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Abstract

Temporal encoding schemes using RDF and OWL are often plagued by a
massive proliferation of useless “container” objects. Reasoning and query-
ing with such representations is extremely complex, expensive, and error-
prone. We present a temporal extension of the Hayes and ter Horst en-
tailment rules for RDFS and OWL. The extension requires only some
lightweight forms of reasoning and is is realized by adding two further
temporal arguments, thus replacing a triple by a quintuple. The approach
has been implemented in the forward chaining engine HFC. Our decision
was motivated by experiences we have gained in former projects that have
dealt with the representation of changing information over time in descrip-
tion logic ontologies. In order to verify the superiority of the approach, we
compare the quintuple scheme with a semantic-preserving encoding scheme
for N-ary relations in RDF triples, as proposed by the Semantic Web Best
Practices Group of the W3C. The comparison is carried out on a theoreti-
cal as well as a practical level, both in the space and the time domain when
computing the deductive closure w.r.t. the triple- and quintuple-based tem-
poral entailment rules.
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1 Introduction

Representing temporally-changing information becomes increasingly important
for reasoning and query services defined on top of RDF and OWL, for practi-
cal applications such as business intelligence in particular, and for the Semantic
Web/Web 2.0 in general. Extending binary OWL ABox relation instances or RDF
triples with further temporal arguments translates into a massive proliferation of
useless “container” objects. Reasoning and querying with such representations is
extremely complex, expensive, and error-prone.

In this paper, we critically compare two encoding schemes for temporally-changing
information in RDF and OWL. The first one conservatively extends the RDF
triple model towards a general flat quintuple representation, whereas the second
approach utilizes W3C’s N-ary relation proposal in RDF, as suggested by the
Semantic Web Best Practices Group [3]. In order to present comparable mea-
surements for the two approaches, we have used the rule-based forward chainer
HFC (see section 5.1) that we have developed over the last years which is com-
parable to popular engines, such as Jena or OWLIM. Concerning runtime, our
measurements have shown that a general tuple-based approach easily outperforms
a triple-based encoding by several orders of magnitude, depending on the size
of the ABox.

In the next section, we present proposals which are somewhat related to the prob-
lem described in this paper. After that, we investigate the memory requirements
of the two proposals for simply storing a temporal fact. We then outline our
approach by presenting the extended entailment rules for RDFS and the OWL
Horst dialect. This section also contains a paragraph where we argue that the
theoretical results from [8] do hold for our setting as well. Not only do we come
up with an implemented set of entailment rules for our approach, but also with
a semantic-preserving set of rules using the N-ary relation proposal of W3C in
order to guarantee comparable measurements. We finally present measurements,
showing that our approach easily outperforms the tuple-based approach when it
comes to the materialization of implicit knowledge during temporal entailment
reasoning.

2 Related Approaches

In this section, we relate our approach to already existing frameworks.

2.1 Temporal Databases

Temporal databases started somewhat delayed with the development of relational
databases and logic programming. With the development and practical applica-
tion of SQL, many people realized the need to add temporal information to entries
in database tables [7].
Temporal databases distinguish between valid time (the interval in which a fact
is true) and transaction time (the time when the database transaction happens).
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Valid time admits right-open intervals, and in principle, a left bound is also
possible.
Our approach to follow is much in the spirit of valid time, except that it comes
with rules operating over tuples of the database (ABox) in order to support
RDFS- and OWL-based reasoning, as well as providing domain-dependent rules.

2.2 Temporal Description Logic

Temporal aspects in description logics have been addressed in the past by various
forms of Temporal description logics (TDLs). Very often, TDLs are constructed
as a combination of a standard description logic (e.g., ALC) with a standard
temporal logic (e.g., LTL); see [6]. The usual interpretation I for concepts, roles,
and individuals is replaced by a temporal interpretation = that extends the de-
notation by a further temporal argument (usually a natural number), interpreted
as a time point .
Alternatively, a temporal interpretation = can also be defined as an infinite se-
quence 〈=(i)〉i≥0 of non-temporal interpretations =(i) (worlds, situations), shar-
ing the same domain. For instance, (n, john=,mary=) ∈ marriedWith= means that
at time n, (john,mary) is an instance of marriedWith. An important variant of
TDLs then extends ABox formulae by adding the standard LTL modal operators.
For instance, FScrap(mycar) means that there will be a time n, where my car is
scrapped, and for m ≥ n, (m,mycar=) ∈ Scrap= is the case.

