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Abstract We describe an approach for multi-modal dialogue strategy learning com-
bining two sources of uncertainty: speech and gestures. Our approach represents
the state-action space of a reinforcement learning dialogue agent with relational
representations for fast learning, and extends it with belief state variables for di-
alogue control under uncertainty. Our approach is evaluated, using simulation, on
a robotic spoken dialogue system for an imitation game of arm movements. Pre-
liminary experimental results show that the joint optimization of speech and visual
beliefs results in better overall system performance than treating them in isolation.

1 Introduction

Reinforcement learning dialogue agents have a promising application for adaptive
human-robot interaction [1]. One of the main problems that affect its practical appli-
cation is that the learning agents have to operate under uncertainty. Dialogue control
under uncertainty has been addressed by sequential decision-making models under
uncertainty [2, 3, 4, 5]. In this paper we describe an approach for tractable dialogue
strategy learning under uncertainty derived from speech and gesture recognition er-
rors in human-robot dialogues. Our scenario is an imitation game of arm movements
between a child and a robot . In this memory game the child makes an arm move-
ment (e.g. right arm up) and the robot has to imitate that movement followed by
adding another one (e.g. right arm up, left arm up), then the child imitates the robot
and adds another movement (e.g. right arm up, left arm up, left arm down), and
so on until a maximum number of movements is reached. In these interactions the
robot receives verbal (spoken) and non-verbal (gestures) observations. The rest of
the paper explains how to learn dialogue strategies combining such observations.
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Fig. 1 A pipeline model
of human-robot interaction
under uncertainty, where
belief dialogue state bt is used
by the dialogue manager to
choose action at .
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2 Learning Human-Robot Dialogues Under Uncertainty

A human-robot dialogue can be defined as a finite sequence of verbal and/or non-
verbal information units conveyed between conversants, where the information can
be described at different levels of communication such as speech signals, gestures,
words, and dialogue acts. Figure 1 illustrates a model of human-robot interaction.
An interaction between conversants can be briefly described as follows: the robot
receives user verbal and non-verbal contributions from which it extracts interpreted
user dialogue and/or gesture acts and enters them into its knowledge base. The robot
then updates its belief dialogue state bt (i.e. a probability distribution over observ-
able dialogue states) with information extracted from its knowledge base. This di-
alogue state is received by the dialogue manager in order to choose a machine dia-
logue and/or gesture act at , which is received by the response generation module to
generate the corresponding verbal and non-verbal response conveyed to the user.

A human-robot dialogue follows such a sequence of interactions in an iterative
process between both conversants until one of them terminates it. Such sequences
can be used by a reinforcement learning agent to optimize the robot’s dialogue be-
haviour. In this paper we apply the learning approach proposed by [6], which ex-
tends the state representation of Markov Decision Process (MDP) reinforcement
learning dialogue agents with relational representations and beliefs states. We apply
this approach to child-robot dialogues in an imitation game of arm movements.

3 Using Bayesian-Relational State Representations for
Optimizing Human-Robot Dialogues

Our employed approach unifies two concepts: relational representations and belief
states. Whilst the former describes the dialogue state with expressive, compact, and
high-level representations (rather than propositional ones with exponential growth),
the latter provides the mechanism to handle uncertainty in the interaction [6].
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A relational Markov Decision Process (MDP) can be characterized as a 5-tuple
<S,A,T,R,L>, where the first four elements are well known in a standard MDP,
and element L is a language that provides the mechanism to express logic-based
representations. We describe L by a context-free grammar to represent formulas
consisting of predicates, variables, constants and connectives similar to first order
logic [7]. Whilst the state set S is generated from an enumeration of all possible
logical forms in L, the actions A per state are constrained by the logical forms in L.

