the current batch is notified and the node gets
queued up in the execution queue. In addition to that, the AbstractNode manages a list
of all attached effectors. It ensures that every effector is handed a copy of every data sent
or received by this node.

Every node can be in one of three different states: Initialization, Training and Inference.

Initialization During this state, the node is configured and placed within a network. No
processing can be done and it can only transition into training state.

Training Once all the configuration has been done, the node can be switched to
Training state. In this state the node is trained.

Inference As soon as the training is completed, the node is switched into this state.
From now on, the node is able to perform computations that yield feed-
forward data and possibly also feedback.

The transitions between the states are triggered by the batches through one of the
following three methods: switchToInitializationState(), switchToTrainingState(),
and switchToInferenceState().

With all this functionality covered by the AbstractNode, the only methods to implement,
when writing customized nodes are the train(), the prepareFeedForwardData(), and
the prepareFeedback() methods. The methods that switch from one state to another
are also commonly overridden, although they need not.

5.2.4. Sensors

Sensors provide the data that is fed into the bottom layer of the network. By now, only
file sensors, i.e. sensors that read their data from a file, are implemented. Sensors behave

33

5. Implementation

AbstractNode

AbstractEffector

*

receiveFeedbackIncome(Feedback)
receiveFeedbackOutgoing(Feedback[])
receiveFeedForwardDataIncome(FeedForwardData)
receiveFeedForwardDataOutgoing(FeedForwardData)

resetInference()
startInference()
startInitialization()
startTraining()

FeedForwardData

Feedback

Figure 5.4.: Simplified part of the UML diagram showing the AbstractEffector class.

differently from nodes because there is usually only one sensor for several nodes which
means that they break the tree structure. Thus, they are also stored as a separate part of
the network.

To connect nodes to a sensor, special adapter-nodes called SensorLink are used. Every
Sensor maintains a list of SensorLinks amongst which it distributes the data. Such a
link has an associated capacity (i.e. size of the data array to be transferred) and also
defines whether the data should be provided as feed-forward or as feedback. From the
perspective of regular nodes, the SensorLinks are normal children. If a link does not
specify a capacity, the sensor automatically determines a suitable value for it.

At the moment, the two foremost important sensors are the VectorFileSensor which
reads lines of values from a CSV file. And second, the WindowingSensor which reads files
with only one value per line. It then collects a fixed amount of those values and feeds
them as a vector into the network. After that, the first few values of that window are
dropped and replaced with the next few.

5.2.5. Effectors

An effector is meant to add some effect (whence the name) to a component. This can
be for example printing the data-flow for debugging purposes or measuring the accuracy.
In order to do this, every effector receives a copy of all data sent or received by the
component it is attached to. Additionally, if it is attached to a node it is notified whenever
the node changes its state.

5.3. Batches

Batches are, similar to the network, organized in a tree structure. Every batch can
be executed and performs some pre-defined task. After that, it will start executing
its child-batches. That means, the batch-tree is executed in a preorder fashion. Some
batches collect accuracy information that is upon completion passed to the parent. Those
information can be grouped within the tree and result in a matrix of accuracies suitable
for plotting.
Every batch can have a list of Settings that can modify the parameters of any

component. A Setting consists of a regular expression, a parameter name and a value

34

5.3. Batches

Sensor

Batch

reset()
run(ModeOfExecution)
getReport() : BatchReport

accuracyMeterName : String1...*
children

parent1

Setting

componentRegex : String
parameterName : String
newValue : String

applyToNetwork(Network)

*

1

AbstractNode
*

1

*

Figure 5.5.: Simplified part of the UML diagram showing the Batch and the Setting
class.

string. By the time the setting is applied to a network, all components whose name
match the regular expression will have their parameter with the given parameter name
changed to the given value. Currently, the most common settings are those that change
the filename parameter of the sensors.
The TestingBatch tests an already trained network. It performs the following steps:

First, it applies all the Settings and then initializes the sensors and nodes. Then, for
every frame of data read by the sensors, all the nodes perform their computation. Finally,
information about the accuracy is collected as far as it is available.
The TrainingBatch is used to train any network on a specific data set. To do this,

it iterates several training intervals similar to the execution of a TestBatch. So it also
starts by applying all the Settings and initializing the sensors and the nodes (this time
into Training state). Then, for every data frame, all the nodes of the lowest untrained
layer are processed. After the data file has finished, all those nodes are switched into
Inference state. As long as there are still untrained nodes, the sensors are re-initialized
and the procedure is repeated.
Batches allow stepped execution which means they can interrupt the execution and

continue later. This is useful for inspecting and debugging networks and batches using
the GUI. The supported modes are:

SingleStep Only perform one step. This corresponds to either executing a single frame
of data or the activation of a new batch.

SingleInterval Perform steps as long as the sensors still have data.

SingleBatch Execute a whole batch (for all but TrainBatch equal to SingleInterval).

Complete Execute the whole batch tree at once.

35

5. Implementation

5.4. HTM Implementation

Before we did any modifications, our first step was to reimplement the NuPIC algorithms.
This section explains the algorithms and how they fit into the QHTM framework. Note
that we have divided each node in two nodes. One for the spatial pooling and one for
the temporal pooling. Pseudocode for all the algorithms can be found in Appendix A on
page 69.

5.4.1. Bottom Spatial Pooler

The BottomSpatialPoolerNode is equal to the spatial pooler Numenta utilizes for the
bottom layer nodes. It has three parameters: maxDistance, maxCoincidences and sigma.
Furthermore, it maintains a set of coincidences C. We will now explain all the overridden
methods. The rest behaves exactly like the AbstractNode.

train

The new input data x is compared to every stored pattern using the euclidean distance.
If it differs from every pattern by more than maxDistance and if the total number of
patterns is less than maxCoincidences, it is added to the list of patterns. Therefore, we
get algorithm A.1 on page 69.

prepareFeedForwardData

A probability distribution y = {y1, y2, . . . , y|P|} is generated by calculating the Gauss
function of the distance to the input data for each pattern. Thereby, sigma is taken as
the standard deviation. After that, the distribution has to be normalized. So we have
algorithm A.2 on page 69.

5.4.2. Mid Spatial Pooler

The MidSpatialPoolerNode corresponds to the spatial pooler Numenta utilizes for all
but the bottom layer nodes. It works similarly to the BottomSpatialPoolerNode. It also
has three parameters: maxDistance, maxCoincidences and poolingType. The last one can
be set to one of the two values, “Sum” or “Product”.

train

Normally, the feed-forward data of all m children is concatenated to receive the array
x. This time, the individual parts x1,x2, . . .xm are treated separately. They are pre-
processed, so that the component with the former biggest value is set to 1 while all
the other components are set to 0. Those new arrays are then concatenated as usual.
Otherwise, the algorithm is the same as for BottomSpatialPoolerNode. Therefore, we
just state the preprocessing algorithm A.3 on page 70.

36

5.4. HTM Implementation

The maxDistance parameter has only limited use because of this preprocessing. If only
a single part is different after preprocessing that yields a distance of 2. So only multiples
of two are reasonable values (if any) for maxDistance.

prepareFeedForwardData

During inference the MidSpatialPoolerNode calculates a probability distribution over all
the patterns. This is done by multiplying each stored pattern with the input data8. The
components of the resulting vector are, depending on the poolingType parameter, either
summed (Sum) or multiplied (Product). The obtained value constitutes one component
in the pattern distribution that is normalized afterwards. Also compare algorithm A.4 on
page 70.

5.4.3. Temporal Pooler

On top of every spatial pooler, there is a TemporalPoolerNode. This keeps track of the
transitions between patterns using a so-called transition matrix T = [tij]|P|×|P|. Every
entry tij corresponds to the number of transitions from coincidence ci to coincidence cj
counted within the training data. At the end of the training phase, this matrix is used
to calculate a similarity measure for clustering the coincidences into so-called temporal
groups using a Hierarchical Agglomerative Clustering algorithm. The number of groups is
the only parameter of the node and it is called maxGroups.9

train

During training the transition matrix is built. All of its entries are initialized to 0. For
every input data, we remember the winning pattern, in order to increase the entry of T
corresponding to the transition from the last pattern to this one. The details can be seen
in algorithm A.5 on page 70.

switchToInferenceState

Unlike the previous implementations, the switchToInferenceState method is overridden
by the temporal pooler. That is because at the end of the training, the coincidences
need to be clustered into temporal groups. For that, the transition-matrix is normalized
such that each column sums up to one. This normalized transition matrix T̂ provides an
estimate for the transition probability from one coincidence to another.
What follows is a Hierarchical Agglomerative Clustering algorithm that groups the

coincidences together into so called temporal groups. It starts with each coincidence in a
separate group and then repetetively merges together the two groups that have the highest
maximal transition probability to one another. In other words, it uses the maximum of
8Recall that the patterns consist only of the values 0 and 1. Therefore, the multiplication yields a similar
array but the 1s are replaced by the corresponding values from the input data.

9Numenta uses much more complex algorithms with lots of parameters. Given the fact that we replace
this node anyways, we decide to stick to the simple algorithms described in George [2008].

37

5. Implementation

the transitional probabilities between the coincidences of this one group and those of the
other one as a measure of similarity. The merging is continued until the number of groups
matches the maxGroups parameter (compare algorithm A.6 on page 71).

prepareFeedForwardData

The feed-forward data of the TemporalPoolerNode consists of a vector with one component
for each temporal group. Those values are calculated from the coincidence probability
distribution received from the SpatialPoolerNode as follows: The belief for a temporal
group is the maximal probability over all contained coincidences. The overall probability
distribution can be produced by normalizing the vector of beliefs (see algorithm A.8 on
page 71).

5.4.4. Supervised Mapper

Unlike other nodes, the SupervisedMapperNode receives category labels for every frame
in addition to the regular feed-forward data. From the regular input data only, the index
of the winner is of interest because it is counted how often each winner corresponds to
each class label. These numbers are stored in the mapping table M. During inference the
class-label most frequently associated to the current pattern is returned.

train

During training, the mapping table M is filled. This simply means determine the winning
pattern and the current classlabel and count up the corresponding entry of M as shown
in algorithm A.9 on page 72.

prepareFeedForwardData

During inference, the index of the winning pattern is used to select the classlabel which
most frequently coincided with it. The details are shown in algorithm A.10 on page 72.

5.5. Extensions

The new algorithms we have implemented also fit in the same infrastructure as before. In
addition to the methods before, we will present the unfolding algorithms and, obviously,
we also have to implement the prepareFeedback method.

5.5.1. Spatial Pooler

The QSpatialPoolerNode is basically the same as the SpatialPoolerNode except for
the feedback-related computations. So during inference the only change is to multiply
the parental feedback ψ (if any) with the coincidence distribution before passing it up.
Otherwise, it is exactly the same as algorithm A.2 on page 69.

