Deutsches Research

Forschungszentrum

fur Kinstliche Report

Intelligenz GmbH RR-93-15

[
PLUS

Plan-based User Support

Final Project Report

Frank Berger, Thomas Fehrle, Kristof Klockner,
Volker Scholles, Markus A. Thies, Wolfgang Wahister

March 1993

Deutsches Forschungszentrum fiir Kiinstliche Intelligenz

GmbH
Postfach 20 80 Stuhlsatzenhausweg 3
D-6750 Kaiserslautern, FRG D-6600 Saarbriicken 11, FRG
Tel.: (+49 631) 205-3211/13 Tel.: (+49 681) 302-5252

Fax: (+49 631) 205-3210 Fax: (+49 681) 302-5341

Deutsches Forschungszentrum
far
Kunstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fur Kunstliche
Intelligenz, DFKI) with sites in Kaiserslautern and Saarbriicken is a non-profit organization which was
founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz, Fraunhofer
Geselischaft, GMD, IBM, Insiders, Mannesmann-Kienzle, SEMA Group, Siemens and Siemens-
Nixdorf. Research projects conducted at the DFKI are funded by the German Ministry for Research
and Technology, by the shareholder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and other
related subfields of computer science. The overall goal is to construct systems with technical
knowledge and common sense which - by using Al methods - implement a problem solution for a
selected application area. Currently, there are the following research areas at the DFKI:

Intelligent Engineering Systems

Intelligent User Interfaces

Computer Linguistics

Programming Systems

Deduction and Multiagent Systems
Document Analysis and Office Automation.

cooooo

The DFKI strives at making its research results available to the scientific community. There exist many
contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts
technology transfer workshops for shareholders and other interested groups in order to inform about
the current state of research.

From its beginning, the DFKI has provided an attractive working environment for Al researchers from
Germany and from all over the world. The goal is to have a staff of about 100 researchers at the end
of the building-up phase.

Friedrich J. Wend|
Director

PLUS - Plan-based User Support

Frank Berger, Thomas Fehrle, Kristof Klockner, Volker Scholles,
Markus A. Thies, Wolfgang Wahlster

DFKI-RR-93-15

© Deutsches Forschungszentrum fir Kiinstliche Intelligenz 1993

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by
permission of Deutsches Forschungszentrum fiir Kiinstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum fiir Kiinstliche Intelligenz.

PLUS
Plan-based User Support

Final Project Report

Frank Berger, Markus A. Thies, Wolfgang Wahlster
German Research Center for Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3
W - 6600 Saarbricken 11, Germany

Thomas Fehrle, Kristof Klockner, Volker Scholles
IBM Laboratory Boblingen
Schonaicher Str. 220
W - 7030 Boblingen, Germany

Abstract

This paper presents the results of the project PLUS (Plan-based User Support).
The overall objective of PLUS was the design and the implementation of a plan-
based help system for applications that provide a graphical and direct-manipulative
interface.

The design of graphical user interfaces is based on the principle that “the user
is always in control”. This means that the user is responsible for performing his
tasks according to his own strategy. This leads to a great degree of flexibility in
task execution as opposed, for instance, to menu-oriented user interfaces. Usually,
neither a definite sequence of interactions nor a fixed number of actions are required
to accomplish a specific task. In addition, modeless user interfaces allow the user
to work on different tasks in parallel and to arbitrarily switch between them.

Within the project PLUS we developed various help strategies, including graphi-
cal representation of the current interaction context, tutoring modes, and animated
help, to support novice and occasional users during their work with applications
that provide graphical user interfaces.

Contents

1 Overview 1
2 Objectives 2
3 The Design of PLUS 4
Sl B Modeline S BIRERE < & L 4 s s v e e R sk B b ok B 4
L SR e s, L LY R el el U e IR RS R 4

S RS L o B s e s T et vt R s s S g 5

3.1.3 “Fhednputofa Plan'Bahe § 154 oo igm . . 6

Se AN ProcessinE O T IRIE« e w e e e wiw s x s ow s w o w w 6
3.3 - Controlling the Plan Protesting. .7 FoLifom Ao mpad e o o v s v oa i
S8 DI R L R S a e hs u R LN w m s 8

4 The Realization of PLUS 10
4.1 The AvchilVedture g FEMIS 0 oo v o s i o e v b wwin o nin 10
4.2 +“Fhe Definition of a Plan-Base G5 .50 . . e v 2o ciere w0 o o s o s 11
9 N e O T Tt RS R e e S R 13
R B R T L e e Kk e 13

4.3.2 Plap Cohipletion- ™ 7 a0 10 L g BE TG, b L o v o v e s o 14

4.3.3 Play Gendmgbion’. [| 93 igato 80 D0, o i om dale oo b o 16

a4 T he ModlednCome” = o, o PR L s SR e e e 0t 17
45 The Modhle BUISTE: <5 Lam. litin, a3 5.5 » felo as s~ oAb o o o % e 21
SN R s SRR T R e G el acind MK SO FI- 23
&7 «GlepitoWards TRERTaRON. . . 0 0 T S L W e e 23
4.7.1 = Changes in the'Objectives' .\, 'Sl " O L, ... 23

4.7.2 Activities-for ilve Btepealionb e 50 000 .« WF L L a. .l 24

5 Results of the PLUS Project 25
5.1 * Intepration -of PLUS 1nte ScreatWiemws . .« v v v cn s ir v s ne i 25
di ke oA ShortSketclrof BereenView: . . oo oLt e S e b 25
e T . o B e e vt G g 25

5.1.3 The Current State of the Integration 26

O Nty EVARRIION . Jow o b i oy baire B S s v A el e 26

6 Publications, Talks and Presentations 27
G OORRatagiE ., iy S, AR Y SR L s e RIS e T R i 27
B2 D BB M aid oy i B n o TR Sk P TR mac e et e I 28

0.3 cBresenbalilons: 5 g R i i o wak L R e B T SR pn i 29

Foreword

PLUS belongs to a new generation of user interfaces which possess some understanding
of what the users are trying to do, and how they need to go about doing it. An intelli-
gent user interface like PLUS mimics some of the key capabilities of a human assistant:
observing and forming models of the user, inferring user intentions based upon those ob-
servations, and formulating plans and actions to help the user achieve those intentions.

The results reported here grew out of an effort to determine whether plan-based help
technology can survive outside the research laboratories.

The gap that exists between research and development needs to be bridged if innovation
is to be achieved. One of DFKI’s challenges is finding new ways to spin research results
into new software developments of its shareholder companies.

For us at the DFKI, the PLUS project is a showcase effort of teaming applied research
and development in order to speed up the technology transfer process. PLUS is also an
excellent example of what we call a tandem project at DFKI, i.e. an application-oriented
project that exploits results from more basic research in another strategic DFKI project
funded by the German Ministry for Research and Technology (BMFT). I was very pleased
about the fruitful interaction and cross-fertilization between the PLUS project and the
PHI (Plan-based Help Systems) project which is sponsored by BMFT.

Transferring technology between a research organization like DFKI and a development lab

like IBM Béblingen Software Systems requires a concerted effort along many dimensions.

Special thanks to Volker Scholles and Dr. Thomas Fehrle from IBM for making our jour-
ney through this technology transfer process an enjoyable one.

[would like to thank Markus Thies and Frank Berger from my research division at DFKI,
who did a tremendous job meeting all the deadlines for the various milestones and finally
delivering a piece of software, which surpassed the expectations of the industrial partner
and pleased the sponsors. I would also like to thank Dr. Kristof Klockner and Dr. Teufel
from IBM for their excellent management and support of this project. Finally, I owe a
great deal of gratitude and appreciation to Prof. Endres and Prof. Glatthaar from IBM,
who initiated this fruitful collaboration and fostered a sense of technological excitement

about the project inside their company.

[think that the PLUS project was a breakthrough in making plan-based help systems a
demonstrable technology ready for widespread application.

Prof. Wolfgang Wahlster

Preface

At the end of this year a fruitful cooperation hetween the German Research Center for
Artificial Intelligence (DFKI) and IBM Béblingen Software Systems came to an end. As
manager of the department participating in this partnership I would like to look back at
the past two years and give a brief assessment of its importance to us.

From the PLUS project we expected an exploration of context (i.e. task) sensitive help
for direct manipulation user interfaces, a problem that came to our attention in usability
evaluations of system management applications with graphical frontends. Consequently,
our people from advanced software development, human factors and product development
took part in this joint effort.

We chose the DFKI as a project partner because of its excellent reputation in knowl-
edge based user interfaces due to prior work by Prof. Wahlster and others on plan-based
help systems. Therefore we felt, we could expect a significant transfer of technology to
the lab. Our expectations were surpassed, even if ultimately no direct introduction to a
product could be achieved.