We approximate the belief states of a relational MDP with belief state variables,
defined as b(s) = 1

Z Π p(Xi ∈ s), where p(Xi ∈ s) is the probability distribution of
predicate Xi in state s, and Z is a normalization constant. We maintain a Bayesian
Network (BN) for each predicate Xi ∈ s. A BN models a joint probability distribution
over a set of random variables and their dependencies based on a directed acyclic
graph, where each node represents a variable Yj with parents pa(Yj) [8]. The Markov
condition implies that each variable is only dependent on its parents, resulting in
a unique joint probability distribution expressed as p(Y ) = Π p(Yj|pa(Yj)), where
every variable is associated with a conditional probability distribution p(Yj|pa(Yj)).
To that end, we use the variable elimination and junction tree algorithms [9].

4 Experiments and Results

We tested our approach in a reinforcement learning agent for the imitation game
described in Section 1. The task consists in imitating arm movements by taking
turns and by incrementing the movement sequence by one movement each turn un-
til reaching a maximum length. This makes the task a memory game. The scenario
represents two sources of uncertainty, coming from verbal and non-verbal user con-
tributions, i.e. speech and gestures. Our hypothesis is that the joint optimization of
speech and visual beliefs in human-robot dialogue strategy learning results in better
overall system performance than treating them in isolation.

4.1 The Simulated Conversational Environment

Our simulated dialogues are based on the Dialogue Acts (DAs) and Gesture Acts
(GAs) shown in Table 1 (10 user DAs and 22 system GAs). We employed the con-
ditional probability distribution p(u|a) for simulating user dialogue/gesture acts u
given the last robot dialogue/gesture acts a. The user responses were coherent with
probability 0.9 and random otherwise, a speech recognition error rate of 20% and a
gesture recognition error rate of 30% was assumed. In addition, we modelled speech
and gesture recognition events from beta continuous probability distributions, which
have been applied to statistical dialogue simulation by [6]. The beta distribution is
parameterized by two positive shape parameters referred to as α and β . Our simu-
lations used (α=2,β=5; α=5,β=2) for bad and good recognition, respectively.
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Table 1 Dialogue and gesture acts for the conversations in the arm imitation game.

Conversant Dialogue/Gesture Acts Sample Utterance

User

Provide(YourTurn) Your turn
Provide(IncorrectMovement) That was incorrect
Confirm(ContinuePlaying) Yes
Move(RightArmUp) Right arm up [speech and gesture]
Move(RightArmDown) Right arm down [speech and gesture]
Move(LeftArmUp) Left arm up [speech and gesture]
Move(LeftArmDown) Left arm down [speech and gesture]
Request(RepeatSequence) Repeat that please
Request(LastMovement) What was the last movement?
Silence() [remain in silence]

Robot

Provide(GameInstructions) In this game we take turns to imitate our arm movements...
Provide(YourTurn) Your turn
Provide(MyTurn) Okay, my turn
Provide(SequenceAgain) Okay, here is the sequence again.
Provide(NewMovement) The new movement is
Provide(GamePerformance) We scored together X out of Y points.
Request(ContinuePlaying) Are you ready?
Request(Movement) Show and tell me the first movement.
Request(RepeatSequence) Try again
Request(LastMovement) Sorry what was your last movement?
Apology(ContinuePlaying) I didn’t hear that. Are you ready?
Apology(GestureSequence) I didn’t get that. Show me the sequence again.
Acknowledgement(Play) Good
Acknowledgement(NoPlay) Too bad
Move(RightArmUp) Right arm up [speech and gesture]
Move(RightArmDown) Right arm down [speech and gesture]
Move(LeftArmUp) Left arm up [speech and gesture]
Move(LeftArmDown) Left arm down [speech and gesture]
Move(NodYes) Yes [speech and nod]
Move(NodNo) No [speech and nod]
Express(Success) Great [move body showing happiness]
Express(Failure) Upps [move body showing sadness]

4.2 Characterization of the Learning Agent

Figure 2 shows the context-free grammar specifying the language for the relational
states in our learning agent, see sample dialogue in Table 2. The goal state is reached
when the game is over. Notice that the enumeration of states using propositional
representations results in 3.5 billion states, corresponding to the following vector
of state variables and domain values: GameInstructions with 2 values, PlayGame
with 2 values, Gestures with 5×47×10 values (assuming a decomposed predicate),
MatchedSequence with 2 values, LastGesture with 3 values, Turn with 3 values,
MaxMovements with 2 values, NewGesture with 4 values, GameScore with 2 values
and Timeout with 2 values.

