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Abstract

In this paper we examine the case of a mobile robot
that is part of a human-robot urban search and rescue
(USAR) team. During USAR scenarios, we would like
the robot to have a geometrical-functional understand-
ing of space, using which it can infer where to perform
planned tasks in a manner that mimics human behav-
ior. We assess the situation awareness of rescue work-
ers during a simulated USAR scenario and use this as an
empirical basis to build our robot’s spatial model. Based
upon this spatial model, we present “functional map-
ping” as an approach to identify regions in the USAR
environment where planned tasks are likely to be opti-
mally achievable. The system is deployed and evaluated
in a simulated rescue scenario.

Introduction
Rescue workers exploring a disaster environment possess
task-specific spatio-cognitive knowledge of such scenes.
This task-specific knowledge – for example the likely places
to find road accident victims – is then compared to the real
disaster scenario. Similarly, we would like our robot to per-
form top-down inferencing – e.g., best places to look for vic-
tims – and project this spatial information onto bottom-up
knowledge gathered – e.g., objects detected in an incomplete
map – to plan the best path to complete a particular task. This
implies that the robot needs detailed semantic knowledge of
(a) the objects to expect in a disaster scenario, (b) corre-
sponding functions performable, and (c) its own perception
capabilities. This exploration may lead to further oppurtu-
nities of knowledge gathering tasks, requiring still further
spatial inferencing computed from the a priori knowledge
of the robot. We call this continuous spatial inferencing and
planning process functional mapping.

In a human-robot interaction context, intelligent behavior
implies that the robots knowledge and the actions performed
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by it should be human-understandable, human-compatible
(having a similar spatial model as possessed by rescue work-
ers), and team-oriented (adhering to mission objectives).
With individual agents working together in a team, it is im-
portant to be in the right place at the right time as demon-
strated for robots and remote operators in [Murphy et al.,
2008]. These implications are especially important in our
case, when the human agents are not familiar with the logic
employed by the robot.

Below we first discuss the current approaches in the field.
Then we briefly describe the “tunnel accident” use case and
observe how rescue workers explore such an accident. The
field data thus gathered, forms the empirical basis for our
approach. We then present our approach, which is based on
inferencing from a similar cognitive spatial model as that of
rescue workers, and spatial projection based on it. We con-
clude with details of future plans with respect to functional
mapping.

Background and Related Work
In the field of semantic mapping for outdoor, unstructured
environments as addressed in this paper, the state of the
art is at an early stage. Most approaches either use a com-
plex spatial intelligence in structured environments or in-
versely a low-level spatial intelligence in unstructured en-
vironments. Traversibility analysis in unstructured environ-
ments either using Hidden Markov models and the Viterbi
algorithm [Wolf and Sukhatme, 2005] or using a multi-
resolution grid [Montemerlo and Thrun, 2006], can be con-
sidered to be a computationally interesting form of semantic
mapping, however they do not yield more complex spatio-
cognitive structures.

There has been a great deal of research in semantic clas-
sification and labelling in structured environments such as
sparse indoor rooms or corridors. However even in these
approaches, the research does not use detailed human-
compatible a priori knowledge as present in our approach.
The a priori knowledge in those approaches are much more
low-level such as classifying rooms based on laser scan char-



acteristics [Goerke and Braun, 2009], abstracting a 3D laser
scan into ceiling, floor and wall planes based upon basic
ontological relationships [Nüchter and Hertzberg, 2008] or
segmenting large spaces into rooms based upon objects typ-
ically observed in them [Vasudevan et al., 2007]. In con-
trast, our approach draws inferences from human-readable
ontologies, which are modelled on the task-specific spatial
knowledge of human beings. An example of such infer-
encing is [Zender, Jensfelt, and Kruijff, 2007]. The authors
demonstrate a situation-aware indoor robot that can recog-
nize doors and the space required for interacting with them
(i.e. opening, closing and passing through) and appropriately
act on this information to make space for the user. [Tenorth
and Beetz, 2008] also presents a similar approach where a
robot that is trained in a simulated kitchen environment, can
then use knowledge on common objects and actions per-
formable on them to assist a human being in a real world
scenario. Common objects and actions are stored in an on-
tology built upon the Cyc ontology. In our work, we build on
the approach of conceptual mapping of [Zender et al., 2008]
and [Sjöö et al., 2010] along with function-specific spatial
inferencing, and extend it to outdoor semi-structured envi-
ronments.