Unfortunately, we have experienced in many projects that an instant-based ap-
proach is not what people want: information extraction from natural language
texts, for instance, is best couched in an interval-based approach using (poten-
tially underspecified) calendar time, and not through modal operators and a
hidden temporal dimension. To the best of our knowledge, we are not aware of
any implemented TDL-based reasoner for temporal ABoxes.

2.3 Approaches Staying Inside RDF

Several proposals have been presented in the literature to equip (binary) relation
instances with time:

1. use a meta-logical predicate;

2. reify the original relations;

3. wrap range arguments;

4. encode a perdurantist/4D view [10];

5. interpret individuals as time slices [4];

(1.), as used, e.g., in the situation calculus, requires the original relation to be
reformulated as a function. However, (1.) is outside the expressive means of
OWL, but can at least be encoded in RDF by reifying the atemporal fact using
a new individual that is related to its temporal extent through the holds pred-
icate. The proposals (2.)–(5.) have already been implemented in OWL. It is
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worth noting that (2.)–(4.) enforce a knowledge engineer to rewrite an ontology,
whereas (5.) marries arbitrary ontologies with time by introducing perdurants
that possess time slices (the original individuals) onto which a temporal extent
is defined. As a consequence of using RDF triples, or equivalently, by sticking to
binary relation instances, all these approaches end up in a massive proliferation
of useless “container” objects. Reasoning and querying with such representations
is extremely complex, expensive, and error-prone.
Approach (3.) has been proposed by the W3C Semantic Web Best Practices
Group to equip binary relations with further arguments without leaving the well-
known RDF model, thus can clearly be used to add temporal information as a
special case.

In the following, we will compare this approach with the one we find more promis-
ing by simply adding the temporal extent directly, viz., quintuples. To the best
of our knowledge, although (2.)–(5.) were only used to store information that
changes over time, but nobody has extended the standard Hayes/ter Horst en-
tailment rules to reason over time. We will do so for (3.) in order to guarantee
that the measurements at the end of our paper are comparable.

3 Memory Considerations

Within this chapter, we will count how many bytes, individuals, and triples/tuples
are needed to represent a relational fluent (i.e., a fact whose truth value changes
over time), encoded both as a quintuple, as well as a set of triples using W3C’s
N-ary relation proposal.
In the following, we will restrict ourself to quaternary relations p ⊆ D×R×T×T ,
where T is used to describe the starting and ending point of a fluent. Thus
a quaternary diachronic relation instance p(d, r, s, e) encodes a truth value for
p(d, r) within interval [s, e].

3.1 Quintuples

A binary relation, such as worksFor between a person p of type Person and a
company c of type Company becomes a quaternary relation with further temporal
arguments s and e:

worksFor(p, c) 7−→ worksFor(p, c, s, e)

Unfortunately, OWL and description logic (DL) in general only support unary
(classes) and binary relations (properties) in order to guarantee decidability of
the usual inference problems. Thus forward chainers (such as OWLIM and Jena)
as well as tableaux reasoners (e.g., Racer or Pellet) are unable to handle such
descriptions.

The quaternary relation instance is represented as a tuple in HFC (see section
5.1) by an extension of the plain N-triple format [1]:

p <worksFor> c s e .
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This tuple consists of 5 elements/arguments and requires (at least) 20 (= 5 ∗ 4)
bytes, assuming an int[] representation with 4 byte integers. Using integer
arrays is a common way to represent triples/tuples internally, since the external
representation of URIs and XSD atoms needs to be addressed only during input
and output. Overall, we obtain 1 object (the integer array) to represent the whole
tuple.
This last number is very important, since it is desirable to access information di-
rectly in a semantic repository, instead of “fiddling” around with helper structures
(container objects) that blow up the memory. In addition, the overall number
of elements is equally important, since triple repositories usually build up large
index structures to efficiently access all those triples that match a specific element
at a certain position in a triple.