38

5.5. Extensions

prepareFeedback

The QSpatialPoolerNode only forwards the feedback ψ received from its parent to its
children. This involves translating the distribution over coincidences into distributions
over patterns that are understood by the children. This is implemented by averaging all
coincidences weighted by the probability induced by ψ. The resulting vector has to be
split up into m parts, one for each child and each of the parts has to be normalized. The
details can be seen in algorithm A.11 on page 72.

unfold

The unfolding method of the QSpatialPoolerNode receives the ID of a coincidence to
unfold. In addition to that, a time-stamp is provided which is only forwarded to the
children. The procedure works as follows. The specified coincidence is split into one piece
for each child which is then normalized. Each child is instructed to unfold the winning
patttern of its part. Finally, the resulting sets of channels are united and returned. The
complete algorithm can be seen in A.13 on page 73.

5.5.2. Sequencer

The most important change in contrast to Numenta’s algorithms is the substitution of
the TemporalPoolerNode with the QSequencerNode. This node is placed on top of a
QSpatialPoolerNode and performs the temporal inference. It is based on the discrete
sequence prediction algorithm Prediction by Partial Match (PPM) written by Begleiter
et al. [2004].

train

During training, the Prediction by Partial Match (PPM) predictor is trained. Only the
winner of each coincidence distribution is used for training because PPM operates on
discrete sequences only. These winners are also stored in order to perform the sequence
grouping once the predictive entropy can be calculated (see algorithm A.14 on page 73).

switchToInferenceState

Once the training is completed, we can use the PPM predictor to make “predictions” for
every coincidence of the training sequence. These distributions can be used to calculate
the predicition entropy (also for every symbol/coincidence of the training sequence) which
is used to form the groups. For details, see algorithm A.15 on page 74.

prepareFeedForwardData

This method is called whenever the node receives a distribution over coincidences from
the spatial pooler below. This input data is then appended to the short-term memory
(STM) which also provides the context for the prediction. If the entropy of the prediction

39

5. Implementation

is high, a distribution over sequences is calculated and acts as feed-forward data. So this
method does not always generate output (compare algorithm A.16 on page 75 for details).

prepareFeedback

The generation of feedback depends also on the value of the entropy calculated previously
by the prepareFeedForwardData() method. If the entropy is high and we have some
feedback from above, then we use that to calculate our own feedback. Otherwise, the
prediction of the PPM about the next coincidence acts as feedback (see algorithm A.17
on page 75).

unfold

This method of the QSequencerNode receives the ID of the sequence to unfold as well as
the number of its start frame. The ID is used to determine the coincidences that have to
be unfolded by the children. If this node passed any data upwards at any frame, then the
division memory would contain the number of that frame. So we can look up the first
number in the division memory that is bigger than the given start frame and receive the
end frame of the sequence. Therefore, we also know the length of the unfolded sequence.
So we can just unfold the coincidences of the given sequence until the result reaches the
desired length. Details can be found in algorithm A.18 on page 76.

5.6. Graphical User Interface

We implemented a comprehensive graphical user interface to allow quick configuration
and testing of different networks and batches. Its four main components can be seen in
figure 5.6 marked with different colors. The “Node View” (green) displays the network as a
tree, showing the names of the nodes, their type and their state. It provides functionality
to add and remove nodes, sensors, sensor links and filters. Furthermore, networks can
be loaded and saved easily. The “Batch View” (cyan) provides similar functionality to
edit batches. Here batches can be load, saved, created and deleted. Moreover it provides
a possibility to run individual batches or groups of batches using their different modes
of execution. That way it is possible to step through the execution and watch exactly
what happens within the nodes. Within the “Component View” (red) details about the
currently selected component are displayed. It furthermore offers the option to modify
the type and the parameters of that component. Finally, all the logging messages can be
seen, sorted and filtered using the “Log View” (blue).

40

5.6. Graphical User Interface

Figure 5.6.: Screenshot of the graphical user interface. The four main components are:
Node View (green), Batch View (cyan), Component View (red) and Log View
(blue).

41

6. Results

In this chapter, evaluation results on artificial data for our Algorithms are presented. We
start by introducing the hierarchical data sets that we generated for the testing. Then,
we show results for unmodified HTMs highlighting the problems they have with this
data. We then proceed to show that our algorithms work as expected. We examine their
performance in three different ways and study both their advantages and problems. The
chapter is concluded by a comparison to the results of conditional random fields and
hidden Markov models using our data sets.

6.1. Artificial Hierarchical Data

As testing data, we generated integer sequences that carry various levels of hierarchical
structure. The data is designed to be quickly assessable for testing while still covering
the main challenges this work is up to.

The data was generated level-wise as follows. First, we use a simple alphabet of integers
to assemble a number of sequences which are allowed to differ in length, the so-called
blocks of the first level. The next level is generated using the set of level one blocks as an
alphabet by concatenating them and thereby constituting longer sequences. This process
is repeated several times until, finally, several instances of the highest-level blocks are
concatenated in a random order to form a single, long sequence that builds the data file.
Thereby, the generation of each level is governed by four parameters:

1. The alphabet size to be used.

2. The minimum length of each block.

3. The maximum length of each block.

4. The number of blocks.

These parameters and the number of levels determine the properties of every data set.
Also, they are the same for all levels, thus forcing the alphabet size to be equal to the
number of blocks (because the blocks of each level form the alphabet of the next level).

For each level an additional category-file is generated with the same length as the data
file. The following example will illustrate the concept.

42

6.1. Artificial Hierarchical Data

6.1.1. The ABC Data Set

This first generated data set will serve as both a test case for our algorithms and an
illustration of the process of data generation. It only consists of a single data file, created
with the following parameters:

1. An alphabet size of 3.

2. A minimum length of 3.

3. A maximum length of 3.

4. 3 blocks per level.

5. And 4 levels.

For illustrative purposes, we will use different alphabets for every level instead of using
only integers as is the case with actual implementation:

Σ1 = {A,B,C}, Σ2 = {1, 2, 3}, Σ3 = {α, β, γ} and Σ4 = {A,B,C}.

With these alphabets we can now generate the blocks. Notice that the blocks are all
built using the same scheme:

level 1: ABC︸ ︷︷ ︸
1

, BBA︸ ︷︷ ︸
2

and CAC︸ ︷︷ ︸
3

.

level 2: 123︸︷︷︸
α

, 221︸︷︷︸
β

and 313︸︷︷︸
γ

.

level 3: αβγ︸︷︷︸
A

, ββα︸︷︷︸
B

and γαγ︸︷︷︸
C

.

level 4: ABC︸ ︷︷ ︸
I

, BBA︸ ︷︷ ︸
II

and CAC︸︷︷︸
III

.

For example, we find that the following sequence of 27 symbols corresponds to the level 3
block A:

ABC︸ ︷︷ ︸
1

BBA︸ ︷︷ ︸
2

CAC︸ ︷︷ ︸
3︸ ︷︷ ︸

α

BBA︸ ︷︷ ︸
2

BBA︸ ︷︷ ︸
2

ABC︸ ︷︷ ︸
1︸ ︷︷ ︸

β

CAC︸ ︷︷ ︸
3

ABC︸ ︷︷ ︸
1

CAC︸ ︷︷ ︸
3︸ ︷︷ ︸

γ︸ ︷︷ ︸
A

The corresponding category files are:

data-file: A B C B B A C A C B B A B B A A B C C . . .
level 1: 1 1 1 2 2 2 3 3 3 2 2 2 2 2 2 1 1 1 3 . . .
level 2: α α α α α α α α α β β β β β β β β β γ . . .
level 3: A A A A A A A A A A A A A A A A A A A . . .
level 4: I I I I I I I I I I I I I I I I I I I . . .

Hence, we have four different classification tasks for this data file.

43

6. Results

6.1.2. Random Data Sets

Using the above explained procedure, we generated four different data sets. Each one
with a different set of parameters and otherwise completely random. This means that
every block was generated drawing symbols randomly from the corresponding alphabet
using an equal distribution. Furthermore, the length was also chosen randomly within
the given range.
Because no other restrictions apart from the specified parameters apply, the resulting

sequences can contain several difficulties with respect to classification:

1. All the blocks might start with a common prefix or end with a common suffix. This
would affect the detection of the transitions.

2. Two blocks might be completely equal, thus distinction would be possible only by
context.

3. Some symbols might appear much more frequent than others. Therefore, the
uncommon ones would be harder to learn because less examples would exist.

To counter these problems, 20 different data files were created for every set of parameters.
As we will see, their difficulty w. r. t. the classification task differs heavily yielding a
high variance in some of the presented results. In the following, all four data sets are
briefly described. They are numbered following the scheme minLength, maxLength,
alphabetSize and levels:

Data Set 3334 Using the same parameters as the ABC data set1, an average accuracy
of 33.3 % for this data set could already be achieved by guessing. It is a small and easy
data set in order to perform quick tests.

Data Set 3364 The alphabet size is raised to 6 with this data set. All the other parameters
stay the same as with the previous one. This means, there is a bigger number of classes
to distinguish from each other. So the accuracy with a trivial guessing approach drops to
16.6 %. Also, the final sequence is made twice as long to produce a comparable number
of examples per class label.

Data Set 3684 For this data set the maximum length is set to 6, thus allowing blocks of
length 3, 4, 5 and 6. Also, the alphabet size is further increased to a value of 8. With
those parameters, this data set offers a bigger complexity for the classification task. It
is designed to test the block separation. Here, pure guessing would yield an average
accuracy of only 12.5 %.

Data Set 3984 The maximum block length is even further increased to a value of 9 while
the other parameters are the same as with the former data set. The guessing accuracy
still amounts to 12.5 % on average but the classification is more difficult because of the
big variation within block lengths.
1That is: alphabet size of 3, minimum and maximum length of 3, and 4 levels.

44

6.2. NuPIC Results

A B C B B A C A C B B A ...

maxCoincidences = 27

maxGroups = 3

maxCoincidences = 27

windowSize = 9 stepSize = 1

Figure 6.1.: The NuPIC network with two layers used for the experiments. The sequence
is shown as a string of As,Bs and Cs at the bottom.

6.1.3. Assumptions

Let us briefly verify that this data set fulfills the assumptions we discussed in subsec-
tion 4.1.3 on page 14. Clearly, the ordering of the symbols carries the semantics, so the
data is certainly of sequential nature. It is also hierarchically structured in time because
we generated it in a hierarchical way. The spatial dimension of the data is very low
because we got only one value per time step. But as far as the assumption are concerned,
we can say that it has a very primitive spatial hierarchy consisting of only one part.
Finally, we have to check whether or not the classification lines up with the hierarchical
structure. This is trivially true because we chose the classification to be identifying the
hierarchical components (blocks) of a certain level. Hence, all the requirements are met.

