
MT Server Land Translation Services

Christian Federmann
DFKI – Language Technology Lab

Stuhlsatzenhausweg 3, D-66123 Saarbrücken, GERMANY
E-mail: cfedermann@dfki.de

Abstract

We demonstrate MT Server Land, an open-source architecture for machine translation services that is developed by the MT group

at DFKI. The system can flexibly be extended and allows lay users to make use of MT technology within a web browser or by

using simple HTTP POST requests from custom applications. A central broker server collects and distributes translation requests

to several worker servers that create the actual translations. User access is realized via a fast and easy-to-use web interface or

through an XML-RPC-based API that allows integrating translation services into external applications. We have implemented

worker servers for several existing translation systems such as the Moses SMT decoder or the Lucy RBMT engine. We also show

how other, web-based translation tools such as Google Translate can be integrated into the MT Server Land application. The

source code is published under an open BSD-style license and is freely available from GitHub.

Keywords: Machine Translation, Web Service, Translation Framework, Open-Source Tool

1. Introduction
Machine translation (MT) is a field of active research
with lots of different MT systems being built for shared
tasks and experiments. The step from the research
community towards real-world application of available
technology requires easy-to-use MT services that are
available via the Internet and allow collecting feedback
and criticism from real users. Such applications are
important means to increase visibility of MT research
and to help shaping the multi-lingual web. Applications
such as Google Translate1 allow lay users to quickly and
effortlessly create translations of texts or even complete
web pages; the continued success of such services shows
the potential that lies in usable machine translation,
something both developers and researchers should be
targeting.
 In the context of ongoing MT research projects at
DFKI's language technology lab, we have decided to
design and implement such a translation application.
We have released the source code under a permissive
open-source license and hope that it becomes a useful
tool for the MT community. A screenshot of the MT
Server Land application is shown in Figure 1.

1 http://translate.google.com

Figure 1: Screenshot of MT Server Land

2. System Architecture
The system consists of two different layers: first, we
have the so-called broker server that handles all direct
requests from end users or via API calls alike. Second,
we have a layer of worker servers, each implementing
some sort of machine translation functionality. All
communication between users and workers is channeled
through the broker server that acts as a central “proxy”
server. An overview of the system architecture is given
in Figure 2.
For users, both broker and workers “constitute” the MT

Server Land system; the broker server is the “visible”
part of the application while the various worker servers
perform the “invisible” translation work. The system has
been designed to make it easier for lay users to access
and use machine translation technology without the need
to fully dive into the complexities of current MT
research. Within MT Server Land, translation
functionality is available by starting up suitable worker
server instances for a specific MT engine. The startup
process for workers is standardized using some
easy-to-understand parameters for, e.g., the hostname/IP
address or port number of the worker server process. All
“low-level” work (de-/serialization, transfer of
requests/results, etc.) is handled by the worker server
instances. Of course, it is possible to design and create
new worker server instances, e.g., to demonstrate new
features in a research translation system or to integrate
other MT systems.
 Human users connect to the system using any
modern web browser; API access can be implemented
using HTTP POST and/or XML-RPC requests. It would
be relatively easy to extend the current API interface to
support other protocols such as SOAP or REST. By
design, all internal method calls that connect to the
worker layer have to be implemented with XML-RPC.
In order to prevent encoding problems with the input
text, we send and receive all data encoded as Base64
Strings between broker and workers; the broker server
takes care of the necessary conversion steps.
Translation requests are converted into serialized, binary
Strings using Google protocol buffer compilation.

Figure 2: Architecture overview of MT Server Land

2.1. Broker Server
The broker server has been implemented using the
django web framework2, which takes care of low-level
tasks and allows for rapid development and clean design
of components. We have used the framework for other
project work before and think it is well suited to the task.
The framework itself is available under an open-source
BSD-license.

2.1.1. Object Models
The broker server implements two main django models
that we describe subsequently. Please note that we have
also developed additional object models, e.g. for quota
management. See the source code for more information.
 WorkerServer stores all information related to a

remote worker server. This includes source and
target language, the respective hostname and port
address as well as a name and a short description.
Available worker servers within MT Server Land
can be constrained to function for specific user
and/or API accounts only.

 TranslationRequest models a translation job and
related information such as the chosen worker
server, the source text and the assigned request id.
Furthermore we store additional metadata
information. Once the translation result has been
obtained from the translation worker server, it is
also stored within the instance so that it can be
removed from the worker server’s job queue.