In contrast, the relational state representations only require 666 thousand com-
binations (less than 0.1% of the propositional representation). We constrain the ac-
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L := l01 l02 l03 l04 l05 l06 l07 l08 l09 l10 l11 l12 l13 l14 l15 ... l27
l01:= GameInstructions(unprovided)
l02:= GameInstructions(provided) ∧ PlayGame(unknown) ∧ TimeOut(no)
l03:= GameInstructions(provided) ∧ PlayGame(unknown) ∧ TimeOut(yes)
l04:= GameInstructions(provided) ∧ PlayGame(no)
l05:= GameInstructions(provided) ∧ PlayGame(yes)
l06:= GameInstructions(provided) ∧ PlayGame(ready)
l07:= l06 ∧ Gestures(unfilled) ∧ Turn(none)
l08:= l06 ∧ Gestures(unfilled) ∧ Turn(user) ∧ TimeOut(no)
l09:= l06 ∧ Gestures(unfilled) ∧ Turn(user) ∧ TimeOut(yes)
l10:= l06 ∧ Gestures(filled, sequence, score) ∧ Turn(user)
l11:= l06 ∧ Gestures(filled, sequence, score) ∧ LastGesture(correct) ∧ Turn(user)
l12:= l06 ∧ Gestures(filled, sequence, score) ∧ LastGesture(incorrect) ∧ Turn(user)
l13:= l06 ∧ Gestures(filled, sequence, score) ∧ LastGesture(missing) ∧ Turn(user)
l14:= l06 ∧ Gestures(recognized) ∧MatchedSequence(no) ∧ Turn(user)
l15:= l06 ∧ Gestures(recognized) ∧MatchedSequence(yes) ∧ Turn(unknown)
l16:= l06 ∧ Gestures(recognized) ∧MatchedSequence(yes) ∧ Turn(robot)
l17:= l06 ∧ Gestures(provided) ∧ NewGesture(unknown) ∧ Turn(robot)
l18:= l06 ∧ Gestures(provided) ∧ NewGesture(known) ∧ Turn(robot)
l19:= l06 ∧ Gestures(provided) ∧ NewGesture(provided) ∧ Turn(robot)
l20:= l06 ∧ Gestures(corrected) ∧ NewGesture(unknown) ∧ Turn(robot)
l21:= l06 ∧ Gestures(corrected) ∧ NewGesture(known) ∧ Turn(robot)
l22:= l06 ∧ Gestures(corrected) ∧ NewGesture(mentioned) ∧ Turn(robot)
l23:= l06 ∧ Gestures(corrected) ∧ NewGesture(provided) ∧ Turn(robot)
l24:= l06 ∧MaxMovements(yes) ∧ GameScore(good, non-expressed) ∧ Turn(robot)
l25:= l06 ∧MaxMovements(yes) ∧ GameScore(bad, non-expressed) ∧ Turn(robot)
l26:= l06 ∧MaxMovements(yes) ∧ GameScore(performance, expressed) ∧ Turn(robot)
l27:= l04 ∨ (l06 ∧ (l24∨ l25) ∧ GameOver(yes))
sequence := [combinations of four arm movements of length seven (i.e. 47 sequences)]
score := 0.1 ∨ 0.2 ∨ 0.3 ∨ 0.4 ∨ 0.5 ∨ 0.6 ∨ 0.7 ∨ 0.8 ∨ 0.9 ∨ 1

Fig. 2 Context-free grammar defining the language L for the dialogue states in the imitation game
of arm movements. The notation li denotes logical forms, i.e. groups of dialogue states of size≥ 1.
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Fig. 3 Bayesian networks for modelling the beliefs of a sequence of arm movements. The random
variables values are {Nothing, LeftArmUp, LeftArmDown, RightArmUp, RightArmDown}. The
predicate ‘Gestures()’ uses multiple Bayesian nets in order to avoid large amounts of probabilities.