3.2 W3C’s N-ary Relations

Wrapping the range arguments of a relation instance, i.e., grouping them in a
new object, allows us to keep the original relation name, although the approach
requires to rewrite the TBox of the original ontology:

worksFor(p, c, s, e) 7−→ ∃o .worksFor(p, o) ∧
type(o,CompanyTime) ∧ company(o, c) ∧ starts(o, s) ∧ ends(o, e)

A new object (o), a new class (CompanyTime), and new “accessors” (company,
starts, ends) need to be introduced. W3C suggests this obvious pattern to be used
to encode arbitrary N-ary relations [3]. Instead of defining a new class for each
range type of the original relation, one might alternatively define (as we do) a
general class, say RangePlusTime, plus three accessors value, starts, and ends, in
order to avoid a reduplication of the original class hierarchy:

p <worksFor> o .

o <rdf:type> <nary:RangePlusTime> .

o <nary:value> c .

o <nary:starts> s .

o <nary:ends> e .

Overall, 5 triples translate into 15 (= 5 ∗ 3) elements or 60 (= 5 ∗ 12) bytes. This
approach introduces a brand-new individual o (a blank node) which turns out to
be problematic, since it might lead to a non-terminating closure computation (cf.
section 4.5).

4 Our Approach

As outlined above, we will extend the Hayes-/ter Horst-style entailment rules
by a temporal dimension. Thus, in our case, we replace an RDF triple by a
quintuple, since the starting and ending time of a “temporalized” fact are encoded
as separate arguments.
In a certain sense, we are still dealing with RDF triples in case we are not in-
terested in the temporal extent of a fact or in case the temporal information
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is underspecified or even unspecified. So, speaking in terms of RDF, the first
argument of a quintuple must come from the domain of the predicate (second
argument), and the third argument is required to fall into the range.
In addition, certain RDF triples still remain triples, since we only extend infor-
mation from the ABox of an ontology—we will not equip TBox information with
a temporal extension, say, that the subtype relationship between two classes only
holds for some period of time or that a URI reference should be regarded as a
property at time period S and as a class at a different time T .

From a commonsense viewpoint, we also exclude identification statements be-
tween individuals (owl:sameAs) to be extended by a temporal dimension—once
individuals have been identified, it is assumed that they are identical for their
whole lifetime (they do not fall apart later).
However, typing information (rdf:type) is usually assigned a temporal duration,
due to the fact that people often encode binary relation instances through class
membership. For instance,

(car, red) : hasColor

might equally be represented as

car: Red

whereas Red refers to the class of objects having color red.

4.1 What this Paper is Not About

Several points are worth mentioning here. Firstly, we are not dealing with du-
ration time in order to resolve expressions like Monday or 20 days against valid
time, when further information comes in. This needs to be handled by a richer
temporal ontology and temporal arithmetic.

Secondly, temporal quantification, such as in four hours every week , is beyond
the expressive means of our approach.

Thirdly, even though underspecified time is handled by our implementation through
wildcards in the XSD dateTime format (e.g., year missing in Over New Year’s
Eve, I have visited the Eiffel Tower), we do not focus on this here. The solution
requires to make certain rule tests sensitive towards the fact that time is now only
partially ordered. These tests then return true, false, or don’t-know , whereas only
true indicates that the test succeeds, leading to the instantiation of the RHS of
the rule.

Fourthly, coalescing temporal information (i.e., building larger intervals) should
be addressed in custom rules and should not be regarded as part of the RDFS/OWL
rule set, since this functionality depends on the (semantic) nature of predicates.