6.2. NuPIC Results

We will use the Numenta Platform for Intelligent Computing (NuPIC) to set up a simple
network for our data sets in order to prove the problems asserted in section 2.5 on page 7
and to have a base line for our own results later.

The nodes from the NuPIC platform are not directly capable of sequence classification.
Therefore, we have to apply some transformation to make it a “regular” classification task.
The most simple possibility is to have a fixed-sized window move over the sequence. At
every step, the whole content of the window serves as input for the network. We therefore
set up a network with two layers as in figure 6.1. The bottom layer consists of three nodes,
each one receives three symbols at once, for a total window size of 9 symbols. On top of
them, there is a supervised mapper node which additionally receives the category labels.
The associated categories are the ones associated with the first symbol of each window.

The network is trained and tested with all 20 data files of each data set. We measure
classification accuracy for each of the four category levels, that is the number of correctly
guessed labels divided by the total number of labels. The results can be seen in figures
6.2 and 6.3 or as an overview in table 6.1 on page 64. Each of the plots indicates the

45

6. Results

average accuracy for every level by a light blue colored bar, whereas the results for the 20
individual files are shown as black dots with gray lines connecting the ones that belong
to the same data file.

Looking at the results, we observe that, for all data sets, the accuracy is relatively high
for the first level while it drops quickly for higher levels. This is especially true for the
more complex data sets. For the higher levels of the third and forth data set, accuracy is
very low. This does not come as a surprise because the higher level blocks exceed the size
of the window. It thus becomes hard for the network to distinguish them. This could be
compensated by increasing the window size. But this leads to other problems. We would
have to add more nodes or else the receptive field of every node would grow leading to
an exponential increase in possible coincidences. The same holds true for the next layer.
If the top-node was to map a large number of nodes onto class labels, it would be very
prone to overfitting because a lot more different combinations are possible. So we would
have to add more layers even though experiments have shown this to yield bad results.
Therefore, this approach is not a good option.

Furthermore, we can see that the variance is highest for the 3334 data set and quite low
for the more complex data sets. This is a bit surprising, as for the 3684 and 3984 data
sets there is the additional variance of block length within the data. Seemingly, this is
more than compensated by the bigger alphabet size. With a bigger alphabet, the blocks
become more distinct on average and very similar blocks become unlikely.

It should also be noted that the results are very fragile with respect to parameters. If,
for example, the maxGroups parameter is increased from 3 to 6, the average accuracies of
82.2 % and 77.9 % for the first two levels of the 3364 data set drop to 67.4 % and 63.0 %.

6.3. Predictions

We start the evaluation of our work by studying the predictions made by the new sequencer
node, as they are an integral part of the new algorithms. Our concerns will be if the
predictions are valid, how they react to noisy input, if they are able to support the spatial
pooler and how they are influenced by the higher levels.

6.3.1. Measuring Predictions

A common measure for the quality of a prediction is the average log-loss. It is defined as:

`(P̂ ,x) = − 1
|x|

|x|∑
i=1

log2 P̂ (xi|x1. . .xi−1).

Thereby P̂ is the conditional probability distribution generated by the predictor and x is
the test sequence. The result of ` will be zero if the prediction is always 1 for the right
symbol. On the other extreme, it will be infinite if the prediction for any of the symbols
is 0.
In the following, we apply the average log-loss to predictions under uncertainty. We

use the ABC data set which is encoded as either 0, 1 or 2 (A, B or C) to which we add

46

6.3. Predictions

1 2 3 4
Category Level

0.0

0.2

0.4

0.6

0.8

1.0
A

cc
ur

ac
y

(a) Data set 3334

1 2 3 4
Category Level

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(b) Data set 3364

Figure 6.2.: Results for NuPIC network from figure 6.1 on page 45.

47

6. Results

1 2 3 4
Category Level

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(a) Data set 3684

1 2 3 4
Category Level

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(b) Data set 3984

Figure 6.3.: More results for NuPIC network from figure 6.1.

48

6.3. Predictions

0 2

sigma = 0.5

sigma = 1.0

sigma = 2.0

1

B

C

AA

sum

Figure 6.4.: Probability density function for the noisy ABC data.

different amounts of Gaussian noise with a mean of 0 and a standard deviation σ between
0 and 2. The resulting probability density functions are shown in figure 6.4. Note that
even with a standard deviation of σ = 1, one cannot tell apart the three values anymore
by looking only at the summed distribution. Reasonable real-data noises will probably be
in the area σ ≤ 0.5. So for all the following plots, the interesting part will be the range
between 0 and 0.5.
We then take the most straightforward network consisting of only one spatial pooler

and one sequencer on top and train it using noiseless data. The trained “network” is then
tested on the noisy data. Thereby, the sigma parameter of the spatial pooler is always
adjusted to the sigma of the noise. The average log-loss of the equal distribution (which
corresponds to pure guessing) is log2

1
3 ≈ 1.6. So we want the log-loss of our predictions

to stay below this value. The results for Markov-order 1 to 4 predictions can be seen in
figure 6.5.
We can conclude that the average log-loss starts quite low and as the noise increases,

all of the results approach the value of 1.6 but do not pass it. This tells us that the
predictions made by the sequencer are always better than pure guesses. It is also clear that
predictions cannot be much better for very high noise because the context the predictions
are based on is very uncertain (And making bold guesses about the context does not work
out as can be seen in figure 4.6 on page 20.).

Furthermore, we notice that higher orders yield better predictions and that the difference
between them vanishes as the noise increases2. This is also exactly what we had predicted
so, to sum up, this shows that the predictions are working as expected and that they can
also cope with uncertainties in a reasonable way.

2It is an interesting feature that the line for order 1 crosses those of orders 2 and 3 at about 0.8 and
1.4 respectively. So for very noisy data it is slightly better than the other two. We have no good
explanation for this but it could be due to a precision problem.

49

6. Results

0.0 0.5 1.0 1.5 2.0
Noise σ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

A
ve

ra
ge

L
og

-L
os

s

guessing

Order 1
Order 2
Order 3
Order 4

Figure 6.5.: Average log-loss of the prediction utilizing different orders for the VOMM
predictor.

6.3.2. Impact of Feedback on Spatial Pooling

Next, we want to verify that the prediction as feedback is able to support the spatial
pooler by disambiguating its input. We slightly change the setup, in a way that the
log-loss is now determined with respect to the coincidence distribution y calculated by the
spatial pooler. Recall from section 5.5.1 that the calculation of y includes the feedback.
The results can be seen in figure 6.6.

The average log-loss now starts with zero for all curves. This is because in the noiseless
case the spatial pooler has no uncertainty whatsoever about the current symbol. As the
noise increases, the curves spread out. The average log-loss is then highest for the network
without any prediction and lowest for the order of 4. Again, the curves approach (even
though much slower) the guessing line but do not cross it. This observation confirms
our hypothesis that feedback can significantly improve the performance of the spatial
classifier. For the region around σ = 0.5, the improvement is more than a third of the
average log-loss. If the alphabet size was much higher, that effect would probably be even
more significant.

6.3.3. Multilayer Predictions

Finally, we add further layers to our network to study their impact on the predictions.
The resulting “hierarchy” will be a single straight line because we only have one input

50

6.3. Predictions

0.0 0.5 1.0 1.5 2.0
Noise σ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

A
ve

ra
ge

L
og

-L
os

s

guessing

Without prediction
Order 1
Order 2
Order 3
Order 4

Figure 6.6.: Average log-loss of the coincidence-distribution calculated by the spatial
pooler with different orders of supporting predictions and also without.

A B C B B A C A C B B A ...

Bottom Spatial Pooler

Bottom Sequencer

Layer 2 Spatial Pooler

Layer 2 Sequencer

Layer 3 Spatial Pooler

Layer 3 Sequencer

Figure 6.7.: Three-layered network used for measuring the effect of multiple layers upon
prediction.

51

6. Results

0.0 0.5 1.0 1.5 2.0
Noise σ

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

A
ve

ra
ge

L
og

-L
os

s

guessing

1 Layer
2 Layers
3 Layers
4 Layers

Figure 6.8.: Effect of multiple layers of predictors on the average log-loss of the prediction.
The order of the predictors is k = 2 for every layer.

value (compare figure 6.7). We expect to see a slight improvement for every layer that is
added.

Figure 6.8 shows the results for 1 to 4 layers each with a Markov-order of k = 2. In the
low-noise area we can see that additional layers improve performance as expected. Also
note that the advance is quite significant: If we compare this plot to figure 6.5, we notice
that two layers with an order of 2 each already excel one layer with order 3. Likewise,
three layers yield better predictions than one layer with an order of 4. However, as the
noise increases, the gain quickly turns into a loss. Between σ = 0.3 and σ = 0.4 the
results turn upside down completely. From thereon, the four-layered network is by far
the worst while the single-layered network is the only one not to pass the line of guessing.
To understand the reason for this inversion, we have to consider the implication the

noise has on the feed-forward data. The problem is that the noise not only disrupts
the context for the prediction but also leads to disturbances with the timing of the
feed-forward data. This means that the sequencer will send data upwards more often
because the prediction entropy will pass the threshold more frequently. The layer on top
then receives data with temporal noise in addition to the spatial noise from the input
data. This result is clearly a sign that our algorithms are not robust enough against
temporal noise.
The problem is less significant if training is done on the noisy data. Then, the higher

levels rely less on the structure and generally make weaker predictions. Figure 6.9

52

6.4. Top-Node Classification

0.0 0.5 1.0 1.5 2.0
Noise σ

0.0

0.5

1.0

1.5

2.0

2.5

A
ve

ra
ge

L
og

-L
os

s

guessing

Trained with noise
Trained without noise

Figure 6.9.: Comparison of training with clean and with noisy data for a three-layered
network with k = 3.

compares the results of training on clean data with those of training on the noisy data
for a network with three layers and k = 3. Clearly, the value for σ = 0.2 is an outlier,
while the results starting with σ = 0.5 show significant improvement.

6.4. Top-Node Classification

In the following, we will study the actual classification capabilities of our work. To this
end, we build a network with a supervised mapper node on top (compare left side of
figure 6.10). This component is from the Numenta framework and is also the way NuPIC
networks perform classification. In every frame, it receives a category label in addition to
the regular feed-forward data. Its task is to find a good mapping from the feed-forward
data to the corresponding class label. This task can be performed by counting how
many times each winning pattern of the feed-forward data coincides with each class label.
During inference, the class label associated to the currently seen pattern most frequently
is chosen and compared to the actual class label to compute the accuracy. The supervised
mapper component is explained in detail in section 5.4.4 on page 38.