All technical project goals were achieved on schedule and additional aspects that came
up during the investigations (like animation or tutor support) were also able to be covered.
In retrospect, this success is due to a great extent to a development process of iterative
refinement of prototypes which was facilitated by an object oriented methodology. Being
able to demonstrate the power of the plan-based approach through early prototypes was
helpful in converting initial scepticism in the product areas into enthusiastic support.

The experiences gained with the PLUS project have been influential beyond the im-
mediate project context, both within the lab and without. Several publications as well
as demonstrations and presentations within the IBM technical community and 3 masters’
theses attest the scientific success.

I wish to thank the project participants Markus Thies and Frank Berger from the
DFKI and Volker Schélles and Dr. Thomas Fehrle from IBM who have set an excellent
example of cooperation between advanced product development and applied science. I
would also like to thank all supporters who made this project possible, Prof. Glatthaar,
who provided additional funds from IBM Germany, Dr. Teuffel, the first IBM project
manager and especially mentors Prof. Endres and Prof. Wahlster.

Dr. Kristof Klockner, Mgr. End User Products Development 3

1 Overview

The project PLUS (PLan-based User Support) was a joint project between the IBM
Laboratory Boblingen, the IBM Germany GmbH, and the German Research Center for
Artificial Intelligence (DFKI), Saarbriicken. PLUS was carried out from 1 October 1990
to 31 December 1992.

The following research scientists were involved in the PLUS project:
e Prof. Dr. Wolfgang Wahlster (project leader DFKI)
e Dr. Thomas Felirle (initial project leader IBM Lab)
e Dr. Kristof Klockner (following project leader IBM Lab)

Dipl.-Inform. Frank Berger (DFKI)

Dipl.-Inform. Volker Scholles (IBM Lab)

Dipl.-Inform. Markus A. Thies (DFKI)

There has been a close and very productive cooperation between the two groups at the
DFKI and at the IBM Laboratory. Results from the work were frequently exchanged
during periodical meetings held alternately at the DFKI and at the IBM Lab. In addition,
further information and code was exchanged as required via Internet. Intermediate results
were examined twice by a review hoard consisting of members from the three joint parties.
The first review took place in May 1991 at the IBM Lab, the second review was held in
December 1991 at the DFKI. With regard to the planned integration of the PLUS System
into ScreenView, a code inspection concerning the quality of the produced Smalltalk code
was conducted in December 1991 at the IBM Lab (cf. section 5.1.2). Within the periodical
SAB! Review at the DFKI, the project PLUS was reviewd four times and it constantly

received a very positive feedback.

The following resources with regard to the hardware and software environment have been

provided by IBM:

Hardware: IBM PS/2 Model 80 workstations with 6 (initally) to 10 (final stage) MB

main storage.

Implementation: Smalltalk V/PM, an object-oriented programming environment run-
ning under OS/2.

Design Rules: IBM’s SAA/Common User Access (cf. [IBM 91]).

First Application Domain: HCD (cf. [IBM 92a]), a hardware configuration tool run-
ning under ScreenView?. HCD was developed at the IBM Laboratory Boblingen.

Second Application Domain: The ScreenView sample application OrgChart which
displays the organization of an enterprise (cf. [[BM 92b], pp. 79-86).

IThe Scientific Advisory Board is composed of well-known international research scientists.
2GcreenView is a set of services aimed at the development and running of applications with a consistent
user interface (cf. [IBM 92b]).

2 Objectives

The overall objective of the PLUS project was the design and the prototypical implemen-
tation of a plan-based help system®. Rather than carrying out basic research, the state-
of-the-art methods in several fields of Artificial Intelligence including Knowledge Repre-
sentation and Plan-based Systems should be incorporated. Unlike previous help systems
that were mostly developed for command language environments (see, e.g., [Finin 83],
[Fischer et al. 85], [Wilensky et al. 88], [Wahlster et al. 93], [Bauer et al. 91]), PLUS was
designed to cope with applications which offer graphical user interfaces (GUI), whose
main interaction principle is based on a user-directed dialog by means of direct manip-
ulation — so-called Direct Manipulation User Interfaces (DMI) (cf. [Shneiderman 83],
[Shneiderman 87]).

The design of graphical user interfaces is based on the principle that “the user is always
in control”. This means that the user is responsible for performing his tasks according to
his own strategy. This leads to a great degree of flexibility in task execution as opposed,
for instance, to menu-oriented user interfaces. Usually, neither a definite sequence of in-
teractions nor a fixed number of actions are required to accomplish a specific task. In
addition, modeless user interfaces allow the user to work on different tasks in parallel and
to arbitrarily switch between them. The flexibility provided by these graphical user in-
terfaces from a human factors point of view, makes the use of software products easier on
the one hand but more difficult on the other hand depending on the user type. It will be
easier and more productive for an expert user to work in such an environment. Novice and
occasional users, however, may easily get confused and they need assistance in performing
their tasks. Usability tests conducted in this area have shown that test participants, who
are traditional host users, need advice, in order to work with objects, actions, views, and
settings in an object-oriented user interface. Available online information could not be
used to solve their problems, because

e by presenting help information using hypertext information is split into units, which
are too small,

e static help information does not take into consideration the current system state or
the previously performed user actions, and

e textual help is not adequate in presenting information concerning the dynamic be-
haviour of graphical user interfaces.

Rather than asking for static offline (i.e., manuals) and online help, the user might wish
to ask an experienced colleague for advice. Plan-based help systems satisfy the user’s
need for task-oriented help, which is generated at runtime in order to reflect the current
dialog context.

We wished to fulfill the following aims with the PLUS System:

1. Offering help which reflects the current dialog context and system state
User actions are mapped to typical user tasks, hypotheses of intended user goals are
formed, and sequences of actions to reach these goals are deduced and presented to
the user.

3See [Fehrle 90] for the initial project description.

2. Increasing the acceptance of online help
The acceptance of online help is quite lowly rated by its users. In general, they miss
out on a short and clear solution to their present problem, a solution which can be

offered by PLUS.

3. Offering suitable help in graphical user interfaces
Graphical presentation and/or animation is the best way of explaining how to use
graphical user interfaces. People tend to deal more and more with other media
rather than text.

4. Reducing the effort of learning
Users are curious. They wish to run software immediately after installation and
without reading manuals. Plan-based help systems act as an aid to this behaviour
of exploring and the process of learning by doing.

The following help strategies should be incorporated into PLUS, in order to meet these

demands:

e Passive help:
The user explicitly requests help.
Context-sensitive help information is generated.

e Active help:
The user receives help without explicitly requesting it.
For example, the system offers the user an optimized interaction sequence in order
to reach a specific goal.

e Cooperative help:
The user receives help when he makes errors.
The system suggests possible corrections or recommends alternative solutions to the
user.

e Implicit help:
The system adapts itself by, e.g.,
- changing the screen layout,
- focusing the user’s attention,
- setting defaults.

As stated above, one of our main goals was to provide graphical help, because this seems
to be the most adequate way of supporting users working with graphical user interfaces.
In order to provide the user with a ‘common look and feel” concerning the application and
the help system, the PLUS System should be integrated into the graphical environment
of the applications.

3 The Design of PLUS

3.1 The Modeling of Plans

There exists a series of plan-based help systems for which a plan language has been de-
fined that is suitable for the problems arising within their respective domains. We took
concepts used within the plan languages of the systems REPLIX (cf. [Dengler et al. 87]),
MATHILDE (cf. [Hirschmann 90]), and PLANET (cf. [Quast 91]) and extended the lan-
guage to adapt it to our needs (cf. [Berger & Thies 92] for a comprehensive overview of
all properties that we used for the definition of plans).

We decided to choose a hierarchical plan base as the basis for the plan processor. There
are three main reasons for this decision:

(1) From a simple point of view, a plan consists of a series of actions that have to be
performed in order to successfully complete the plan and thus to reach the goal
associated with that plan. But if we take a closer look at common tasks a user is
performing when he is working with an application, we notice that small sequences
of actions are often part of several plans. To avoid redundancies, it is sensible to
combine such sequences to separate plans. These plans, or rather their associated
goals, can be included as subgoals within more abstract plans. We thereby obtain a
plan hierarchy with several layers.

(2) Another reason for working with a hierarchical plan base is our aim of offering the
user an adequate assistance on a suitable abstraction level. A typical help scenario
might look like the following: A user starts working on a task consisting of several
steps, but after reaching a certain point, he does not know how to proceed. If he
asks for help in such a case, he certainly does not want to get instructions about the
whole plan he is pursuing, but only for the part (the subplan) he has problems in.
Moreover, if he can identify parts of a larger plan as logically independent subplans,
it is then easier for him to reuse what he has learned about a subplan, if this subplan
occurs in a second task.