Empirical Basis
Our scenario is one that involves a human-robot team jointly
exploring a traffic incident in a tunnel. Vision is impaired by
smoke filling the tunnel. We have performed high-fidelity
simulations of the disaster scenario, shown in Fig. 1, with
robots and firefighters at the training site of the Italian Na-
tional Fire Watch Corps (SFO at Montelibretti, Italy) and
at the one of the Fire Department of Dortmund, Germany
(FDDO). In the setup at SFO, we wanted to observe the vi-

Figure 1: The tunnel accident scenario at SFO, Italy and
FDDO, Germany

sual points of attention that firefighters maintained during a
rescue operation and match these with their spoken commu-
nication. For this reason, they were equipped with eye-gaze
machines that track their visual attention [Khambhaita et al.,
2011], and their communication during several mock rescue
operations was also recorded. A sample audio recording of
a firefighter read as follows:

(1) A car, a civil car, with some people inside.

(2) A family. People. A woman drives. A person in the front seat. A
child. Another child in the rear seat. Another child, a baby.

One thing that can be observed here is the felicitous use of
hearer-new definite descriptions (marked in italics) [Prince,
1992; Poesio and Vieira, 1998]. Definite descriptions are

supposed to refer to mutually known entities in the domain
of discourse. The information of the structure of the car (eg:
rear seat) is from the mental representation of the firefighter,
where the representation of a car has been evoked by the
indefinite description “a car” (the so-called trigger entity).
And through his prior knowledge about cars he can be as-
sumed to know that cars in general have (front and rear)
seats. Such uses of a definite description to refer to an im-
plicitly evoked entity that can be inferred based on back-
ground knowledge are called “inferrables” [Prince, 1992] or
“bridging anaphora” [Clark, 1975]. The group of bridging
anaphora that come into play in our recordings are the so-
called “indirect references by association”, which Clark ex-
plains with their predictability as being an associated part
of the trigger entity. From the transcriptions, we observe
that the firefighter’s task is tightly correlated with the hi-
erarchical composition of the spatial structure: the tunnel
contains cars, which in turn contain victims; a truck, which
typically contains goods; and barrels which usually contain
(potentially hazardous) substances. It is generally assumed
that humans adopt such a (partially) hierarchical represen-
tation of spatial organization [Stevens and Coupe, 1978;
Hirtle and Jonides, 1985; McNamara, 1986]. This demon-
strates the kind of inferences on background knowledge that
the robot must perform, not only to autonomously determine
a plan for locating victims but to produce and comprehend
natural language scene descriptions.

At another simulation scenario at FDDO, firefighters were
given tele-operational control of the robot. The scenario was
of an unknown smoke-filled environment and where they
had to record the positions of vehicles, victims and haz-
ardous material that they observed. Our interest in the ex-
periment was to notice the vantage points the firefighters as-
sumed when observing the inside of a car to look for vic-
tims, when looking at a motorbike, and explosive barrels.
Once the trials were completed, we marked a boundary of
1 meter around the regions of interest (the car windows, the
motorbike, and the barrel). We assumed that this was a suf-
ficient visual range for affording the function of observing
these regions of interest. We call the areas marked off by
the boundaries as ‘functional areas’ – since these areas en-
able the function of observing these regions. In Fig. 2, we
show the runs of three of the firefighters who participated in
our experiment. Table 1 shows the percentage of ‘observa-
tion time’, or time spent inspecting the regions of interest.
We further mention the percentage of the observation time
spent in functional areas of objects. From the data, we no-
tice that Participant 1 and 3 spent over half, and Participant
2 spent nearly all observation time in the functional areas,
divided into time spent observing vehicles and threats. This
confirms our belief that rescue workers do employ strategic
vantage points to observe regions of interest. We would like
our robot to draw similar human-compatible spatial infer-
ences to search for victims.

System Architecture
The NIFTi project is a multi-disciplinary effort, with a
system architecture as described in Fig. 3. The functional
mapping layer covers functionality that ranges from the
conceptual and ontological understanding of the environ-



Figure 2: Maps acquired by tele-operation in FDDO, Germany, showing points from where observations/transcriptions were
made(red), points of attention which they were observing(yellow), functional areas(light blue) and the path of the robot (blue
trajectory).