2.1.2. User Interface
We developed a browser-based web interface to access
and use the MT Server Land application. End users first
have to authenticate before they can access their
dashboard that lists all known translation requests for
the current user and also allows creating new requests.
When creating a new translation request, the user may
choose which translation worker server should be used
to generate the translation for the chosen language pair.
We use a validation step to ensure that the respective
worker server supports the selected language pair and is
currently able to receive new translation requests from
the broker server; after successful validation, the new
translation request is sent to the worker server that starts
processing the given source text.

2 http://www.djangoproject.com/

Once the chosen worker server has completed a
translation request, the result is transferred to (and also
cached by) the object instance inside the broker server's
data storage. The user can view the result within the
dashboard or download the file to a local hard disk.
Translation requests can be deleted at any time,
effectively terminating the corresponding thread within
the connected worker server (if the translation is still
running). If an error occurs during translation, the
system will recognize this and deactivate the respective
translation requests.

2.1.3. API Interface
In parallel to the browser interface, we have designed
and implemented an API that allows connecting
applications to the MT functionality provided by our
application using HTTP POST requests. Again, we first
require authentication before any machine translation
can be used. We provide methods to list all requests for
the current “user” (i.e. the application account) and to
create, download, or delete translation requests.
Extension to REST or SOAP protocols is possible.

2.2. Worker Server Implementations
A layer of so-called worker servers that are connected to
the central broker server implements the actual machine
translation functionality. For the MT Server Land, we
have implemented worker servers for the following MT
systems:
 Moses SMT: a Moses (Koehn et al., 2007) worker

is configured to serve exactly one language pair.
We use the Moses Server mode to keep translation
and language model in memory, which helps to
speed up the translation process. As the limitation to
one language pair effectively means that a huge
number of Moses worker server instances has to be
started in a typical usage scenario, we have also
worked on a better implementation which allows to
serve any number of language pairs from one
worker instance. Future improvements could be
achieved by integrating “on-the-fly” configuration
switching and remote language models to reduce
the amount of resources required by the Moses
worker server.

 Lucy RBMT: our Lucy (Alonso & Thurmair, 2003)
worker is implemented using a Lucy Server mode

wrapper. This is a small Python program running on
the Windows machine on which Lucy is installed.
We have implemented a simple XML-RPC based
API interface to send translation requests to the
Lucy engine and later fetch the corresponding
results. For integration in MT Server Land, we
simply had to “tunnel” our Lucy worker server calls
to this Lucy server mode implementation.

 Joshua SMT: similar to the Moses worker, we have
created a Joshua (Li et al., 2010) worker that works
by creating a new Joshua instance for each
translation request.

We have also created worker servers for popular online
translation engines such as Google Translate,
Microsoft Translator, or Yahoo! BabelFish. We will
demonstrate the worker servers in our presentation.

3. Acknowledgements
This work was supported by the EuroMatrixPlus project
(IST-231720) that is funded by the European
Community under the Seventh Framework Programme
for Research and Technological Development.

4. References
Alonso, J. A. and Thurmair, G. (2003). The

Comprendium Translator System. In Proceedings of
the Ninth Machine Translation Summit.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C.,
Federico, M., Bertoldi, N., Cowan, B., Shen, W.,
Moran, C., Zens, R., Dyer, C. J., Bojar, O., Constantin,
A., and Herbst, E. (2007). Moses: Open Source
Toolkit for Statistical Machine Translation. In
Proceedings of the 45th Annual Meeting of the
Association for Computational Linguistics
Companion Volume Proceedings of the Demo and
Poster Sessions, pages 177–180, Prague, Czech
Republic. Association for Computational Linguistics.

Li, Z., Callison-Burch, C., Dyer, C., Ganitkevitch, J.,
Irvine, A., Khudanpur, S., Schwartz, L., Thornton, W.,
Wang, Z., Weese, J., and Zaidan, O. (2010). Joshua
2.0: A Toolkit for Parsing-based Machine Translation
with Syntax, Semirings, Discriminative Training and
other Goodies. In Proceedings of the Joint Fifth
Workshop on Statistical Machine Translation and
MetricsMATR, pages 133–137, Uppsala, Sweden.
Association for Computational Linguistics.