(3) Obviously, a plan recognition process working on a plan hierarchy is generally much
more efficient than one working on a flat plan base. Firstly, the amount of memory
needed to store the plan hypotheses may be considerably smaller because of the
redundancies (cf. (1)) that occur within a flat plan base. Secondly, performing
inference and search processes in a plan hierarchy is much more efficient than in a
flat plan base.

3.1.1 Actions

We use the term action within the PLUS System for pulldown choices which are se-
lectable within the application. However there are two additional types of actions within
a graphical interface environment. We will define them in the following paragraphs.

Generic Actions The PLUS System is designed to run with applications that are
running under ScreenView. Usually, these applications offer both application-specific
actions and so-called generic actions which are common to all ScreenView applications.
These generic actions essentially comprise actions for clipboard management (i.e., Create

4

and Paste) and for the visualization of application objects within the different windows

(e.g., Include).

Navigational Actions Apart from the actions which are selectable via pulldown choices
within the application, there are also actions for the navigation within the graphical user
interface. The term navigational action denotes actions like serolling, restoring windows,
and selecting objects.

We believe that the exclusion of generic actions and navigational actions from the plan
recognition process is sensible. Goal recognition based on navigational or generic actions
is not possible, because these actions are usually part of any plan that a user may have in
mind to reach a goal. To overcome this restriction of the plan recognition process, the user
must have the opportunity to access help concerning generic actions and/or navigational
actions. Adequate presentations of generic and navigational actions would be a tutor-like
mode telling the user what actions to perform and how to perform them, and an animated
help showing the user how to perform actions on the current user interface.

3.1.2 Plans

In the context of plan-based help systems, a plan is a sequence of actions that have to
be executed to perform a give task, and thereby to achieve specific goals. Given the
reasons above, we explicitly distinguish between plans and goals. A goal can be achieved
in different ways, each of them represented by an alternative plan. Each plan, however,

leads to exactly one goal.

Plan Types We allow the assignment of a type to each plan, identifying it as an optimal,
suboptimal, or wrong way to reach the goal associated with the plan. This information
can be used by the different components of the PLUS System to decide what kind of help

is suitable for the user (e.g, active help or cooperative help, cf. section 1).

Parameter Constraints Usually, the steps of a plan work on a common set of ap-
plication objects. Each step has a number of parameters. The parameters of an action
are placeholders for the application objects that are provided with the action when it
is written to the dialog history. In addition, we allow goals to have parameters. The
goal parameters are placeholders for the application objects that are substantial for the
achievement of the goal. Goal parameters are used for the definition of parameter con-
straints, if the goal is used as a subgoal within higher level plans (see below). Moreover,
goal parameters can be used within the descriptions of a goal to establish a context sen-
sitivity of the descriptions.

In order to reflect the relationship between the application objects involved in a plan, it
is necessary to define the constraints between the parameters of the plan’s actions and
goals. We offer the possibility of defining Equality and Unequality constraints. Due to
the fact that applications addressed by the PLUS System deal with object hierarchies, we
offer a third kind of constraint, the Dependent Of relation.

Sequence Constraints One of the major benefits of graphical user interfaces — in
contrast to command-oriented or menu-based user interfaces — is the possibility of pro-

s |

cessing tasks in parallel and of performing actions in (almost) any order independently
from each other. That is, plans in PLUS enforce no strict sequence of actions to be per-
formed. Therefore, we basically view plans as a set of steps without any total ordering.
However, there are usually some temporal relations between the steps of a plan that have
to be maintained in order for the plan to be meaningful. We distinguish between two
kinds of sequence constraints:

Absolute Positions It might be necessary for a certain step to occur at a particular
position when a plan is being performed by the user. A typical example is a plan
working on a file. The first action of this plan is to open the file, and the last action
is to close it. Therefore, we offer the possibility of assigning an absolute position to
each step of a plan.

Relative Positions It might be necessary for a particular step to occur before other
steps, as a plan is being accomplished by the user. For example, before any action
can be performed on an application object, this object has to first be created.
Therefore, we offer the possibility of defining a set of predecessors for each step of
a plan which specify the steps that have to be performed beforehand.

As an additional feature, it is possible to define whatever a step of a plan is compulsory or
optional. In contrast to compulsory steps, optional steps do not necessarily have to occur
in order to achieve the goal associated with a plan, however their occurrence strengthens
the hypothesis that a plan is being followed by the user.

3.1.3 The Input of a Plan Base

Tools for the application or information developer in order to model the plan base should
be part of the system. These tools should offer an easy mechanism of interactively specify-
ing plans without requiring a deep knowledge of the formal description of plans. Therefore
a plan language which is easily used by applying concepts of an interactive graphical en-
vironment should be designed instead of a pure syntactical plan language.

3.2 The Processing of Plans

The main module of a plan-based help system is a plan recognizer. While the user in-
teracts with the application, the plan recognizer tries to map the performed actions to
plans, thereby making assumptions about the user’s goals. These plan hypotheses form
the basis for offering various kinds of help to the user.

Two different approaches exist for plan-based systems. On the one hand, there are sys-
tems that generate plans during run-time using a plan generation system. This approach
is also called plan recognition from first principles. On the other hand, there are systems
that use a predefined plan-base as an input for the plan recognition component (plan
recognition from second principles). In the last few years, a lot of research has been
done within the area of plan recognition from first principles (see, e.g., [Bauer et al. 92],
[Koehler 92]). However, the plan recognition components developed within these projects
are far from being suitable for use within help systems which are intended to be inte-
grated into sophisticated applications, since they require a complete axiomatization of an
arbitrary application domain. Therefore, we decided to employ a plan recognizer that
is based upon the second principles approach. Plan recognition from second principles

6

exploits predefined plan libraries.

In order to cope with the different DMI events, we planned to realize a two-level plan
recognition approach. The first level should process low-level events like mouse-clicks
and keystrokes. It was planned that an ATN-based parser to do the low-level processing
should be employed. The second level processes the application actions performed by the
user, e.g., by selecting pulldown menu items. With this two-level approach, we are able
to process the low-level events without stressing the actual plan recognition process.

In the first level we protocol the user’s favorite interaction styles (i.e., does he mainly use
the mouse, or does he prefer ‘short-paths’) and we build up a simple user model to reflect
the user’s preferences (for user modeling see, [Wahlster & Kobsa 89], [Rich 89]). Firstly,
this simple user model can be employed in adapting help information to the user’s habits
by considering his preferred interaction styles, and secondly, it allows the detection of al-
ternative interaction principles that are unknown to the user. Moreover, while generating
help sequences, the first level of the plan recognition can be used in order to determine
the most efficient interaction technique for performing a specific action. The results of
this first plan recognition level are the application-specific actions performed by the user.
These actions are recorded within a Dialog History that serves as an input for the second

level plan recognition process.

The second level plan recognition process is based upon a hierarchical plan base called
static plan base as described in section 3.1 above. We decided to use a spreading activa-
tion algorithm for the plan processing. A similar algorithm has been employed within the
system PLANET (cf. [Quast 91]). The plan recognition component tries to map actions
stored in the dialog history to plans contained in the plan hierarchy. A so-called dynamic
plan base is thereby built up at run-time. The dynamic plan base contains all hypotheses
concerning plans and goals being pursued by the user at a certain state of the dialog. To-
gether with a knowledge base containing common help strategies extended by rules and
facts about generic interface concepts, these hypotheses serve as the basis for the various
help components realized within PLUS (cf. section 4).

3.3 Controlling the Plan Processing

As stated earlier, DMI environments allow the user to act in a very flexible manner. As the
user keeps on working with the application, the dynamic plan base may quickly grow and
may thus contain plan hypotheses which are no longer plausible. Therefore, additional
mechanisms which keep the dynamic plan base clear by rejecting unlikely hypotheses are
required. Within PLUS, the following focusing methods are employed:

(1) For each plan, it is possible to specify a list of cancel actions and/or goals (briefly
called cancels). The execution of a cancel action or the achievement of a cancel
goal immediately dismisses the respective plan hypothesis. A typical cancel action
is the closing of a window whose presence is essential for the successful execution of

a plan.

(2) A special kind of cancel action is the deletion of an application object which has
been used by a plan’s previously performed actions. We therefore introduced the
concept of so-called generic cancels. This mechanism causes every plan hypothesis

to be immediately dismissed from the dynamic plan base, if one of the involved
objects is deleted.

(3) We introduced a Time Frame concept (see figure 1) that enables the PLUS System
to categorize plan hypotheses into different states depending on the number of user
actions that have been performed since a plan hypothesis was last activated (i.e.,
since the last assignment of a step to a plan hypothesis). As soon as an action
activates a plan hypothesis, we call this plan focused. If more than T1 actions (T1
is called Tume Frame Focus) are performed without a new activation of the plan
hypothesis, it changes its state to sleeping. If it gets no further activation for another
T2 steps (T2 is called Time Frame Sleep), then the plan Liypothesis is dismissed from
the dynamic plan base (it is unlikely that the user will continue to carry out this

L

plan).