Unfortunately, this does not work for our algorithms because the top node usually does
not receive feed-forward data every time frame (compare figure 6.10). So the relation
between input data and class labels cannot be a one-to-one mapping. To solve this
problem, we extend the supervised mapper, so that it caches all the intermediate class

53

6. Results

Data ABCBBACACBBABBAABCCACABCC

αααααααααβββββββββγγγγγγγ ...
Supervised

Mapper

Spatial
Pooler

Spatial
Pooler

Spatial
Pooler

Sequencer

Sequencer

Figure 6.10.: Conceptual visualization of classification using a top node. The network
is shown on the left. The rest represents the entropy over time as well as
feed-forward timings.

labels. Every time it receives feed-forward data, it is mapped to all of the cached categories.
With this configuration, we can now test our algorithms on the generated data sets.

Some results for the 3364 data set are shown in figure 6.11, the rest is summarized in
table 6.1. The networks used have one, two and three layers and a supervised mapper
layer on top of that. All the predictors use an order of k = 3. We can see that each
result is reasonably good for only one particular level while it is worse for all the others.
This correlation is due to the feed-forward data timing of the network and the supervised
mapper which can only map data to blocks of class labels whose size depends on the timing
of the feed-forward data. To produce a good mapping, the induced blocks of category
data have to coincide with the actual blocks. In other words, the level of abstraction
has to match. If the top node receives data that corresponds to level 3 blocks, then they
will neither be mappable to level 2 nor to level 4 blocks, at least not without a loss of
accuracy. This is exactly what can be seen in figure 6.11. In order to get rid of this
limitation, we will take another approach which is classification through reconstruction.

But before, we want to discuss the implications of these results. Consider the fact that
the number of layers correlate to the level the network is particularly good at. This shows
that at the higher levels more abstract concepts are formed. We can tell that because
we know, that the supervised mapper will only achieve good accuracies if the size of the
category blocks matches the feed-forward timing. So, this particular accuracy distribution
tells us what level of abstraction the formed concepts match best. And this level, as we
can see, increases with the number of layers. This is the behavior we were looking for
because it clearly shows that the temporal hierarchy works in the desired way.

54

6.4. Top-Node Classification

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

1 2 3 4
Category Level

0.0

0.2

0.4

0.6

0.8

1.0

1 Layer

2 Layers

3 Layers

Figure 6.11.: Classification accuracies for the 3364 data set using a network with one, two,
and three layers and a supervised mapper on top. All orders k equal to 3.

55

6. Results

6.5. Classification through Reconstruction

As we have seen, the main problem with a top-node-based classification is that the grouping
done by the network has to match the actual blocks of class labels very well. Otherwise,
the top-node will not be able to find a good mapping. But consider a network that creates
a higher level of abstraction than the class labels require. Using speech recognition as an
illustration once more, this would correspond to a network that recognizes whole words,
while the task is to classify syllables. In this case, the top-node will struggle, because
most words consist of two or more syllables and, therefore, a one-to-one mapping of
the words to the syllables is impossible. But obviously, the required information has
already been recognized by the network (given the word was correctly classified). The only
problem about it is that the syllables are considered details (because they are sufficiently
predictable) and are therefore not passed upwards, so they do not reach the top node.
By extracting that “hidden” information, that is possibly spread throughout the whole
network, we could solve the problem and achieve much better results.
This is where the concept of unfolding comes in (see section 4.7 on page 25). The

idea is to combine the input data and the class labels and feed both into the bottom
layer at training time. In doing so the network is allowed to build a joint model of class
labels and input data. To perform classification, we then leave the class labels away. The
network will select the interpretation that it considers to match best, basically treating
the missing labels as a form of noise. Thereby, it implicitly fills in the missing category
information. So all we have to do is to unfold the high level concepts, the top node of the
network emits, back into the corresponding stream of input data. This will then contain
the desired category information.

Some of the results for this approach can be seen in figures 6.12 and 6.13. Despite the
fact that they stem from one-layered networks, the results are almost perfect for the low
levels. The accuracy for the first level is around 95 %, even for the complex data sets.
Also for the lower levels, they outperform all of the previous results by far. This shows
the impact of the mapping problem.

However, an interesting fact to mention is that this approach is obviously more prone
to complete failures. For example, in figure 6.12b) a few results have an accuracy of
about 0 % although the average is quite good. Such outliers occur if for some reason
the network chooses the wrong interpretation of the “noisy” data. The beginning was
probably highly ambiguous and the right interpretation was slightly less likely than some
other. In this case, the network will, through feedback, strengthen its own model and
stick to it forever. Hence the reconstructed class labels can all be wrong due to one fatal
error in the beginning.
If we start adding additional layers to our reconstruction network, another effect cuts

in. If we compare the results for two layers with those for only one layer (see table 6.2 on
page 65), we can see a significant drop in accuracy for most cases. The reason for this
is the same as with the multi-layer predictions (compare section 6.3.3 on page 50). As
soon as the noise exceeds a certain value, the negative effects increase each other. The
purely spatial noise also triggers a temporal noise due to our feed-forward strategy and
soon the predictions are completely useless. The same effect cuts in here because from

56

6.5. Classification through Reconstruction

1 2 3 4
Category Level

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(a) Data set 3334

1 2 3 4
Category Level

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(b) Data set 3364

Figure 6.12.: Results for the unfolding approach. In both cases a one-layer network with
a Markov-order of 3 is used.

57

6. Results

1 2 3 4
Category Level

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(a) Data set 3684

1 2 3 4
Category Level

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(b) Data set 3984

Figure 6.13.: Results for the unfolding approach. In both cases a one-layer network with
a Markov-order of 2 is used.

58

6.6. Comparison

the perspective of the network, missing class labels are nothing but noise. Unfortunately,
they correspond to quite a big amount of noise, so that the results are useless.

So we have seen that for the lower levels this approach provides nearly perfect results.
For the higher levels, the results are still quite good compared to the other results. But,
due to the temporal noise problem, we were not able to build an effective multi-layer
reconstruction network.

6.6. Comparison

In this last section, we want to present some results for conditional random fields (CRF)
and hidden Markov models (HMM), two well-known methods for sequence learning. For
this, we used the MAchine Learning for LanguagE Toolkit (MALLET) which supports
both CRFs and HMMs. For the tests, we converted our data sets into the required format
and ran the software with its default settings. The results can be seen in figures 6.14,
6.15, 6.16 and 6.17. You can also see an overview in table 6.3.

Surprisingly, their results are quite bad. Even for the easiest cases, they only just touch
the 66 % accuracy. Most of the time, the results stay between 30 % and 50 %. This might
be a result of the fact that both methods only consider first order dependencies. However,
it clearly shows that the data sets we generated are not easy to solve.

59

6. Results

1 2 3 4
Category Level

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(a) Data set 3334

1 2 3 4
Category Level

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(b) Data set 3364

Figure 6.14.: Results for our data sets using Conditional Random Fields.

60

6.6. Comparison

1 2 3 4
Category Level

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(a) Data set 3684

1 2 3 4
Category Level

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(b) Data set 3984

Figure 6.15.: Results for our data sets using Conditional Random Fields continued.

61

6. Results

1 2 3 4
Category Level

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(a) Data set 3334

1 2 3 4
Category Level

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(b) Data set 3364

Figure 6.16.: Results for our data sets using Hidden Markov Models.

62

6.6. Comparison

1 2 3 4
Category Level

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(a) Data set 3684

1 2 3 4
Category Level

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(b) Data set 3984

Figure 6.17.: Results for our data sets using Hidden Markov Models continued.

63

6. Results

Accuracy in %

Data set Level NuPIC 1 Layer 2 Layers 3 Layers

3334 1 89,7 72,8 63,2 61,3
2 74,7 62,8 63,8 63,5
3 63,5 56,8 60,8 64,4
4 57,2 55,2 54,9 57,9

3364 1 82,2 72,2 53,0 42,1
2 77,9 56,9 68,4 58,0
3 56,1 38,1 50,1 61,1
4 36,8 30,6 36,4 45,3

3684 1 78,9 84,8 54,4 41,2
2 68,5 45,7 71,0 66,1
3 39,7 30,2 41,6 53,0
4 26,6 24,1 27,4 31,7

3984 1 69,2 82,4 61,6 42,7
2 66,5 43,0 61,7 65,7
3 40,1 27,2 32,5 44,7
4 29,6 25,8 26,6 28,4

Table 6.1.: Overview comparing the NuPIC Results to those created by a network with
one, two and three layers and a supervised mapper on top. All orders k for
that network equal to 3.

64

6.6. Comparison

Accuracy in %

Data set Level NuPIC O1 O11 O111 O2 O22 O222 O3 O33

3334 1 89,7 81,8 66,5 66,5 90,3 87,6 60,5 93,9 91,7
2 74,7 70,2 48,6 48,6 73,0 73,5 46,1 77,7 71,9
3 63,5 55,9 34,7 34,7 51,6 41,0 41,3 55,4 49,4
4 57,2 57,3 43,7 43,7 45,7 39,2 33,1 52,0 34,3

3364 1 82,2 82,2 36,2 36,2 94,1 90,1 25,6 97,2 93,3
2 77,9 74,4 37,4 37,4 78,5 72,0 27,8 79,5 72,7
3 56,1 49,8 32,6 32,6 60,2 46,4 22,8 60,5 44,3
4 36,8 42,3 24,6 24,6 44,9 36,4 25,1 45,7 29,1

3684 1 78,9 87,7 74,9 32,1 96,4 * * * *
2 68,5 79,6 60,4 28,0 84,6 * * * *
3 39,7 49,1 33,2 23,1 47,8 * * * *
4 26,6 31,2 22,1 27,5 25,1 * * * *

3984 1 69,2 88,6 79,1 32,2 95,0 * * * *
2 66,5 69,7 42,6 25,5 67,2 * * * *
3 40,1 40,3 29,9 20,9 35,4 * * * *
4 29,6 28,4 24,1 24,2 21,6 * * * *

Table 6.2.: Overview comparing the NuPIC Results to those created by a network with
one, two and three layers unfolding the class-labels. The stars indicate tests
that could not be finished in time.