Finally, certain temporal inferences such as p(~x, s, t) entails p(~x, s′, t′) in case
s ≤ s′ ≤ t′ ≤ t should not be handled in the below rules, since termination of the
computation of the deductive closure is no longer guaranteed. Such information
can only be obtained on the query level. It is worth noting that such entailments
assume (as we do) that temporal intervals are convex, i.e., contain no “holes”
(this is, however, not relevant for this paper).
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4.2 Metric Linear Time

The rules below assume that the temporal measuring system is based on a one-
dimensional metric linear time, so that we can compare starting/ending points,
using operators, such as <, or pick out input arguments in aggregates, using min
or max . We are neutral as to whether time is dense or discrete, or whether the
metric uses real, rational, or natural numbers. These decisions do not change the
effects of rules, since the predicates and aggregates that are used in the rules are
independent of the underlying metric.
In the implementation of HFC (section 5.1), long integers are used to encode
milli or even nano seconds w.r.t. a fixed starting point. Alternatively, the XSD
dateTime format can be used which provides an arbitrarily fine precision, if
needed.

4.3 Extended Entailment Rules

In the following, we describe a temporal extension of the entailment rules from
[2] and [9]. The rules are written in the concrete syntax of HFC so they slightly
differ from [2] and [9] (who also use slightly different notations).
Due to space limitations, we are only able to display four extended entailment
rules of the fully implemented set of 30 rules. We further note that some of the
original rules have not been extended by temporal arguments (e.g., rdfs5), since
they only deal with TBox axiom schemes.
The below notation can be seen as an extension of N-Triples with two further
temporal arguments. The rules make use of further tests (@test) which need to
be fulfilled to successfully instantiate the RHS. Rules might also be equipped with
an action section (@action) that binds RHS-only variables to values returned by
functions.

4.3.1 rdf1

This is the only type statement that is not assigned a temporal extent, since once
?p has been recognized as a property, it is assumed that this is always the case.
Note that ?s and ?e are don’t-care variables not needed on the RHS.

?x ?p ?y ?s ?e

->

?p <rdf:type> <rdf:Property>

4.3.2 rdfs2

The next rule assigns a type to a URI in domain position. The starting and
ending time is taken over from the original relation instance, representing the
given safe temporal information.

?x ?p ?y ?s ?e

?p <rdfs:domain> ?dom

->

?x <rdf:type> ?dom ?s ?e
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Next comes the more interesting part. Up to now, RDFS rules have been extended
by only moving around starting/ending information to positions in the consequent
of a rule. The two OWL rules below make use of lightweight tests and aggregates.

4.3.3 rdfp1a and rdfp1b

We have complemented the original rule rdfp1 dealing with object properties
by a new rule that also addresses datatype properties. Let us start with the
assumption that the object is either a URI or a blank node, exactly what the
original rule encodes in its where condition:

?p <rdf:type> <owl:FunctionalProperty>

?p <rdf:type> <owl:ObjectProperty>

?x ?p ?y ?s1 ?e1

?x ?p ?z ?s2 ?e2

->

?y <owl:sameAs> ?z

@test

IntersectionNotEmpty ?s1 ?e1 ?s2 ?e2

The IntersectionNotEmpty predicate in the test section (@test) guarantees that
we only identify ?y and ?z on the RHS in case the temporal extent of p(x, y) and
p(x, z) has a non-empty intersection:

IntersectionNotEmpty start1 end1 start2 end2 ≡
local start := max(start1, start2)
local end := min(end1, end2)
return (start ≤ end)

Thus a single overlapping observation leads to a total identification of ?y and
?z (at all times!), so the sameAs statement need not be equipped with temporal
information. Even though our (my!) commonsense indicates that this is the right
choice, the decision is, in principle, debatable.

If both observations, however, do talk about different non-intersecting times,
it makes perfect sense that ?y and ?z need not be equal, even though ?p is a
functional property (good example: marriedWith relation).

Let us now focus on the second rule rdfp1b, dealing with functional datatype
properties.