Static Plan Base

(: N
5= T2 canceled activated
all compulso! .
i
2 Dynamic Plan BaseJ

Figure 1: State Transitions using Time Frames

3.4 Animated Help

Object-oriented graphical user interfaces entail new demands in providing the user with
adequate help. Static and knowledge-based help systems with a pure textual help (cf.
[Wilensky et al. 84], [Breuker 90], [Bauer et al. 91], [Wahlster et al. 93]) reach their lim-
its as soon as the user needs assistance in performing interactions. For example, if the
user addresses a question like: “How do [include object A into container-object B 27,
a generated textual help could possibly sound like: “Move the mouse to the position of
object A and press the left mouse button. Now move the mouse with the left mouse button
still pressed to the position of the container object B. Then release the mouse button.” We
think that an animated presentation of these interaction steps is more adequate than a

pure textual description.

As soon as the user needs assistance in performing interactions within the graphical inter-
face, an animated sequence demonstrating the necessary interaction steps on top of the
current interface seems to be the most adequate way of supporting the user.

In contrast to earlier approaches to animated’ help (cf. [Neiman 82], [Sukaviriya 88],
[Sukaviriya & Foley 90]), the animation system of PLUS generates animated presenta-
tions of interaction steps in the context of the current task which a user is carrying out.

The animation presentation comprises both the movement of the mouse on the interface
and the manipulation of objects (e.g, menus, scrollbars, windows, application objects)
with the mouse. In addition, the shape of the mouse changes in order to reflect mouse
actions like single-click or double-click with the left or right mouse button.

In order to provide the user with a better understanding of the reason why the animation
system performs the current mouse action, a text describing the goal of the animation and
the current mouse action is presented in an adequate form (e.g., through speech output

from a speech synthesizer).

9

4 The Realization of PLUS

4.1

three functional parts:

(1) The Plan Processor including the Plan Recognition, Plan Completion, and Plan

The Architecture of PLUS

Figure 2 shows the overall architecture of the PLUS System. PLUS can be divided into

Generation components.

(2) The End User Interface including the modules InCome* and AniSt, and a

context-sensitive entry to a hypertext-based help facility.

(3) The module PlanEditt as a tool for application developers for specifying plans.

These modules work on four different data resources:

o The Dialog History containing information on the user interactions recorded by the
application. The Dialog History is shared by the application and PLUS via the

0S/2 Dynamic Data Exchange (DDE) mechanism.

o The Static Plan Base containing typical user tasks. The static plan base is generated

by an application specialist using PlanEdit*.

e The Dynamic Plan Base containing hypotheses about the plans and goals the user

1s currently pursuing.

e The Generation Knowledge Base containing rules that model the interface syntax,
the application semantics, and generic interface concepts (e.g, how to perform nav-

1gational interaction steps).

Passive
Help

InCome*

Presentation Manager

Anist

Dialog
History

Plan
Recognition

Plan
Completion

Dynamic
Plan Base

9,

uonesddy

Plan

ONORY

[

Generation

PlanEdit*

Static
Plan Base

LN

Generation
Knowledge

Figure 2: Architecture of PLUS

10

4.2 The Definition of a Plan Base

For each application running with the PLUS System, a separate plan base has to be built
up. Typical tasks performed by a user when he is working with the application should
be modeled within this plan base. We describe user tasks in terms of actions, plans, and
goals. These objects are contained within a plan hierarchy called static plan base that is
structured as follows (see figure 3):

e The lowest layer consists of the actions representing the application actions that
can be performed by the user via pulldown or popup menu choices or by direct
manipulation interactions. Actions are part of plans.

e A plan represents one way of reaching a specific goal. It consists of a set of actions
and /or subgoals (i.e., goals on a lower hierarchical level). Each plan leads to exactly
one goal.

e A goal is a system state that a user wants to achieve while interacting with the
application. A goal may be reached in different ways, each of them represented by
an alternative plan. Goals may be contained as subgoals within higher level (i.e.,
more abstract) plans.

o
o
o
Goal layer
Plan layer
Goal layer ailiatl
Plan layer
Action layer

Figure 3: The Structure of a Plan Base

For the definition of the static plan base, we developed the language GPL* (Goal Plan
Language) that provides mechanisms to build hierarchical structures. GPL* has been
designed to cope with specific features of graphical user interfaces like multiple selection,
optionality, parallelity, object hierarchies, and multiple views on objects. In addition,
features common to plan recognition like parameter and temporal constraints, plan can-
cellation, and plan interactions can be modeled with GPL*. [Berger & Thies 92] contains
a comprehensive summary of all properties that can be defined for the elements of a plan
base.

PLUS offers a convenient tool for specifying a plan base without the need for a deep knowl-
edge of the formal description of plans. The module PlanEdit* (cf. [Berger & Thies 92])
provides a graphical user interface that allows the plan designer to build up the plan base
interactively by means of direct manipulation, and to generate the appropriate Smalltalk
objects that are used by the plan processor for the plan recognition and plan completion
processes.

11

Figure 4 shows the PlanEdit* main window, in which most of the interaction takes place.
The elements of the plan base are displayed as graphical objects. Each object consists
of an icon representing the element’s type and the element’s name. The Type Boz in
the lower left corner of the main window contains icons for the three types of elements
contained in the plan base: actions, plans and goals. These icons can be used to generate
new elements of the respective types. The properties of the elements may be defined
within a series of dialog boxes.

= Plantdit+ - CLSERVLIB (Client? Server Configuration) v a
File Edit Options Navigate Help

lGoal' Iﬁoall "

GPrepProtRoot GPrepBootParam

1 B i

PrepProtRoot Prep Bdot Param

A A A

CrProtRoot GPrep CompBootParam ReinitBoot Ea

5

Pfep
. DetFsSize InsOsTape SelDirs
| o

Figure 4: PlanEdit* Main Window

o Planbdits - CLSERV.LIB {Client ! Server Configuration) v
File Edit Options Navigate Help

-

Conf Goal
= Structure of plan PrepRevArp v a
GPrepRevArp Plan Selected Options
P
PrepRevArp
GPrepBootFile ReinitRevArp(Server)
Type Box Eil i
InsEntryNet(Server Client) Goal
PrepBootFile
Goi) i
Fq GPrepBootFile(ClInt Srvr),

The contents of the main window may become confusing for the user as the plan base
grows. Therefore, we added a second window type enabling the separate examination of
the structure of previously defined plans and goals, and the easy modification of their
properties. Figure 5 shows an example of a plan window on top of the main window.
In the main window, the elements of the plan base may be arranged arbitrarily without
considering the structure of the plan base. Within a plan window, however, the layout of
the objects corresponds to the logical sequence of the elements within the plan, as defined
through the sequence constraints.

A second tool for the generation of a plan base has been developed at the IBM Lab
as part of a masters thesis (cf. [Braune 92]). This tool introduces a textual format for
the definition of an AND-OR tree representing the structure of a plan base, and for the
specification of the properties of the elements contained in a plan base. The textual format
is based upon the Abstract Syntaxr (AS) developed by IBM. The AS has been extended to

meet the requirements necessary for the definition of a plan base.

The textual description of a plan base can be entered and edited within a conventional
text editor. Additionally, tools for the mutual conversion between the textual format and
the internal format used within PlanEdit*t have been developed. This means that both
formats can be employed in parallel and that the plan designer can use whichever tool he

prefers, depending on the current situation.

4.3 The Plan Processor

The plan processor is the core of the PLUS System. It consists of three parts, the plan
recognition component PlanRecognizert, the plan completion component, and the plan
generation component. The plan completion component and the plan generation compo-
nents serve as the basis for the visualization of possible future actions within InCome*
(cf. section 4.4) and for the animation component AniSt (cf. section 4.5).

4.3.1 PlanRecognizer*

Within the PLUS System, PlanRecognizert plays the part of the plan processor. It
receives input from the application via the dialog history.

The dialog history is updated each time the user performs an action within the application.
Each update triggers PlanRecognizer™ which works as follows (cf. figure 6) assuming the
new entry within the dialog history is action a:

1. The corresponding action within the static plan base is identified and a new instance
1s created.

2. The dynamic plan base is looked up for existing plan hypotheses to which a could

be assigned.

3. All constraints that are defined for a within the static plan base are verified for each
plan hypothesis that is determined by the previous step.

4. If the verification has been successful, a is assigned to the corresponding plan hy-
potheses.

13

5. In addition, for each plan to which a could be assigned, a new plan hypothesis is
created and again all constraints defined for a are verified. Each new hypothesis to
which a could not be assigned is dismissed.