65

6. Results

Accuracy in %

Data set Level NuPIC CRF HMM SM O333 Unfolding O2

3334 1 89,7 65,6 67,2 61,3 90,3
2 74,7 49,4 52,6 63,5 73,0
3 63,5 54,9 56,0 64,4 51,6
4 57,2 53,4 53,7 57,9 45,7

3364 1 82,2 54,2 56,4 42,1 94,1
2 77,9 40,5 43,0 58,0 78,5
3 56,1 29,4 31,9 61,1 60,2
4 36,8 27,7 28,8 45,3 44,9

3684 1 78,9 43,6 46,2 41,2 96,4
2 68,5 24,5 29,8 66,1 84,6
3 39,7 24,7 25,3 53,0 47,8
4 26,6 22,4 22,8 31,7 25,1

3984 1 69,2 35,6 41,5 42,7 95,0
2 66,5 24,6 29,9 65,7 67,2
3 40,1 23,9 24,3 44,7 35,4
4 29,6 25,4 25,7 28,4 21,6

Table 6.3.: Comparison of one representative per method.

66

7. Conclusion and Perspective

This thesis has shown how to extend the HTM technology in order to improve its sequence
classification capabilities. This has been achieved. We have created the Sequencer, a
component that replaces Numenta’s temporal pooler. Unlike the latter it is able to do
sequence learning and to make predictions about the next pattern. We integrated it into
the HTM framework and added a feedback mechanism to enhance the collaboration with
the spatial pooler. Furthermore, we implemented pattern unfolding, a technique for data
reconstruction and noise removal. Finally, we evaluated our work using artificial data sets
and compared the results to those of unmodified HTMs using a window, hidden Markov
models and conditional random fields.
We were able to show that our concepts work as expected. We have demonstrated

the positive effect feedback in the form of predictions has on the recognition of spatial
patterns. Moreover, we showed that a deeper hierarchy can further increase that positive
effect, as long as the noise stays below a certain threshold. We utilized two different
approaches to sequence classification: top-node based classification and classification
through reconstruction. Both were able to outperform conditional random fields and
hidden Markov models, and, in many cases, also showed a significant increase over unmod-
ified HTMs utilizing a small window. The evaluation also revealed some weaknesses of our
algorithms. In particular the problems of the sequencer in dealing with temporal noise
are quite profound as they also limit the performance of classification by reconstruction.
In addition to the empirical results, we believe that this thesis has provided a general

method to strengthen the cooperation of spatial and temporal learning algorithms. The
topic of this thesis was chosen to have a good starting point for the exploration of this
complex issue and the main achievements of this work are the abstract concepts and
implications of our results. We want to specifically point them out here:
First of all, we have shown a way to use a feedback mechanism to have temporal

inference support spatial inference, the operability of which does not depend on specific
methods. Any unsupervised classification algorithm that is able to output a distribution
over the learned classes can be used. Likewise any sequence learning algorithm that is
able to make predictions about the next symbol is suitable. This means that this kind of
cooperation is applicable to a wide range of problems.
Furthermore, we provided some insights about the process of modeling a temporal

hierarchy which is complementary to the spatial hierarchy already modeled by HTMs. In
our opinion, the combination of those two is a key concept. Because, if we were able to
split our problem hierarchically, both in space and time, then we can apply our pair of
methods to the smaller sub-problems. That way the cooperation takes place at this much
smaller scale, which will presumably increase the positive effects.

67

7. Conclusion and Perspective

We found that it was necessary, in order to build a temporal hierarchy, to adjust the
partitioning of the sequence to the actual data. Otherwise we would not be able to create
an efficient model. Moreover we presented a way to find reasonable partitions using only
the predictions of the sequence learner. Notice that again the concept is not dependent
on any specific sequence learning algorithm. In our case we used an implementation of
the prediction by partial match algorithm, but we could just as well have used any other
sequence learning algorithm. As long as it can be trained unsupervised and it provides
reasonable predictions based on a (small) context, the method applies.
We also discovered an important problems related to this approach: It is fragile to

temporal noise. Unfortunately we did not have the time to study this in detail. Therefore
it will be left for future work to figure out ways to fix this problem.

So in summary, we were able to take the first steps towards a framework which closely
combines spatial and temporal inference. But obviously this goal is far to ambitious
for a thesis like this. Therefore it is clear that many things remain, we did not cover.
For example, we did not have a real spatial hierarchy because our sequences consisted
of single integers only. Thus, we could not examine the interplay between a spatial
and a temporal hierarchy. This would probably be both very interesting and also quite
difficult to study. It would require a very careful setup and thorough testing, to pin-point
occurring problems. Also synchronization of different nodes would become an issue. In
our one line hierarchy every node had exactly one child. Therefore the case that some of
the children sent feed-forward data, while others did not, could never occur. But if we ran
a network with a “real” hierarchical structure, we would have to deal with this situation.

Another interesting issue would be to also apply the cooperation of spatial and temporal
methods at training time. If the noise-reduction effect we observed during inference
transfers to training time, the internal models of both methods could be built upon
much cleaner data. Possibly, this would also lead to a facility for online-learning. Future
investigation should, furthermore, focus on optimizing the run-time and evaluating the
practical applicability as, at the moment, we only anticipate the success of this approach
for real data.
We hope to explore these exciting problems in the future. So far, we only scratched

the surface, but in our opinion joint inference will eventually lead to a new generation of
machine learning methods which will be able to perform complicated classification tasks
that are intractable at the moment.

68

A. Algorithms

A.1. Original HTM

Algorithm A.1: BottomSpatialPooler training
Data: input vector x ∈ Rn

begin1

novelCoincidence ← true2

forall c ∈ C do // iterate over all coincidences3

if ‖x− c‖2 < minDistance then // compare to input4

novelCoincidence ← false5

break6

if novelCoincidence ∧ (|C| < maxCoincidences) then7

C ← C ∪ {x}8

end9

Algorithm A.2: BottomSpatialPooler inference
Data: input vector x ∈ Rn

begin1

sum ← 02

for i← 1 to |C| do // iterate over all coincidences3

d← ‖x− ci‖2 // calculate distance4

yi ← 1√
2πσ2

· e
d

2σ2 // calculate Gauss-function5

sum← sum+ yi6

for i = 1 to |C| do // normalize distribution7

yi ← yi
sum8

return y9

end10

69

A. Algorithms

Algorithm A.3: MidSpatialPoolerNode preprocessing for training
Data: input vectors x1,x2, . . . ,xm one from each child
begin1

for i← 1 to m do // iterate over the parts of the input data.2

winnerIndex← arg maxj(xij) // determine biggest value3

for j ← 1 to |xi| do // set all values to zero4

xij ← 0.05

xiwinnerIndex ← 1.0 // set the winning component to one6

x← x1 ⊕ x2 ⊕ · · · ⊕ xm // concatenate the parts7

return x8

end9

Algorithm A.4: MidSpatialPoolerNode inference
Data: input vector x ∈ Rn

begin1

sum← 02

for i← 1 to |C| do // iterate over all coincidences3

a← x · ci // multiply input data with coincidence4

if poolingType = Sum then5

yi ←
∑n

j=1 aj6

else if poolingType = Product then7

yi ←
∏n
j=1 aj8

sum← sum+ yi9

for i = 1 to |C| do // normalize distribution10

yi ← yi
sum11

return y12

end13

Algorithm A.5: TemporalPoolerNode training
/* Maintain the transition matrix */
Data: coincidence probability distribution y ∈ R|C|
begin1

w ← arg maxj yj2

if wold > 0 then3

T[wold, w]← T[wold, w] + 14

wold ← w5

end6

70

A.1. Original HTM

Algorithm A.6: TemporalPoolerNode temporal grouping
/* Temporal grouping algorithm used by the TemporalPoolerNode */
Data: Transition matrix T
begin1

for i← 1 to |C| do // normalize transition matrix2

colsum← 03

for j ← 1 to |C| do4

colsum← colsum+ T[j, i]5

for j ← 1 to |C| do6

T̂[j, i]← T[j,i]
colsum7

for i← 1 to |C| do // initialize the groups8

gi ← {i}9

G← {g1, g2, . . . , g|C|}10

while |G| > maxGroups do // merge groups until maxGroups is reached11

i, j ← arg maxi,j∈{1,...,|G|}(connectivity(gi, gj , T̂))12

gi ← gi ∪ gj13

G← G \ gj14

end15

Algorithm A.7: TemporalPoolerNode connectivity
/* calculate connectivity between two groups */
Data: groups g1 and g2, normalized transition matrix T̂
begin1

n← |g1|+ |g2|2

m← maxi∈g1,j∈g2(max(T̂[i, j], T̂[j, i]))3

return m
n4

end5

Algorithm A.8: TemporalPoolerNode inference
/* calculate the feed-forward data of the temporal pooler */
Data: coincidence probability distribution y ∈ R|C|
begin1

for i← 1 to |G| do2

xi ← maxj∈gi(cj)3

return x4

end5

71

A. Algorithms

Algorithm A.9: SupervisedMapperNode training
/* Maintain the mapping table */
Data: coincidence probability distribution y ∈ R|C| and class label c ∈ N
begin1

w ← arg maxj yj2

M[w, c]←M[w, c] + 13

end4

Algorithm A.10: SupervisedMapperNode inference
/* Determine the best class label */
Data: coincidence probability distribution y ∈ R|C|
begin1

w ← arg maxi yi2

c← arg maxiM[w, i]3

return c4

end5

A.2. Improved Algorithms

Algorithm A.11: QSpatialPoolerNode prepareFeedback
/* Translate the feedback */
Data: coincidence probability distribution ψ ∈ R|C|
begin1

for i← 1 to |C| do2

π ← π + ci · ψi3

π1,π2, . . . ,πm ← split(π)4

return π1,π2, . . . ,πm5

end6

72

A.2. Improved Algorithms

Algorithm A.12: QSpatialPoolerNode split
/* Split a pattern distribution into one part per child. */
Data: pattern distribution p ∈ R|x|
begin1

start← 12

for i← 1 to m do3

for j ← 0 to |xi| − 1 do4

πi,j = pstart+j5

start← start+ 16

for i← 1 to m do // normalize the parts7

πi = πiP|πi|
j=1 πi,j8

return π1,π2, . . . ,πm9

end10

Algorithm A.13: QSpatialPoolerNode unfold
/* unfold given coincidence */
Data: coincidence index ic ∈ N and timestamp t
begin1