?p <rdf:type> <owl:FunctionalProperty>

?p <rdf:type> <owl:DatatypeProperty>

?x ?p ?y ?s1 ?e1

?x ?p ?z ?s2 ?e2

->

?x <rdf:type> <owl:Nothing> ?s ?e

@test

?y != ?z

IntersectionNotEmpty ?s1 ?e1 ?s2 ?e2

@action

?s = Max2 ?s1 ?s2

?e = Min2 ?e1 ?e2
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If two non-identical atoms are defined on a property, the above rule signals a
problem by assigning the bottom type owl:Nothing to the URI in the first place
of the tuple.
Since p(x, y, s1, e1) and p(x, z, s2, e2) come with a duration, the type assignment to
?x only holds for the intersection of the two intervals [s1, e1] and [s2, e2], computed
by Max2 and Min2.
In case the intersection is empty, we obtain a triple with duration [s, e], where
e < s. This “negative” duration indicates that bottom type assignment is not
entailed by the premises. This constraint is checked by IntersectionNotEmpty

in the last line of the definition above.

4.4 Complexity, Soundness, and Completeness

Hayes (2004) and ter Horst (2005) have presented a set of so-called entailment
(or inference) rules for RDF/RDFS and a subset of OWL that does not fully
cover OWL Lite, but implements parts of OWL DL. Given the original rules,
ter Horst has shown that entailment for RDFS is decidable and NP-complete
(and even in P if the RDF target graph does not contain any blank nodes). ter
Horst has also proved that the incompleteness of the system presented in [2] can
be corrected, and that the addition of OWL rules does not change the original
complexity results.

The two rule sets for RDFS and OWL have been extended by temporal infor-
mation, associated with an RDF triple and implemented through additional ar-
guments. These arguments (fourth and fifth position in a quintuple) do not
“interfere” with the arguments in first, second, and third position. Moreover, the
temporal arguments are atoms (integers) which do not have an “internal struc-
ture” (unlike URIs) that needs to be considered or that is shared with other
tuples in subject, predicate, or object position. By inspecting the 30 extended
rules, time can only act in four ways:

1. temporal information in a LHS clause is neither taken into account in other
LHS clauses, nor on the RHS; example: variables ?s and ?e in rule rdf1.

2. temporal information is transported from a LHS clause to a RHS clause;
example: variables ?s and ?e in rule rdfs2.

3. temporal information is compared by the four-place predicate Intersection-
NotEmpty, involving a ≤ comparison and the min and max aggregates;
example: ?s1, ?e1, ?s2, and ?e2 in rule rdfp1a.

4. temporal information on the RHS is conditioned by the input to the two
aggregates Max2 and Min2; example: ?s and ?e in rule rdfp1b.

The important point now is that all four rule cases do not produce any new
individuals (neither atoms, URIs, nor or blank nodes). Even the two aggregates
only “pick out” one of their input arguments (contrary to SUM in SQL, for in-
stance). Thus the proposed extension is still function-free and the additional two
arguments do not add a further theoretical complexity. In a triple-based setting
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(see below), this is no longer the case, since new container objects (usually blank
nodes) need to be generated, bearing the potential of non-termination.

Concerning runtime, the predicate IntersectionNotEmpty, and the two aggre-
gates Min2 and Max2 have a constant complexity, thus the original complexity
results of the non-temporal case do hold here as well. The only difference comes
from the replacement of the RDF triple by a quintuple (two additional argu-
ments).

As indicated in the beginning, the set of extended rules is not complete in that
p(x, y, s′, t′) can not be derived from p(x, y, s, t), assuming s ≤ s′ ≤ t′ ≤ t. If
we would allow such rules, the computation of the deductive closure is no longer
terminating. Such information, however, can (and should) be obtained through
ABox queries.

As rule rdfp1b shows, inconsistency is expressed by assigning the bottom type
owl:Nothing to individuals. In order to make the rule system sound , two
additional rules must be added, addressing a combination of owl:sameAs and
owl:differentFrom, as well as owl:disjointWith together with two rdf:type

statements.