Participant Percentage
of ob-
servation
time

Percentage
of ob-
servation
time in
func-
tional
areas

Percentage of
observation time
in functional
areas of differ-
ent objects of
interest

Vehicles Expl.
Barrels

1 38.17 66.7 86.67 13.33
2 53 97.6 0 100
3 48 65.3 41.96 58.04

Table 1: An analysis of the time spent for the tele-operated
runs shown in Fig. 2

ment down to the low-level metrical maps created from the
laser mounted on the robot, and stored together in multi-
hierarchical maps. This layer communicates the understand-
ing it derives from its concepts about the environment in-
cluding regions, objects and actions to be performed to
other higher level processes such as user interfaces, human-
robot communication through natural dialogue and plan-
ning. The system uses the ROS architecture for lower-level
control, e.g., motor and cameras, and the CAST middleware
[Hawes and Wyatt, 2010] for higher-level processing. Sev-
eral components simultaneously communicate messages on
both ROS and CAST servers.

Mapping and Navigation
To perform Simultaneous Localization and Mapping
(SLAM), we use the ROS GMapping toolkit1, a state-of-
the-art implementation of a SLAM algorithm. Using Rao-
Blackwellized particle filtering, it successively estimates the
pose and the map based on sensor readings [Grisetti, Stach-
niss, and Burgard, 2007] and generates a 2D occupancy grid
map. The robotic platform we used was equipped with a 2D
laser range finder with an angle of 180◦.

Navigation and motion control of the robot are handled

1http://www.ros.org/wiki/gmapping

Figure 3: Architecture schema showing integration of vari-
ous components of the NIFTi Project

using the ROS navigation stack2 toolkit. It enables a mobile
robot to fulfill navigation tasks using the occupancy map.
Users send global goal coordinates and the navigation stack
will plan a trajectory, taking into account reachability and
traversability to the target.

Vision
Cars are detected and localized by an online learnable ob-
ject detector, which is based on the efficient combination
of [Lepetit, Lagger, and Fua, 2005; Kalal, Matas, and Miko-
lajczyk, 2010; Hurych, Zimmermann, and Svoboda, 2011].
We use several rapidly updated detectors instead of a single
tracker. These detectors, each using the same set of features
but updated with different parameters, yield similar boost-
ing ability as the tracker in [Kalal, Matas, and Mikolajczyk,
2010], while preserving a real-time performance. Car detec-
tions from individual camera frames are collected over time.
Once a sufficient number of detections from sufficiently dis-
tant poses are available, the 3D position of a detected car is
estimated via localization method described in [Hartley and
Zisserman, 2000].

2http://www.ros.org/wiki/navigation



Approach
We have observed that rescue workers perform their tasks
based upon their possession of a rich, well-defined spa-
tial structure of entities that they expect to observe in the
environment. In a similar fashion, functional mapping is
equipped with a hand-written OWL/RDF-based ontology
[Baader, Horrocks, and Sattler, 2005] of the two domains
that we require 3D spatial information about consumer cars
and optical properties of cameras used for robotics. Both do-
mains are filled in from manufacturer datasheet information.

Also, the German Automotive Industry Union (VDA)
provides datasheets to rescue workers 3, with exploded-view
schematics that contain vital measurements, e.g., the posi-
tions of embedded gas cylinders that may explode during a
rescue attempt. These datasheets do not contain the dimen-
sions we require and are not presently machine-readable, but
we hope that such information will be available in the future.

Fig. 5 shows an excerpt of our ontology, relating to a spe-
cific car and camera model. In order to preserve standard-
ization, the classes in our domain are based upon the hierar-
chy of the Wordnet lexical database [Fellbaum, 1998]. Our
system is endowed with the forward chaining engine HFC
[Krieger, 2011], which allows us to perform inference over
OWL/RDF-based ontologies. We have equipped the HFC
reasoner with a standard OWL-DL rule set and a number of
custom rules for drawing default conclusions [Reiter, 1980;
Antoniou, 1997].

Fig. 4 summarizes the working of the system. Percep-
tion of an entity in the environment triggers the Ontology-
Inferencing module. Based upon the current task and under
normal mission status (absence of fire emergencies etc.), this
module sends a query to the ontology database. The queries
are resolved in the ontology. From the responses generated,
the spatial inferencer can determine the optimal geometrical
configurations to perform the given task. This procedure is
explained in the next paragraph. Achieving these tasks can
trigger re-detections in the perception unit, leading to more
accurate re-estimations of the functional mapping configu-
rations. This cycle is applied repeatedly for different tasks.