π1,π2, . . . ,πm ← split(cic)2

channels← {}3

for i← 1 to m do4

channels← channels ∪ childi.unfold(arg max|πi|j=1(πi,j), t)5

return channels6

end7

Algorithm A.14: QSequencerNode train
/* train PPM predictor and store winner sequence */
Data: input data y ∈ R|C|
begin1

w ← arg max|y|i=0(yi))2

seq ← seq ⊕ w3

PPM.train(w)4

end5

73

A. Algorithms

Algorithm A.15: QSequencerNode switchToInference
/* split training sequence into */
Data: training sequence seq and trained predictor PPM
begin1

for i← 1 to m do // create the prediction entropy sequence2

context← [seqi−k, seqi−k+1, . . . , seqi]3

p← PPM.predict(context)4

Hi ← −
∑|p|

j=1(pj · log|p| pj)5

Havg ←
P|H|
i=1Hi
|H|6

7

S← {}8

b← 19

for i← 1 to m do // form sequences10

if Hi > Havg then11

snew = [seqb, seqb+1, . . . , seqb+k−1]12

S ← S ∪ {snew}13

b← i+ 114

return S15

end16

74

A.2. Improved Algorithms

Algorithm A.16: QSequencerNode prepareFeedForwardData
/* maintain short-term memory and prepare feed-forward data if entropy

is high */
Data: coincidence probability distribution yt ∈ R|C|
begin1

STM← STM⊕ yt2

if (|STM| > k) ∧ (b > 1) then // remove unnecessary memories3

icut ← min(|STM| − k, b)4

STM← STM.subsequence(icut, |STM|)5

b← b− icut6

if entropy > Havg then // if new sequence starts7

divisionMemory ← divisionMemory ⊕ t8

p← PPM.predict(STM.subsequence(|STM| − k, |STM|))9

entropy ← −
∑|p|

j=1(pj · log|p| pj)10

if entropy > Havg then // if next symbol is uncertain11

for i← 1 to |S| do // calculate sequence distribution12

xi ←
∏|si|
j=1 STM[b+ i− 1]si,j13

b← |STM|+ 114

return x15

end16

Algorithm A.17: QSequencerNode prepareFeedback
/* prepare the feedback */
Data: sometimes receives feeback π from parent
begin1

if entropy <= Havg then // if entropy is high return prediction2

return p3

else // otherwise translate feedback from parent4

for i← 1 to |S| do5

symbol← si,16

ψsymbol ← ψsymbol + πi7

ψ ←
P|ψ|
i=1 ψi
|ψ| // normalize distribution8

return ψ9

10

end11

75

A. Algorithms

Algorithm A.18: QSequencerNode unfold
/* unfold given sequence */
Data: sequence index is ∈ N and timestamp t
begin1

unfoldLength← mintend∈divisionMemory(tend > t)2

channels← {}3

j ← 14

tstart← t5

while |channels1| < unfoldLength do // while unfoldLength not reached6

ch← child.unfold(sis,j , tstart) // unfold coincidences7

for j ← 1 to |channels| do // and append channels8

channelsj ← channelsj ⊕ chj9

j ← j + 110

tstart ← tstart + |ch1|11

return channels12

end13

76

B. Nomenclature

1i(j) Indicator function which is 1 if i = j and 0 otherwise

T Transition matrix used by the Temporal Pooler. T = (Tij) ∈M(|C|, |C|)

xt Both, the feed-forward data of the Sequencer, and the input data of the parent
Spatial Pooler. Can also be the input data for the bottom-layer. xt ∈ R|S|

S Set of sequences of the current sequencer node. S ∈

σ Standard deviation of the normal distribution used by the Spatial Pooler. σ ∈ R

H(A) Entropy of discrete random variable A.

k Order of the Markov-Model. k ∈ N

maxCoincidences Parameter of the Spatial Pooler. |C| ≤ maxCoincidences

maxDistance Parameter of the Spatial Pooler

maxGroups Parameter of the Temporal Pooler. |G| ≤ maxGroups

Nij The j-th node of the i-th layer.

P (A) Probability for event A.

πtm Feedback from the Spatial Pooler to the m-th child at timestep t

ψt Feedback from the Sequencer to it’s child at timestep t.

C Set of stored coincidences. C ∈ 2Rn

77

B. Nomenclature

Sequencer

set of sequences

with sequences

set of coincidences

Spatial Pooler

with coincidences

Figure B.1.: Overview over the used notation.

78

Bibliography

S. Becker and G.E. Hinton. Self-organizing neural network that discovers sur-
faces in random-dot stereograms. Nature, 355(6356):161–163, 1992. URL
http://sciwebserver.science.mcmaster.ca/Psychology/becker/papers/
BeckerHintonNature92.pdf.

R. Begleiter, R. El-Yaniv, and G. Yona. On prediction using variable order markov
models. Journal of Artificial Intelligence Research, 22(1):385–421, 2004. URL http:
//biozon.org/people/golan/papers/VMMs.pdf.

Dave Benson. Music: A Mathematical Offering. Cambridge University Press, 2006. URL
http://www.maths.abdn.ac.uk/~bensondj/html/music.pdf.

Bruce A. Bobier and Michael Wirth. Content-based image retrieval using hierar-
chical temporal memory. In Abdulmotaleb El-Saddik, Son Vuong, Carsten Gri-
wodz, Alberto Del Bimbo, K. Selçuk Candan, and Alejandro Jaimes, editors, ACM
Multimedia, pages 925–928. ACM, 2008. ISBN 978-1-60558-303-7. URL http:
//dblp.uni-trier.de/db/conf/mm/mm2008.html#BobierW08.

Jake Bouvrie, Lorenzo Rosasco, and Tomaso Poggio. On invariance in hierarchical models.
In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors,
Advances in Neural Information Processing Systems, volume 22, pages 162–170, 2009.
URL http://books.nips.cc/papers/files/nips22/NIPS2009_0978.pdf.

R.A. Brooks. Intelligence without representation. Artificial intelligence, 47(1-3):139–159,
1991. URL http://www.ai.mit.edu/people/brooks/papers/representation.pdf.

H.L. Chieu, W.S. Lee, and L.P. Kaelbling. Activity recognition from physiological
data using conditional random fields. In SMA Symposium. Singapore-MIT Alliance.
Citeseer, 2006. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.97.49&rep=rep1&type=pdf.

Edsger Wybe Dijkstra. The notational conventions i adopted, and why. Website, 2000.
URL http://userweb.cs.utexas.edu/users/EWD/index13xx.html.

M. Feder and N. Merhav. Relations between entropy and error probability. Information
Theory, IEEE Transactions on, 40(1):259–266, 2002. doi: 10.1109/18.272494. URL
http://webee.technion.ac.il/people/merhav/papers/entropyerrprob.pdf.

Shai Fine, David Haussler, and Naftali Tishby. The hierarchical hidden markov model:
Analysis and applications. In Machine Learning, volume 32, pages 41–62. Springer,

79

http://sciwebserver.science.mcmaster.ca/Psychology/becker/papers/BeckerHintonNature92.pdf
http://sciwebserver.science.mcmaster.ca/Psychology/becker/papers/BeckerHintonNature92.pdf
http://biozon.org/people/golan/papers/VMMs.pdf
http://biozon.org/people/golan/papers/VMMs.pdf
http://www.maths.abdn.ac.uk/~bensondj/html/music.pdf
http://dblp.uni-trier.de/db/conf/mm/mm2008.html#BobierW08
http://dblp.uni-trier.de/db/conf/mm/mm2008.html#BobierW08
http://books.nips.cc/papers/files/nips22/NIPS2009_0978.pdf
http://www.ai.mit.edu/people/brooks/papers/representation.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.97.49&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.97.49&rep=rep1&type=pdf
http://userweb.cs.utexas.edu/users/EWD/index13xx.html
http://webee.technion.ac.il/people/merhav/papers/entropyerrprob.pdf

Bibliography

July 1998. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
88.7940&rep=rep1&type=pdf.

S. Garalevicius. Analysis and implementation of the memory-prediction framework.
Website, May 2005a. URL http://www.phillylac.org/prediction/2005%2005%
20Analysis%20and%20Implementation%20of%20MPF.pdf.

S. Garalevicius. Using memory-prediction framework for invariant pattern recognition.
Website, December 2005b. URL http://phillylac.org/prediction/2005%2012%
20Using%20MPF%20for%20Pattern%20Recognition.pdf.

Saulius J. Garalevicius. Memory prediction framework for pattern recognition: Per-
formance and suitability of the bayesian model of visual cortex. Technical report,
Department of Computer and Information Sciences, Temple University, 2007. URL
https://www.aaai.org/Papers/FLAIRS/2007/Flairs07-018.pdf.

Dileep George. How The Brain Might Work: A Hierarchical And Temporal Model For
Learning. Phd thesis, Stanford University, June 2008. URL http://www.numenta.com/
for-developers/education/DileepThesis.pdf.

Dileep George and Jeff Hawkins. Towards a mathematical theory of cortical micro-
circuits. PLoS Computational Biology, 5:Issue 10, October 2009. doi: 10.1371/journal.
pcbi.1000532. URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2749218/pdf/
pcbi.1000532.pdf.

Dileep George and Bobby Jaros. The htm learning algorithms. Technical report, Numenta
Inc., March 2007. URL http://www.numenta.com/for-developers/education/
Numenta_HTM_Learning_Algos.pdf.

F. Golcher. Statistical text segmentation with partial structure analysis. In Proceedings
of KONVENS, pages 44–51, 2006. URL http://amor.rz.hu-berlin.de/~golcherf/
index.pdf.

Rhys Goldstein. On the unification of mathematical notation and programming no-
tation. Website, August 2008. URL http://www.rhysgoldstein.com/Goldstein_
_Unification.pdf.

A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber. Connectionist temporal
classification: Labelling unsegmented sequence data with recurrent neural networks.
In Proceedings of the 23rd international conference on Machine learning, pages 369–
376. ACM, 2006. ISBN 1595933832. URL http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.75.6306&rep=rep1&type=pdf.

K.K. Gupta, B. Nath, and K. Ramamohanarao. Conditional random fields for intrusion
detection. In Advanced Information Networking and Applications Workshops, 2007,
AINAW’07. 21st International Conference on, volume 1, pages 203–208. IEEE, 2007. doi:
10.1109/AINAW.2007.126. URL http://ww2.cs.mu.oz.au/~kgupta/files/papers/
2007fina.pdf.

80

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.88.7940&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.88.7940&rep=rep1&type=pdf
http://www.phillylac.org/prediction/2005%2005%20Analysis%20and%20Implementation%20of%20MPF.pdf
http://www.phillylac.org/prediction/2005%2005%20Analysis%20and%20Implementation%20of%20MPF.pdf
http://phillylac.org/prediction/2005%2012%20Using%20MPF%20for%20Pattern%20Recognition.pdf
http://phillylac.org/prediction/2005%2012%20Using%20MPF%20for%20Pattern%20Recognition.pdf
https://www.aaai.org/Papers/FLAIRS/2007/Flairs07-018.pdf
http://www.numenta.com/for-developers/education/DileepThesis.pdf
http://www.numenta.com/for-developers/education/DileepThesis.pdf
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2749218/pdf/pcbi.1000532.pdf
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2749218/pdf/pcbi.1000532.pdf
http://www.numenta.com/for-developers/education/Numenta_HTM_Learning_Algos.pdf
http://www.numenta.com/for-developers/education/Numenta_HTM_Learning_Algos.pdf
http://amor.rz.hu-berlin.de/~golcherf/index.pdf
http://amor.rz.hu-berlin.de/~golcherf/index.pdf
http://www.rhysgoldstein.com/Goldstein__Unification.pdf
http://www.rhysgoldstein.com/Goldstein__Unification.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.75.6306&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.75.6306&rep=rep1&type=pdf
http://ww2.cs.mu.oz.au/~kgupta/files/papers/2007fina.pdf
http://ww2.cs.mu.oz.au/~kgupta/files/papers/2007fina.pdf

Bibliography

Yensy James Hall and Ryan E. Poplin. Using numenta’s hierarchical temporal mem-
ory to recognize captchas. Website, 2007. URL http://www.pembrokeballet.com/
10701-HTM_CAPTCHA.pdf.