4.5 Extended Entailment Rules Using Triples

Due to space requirements, we will only depict a single temporal entailment rule,
viz., rdfp1b, showing the worst case that happens when adding time, using the
triple-based N-ary relation encoding:

?p <rdf:type> <owl:FunctionalProperty>

?p <rdf:type> <owl:DatatypeProperty>

?x ?p ?blank1

?blank1 <nary:value> ?y

?blank1 <nary:starts> ?start1

?blank1 <nary:ends> ?end1

?x ?p ?blank2

?blank2 <nary:value> ?z

?blank2 <nary:starts> ?start2

?blank2 <nary:ends> ?end2

->

?x <rdf:type> ?new

?new <rdf:type> <nary:RangePlusTime>

?new <nary:value> <owl:Nothing>

?new <nary:starts> ?start

?new <nary:ends> ?end

@test

?y != ?z

?p != <rdf:type>

IntersectionNotEmpty ?start1 ?end1 ?start2 ?end2

@action

?start = Max2 ?start1 ?start2

?end = Min2 ?end1 ?end2

?new = MakeUri <owl:Nothing> ?start ?end
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This version is much more complex than the quintuple-based encoding shown be-
fore. The original range arguments bound to ?y and ?z are hidden in two nodes,
together with their temporal extent. rdfp1b requires 10 LHS clauses to express
the equivalent matching conditions (quintuple encoding: 3 clauses). It utilizes
5 RHS clauses for the representation of the entailed relational fluent (quintuple
encoding: 1 clause). Finally, and very important, the rule introduce a brand-new
individual (a URI) bound to ?new in an additional RHS action that is deter-
ministically constructed via MakeUri from its input arguments <owl:Nothing>,
?start, and ?end.

It is worth noting that the generation of new individuals, esp., blank nodes,
bear the potential of a non-terminating deductive closure computation. For this
reason, ?new is not bound to a blank node, but to a URI, whose name does not
change, assuming the input arguments to MakeUri are the same. In OWLIM, for
instance, such a URI generation is not available, although RHS-only variables can
be used in rules, always leading to the introduction of (brand new) blank nodes.
Now, in case a rule is applied several times to the same input data, several
(different) blank nodes will be generated, encoding equivalent data. In the worst
case during a fixpoint computation, such blank nodes lead to an explosion of
the RDF repository. The MakeUri action in the triple-based version of rdfp1b,
however, guarantees that such cases will not happen here, although we opt for
the quintuple-based encoding, as explained above that does not introduce new
individuals at all.

5 Measurements

In order to compare the two approaches on a practical level, we need a reasoner
that is able to directly encode arbitrary n-ary relations. Popular engines, such as
RACER, Pellet, Jena or OWLIM which are geared towards binary relations/RDF
triples can not be applied here. Furthermore, and very important, practical rea-
soning with extended relation instances need some lightweight reasoning capabil-
ities (e.g., aggregates such as min and max ) which are only available in Jena.
Unfortunately, Jena is not able to materialize even drastically-smaller triple-based
ontologies than those we have used here, even not for the original non-temporal
entailment rules. As already mentioned, the experiments below were performed
using HFC, a forward chainer we have developed over the last years.

5.1 HFC

Usually, bottom-up forward chaining is employed to carry out (all possible) in-
ferences at compile time, so that querying information reduces to an indexing
problem at runtime. The process of making implicit information explicit is often
called materialization or computing the deductive closure of a set of ground atoms
A w.r.t. a set R of universally-quantified implications B → H (if-then rules).
Bottom-up here means that one starts from the ground atoms to which the rules
are applied, contrary to top-down approaches which start with a goal (the head
H) and potentially hypothesize intermediate goals that can hopefully be satisfied
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by ground atoms finally (Prolog’s strategy). The body and the head of a rule
consist of a set of clauses, interpreted conjunctively . In HFC, clause arguments
are either constants or variables.

Closure computation can be characterized as the computation of the least fix-
point of a certain monotonic function over the complete lattice ℘(A) of the set
of all ground atoms A. Forward chaining, as we used it here, can be seen as
model building over the Herbrand interpretation of a function-free definite pro-
gram (Horn logic as used in Prolog). In general, model builders are systems that
try to construct a finite model for a given theory (usually, a set of first-order
formulae).