6. If a plan hypothesis is completed by the execution of a then it changes its state to
recognized.

7. Each plan hypotheses that changed its state to recognized spreads its activation to
all plans to which it could belong by using this algorithm, modified by replacing
action a with plan hypothesis.

Static Plan Base Dynamic Plan Base

I>
a

3 A Plan P is recognized
| H The execution of action a gl 1]
ﬁ] activates the plans P and Q thus goal G1 is achieved,

which in turn activates plan O.

Action Plan Goal
Figure 6: Spreading Activation

During the plan recognition process, PlanRecognizer®™ keeps a record of the plan recog-
nition process. When an entry within the dialog history has been processed, PlanRe-

* sends the record to the context visualizing component InCome™*. Based on the

cognizer
information contained in the record, InCome* builds an internal representation of the

plan recognition process and of the interaction context (cf. section 4.4).

4.3.2 Plan Completion

The term Plan Completion describes the generation of a sequence of actions that perform
a specific plan. The execution of the generated actions leads to the goal associated with
the plan. The sequence is generated according to the definition of the plan. The definition
includes various constraints that had been defined for the elements of that plan during
the design of the static plan base. The sequence is called to be valid, if the constraints are
solved. This is done by considering sequence constraints, minimum/maximum iteration
constraints, and parameter constraints.

14

A special case appears when the elements of a plan have minimum iteration constraints
with 0 value. The 0 value means that these elements are optional. An element that is
defined to be optional within a plan must not necessarily occur when persuing that plan.
Consequently, during the generation of a valid sequence, the plan completion component
considers only elements that are mandatory for the plan to be completed.

A speciality of the spreading activation algorithm must be handled by the plan com-
pletion component: The spreading activation algorithm allows spreading of activation only
for elements that have just been recognized or for actions that have just been executed
by the user, i.e. the user can start a plan (focused plan) without its corresponding goal
being activated (due to the unrecognized plan). If the plan completion component then
generates a sequence for another plan that starts with a goal, it must consider all focused
plans that could lead to that starting goal. All constraints that are defined for the starting
goal must be satisfied as far as the parameters of the focused plan are already known.
If the plan completion component did not consider this focused plan, the generated se-
quence would include steps that had already been performed by the user. In order to
suppress this misleading information, the plan completion component examins focused
plans which are in the dynamic plan base during generation of a sequence (cf. step 6 of
the plan completion algorithm).

The plan completion component may generate valid sequences for plans that are al-
ready in the dynamic plan base and may generate valid sequences for plans that are not
yet activated by the plan recognizer. Recall that a plan in the dynamic plan base is acti-
vated by the plan recognizer due to the assignment of actions performed by the user to
that plan (during the spreading activation phase).

The generated sequences are used by InCome™, its tutor, and the stand-alone tutor.
The elements of the sequence will be visualized to provide the user with the information
he needs to resume or to finish his work.

The plan completion component is activated by a request for it from InCome™ or from
the stand-alone tutor.

The algorithm for the plan completion works as follows :

1. Determine the appropriate plan.

2. Determine the steps of all elements of the plan specification that are not yet per-
formed and that are mandatory (missing steps).

3. Determine the absolute positions of the missing steps, using the sequence constraints
Absolute Positions for them, and place the missing steps within the new sequence
reflecting their absolute positions.

4. Determine the relative positions of the missing steps, using the sequence constraints
Relative Positions for them. Order the missing steps according to their relative

positions within the new sequence.

5. Place all remaining steps (i.e. not yet placed) within the new sequence considering
the positions already occupied.

6. Take the first step within the sequence and try to assign a plan that has already
been activated to that position by verifying the defined constraints.

7. Replace each step in the new sequence with a newly created instantiation of the
class corresponding to that step. Steps assigned during step 6 are omitted.

8. Propagate parameter types and values within the new sequence.

9. Answer the new sequence.

4.3.3 Plan Generation

The plan generation component is used by the How to... tutor and the animation system
AniS*. The plan generation component works upon a knowledge base using a simple back-
ward chaining algorithm. The knowledge base is split into an application part, a generic
part and an interface part. The application part includes information about application-
specific actions, the generic part includes information about actions that are common
to all applications (due to the SAA/Common User Access) and the interface part con-
tains information on how to access application-specific runtime information. Within the
knowledge base, pre- and postconditions for actions are defined along with specifications
for the tutor and the animation system. The knowledge is packed into so called chunks.
These chunks include, depending on the part of the knowledge base for which they are
defined, various slots: name, preCond, postCond, stepsAS, stepsPG, and builtIn. The
slots stepsAS and stepsP(G contain information that is collected when the corresponding
chunk is processed successfully. The information collected builds up a sequence of steps
that must be carried out to reach the specified goal. The slot stepAS is used for AniS*t
and the slot stepsP(is used for the How to... tutor. The contents of the slot builtIn is a
function that queries runtime information from the connected application.

In order to understand the dependencies between the preconditions, the postcondi-
tions, and the chunks defined in the knowledge base, a closer look at the inference process
performed by the Backward-Chainer (BC) is required.

InCome* notifies the BC about an application action that has to be performed by
the animation system or that has to be explained to a user, who asked a ‘How to...’
question. For example, two application objects should be connected using the menu
function “connect”. The BC tries to map the menu function “connect” together with
the provided arguments to the name and the placeholders of an application chunk. If a
suitable chunk is found, the BC checks the preconditions of that chunk by trying to verify
the conditions defined in the slot preCond. The verification is done as follows: if there is an
interface chunk with the same postcondition as the precondition to be verified, the built-in
method defined in this interface chunk is performed. If no such interface chunk exists, or
if the built-in method answers false, the BC searches in the generic knowledge part of the
knowledge base for chunks with a postcondition that is identical to the precondition to
be verified. Thereby a list of chunks is created and sorted according to the sequence of
the chunks as defined in the knowledge base. The first entry in the list is taken and the
BC process recurses to reach the new goal. If the derivation fails, the next entry in the
list is taken, and so on. If the list is empty, the BC fails to reach the specified goal and
terminates. Otherwise, the inference process has been successful and the BC returns a list
of (either animation or generation) steps necessary to perform the application action.

16

4.4 The Module InCome™*

One of the central components for graphical help within the system PLUS is the In-
teraction Control Manager InCome™ (cf. [Thies 90], [Fehrle & Thies 91]). It provides a
graphical visualization of the current dialog context, the dialog history, and possible fu-
ture interactions. InCome* gives the user a quick and helpful reminder of the system
state to resume suspended tasks. It supports the user in leaving system states unfamiliar
to him and in exploring actions (cf. [Paul 89]) that can next be executed when completing
unfinished tasks.

InCome™ meets the following demands:

o Adequate visualization of user interactions,

Display of different levels of abstraction selectable by the user,

Visualization of possible future interactions,

Graphical navigation services, and

Display of plan interactions, like embedded, overlapping, and interrupted plans.

PlanRecognizert and the plan completion component form the backbone of InCome®.
The plan completion component generates, on demand, a valid sequence of actions for
plan hypotheses that are contained in the dynamic plan base. Several constraints defined
within the hierarchical plan base are satisfied. For example, sequence constraints are
solved and parameter values that are already known are propagated according to param-

eter constraints (cf. section 3.1).

PlanRecognizert notifies InCome™ about the ongoing plan recognition process. On receiv-
ing the incoming data, InCome* generates an internal representation of the interaction
context and displays it as a graph structure on the screen (see figure 10). The instances
of the object classes action, plan, and goal are represented as nodes. An action is repre-
sented by an icon that looks like a single sheet of paper, a plan is represented by a stack
of papers, and a goal is represented by a goal banner (see figures 7-9).

& ol B
= =
Figure 7: Action Figure 8: Sequence of Ac- Figure 9: Goal
tions

The visualized structure resembles a directed graph reflecting the chronological order of
the performed interactions from top to bottom. Objects belonging to the same plan are
connected by arcs. The sequence is ended by a goal banner representing the associated
goal (cf. figure 10). InCome™ runs in its own window. The presented nodes are selectable
via mouse clicks. User actions provided by InCome™ can be divided into four categories
(cf. [Thies 92] for a comprehensive description of the functionality offered by InCome):

e Graphical Navigation,

e Hierarchical Navigation,

17

e Tutor Activation, and
e Remote Application Interaction.

Graphical Navigation includes actions like scrolling, including, excluding and removing
nodes, and searching for specific nodes.

File Selected Edit View Option Help

+

HCD2 TEST.IODF D01
CreateObject

-~

[HCDZ.TESTAIODF co1
CreateObject

i
1
l‘

07 o Device [Dm an 05
Connect Connect

C01 HCD2 TEST.IODF plUnit D01
AddCU2Config nnect !