Josh Hartung, Jay McCormack, and Frank Jacobus. Support for the use of hierarchi-
cal temporal memory systems in automated design evaluation: A first experiment.
In Proceedings of the ASME 2009 International Design Engineering Technical Con-
ferences & Computers and Information in Engineering Conference, volume 8, pages
853–862, 2009. doi: 10.1115/DETC2009-87702. URL http://www.webpages.uidaho.
edu/~mccormack/papers/DETC2009-87702.pdf.

J. Hawkins, D. George, and J. Niemasik. Sequence memory for prediction, inference
and behaviour. Philosophical Transactions of the Royal Society B: Biological Sciences,
364(1521):1203–1209, May 2009. doi: 10.1098/rstb.2008.0322. URL http://rstb.
royalsocietypublishing.org/content/364/1521/1203.full.pdf+html.

Jeff Hawkins and Sandra Blakeslee. On Intelligence. Holt Paperback, 1. edition,
2005. URL http://www.scribd.com/doc/2942162/HawkinsJeff-On-Intelligence?
autodown=pdf.

Jeff Hawkins and Dileep George. Hierarchical temporal memory concepts, theory, and
terminology. Technical report, Numenta Inc., 2006. URL http://www.numenta.com/
Numenta_HTM_Concepts.pdf.

Helge Homburg, Ingo Mierswa, Bülent Möller, Katharina Morik, and Michael
Wurst. A benchmark dataset for audio classification and clustering, 2005. URL
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.334&rep=
rep1&type=pdf.

Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin. A practical guide to support vector
classification. Technical report, Department of Computer Science, National Taiwan
University, April 2010. URL http://www.csie.ntu.edu.tw/~cjlin/papers/guide/
guide.pdf.

Mohammed Waleed Kadous. Temporal Classification: Extending the Classification
Paradigm to Multivariate Time Series. Phd thesis, The University of New South
Wales, School of Computer Science and Engineering, October 2002. URL http:
//www.cse.unsw.edu.au/~waleed/phd/.

Tomasz Kapuscinski. Using hierarchical temporal memory for vision-based hand shape
recognition under large variations in hand’s rotation. In Leszek Rutkowski, Rafal
Scherer, Ryszard Tadeusiewicz, Lotfi A. Zadeh, and Jacek M. Zurada, editors, ICAISC
(2), volume 6114 of Lecture Notes in Computer Science, pages 272–279. Springer,
2010. ISBN 978-3-642-13231-5. URL http://dblp.uni-trier.de/db/conf/icaisc/
icaisc2010-2.html#Kapuscinski10.

81

http://www.pembrokeballet.com/10701-HTM_CAPTCHA.pdf
http://www.pembrokeballet.com/10701-HTM_CAPTCHA.pdf
http://www.webpages.uidaho.edu/~mccormack/papers/DETC2009-87702.pdf
http://www.webpages.uidaho.edu/~mccormack/papers/DETC2009-87702.pdf
http://rstb.royalsocietypublishing.org/content/364/1521/1203.full.pdf+html
http://rstb.royalsocietypublishing.org/content/364/1521/1203.full.pdf+html
http://www.scribd.com/doc/2942162/HawkinsJeff-On-Intelligence?autodown=pdf
http://www.scribd.com/doc/2942162/HawkinsJeff-On-Intelligence?autodown=pdf
http://www.numenta.com/Numenta_HTM_Concepts.pdf
http://www.numenta.com/Numenta_HTM_Concepts.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.334&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.334&rep=rep1&type=pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://www.cse.unsw.edu.au/~waleed/phd/
http://www.cse.unsw.edu.au/~waleed/phd/
http://dblp.uni-trier.de/db/conf/icaisc/icaisc2010-2.html#Kapuscinski10
http://dblp.uni-trier.de/db/conf/icaisc/icaisc2010-2.html#Kapuscinski10

Bibliography

R. Klinger and K. Tomanek. Classical probabilistic models and conditional random fields.
Technische Universit
"at Dortmund, Electronic Publication, TR07-2-013:1–31, 2007. URL http://ls11-www.
informatik.uni-dortmund.de/_media/techreports/tr07-13.pdf.

J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In MACHINE LEARNING-
INTERNATIONAL WORKSHOP THEN CONFERENCE-, pages 282–289. Cite-
seer, 2001. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
23.9849&rep=rep1&type=pdf.

H. Lee, R. Grosse, R. Ranganath, and A.Y. Ng. Convolutional deep belief net-
works for scalable unsupervised learning of hierarchical representations. In
Proceedings of the 26th Annual International Conference on Machine Learning,
volume 382, pages 609–616. ACM, 2009a. doi: 10.1145/1553374.1553453. URL
http://portal.acm.org/ft_gateway.cfm?id=1553453&type=pdf&coll=GUIDE&dl=
GUIDE&CFID=100604392&CFTOKEN=40133546.

Honglak Lee, Peter Pham, Yan Largman, and Andrew Ng. Unsupervised feature learn-
ing for audio classification using convolutional deep belief networks. In Y. Bengio,
D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in
Neural Information Processing Systems 22, chapter 1096–1104. Neural Information
Processing Systems Foundation, 2009b. URL http://ai.stanford.edu/~ang/papers/
nips09-AudioConvolutionalDBN.pdf.

Y. Liu, J. Carbonell, P. Weigele, and V. Gopalakrishnan. Segmentation conditional random
fields (SCRFs): A new approach for protein fold recognition. In Research in Computa-
tional Molecular Biology, pages 408–422. Springer, 2005. URL http://citeseerx.ist.
psu.edu/viewdoc/download?doi=10.1.1.61.1562&rep=rep1&type=pdf.

J.B. Maxwell, P. Pasquier, and A. Eigenfeldt. Hierarchical sequential memory for music:
A cognitive model. In 10th International Society of Music Information Retrieval
Conference, pages 429–434, October 2009a. URL http://www.rubato-music.com/
home/JBM_Research_files/JBM_HSMM_2009%20-%20Revised.pdf.

J.B. Maxwell, P. Pasquier, and A. Eigenfeldt. Hierarchical sequential memory for music:
A cognitively-inspired approach to generative music. Website, 2009b. URL http:
//www.rubato-music.com/home/JBM_Research_files/HSMM_813.pdf.

J.B. Maxwell, P. Pasquier, and A. Eigenfeldt. The hierarchical sequential memory for
music: A cognitively-inspired model for music learning and composition. In preparation
for upcoming conference, 2010.

Andrew Kachites McCallum. Mallet: A machine learning for language toolkit. Java
package, 2002. URL http://mallet.cs.umass.edu.

82

http://ls11-www.informatik.uni-dortmund.de/_media/techreports/tr07-13.pdf
http://ls11-www.informatik.uni-dortmund.de/_media/techreports/tr07-13.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.9849&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.9849&rep=rep1&type=pdf
http://portal.acm.org/ft_gateway.cfm?id=1553453&type=pdf&coll=GUIDE&dl=GUIDE&CFID=100604392&CFTOKEN=40133546
http://portal.acm.org/ft_gateway.cfm?id=1553453&type=pdf&coll=GUIDE&dl=GUIDE&CFID=100604392&CFTOKEN=40133546
http://ai.stanford.edu/~ang/papers/nips09-AudioConvolutionalDBN.pdf
http://ai.stanford.edu/~ang/papers/nips09-AudioConvolutionalDBN.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.61.1562&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.61.1562&rep=rep1&type=pdf
http://www.rubato-music.com/home/JBM_Research_files/JBM_HSMM_2009%20-%20Revised.pdf
http://www.rubato-music.com/home/JBM_Research_files/JBM_HSMM_2009%20-%20Revised.pdf
http://www.rubato-music.com/home/JBM_Research_files/HSMM_813.pdf
http://www.rubato-music.com/home/JBM_Research_files/HSMM_813.pdf
http://mallet.cs.umass.edu

Bibliography

J. W. Miller and P. H. Lommel. Biomimetic sensory abstraction using hierarchical
quilted self-organizing maps. In PROCEEDINGS-SPIE THE INTERNATIONAL
SOCIETY FOR OPTICAL ENGINEERING, volume 6384, October 2006. doi: 10.
1117/12.686183. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.84.1401&rep=rep1&type=pdf.

H. Mobahi, R. Collobert, and J. Weston. Deep learning from temporal coherence in video.
In Proceedings of the 26th Annual International Conference on Machine Learning, pages
737–744. ACM, 2009. URL http://portal.acm.org/citation.cfm?id=1553469.

Craig G. Nevill-Manning. Inferring Sequential Structure. Phd thesis, University of
Waikato, May 1996. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.52.9964&rep=rep1&type=pdf.

Craig G. Nevill-Manning and Ian H. Witten. Identifying hierarchical structure in sequences:
A linear-time algorithm. Journal of Artificial Intelligence Research, 7:67–82, 1997. URL
http://www.eecs.harvard.edu/~michaelm/CS222/sequitur.pdf.

Numenta. Zeta1 Algorithms Reference. Numenta Inc., 1.5 edition, August 2007a. Shipped
with the NuPIC 1.5 release.

Numenta. Hierarchical Temporal Memory Comparison with Existing Models. Numenta Inc.,
1.0.1 edition, 2007b. URL http://www.numenta.com/for-developers/education/
HTM_Comparison.pdf.

Numenta. Problems that Fit HTM. Numenta Inc., 1.0 edition, March 2007c. URL
http://www.numenta.com/for-developers/education/ProblemsThatFitHTMs.pdf.

Numenta. Getting Started With NuPIC. Numenta Inc., September 2008a. URL http:
//www.numenta.com/for-developers/software/pdf/nupic_gettingstarted.pdf.

Numenta. Numenta Platform for Intelligent Computing Node Plugin Developer’s
Guide. Numenta Inc., 1.2.1 edition, June 2008b. URL http://www.numenta.com/
for-developers/software/pdf/nupic_plug_guide.pdf.