In order to make forward chaining scalable, HFC applies several optimization
techniques that are realized as a sequence of filter stages in order to avoid useless
RHS instantiations. This comes as a side product of the fact that closure com-
putation is a monotonic operation: new ground atoms are only added, nothing is
deleted. Consider, for instance, a rule

r = (b1 b2 → H)

and assume that r is currently applied in iteration n of the closure computation.
Due to the monotonicity argument, matching candidates Mn from A for the LHS
variables of rule r in iteration n can be decomposed into those which are brand
new at n and those which come from iteration n− 1:

Mn = N ]Mn−1

Since bindings for the variables of individual clauses are actually tables, comput-
ing a binding for all LHS variables effectively reduces to a natural join ./, known
from data base theory. Given the distinction new vs. old already mentioned, we
can compute all possible bindings for b1 b2 from the individual bindings, given N
and Mn−1:

Mn(b1 b2) = N(b1) ./ N(b2) ∪N(b1) ./ Mn−1(b2) ∪Mn−1(b1) ./ N(b2)

This optimization massively speeds up forward chaining, since useless bindings,
leading to already instantiated tuples, are no longer generated. In our case here,
Mn−1(b1) ./ Mn−1(b2) is not computed anymore, and the set of those bindings
are by far the largest in size, when closure generation n increases.

Intermediate results are even memoized in case more than two tables are involved
in order to avoid recomputation of already computed results. This techniques
not only applies to individual clauses, but also to larger parts, so-called (LHS)
clusters. HFC has included further optimizations, e.g.,

• bindings are shared over “similar” clause, even between different rules;

• the LHSs of rules are reordered to faster compute matching candidates;

• instances of equivalence relation on the LHS and the RHS of rules (OWL’s
owl:sameAs, owl:equivalentClass, and owl:equivalentProperty) are
efficiently handled through offline rule rewriting and a union-find structure;
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• the processing of individual rules can be parallelized at each fixpoint itera-
tion step by specifying the number of processor cores;

• efficient data structures, such as open-address hash tables, integer arrays
for tuples, specialized sets with strategy objects to support binding/table
projection, etc., are used.

HFC has implemented several extensions that are not available in comparable
systems, such as OWLIM, and that are used in the extended entailment rules:

• replacement of triples by more general tuples,

• possibility to add arbitrary tests to the LHS of a rule,

• possibility to add arbitrary actions to the RHS of a rule,

• incorporation of aggregation rules,

• incorporation of metric linear, potentially underspecified calendar time.

HFC efficiently handles ABoxes with millions of facts and provides means to work
with thousands of medium-sized ABox in parallel, an important feature that we
employ in the forward branching time approach, described in [5]. The memory
measurements that we present in the next section are related to HFC, running in
reasoning mode. To speed up rule execution, large sets of tuples are maintained
for each rule that keep the distinction between old vs. new , as explained above.
When used as a pure storage engine, the memory footprint of HFC is much
smaller, e.g., less than 26GB for storing and accessing 100,000,000 triples.

5.2 Initial Numbers

The numbers below are computed against the mid-size ontology that backs up
the LT-World language portal (see http://www.lt-world.org). The measurements
are obtained on a 64bit Intel Core i7 (2.8 GHz), using Java 1.6. The unexpanded
ABox consists of 204,959 RDF triples. Fully materialized, 548,132 triples are
obtained. When setting up HFC with four processor cores (4 entailment rules
always run in parallel, if possible), the materialization terminates in 7.7 seconds
after 7 iteration steps, taking 716MB main memory.

Since temporal information is missing in the original data set, we randomly attach
a temporal starting and ending point to every ABox relation instance, using XSD
int atoms which we let vary between 0 and 1,000. This synthetical data, called
Q1.00, is the starting point for the measurements.

From Q1.00, we produced smaller subsets (three quarters, two quarters, one quar-
ter) of the statements, called Q0.75, Q0.50, and Q0.25. Each of the quintuple sets
were then transformed into semantic-preserving sets of triples, using the N-ary
relation encoding from section 3.2 (T1.00, T0.75, T0.50, T0.25). This is depicted
in figure 1.
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Figure 1: Scheme for constructing the quintuple- and triple-based test sets.