Figure 4: Functional Mapping Workflow

Spatial Inferencing for the functional mapping workflow
victim search can be seen in Fig. 6. The trigger is the detec-
tion of a car of known ’CarModel’ class. Following the ap-
proach presented in [Sjöö et al., 2010], the reasoner then de-
rives the default knowledge about the car’s dimensions and

3http://www.vda.de/en/arbeitsgebiete/
rettungsleitfaeden feuerwehr/index.html

the location and dimensions of its windows. The next step
is to search for the robot positions that will afford looking
into these windows. Search spaces of sufficient size for this
search are generated in front of the windows. The spatial in-
ferencer then queries the ontology for the visual capabilities
of the robot. The ontology returns the camera parameters in-
cluding horizontal H and vertical V angles of the view cone
of the camera and the reliable range R. With these param-
eters, the search space is linearly sampled for the position
of the robot and the position of the camera with respect to
the robot. For each position of the camera, the view cone is
linearly sampled ray by ray. Each ray is projected into the
plane of the corresponding window and if the point of inter-
section is included in the polygon corresponding to the car’s
window4, the point of intersection is stored. These points are
accumulated as a patch A and if the patch area is greater than
the average size of a face used in the car detection algorithm
p, the corresponding robot position is stored. These robot po-
sitions are then accumulated and abstracted into a polygon,
composed of points closest to the edges of the search space.
All these points are then converted into robot poses, with the
robot direction facing the window and sent to the planning
and navigation components as planning coordinates.

The above description of a functional mapping cycle for
victim search, has been implemented and in Fig. 6, is a
screenshot of one of our runs at FDDO. Another function
that can be integrated into the functional mapping cycle is
car detection. As we have described earlier, the car detec-
tor detects the car models with a certain probability. Also,
based upon the features used in the car detection, certain po-
sitions of the robot and subsequently the camera, would be
more benificial for car detection. In our case, the most reli-
able features for car detection are observed from the back of
the car. Thus when a car is detected with a low confidence
of detection, functional mapping can generate poses facing
the rear of the car. In keeping with our cyclic concept of
functional mapping for knowledge gathering triggering re-
detections, the position of the car can be redetected until the
detector reaches a sufficient level of confidence. Once this
level is reached, we can proceed to our function of victim
search.

In this discussion, it is necessary to point out that
datasheets linking registered license plates of an area to car
models are generally available to government authorities. If
the visual system of the robot is able to read the license
plates through algorithms such as [Anagnostopoulos et al.,
2008], it should be possible to find out the model of the
car, and then infer its dimensions through ontologies such
as ours.

Since our approach makes use of default knowledge, it
serves as a top-down process that can raise expectations
about functional areas, even when these areas have not yet
been explored. A discussion of how a robot system can make
use of such default knowledge in order to automatically gen-
erate meaningful plans under partial observability and in-
complete knowledge about its environment can be found in

4http://www.ecse.rpi.edu/Homepages/
wrf/Research/Short Notes/pnpoly.html



Figure 5: An excerpt of the car accident domain ontology. Default properties for two classes are shown.

Figure 6: (Clockwise from top): Sketch showing window visibility patch A, with a visibility cone of vertical angle V and
horizontal angle H; Functional areas observed during pilot tests at FDDO; window positions(black) queried from the ontology
and search spaces(blue) ; window visibility (red circles) case of a single robot pose, robot and camera(green); accumulated
robot positions with visibility patch greater than face size patch (blue circles)

[Hawes et al., 2009].

Conclusion
We have presented an approach to outdoor conceptual-
functional mapping for intelligent robots operating in the
USAR domain. The approach makes use of state-of-the-art
methods in robot mapping, conceptual mapping, computer
vision and ontological reasoning.

We have shown empirically the usage of our concept of
functional areas by rescue personel and based our ontologies
on similar information and principles to the knowledge pos-
sessed by the rescue workers in disaster scenarios. Our sys-
tem successfully interprets objects detected in a search and
rescue scenario and derives ontological inferences based on
these detections. It infers functions that these objects could
afford, and derives areas based on our reasoner where these
functions could be afforded. It then projects these areas back
onto the map for display to the user and adds the information

of these areas onto the working memory of the CAST system
from where other components may then use this informa-
tion. Our approach is informed by high-fidelity field exper-
iments with expert rescue workers at SFO Montelibretti. It
was also successfully deployed and tested at FDDO Dort-
mund, where in a simulated rescue operation, firefighters
were able to control the robot in an effort to find victims
in the scenario.

In the future, we will focus on testing our algorithm in
relation to executing plans in a simulated accident environ-
ment, possibly using USARSim. Our robot has adaptable
flipper tracks for traversing uneven terrain. We will look into
including the variable morphology of our robot into the on-
tology, for performing more complex navigation in order to
reach a goal. We will also investigate an approach for ac-
quiring a high-coverage car ontology with car dimensions,
number of doors, windows, etc. from available databases.
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