tions per state based on the logical forms in language L (we refer to this partially-
specified dialogue policy as ‘hand-coded policy’). In addition, the core Bayesian
Networks (BNs) for modelling the beliefs of a sequence of arm movements are
shown in Figure 3. The BNs for the remaining predicates assumed observed values
(i.e. one value with probability 1; e.g., GameInstructions(provided)=1 and GameIn-
structions(unprovided)=0). Finally, we used the same learning settings as in [6].
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Agent State ID Dialogue Act Utterance (with mirrored arm movements)

Robot l01 Provide(GameInstructions) In this game we take turns to imitate our arm
movements. You do the first pose. Once you give me
my turn I imitate it, and add another one. Then you
imitate the two poses and add one more, then
me again, and so on until a seven-long sequence.

l02 Request(ContinuePlaying) Are you ready?
User Confirm(ContinuePlaying) Yes I am

Robot l05 Acknowledgement(Play) Good
l06 Request(Movement) Show and tell me the first movement.

User Move(RightArmUp) Right arm up [speech and gesture]
Provide(YourTurn) Your turn

Robot l16 Move(LeftArmUp) Left arm up [speech and gesture]
l18 Move(RightArmUp) Right arm up [speech and gesture]
l19 Provide(YourTurn) Up to you.

User Move(RightArmUp) Right arm up [speech and gesture]
Move(LeftArmUp) Left arm up[speech and gesture]
Provide(YourTurn) Your turn

Robot l13 Request(NewMovement) Sorry I didn’t see the last movement?
l14 Request(RepeatSequence) Try again.

User Move(RightArmUp) Right arm up [speech and gesture]
Move(LeftArmUp) Left arm up [speech and gesture]
Move(LeftArmDown) Left arm down [speech and gesture]

Robot l16 Provide(MyTurn) Okay, my turn
... ... ... ...

Robot l24 Express(Success) Great.
l26 Provide(GamePerformance) We scored together 72 out of 100 points.

Table 2 Fragment of a human-robot dialogue playing the arm imitation game.

4.3 Experimental Results

We observed that a learnt policy with belief state variables achieves better perfor-
mance (due to more accurate recognitions) than without tracking joint belief states.
The latter considered either only speech recognition hypotheses (ignoring gestures)
or gesture recognition hypotheses (ignoring spoken responses). We measured the av-
erage reward of the last 1000 (out of 10 thousand) training dialogues and observed
that learning with joint beliefs outperforms its counterpart (without joint beliefs) by
an absolute 10% (for only speech) and 13% (for only gestures) in terms of average
reward. We also compared the average reward of the first 1000 training dialogues
and the last 1000 training dialogues for the best policy (joint beliefs), and noticed
that the latter phase outperformed the first one by 9.4%. This indicates that the dia-
logue policy with hand-coded constraints was improved by policy learning.

The learning dialogue agent described in this paper (sample dialogue in Table 2)
has been incorporated into a complex integrated robotic system [10] (see Figure
4). This system is being used as a testbed for investigating adaptive child-robot
interaction in the context of the ALIZ-E project (www.aliz-e.org).
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Fig. 4 Illustrative interaction playing the arm imitation game using the NAO robot.

5 Conclusion and Future Work

We have described an approach for learning human-robot dialogue policies, which
aims for efficient and robust operation combined with straightforward design. For
such a purpose we use logic-based representations in the state-action space, and
extend them with belief states derived from multiple Bayesian networks. Our exper-
imental results provide initial evidence to conclude that our method is promising be-
cause it combines more scalable learning (than propositional state representations)
with robust operation. Future work consists in extending our proposed game with
other games using a hierarchy of learning agents modelling belief states at different
levels of granularity, and its corresponding evaluation in a realistic environment.

Acknowledgements Funding by the EU-FP7 project ALIZ-E (ICT-248116) is gratefully ac-
knowledged.
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