[Dm HCD2, TEST IODF l ll
AddDevice2Config P

« -
Add D01 to an existing configuration.
AddDevice? Config{DOLHCDZ2 TEST.IODF)

Figure 10: InCome™

Hierarchical Navigation supports the user in viewing plans on different abstraction
levels. InCome™ offers actions for expanding and collapsing plans. Expanding is equal to
a downward movement in the hierarchy and collapsing is equal to an upward movement in
the hierarchy. Expanding and collapsing of plans are realized within InCome* by group-
ing together sequences of actions into plans or by replacing plans with their sequences of
actions.

In addition to the navigation through the hierarchy, InCome® is able to visualize vari-
ous plan interactions like plan interruption, plan embedding, and overlapping of plans.
Figure 11 shows a snapshot of an interaction context where two plans, namely Ad-
dCU2Config(C01, HCD2. TEST.IODF) and AddDevice2Config(D01, HCD2.TEST.IODF),
overlap each other and where both plans include embedded plans, e.g., plan AddCU2Config
includes two embedded plans: CreateObject and ConnectCU2Proc. Both plans overlap at
the action Connect(C01, DO01).

D Plan B v]
e Selected Edit View Option Help

........ +*
1l

i

o
i i
o 4 -

HCD2TEST [HCDZ TESTIODF D01
Create CreateObject

£

o1 D01 Q
Connect

2| =
= D01 an Esoteric
ConnectCU2Pro Conriect

C01 HCD2.TEST.l
AddCU2Config| Connect

D01 HCD2 TEST.IODF
AddDevice2Config

‘-
C01 and D01 connected.
Connect(C01,D01)

Figure 11: Plan Interactions

Tutor Activation is carried out by selecting a goal and activating the tutorial mode. The
user is guided by the system to reach the chosen goal. After activating the tutorial mode,
InCome™* requests an optimal sequence of actions in order to reach the goal selected from
the plan completion component. In this context, optimal means the most efficient sequence
of actions carried out in order to reach a goal. The attribute optimal is defined at the
plan level within the static plan base and is therefore predefined. The plan completion
component generates this sequence by considering various constraints (cf. section 3.1)
defined in the hierarchical plan base. Known argument values are propagated. The
sequence of actions is textually represented in a separate window like a to-do-list (see

figure 12).

« Connect(C01,D01) |
€01 and D01 connected. L How to...
Py

Connect(D01 an Escteric)

Connect(D01,an 0S)

AddDevice2Config(D01,HCD2.TEST.IODF)
Add D01 to an existing configuration.
Actions to perform: 2

Figure 12: Tutorial Mode and Actions Performed

The Tutor lists each action necessary to reach the selected goal and supervises the actions
performed by the user. The user receives feedback from the Tutor by marking the corre-
sponding entry with a check mark, if the action performed is part of the sequence of steps

19

required (see figure 12). If each action listed is performed, the user receives notification
that the chosen goal has been reached. If the user has made a mistake by performing
an action that hinders the achievement of the selected goal, the Tutor informs the user
about this.

To offer the user help concerning generic and navigational actions, we implemented a
second tutor-like mode that conveys how to perform an action within the current inter-
action context. After the How to mode has been activated, a window pops up, listing
from top to bottom, navigational actions that have already been performed by the user,
and navigational actions that are still necessary for the execution of the selected action
on which the How to mode has been activated. Navigational actions which have formerly
been executed are marked by a sign in front of their respective entries.

Three dots (...) are a special sign, indicating that the system can not predict subsequent
navigational actions because the result of the navigational action listed above the three
dots cannot be anticipated. If the navigational action above the three dots is executed,
the three dots disappear and the next navigational actions can be anticipated by the sys-
tem. After the user has performed the first navigational action that has no mark before
its entry, the system anticipates the next navigational actions necessary. The window is
updated, the executed navigational action is marked with a sign, and the next naviga-
tional actions are added to the list.

The How to... window is closed if no more navigational actions are necessary for the
execution of the selected action. The user is notified by a message about the successful
execution.

File Help

? G SelectionNew(D01,HCD2. TEST.IODF)
l D01 created in window HCD2 TEST.IODF.

:;-ﬁ-; 3 SelectionNew(C01,HCD2 TEST.IODF)
l C01 created in window HCD2 TEST.IODF.

? 0 Connect(C01,D01) k

C01 and D01 connected.

Figure 13: Linear Dialog History

Remote Application Interaction is provided by the animation system AniSt that can
be activated within InCome*. In addition to AniS* (cf. section 4.5), some ideas were
developed in order to provide access to the undo- and redo-mechanisms of an application.
InCome™* could provide an interface to these mechanisms. In order to be able to deal with
two different principles for undo (function-oriented vs. state-oriented; see also [Rathke 87],
[Rathke 89], [Yang 90]), InCome* uses an extended function-oriented approach by han-
dling freezing-points (cf. [Paul 89]). Freezing-points are snapshots of system states that
are saved within the application. It is possible to reset the application state to one of
these freezing-points by activating an application function. By representing the interac-
tion context in a more abstract way than by a linear dialog history, the user can perform
undo-actions and redo-actions on plans rather than actions. This is called undoing on a

20

semantic level. An undo applied to tasks without reversing successor tasks is not sup-
ported (‘freies undo’ (unrestricted-undo), cf. [Rathke 87]).

In addition to the visualized interaction context, a window is provided that presents the
linear dialog history. The visualization emphasizes reversible actions and freezing-points
that are set within the application. The lower left window in figure 13 represents the
linear dialog history. Within figure 13, the arrows on the right side of actions denote
reversible actions.

4.5 The Module AniS*

As a substantial extension of the graphical user assistance, we integrated the presenta-
tion of animated help within the PLUS System. Within the PLUS System, animation is
performed by the component AniS* (cf. [Thies 93]). AniS* generates animated presen-
tations of interaction steps in the context of the current task being performed by a user.
The animation presentation comprises the movement of the mouse on the display and
the manipulation of objects (e.g, menus, scrollbars, windows, application objects) with
the mouse. The shape of the mouse is varied to reflect mouse actions like single-click or
double-click with the left or right mouse button (see ﬂgures 14 and 15).

 Enterprise Selected Edit View Help El!e Selected Edlt Vlew __ptlon Help !
B sl , |
o

DFKI
o aldiine SelectionOpenAs

o Kl LAMTA S M ei[]
Division Selected Edit View Help ;

nf
t@! Interf
= ViewDepartmentMembers
Inferf

1.]
-l@l

PHI PLUS RAP WIP

DFKI RAP
CreateObject

—
DFKI a Department
CreateObject

{ a Department a Division

wl | Jwhehs] | | leeanl oo
i

b Dietn Elisib Gay Kain Man Matd | Select objects Manager a Manager and Project
> | Connect(a Manager,RAP)

E%

I am going to perform 'Connect(a Manager,RAP)' therefore...
| am selecting Manager(WW) in window DFKI ~ Complex View.

Figure 14: AniS* generates navigational actions...

The mouse movements and clicks are simulated by sending corresponding mouse events
to the interface in such a way that the interface and also the application are acting on
these events as if they were performed by the user. Thus, the actions are really executed
within the application.

A text describing the goal of the animation and the current mouse action is displayed in
order to provide the user with a better understanding of why AniS* performs the current
mouse action. By variable substitutions, the prestored text fragments are adapted to the
current application context.

An action sequence generated by the plan completion component serves as an input
to AniSt. AniS* works with a two phase planning loop to incrementally generate the
interaction steps (e.g., mouse movements and clicks) necessary for the execution of the
generated action sequence. The inner loop considers the changes within the interface
context (e.g., selecting an object, scrolling the window) and uses a backward-chaining
algorithm. The outer loop considers the changes of the application context that take
effect after the execution of an action and involves both the plan recognition process by
reacting upon the performed action and the plan completion component by reflecting new
parameter values provided by the user.

. = 0} 1B iifomer OrgGhad . aen
Enterprise Selected Edit View Help ~ File Selected Edit View Option
B k=
DFKI HW SW b
£
OFKI l
e g “ SelectionOpenAs
> DK {/c:,!:{zin\ Mo LR |
Division Selected Edit _\[i_ew Help N
New b .
N -
} [Interf
Open settlngs » ViewDepartmentMembers

Connect
Disconnect

ww

EEEE

PHI PLUS RAP WIP

i = { a Department a Division
r r r | [RAP aProjectPhase(< RA{ AdgNeprnanmem 1
Ame Bemh Dietm Hlsib Gaby Joche Kan Maiw | Select objects Manager a Manager and Project

» | Connect(a Manager,RAP)

| am going to perform '‘Connect(a Manager,RAP)' therefore...
I am activating the tunction “"Connect” under "Selected” to connect objects
Manager (WW) and Project(RAP).