We also generated a second quintuple set Q1.00’ from the original data with
different starting/ending values. Q1.00 together with Q1.00’ gave us a new set
Q2.00, doubled in size.
The measurements below use the extended quintuple rules (see section 4.3) to
materialize the implicit information contained in the Qx.yy data sets, whereas
the triple-based N-ary rules (section 4.5) are applied to the Tx.yy data sets.
Without materialization, we obtain the following “offline” numbers:

#tuples file size [MB] load time [sec]

Q2.00 409,920 45.9 3.35
Q1.00 204,960 22.9 1.91
Q0.75 153,720 17.2 1.47
Q0.50 102,480 11.4 1.04
Q0.25 51,240 5.7 0.61
T1.00 1,024,795 50.8 3.89
T0.75 768,600 38.0 3.12
T0.50 512,400 25.1 2.16
T0.25 256,200 12.5 1.22

During materialization, all 30 rules of the extended entailment sets are applied
over and over again to the information entailed so far, until a fixpoint is reached,
i.e., until no further information is obtained. The differences between the quintuple-
based and the triple-based approach are quite drastic as the following “online”
numbers show:
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closure [sec] memory [GB] #iterations #tuples

Q2.00 361.3 6.92 23 6,805,359
Q1.00 101.5 3.35 19 2,542,619
Q0.75 4.3 0.62 7 382,110
Q0.50 2.1 0.49 7 151,678
Q0.25 0.9 0.25 3 59,652
T1.00 ——1 ——2 ——3 ——4

T0.75 236.8 4.44 8 1,844,341
T0.50 26.8 1.49 7 748,532
T0.25 3.1 0.64 3 296,970

The table shows that some of the relational fluents in Q1.00\Q0.75, and so in
T1.00\T0.75, lead to a combinatorial explosion during the closure computation
from which the triple-based encoding does not recover. Even on a larger machine
with 64GB main memory, we were not able to reach a fixpoint for T1.00. Inter-
estingly, the step from Q1.00 to Q2.00 which we have expected to yield a larger
combinatorics, was quite easy for the quintuple-based approach.
Clearly, the superiority of the quintuple-based approach not only comes from the
smaller set of initial tuples, but also is related to the complexity of the rules from
the different entailment rule sets. Both sets consist of 30 rules, but the number
of LHS and RHS clauses differ by a factor of 2–3:

#LHS clauses #RHS clauses

quintuples 73 32
N-ary relations 143 91

In addition, 15 rules in the triple-based setting generate new individuals when
the LHS match is successful (see remark at the end of section 4.5). We finally
note here that the dramatic difference between the two approaches carry over to
queries that are posted to a triple-/quintuple-based repository.

6 Further Remarks

We hope to have shown that a general tuple-based approach for representing
temporally-changing information on the Web is far superior to triple-based ap-
proaches. We are convinced that the time now is ripe to move towards this
conservative extension of the RDF data model.

It is worth noting that all triple-based approaches presented in section 2.3 are
forced to introduce one (or even two) new individuals, usually blank nodes, to
encode a temporal extent or other information from the range of an N-ary relation
(N > 2). As explained in section 4.5, these new individuals bear the potential

1Closure computation stopped after 11 minutes.
215 GB main memory was exceeded then.
3Iteration 3 was “nearly” finished.
4Approximately 8 million triples were computed so far.
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that forward reasoning will not terminate. In case we abandon reasoning at all
and only query for explicitly represented information, new individuals that are
added clearly do no harm.

However, if inferencing capabilities in a triple-based setting are required, the in-
troduction of blank nodes can often be replaced by the deterministic construction
of URI names from the information that is “associated” with them, as section 4.5
has shown. This, however, requires that the reasoning engine provides means to
call external functions (such as MakeUri).

Contrary to this, a general tuple-based approach, as presented here and imple-
mented in HFC, is not plagued by these considerations and is able to directly
encode the relation arguments without hiding them in a new object.
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