Numenta. Advanced NuPIC Programming. Numenta Inc., 1.8.1 edition, September 2008c.
URL http://www.numenta.com/for-developers/software/pdf/nupic_prog_guide.
pdf.

Marco Ramoni Paola Sebastiani and Paul Cohen. Sequence learning via bayesian clustering
by dynamics. In Ron Sun and C. Lee Giles, editors, Sequence Learning, volume
1828 of Lecture Notes in Artificial Intelligence, pages 11–34. Springer, 2001. doi:
10.1007/3-540-44565-X_2.

A.J. Perea, J.E. Meroño, and M.J. Aguilera. Application of numenta hierarchical tem-
poral memory for land-use classification. South African Journal of Science, 105(9-
10):370–375, October 2009. URL http://www.scielo.org.za/pdf/sajs/v105n9-10/
a1410510.pdf.

83

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.1401&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.1401&rep=rep1&type=pdf
http://portal.acm.org/citation.cfm?id=1553469
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.52.9964&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.52.9964&rep=rep1&type=pdf
http://www.eecs.harvard.edu/~michaelm/CS222/sequitur.pdf
http://www.numenta.com/for-developers/education/HTM_Comparison.pdf
http://www.numenta.com/for-developers/education/HTM_Comparison.pdf
http://www.numenta.com/for-developers/education/ProblemsThatFitHTMs.pdf
http://www.numenta.com/for-developers/software/pdf/nupic_gettingstarted.pdf
http://www.numenta.com/for-developers/software/pdf/nupic_gettingstarted.pdf
http://www.numenta.com/for-developers/software/pdf/nupic_plug_guide.pdf
http://www.numenta.com/for-developers/software/pdf/nupic_plug_guide.pdf
http://www.numenta.com/for-developers/software/pdf/nupic_prog_guide.pdf
http://www.numenta.com/for-developers/software/pdf/nupic_prog_guide.pdf
http://www.scielo.org.za/pdf/sajs/v105n9-10/a1410510.pdf
http://www.scielo.org.za/pdf/sajs/v105n9-10/a1410510.pdf

Bibliography

Rafael Coimbra Pinto. A Neocortex Inspired Hierarchical Spatio-Temporal Pattern Recog-
nition System. Bachelor thesis, Universidade Federal Do Rio Grande Do Sul, June 2009.
URL http://www.inf.ufrgs.br/~rcpinto/tcc/monografia.pdf.

L. Rabiner and B. Juang. An introduction to hidden markov models. IEEE ASSp
Magazine, 3(1 Part 1):4–16, 1986. URL http://ieeexplore.ieee.org/xpls/abs_all.
jsp?&arnumber=1165342.

L.R. Rabiner. A tutorial on hidden markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257–286, Februrary 1989.

Kiruthika Ramanathan, Luping Shi, Jianming Li, Kian Guan Lim, Ming Hui Li, Zhi Ping
Ang, and Tow Chong Chong. A neural network model for a hierarchical spatio-temporal
memory. In Mario Köppen, Nikola K. Kasabov, and George G. Coghill, editors,
ICONIP (1), volume 5506 of Lecture Notes in Computer Science, pages 428–435.
Springer, 2008. ISBN 978-3-642-02489-4. URL http://dblp.uni-trier.de/db/conf/
iconip/iconip2009-1.html#RamanathanSLLLAC09.

D. Ron, Y. Singer, and N. Tishby. The power of amnesia: Learning probabilistic automata
with variable memory length. Machine learning, 25(2):117–149, 1996. doi: 10.1023/
A:1026490906255. URL http://www.springerlink.com/index/U43U01836770W366.
pdf.

David Rozado, Francisco B. Rodriguez, and Pablo Varona. Optimizing hierarchical
temporal memory for multivariable time series. In Konstantinos I. Diamantaras,
Wlodek Duch, and Lazaros S. Iliadis, editors, ICANN (2), volume 6353 of Lecture Notes
in Computer Science, pages 506–518. Springer, 2010. ISBN 978-3-642-15821-6. URL
http://dblp.uni-trier.de/db/conf/icann/icann2010-2.html#RozadoRV10.

Federico Sassi, Luca Ascari, and Stefano Cagnoni. Classifying human body acceleration
patterns using a hierarchical temporal memory. In Roberto Serra and Rita Cucchiara,
editors, AI*IA, volume 5883 of Lecture Notes in Computer Science, pages 496–505.
Springer, 2009. ISBN 978-3-642-10290-5. URL http://dblp.uni-trier.de/db/conf/
aiia/aiia2009.html#SassiAC09.

Nathan C. Schey. Song identification using the numenta platform for intelligent computing.
Bachelor thesis, Department of Computer Science and Engineering at The Ohio State
University, May 2008. URL https://kb.osu.edu/dspace/bitstream/1811/32025/1/
Schey_Thesis.pdf.

M. Slaney. Auditory toolbox. Technical report, Apple Computer Company, 1993.

Ron Sun. Introduction to sequence learning. In Ron Sun and C. Lee Giles, editors,
Sequence Learning, volume 1828 of Lecture Notes in Artificial Intelligence, pages 1–10.
Springer, 2001. doi: 10.1007/3-540-44565-X_1. URL http://www.springerlink.com/
content/knnuaeb394xlxcu0/fulltext.pdf.

84

http://www.inf.ufrgs.br/~rcpinto/tcc/monografia.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?&arnumber=1165342
http://ieeexplore.ieee.org/xpls/abs_all.jsp?&arnumber=1165342
http://dblp.uni-trier.de/db/conf/iconip/iconip2009-1.html#RamanathanSLLLAC09
http://dblp.uni-trier.de/db/conf/iconip/iconip2009-1.html#RamanathanSLLLAC09
http://www.springerlink.com/index/U43U01836770W366.pdf
http://www.springerlink.com/index/U43U01836770W366.pdf
http://dblp.uni-trier.de/db/conf/icann/icann2010-2.html#RozadoRV10
http://dblp.uni-trier.de/db/conf/aiia/aiia2009.html#SassiAC09
http://dblp.uni-trier.de/db/conf/aiia/aiia2009.html#SassiAC09
https://kb.osu.edu/dspace/bitstream/1811/32025/1/Schey_Thesis.pdf
https://kb.osu.edu/dspace/bitstream/1811/32025/1/Schey_Thesis.pdf
http://www.springerlink.com/content/knnuaeb394xlxcu0/fulltext.pdf
http://www.springerlink.com/content/knnuaeb394xlxcu0/fulltext.pdf

Bibliography

C. Sutton and A. McCallum. An introduction to conditional random fields for relational
learning. In L. Getoor and B. Taskar, editors, Introduction to statistical relational
learning, chapter 4, pages 93–126. The MIT Press, 2007. URL http://www.cs.umass.
edu/~mccallum/papers/crf-tutorial.pdf.

John Thornton, Torbjorn Gustafsson, Michael Blumenstein, and Trevor Hine. Robust
character recognition using a hierarchical bayesian network. URL http://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.71.5326&rep=rep1&type=pdf.

Laura Firoiu Tim Oates and Paul Cohen. Using dynamic time warping to bootstrap
hmm-based clustering of time series. In Ron Sun and C. Lee Giles, editors, Se-
quence Learning, volume 1828 of Lecture Notes in Artificial Intelligence, pages 35–52.
Springer, 2001. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.21.3394&rep=rep1&type=pdf.

Joost van Doremalen and Lou Boves. Spoken digit recognition using a hierarchical
temporal memory. In Proceedings Interspeech, pages 2566–2569, 2008. doi: 10.
1117/12.686183. URL http://lands.let.ru.nl/acorns/documents/publications/
Interspeech-2008/Doremalen-Boves.pdf.

DeLiang Wang. Anticipation model for sequential learning of complex sequences. In
Ron Sun and C. Giles, editors, Sequence Learning, volume 1828 of Lecture Notes in
Artificial Intelligence, pages 53–79. Springer, 2001. doi: 10.1007/3-540-44565-X_4.
URL http://dx.doi.org/10.1007/3-540-44565-X_4.

Brandyn Jerad Webb. Fusion-reflection: Self-supervised learning, 1993. URL http:
//www.sifter.org/~brandyn/Furf-I.pdf.

G.P. Zhang. Neural networks for classification: a survey. Systems, Man, and Cy-
bernetics, Part C: Applications and Reviews, IEEE Transactions on, 30(4):451–462,
2002. ISSN 1094-6977. URL http://www-vis.lbl.gov/~romano/mlgroup/papers/
neural-networks-survey.pdf.

B. Zupan, M. Bohanec, J. Demsar, and I. Bratko. Learning by discovering concept
hierarchies. Artificial Intelligence, 109(1):211–242, 1999. URL http://citeseerx.ist.
psu.edu/viewdoc/download?doi=10.1.1.7.2479&rep=rep1&type=pdf.

85

http://www.cs.umass.edu/~mccallum/papers/crf-tutorial.pdf
http://www.cs.umass.edu/~mccallum/papers/crf-tutorial.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.71.5326&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.71.5326&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.21.3394&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.21.3394&rep=rep1&type=pdf
http://lands.let.ru.nl/acorns/documents/publications/Interspeech-2008/Doremalen-Boves.pdf
http://lands.let.ru.nl/acorns/documents/publications/Interspeech-2008/Doremalen-Boves.pdf
http://dx.doi.org/10.1007/3-540-44565-X_4
http://www.sifter.org/~brandyn/Furf-I.pdf
http://www.sifter.org/~brandyn/Furf-I.pdf
http://www-vis.lbl.gov/~romano/mlgroup/papers/neural-networks-survey.pdf
http://www-vis.lbl.gov/~romano/mlgroup/papers/neural-networks-survey.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.7.2479&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.7.2479&rep=rep1&type=pdf

	Introduction
	Hierarchical Temporal Memory
	Overview
	Structure
	Training and Inference
	Nodes
	Problems Related to Sequence Learning

	State of Art
	HTM Related Work
	Hidden Markov Models
	Conditional Random Fields
	Neural Networks

	Hierarchical Learning
	Premises
	Building up a Temporal Hierarchy
	Temporal Grouping
	Prediction
	Feed-Forward Data
	Feedback
	Unfolding
	Putting it All Together

	Implementation
	Basic Architecture
	Network
	Batches
	HTM Implementation
	Extensions
	Graphical User Interface

	Results
	Artificial Hierarchical Data
	NuPIC Results
	Predictions
	Top-Node Classification
	Classification through Reconstruction
	Comparison

	Conclusion and Perspective
	Algorithms
	Original HTM
	Improved Algorithms

	Nomenclature
	Bibliography