Figure 15: ...and varies the mouse shape

During the backward-chaining process, AniS* accesses a knowledge base that defines spe-
cific pre- and postconditions for each action. Informal examples of such preconditions
are “to apply an action to an object, it must be selected” and “an object can only be
selected if it is visible”. The representation of generic interface concepts allows us to
generate navigational interaction steps (e.g., steps to scroll the visible area of a window).
In addition, the knowledge base models the interface syntax (e.g., clicking on an object
changes its state to be selected) and the application semantics (e.g., which objects can be
visualized in which types of windows and which actions are applicable to which objects).

b
8]

There is an interface to the application for accessing information about, e.g., selected ob-
jects, visibility of objects and the applicability of actions within specific types of windows.
Although selected objects are considered as replacements for missing parameters during
the execution of the animation, not every parameter can be anticipated from the result
of the plan completion process. For that reason, the user is prompted to provide missing
parameters.

Animation as part of a plan-based help system is a sensible extension for supporting the
user in performing interaction steps in an interactive graphical environment. It fills the
gap between the concepts of an interactive graphical interface and a textual representa-
tion of help. Although animation can be valuable, merely using animation in help does
not deliver a perfect help system. Minimal textual explanations are presented with the
animation to help a user to generalize concepts (see the lower part of figures 14 and 15).

4.6 Stand-Alone Tutorial

A stand-alone tutorial largely based on the PLUS System has been implemented at the
IBM Lab as a master’s thesis (cf. [Scheidel 92]). The tutorial is a framework allowing the
information developer to integrate plans and add further information as well as hints in a
more didactic way. Learning information is structured by lessons consisting of a number
of paragraphs. Each paragraph describes a goal and a corresponding plan to reach this
goal. A paragraph is displayed in a separate window with several areas containing

e a summary of the task,

a detailed textual description,

preconditions which have to be satisfied, and

the graphical visualization of a plan (according to the visualization used by InComet,

extended by icons representing navigational actions).

In contrast to the PLUS System the stand-alone tutorial does not communicate with the
application. It invokes the plan processor by a handle identifying a specific plan and
receives the complete interaction sequence needed to accomplish this plan.

4.7 Steps towards Integration
4.7.1 Changes in the Objectives

During the project period, we decided to shift the focus of the PLUS System towards a
possible integration of the PLUS System into an IBM product. Due to the switch towards
the product integration, we had to cut the initial PLUS activity plan:

e The first level of our plan recognition concept (ATN-based event handler) has not
been implemented. Therefore, the information contained within the dialog history
is directly provided by the application.

e Different help strategies (active, cooperative, implicit help) could not be realized.

However, little extra effort is necessary in implementing the active help component, be-
cause the concepts of optimal, suboptimal, and wrong plans are already incorporated
within the PLUS System.

4.7.2 Activities for the Integration

As a result of the intended integration of the PLUS System into the ScreenView product,
PLUS had to adhere to some rules and standards used therein.

Error Handling If a ScreenView module detects a bad return code of another Screen-
View service or an operating system service, then an error message is written into the
ScreenView error log. This message may also be presented to end users. Within Screen-
View, the error handling DLL is implemented as a multi-threaded DLL. Therefore, we
implemented a server process which is able to communicate with multi-threaded DLLs.
This server communicates through a pipe with a client, who, in turn, is called from
Smalltalk V/PM. This client is implemented as a single-threaded DLL.

National Language Support The concept of National Language Support (NLS) is
realized within the PLUS System. All text strings appearing at the surface are internally
coded by unique ids. At runtime, these ids are substituted by the respective strings
contained in a dictionary that is filled at startup time from a corresponding DLL. For
each target language, a separate DLL containing the language-specific dictionary will be
supplied with the PLUS System.

In the current version of PLUS, the services that must be delivered from the application are
implemented within the PLUS System and within the Smalltalk prototypes of the target
applications. On the one hand, these services transmit information about the objects and
the actions used within the applications and about their relations (e.g., which objects are
includable in which types of windows, which actions can be applied to a particular object).
On the other hand, dynamic information required by the plan generation component at
runtime concerning the current state of the interface (e.g., which windows are visible,
which objects are selected) is transmitted. In the future, the former are to be substituted
by services accessing information contained within the Abstract Syntax Table that exists
for each ScreenView application. These services have been implemented as part of a
masters thesis at the IBM Lab (cf. [Braune 92]).

5 Results of the PLUS Project

5.1 Integration of PLUS into ScreenView

In the following subsections, we will briefly describe the platform ScreenView in which the
PLUS System will be implemented, the results of a code inspection of the PLUS System,
and the state of the integration.

5.1.1 A Short Sketch of ScreenView

ScreenView (cf. [IBM 92b]) is the central platform implementing the End-Use Dimension
of SystemView. ScreenView is an integrated environment for developing and running
applications in the area of system management products. The implementation of Screen-
View follows a strict separation of interface logic and function logic. While the interface
logic resides on a workstation, the function logic can be distributed between the host and

a workstation. ScreenView services and tools support user interactions as follows:
e A work area provides application access by means of a graphical user interface.

e A generic navigation, object and view handler — called GenOVHa — enables the
user to navigate through complex object structures using a graphical object-oriented

user interface.

5.1.2 Code Inspection

Due to the planned integration of the PLUS System into ScreenView, a code inspection
concerning the quality of the produced Smalltalk code has been carried out at the IBM
Lab in December 1991. For that purpose, a comprehensive specification of the PLUS
System has been supplied (cf. [Thies & Berger 92c]). The architecture of PLUS has been
presented, and the object-oriented design of PLUS and the Smalltalk code have been
inspected by experienced IBM employees from various departments that are related to

PLUS.

The following is a summary of their remarks:
e The high quality of the documentation was appreciated.
e The PLUS architecture was essentially approved.

e The design was accepted completely, and its functionality was considered to be ad-
equate. It was suggested to point out known limitations.
Some sensible recommendations concerning possible code improvements were real-

ized thereafter.
e It was confirmed that the code is completely readable.

e Some work items, necessary for the integration into ScreenView, were listed: Error
Handling, NLS, and integration into the User Interface Services of ScreenView.

e The expected costs for tests have been estimated differently due to their limited
experience to date concerning the testing of software written with an object-oriented

programming language.

5.1.3 The Current State of the Integration

So far, no real integration of PLUS into ScreenView has been achieved. Rather, the PLUS
System has been successfully tested with Smalltalk prototypes of the two ScreenView ap-
plications HCD and OrgChart. The communication between the PLUS System and the
applications is realized using the Dynamic Data Exchange (DDE) concept provided by
0OS/2. There are different ‘communication paths’ that follow a defined protocol. It should
be possible to take over these protocols almost unchanged when the integration is per-
formed.

The actual integration of PLUS into ScreenView will be carried out at the IBM Lab at
a later date. To assist this integration as far as possible, a comprehensive documen-
tation of the PLUS System, including a full specification of the implemented Smalltalk
classes, the external and internal interfaces, and known limitations, has been provided

(cf. [Thies & Berger 92c¢]).

5.2 Usability Evaluation

To obtain some qualitative data about the user value of PLUS, we exploited a usability
test of the ScreenView product and demonstrated PLUS to several test participants.
Following is a summary of their remarks:

o They request a task-oriented system introduction and confirm that PLUS is a good
vehicle.

e They confirm that the dynamic concept of PLUS supports users in all interaction
states. In addition, they appreciated having the choice of a completely user-driven
dialog, a completely system-driven dialog, or a mixed dialog form.

e During animation sequences, they like having to enter parameters for functions
interactively, because this gives them an active learning role.

e They claim that PLUS supports their way of learning a new application — to play
around interactively without reading much hard-copy information.

e They think that PLUS allows a quick revision of ‘how to work with an application’,
if users had not worked with that application for a long time.

The test showed that the users were able to correctly apply the strategies that they had
learned during the PLUS demonstration. In general, we can conclude that PLUS meets
many requirements and demands of users that are familiarizing themselves with a new
application.

Beside this usability test, the PLUS System has been tested very extensively by the PLUS
project members and by several research assistants during the design and implementation
phases, so that a lot of improvements and rectifications could be conducted beforehand.

6

6.1

Publications, Talks and Presentations

Publications

The following papers about PLUS have been published:

InCome: A System to Navigate through Interactions and Plans by T. Fehrle and
M.A. Thies, in: Human Aspects in Computing: Design and Use of Interactive
Systems and Information Management, Proceedings of the HCI International '91,

Stuttgart, Germany.

Plan-Based Graphical Help in Object-Oriented User Interfaces by M.A. Thies and
F. Berger, in: Proceedings of the workshop on “Advanced Visual Interfaces”, May
'92, Rome, Italy.

Planbasierte graphische Hilfe in objektorientierten Benutzeroberflichen by M.A.
Thies and F. Berger, in: Innovative Programmiermethoden fiir Graphische Systeme,
Proceedings of the GI-Fachgesprach, June 92, Boun, Germany.

Perspektiven zur Kombination von automatischem Animationsdesign und planba-
sierter Hilfe by W. Graf (member of the WIP project at the DFKI) and M.A. Thies
in the KI journal, Volume 6, Number 4, 1992.

Task-Oriented User Assistance for Interactive Graphical Environments, by M.A.
Thies and F. Berger, in: Proceedings of the 5th International Conference on Human-
Computer Interaction, HCI International 93, August, 1993, Orlando, Florida, USA
(cf. [Thies & Berger 93]).

Animated Help as a Sensible Extension of a Plan-Based Help System, by M.A. Thies,
in: Proceedings of the 5th International Conference on Human-Computer Interac-

tion, HCI International "93, August, 1993, Orlando, Florida, USA (cf. [Thies 93]).

Furthermore, some working papers summing up results of distinct areas of PLUS have

been written:

PLUS System Specifications (cf. [Thies & Berger 92c]).

PlanEditt User’s Guide (cf. [Berger & Thies 92]) — planned to be published also
as DFKI Memo.

InComet User’s Guide (cf. [Thies 92]) — planned to be published also as DFKI

Memo.

An article about the PLUS project has bheen published within the IBM Nachrichten, Num-
ber 309, June '92. The paper A Knowledge-based Help Environment for Task-oriented
Assistance in Graphical User Interfaces has been submitted to appear in the IBM Infor-

mation Development Newsletter, 1/93.

=

6.2

Talks

The following conference talks have been given by members of the PLUS project, partially
combined with publications within the respective conference proceedings:

Intelligente Benutzerschnittstellen by W. Wahlster at the BTW Tagestutorium,
March ’91, Kaiserslautern, Germany.

Tutorial User Modeling and Plan Recognition by W. Wahlster at the International
Summer School on Al, July '91, Prag, CSFR.

InCome: A System to Navigate through Interactions and Plans by M.A. Thies at
the HCI International 91, Stuttgart, Germany (cf. [Fehrle & Thies 91]).

PLan-based User Support — an Implementation of a Knowledge-based Help Envi-
ronment for Graphical User Interfaces by T. Fehrle at the workshop on “Future
Trends of User Interface Technology”, organized by the IBM Academy, April 92,
Somers, New York.

Planerkennung als Grundlage fir intelligente Benutzerschnittstellen by W. Wahlster
at the DEC-Symposium, November '91, Koln, Germany.

Plan-Based Graphical Help in Object-Oriented User Interfaces by M.A. Thies at the
workshop on “Advanced Visual Interfaces”, May 92, Rome, Italy (cf.
[Thies & Berger 92al).

Planbasierte graphische Hilfe in objektorientierten Benutzeroberflichen by M.A.
Thies at the GI-Fachgesprach “Innovative Programmiermethoden fiir Graphische
Systeme”, June ’92, Bonn, Germany (cf. [Thies & Berger 92b]).

Intelligente Multimodale Benutzerschnittstellen by W. Wahlster at the Siemens AG,
October 92, Munich, Germany.

Keynote lecture Intelligente Benutzerschnittstellen als Grundlage erfolgreichen In-
formationsmanagements by W. Wahlster at the opening of the “Saarlandische Tech-
nologiemesse”, October "92, Saarbriicken, Germany.

PLan-based User Support (PLUS) - a Prototype of a Knowledge-based Help Environ-
ment for Graphical User Interfaces by V. Scholles at the “Interdivisional Technical
Liaison (ITL) on Expert Systems”, October 92, Yorktown Heights, New York.

Ezxperiences with a Smalltalk Implementation of a Plan-based Help Environment
(PLUS) by V. Schélles at the European Object-oriented Software Symposium, Oc-
tober '92; Boblingen, Germany.

Keynote lecture Perspektiven intelligenter, plan-basierter Benutzerschnittstellen by
W. Wabhlster at the IBM-Kollogium for Prof. Endres, December '92, Boblingen,
Germany.

6.3 Presentations

A PLUS System demonstration has been performed at the Third International Workshop
on User Modeling (UM '92) in August 92 at SchloB Dagstuhl, Germany (cf.
[André et al. 92]).

At the following IBM-internal conferences, presentations of the PLUS System have been

performed:
o ITL on Expert Systems (see above)
e European Object-oriented Software Symposium (see above)
e ITA Expert Systems, April and December 91, Stuttgart and Boblingen.

Furthermore, a lot of demonstrations of the PLUS System have been carried out both in
various departments of the IBM Laboratory Béblingen and at the DFKI.

Bibliography

[André et al. 92] E. André, R. Cohen, W. Graf, B. Kass, C. Paris, und W. Wahlster
(Hrsg.). UM92, Third International Workshop on User Modeling, Saarbriicken,
Germany, August 1992. DFKI.

Bauer et al. 91] M. Bauer, S. Biundo, D. Dengler, M. Hecking, J. Kohler, und
g g

G. Merziger. Integrated Plan Generation and Recognition - A Logic-Based Ap-

proach. In: W. Brauer und D. Hernandez (Hrsg.), Verteilte Kiinstliche Intelligenz

und kooperatives Arbeiten. 4. Internationaler GI-Kongress Wissensbasierte Sys-
teme, Berlin, Heidelberg, 1991. Springer. Also DFKI Research Report RR-91-26.

[Bauer et al. 92] M. Bauer, S. Biundo, D. Dengler, J. Koehler, und G. Paul. PHI
— A Logic-Based Tool for Intelligent Help Systems. Research Report RR-92-52,
DFKI, 1992.

[Berger & Thies 92] F. Berger und M. A. Thies. Developing a Plan Base for the PLUS
Help System with PlanEditt. Document, German Research Center for AI (DFKI),
Saarbriicken, Germany, 1992.

[Braune 92] H. Braune. PLUS (PLan-based User Support) - Entwicklung und Implemen-
tierung von Tools. Diplomarbeit, Fachhochschule Furtwangen, Germany, 1992.

[Breuker 90] J. Breuker (Hrsg.). EUROHELP, Developing Intelligent Help Systems.
Kopenhagen, Amsterdam: EC, 1990.

[Dengler et al. 87] D. Dengler, M. Gutmann, und G. Hector. Der Planerkenner
REPLIX. Memo 16, Institut fiir Informatik, Universitat des Saarlandes, September
1987.

[Fehrle & Thies 91] T. Fehrle und M. A. Thies. InCome: A System to Navigate through
Interactions and Plans. In: H.-J. Bullinger (Hrsg.), Human Aspects in Computing:
Design and Use of Interactive Systems and Information Management, Amsterdam,
London, New York, Tokyo, 1991. Elsevier Science Publishers B.V.

[Fehrle 90] T. Fehrle. PLanbased User Support (PLUS) Projektbeschreibung. IBM intern,
IBM Laboratory, Boblingen, Germany, 1990.

[Finin 83] T. W. Finin. Providing Help and Advice in Task Oriented Systems. In: Pro-
ceedings of the Sth International Joint Conference on Artificial Intelligence, S.
176-178, Karlsruhe, Germany, 1983.

[Fischer et al. 85] G. Fischer, A. Lemke, und T. Schwab. Knowledge-based Help Sys-
tems. In: Proceedings of the CHI'S5 Conference on Human Factors in Computing
Systems. acim Press, 1985.

[Hirschmann 90] A. Hirschmann. Das Hilfesystem MATHILDE. Dissertation, Univer-
sitat Regensburg, 1990.

[(IBM 91] IBM. Common User Access, Advanced Interface Design Guide. Systems Ap-
plication Architecture. International Business Machines Corporation, 1991. SC34-

4289-00.

30

[IBM 92a] IBM. MVS/ESA SP 4.3 Hardware Configuration Definition User’s Guide.

International Business Machines Corporation, 1992. GC33-6457-03.

[IBM 92b] IBM. ScreenView User’s Guide. IBM Systems Application Architecture,
ScreenView. International Business Machines Corporation, 1992. SC33-6451-00.

[Kobsa & Wahlster 39] A. Kobsa und W. Wahlster (Hrsg.). User Models in Dialog
Systems. Symbolic Computation. Berlin, Heidelberg, New York: Springer, 1989.

[Koehler 92] J. Koehler. Towards a logical treatment of plan reuse. In: Proceedings
of the 1st International Conference on Artificial Intelligence Planning Systems, S.
285-286, Washington, D.C., 1992. Morgan Kaufmann, Menlo Park.

[Neiman 82] D. Neiman. Graphical Animation from Knowledge. In: Proceedings of the
2nd National Conference of the American Association for Artificial Intelligence,

Pittsburgh, PA, 1982. AAAI Press.

[Paul 89] H. Paul. Erploratives Agieven in interaktiven EDV-Systemen. In: B. Endres-
Niggemeyer, T. Herrmann, A. Kobsa, und D. Résner (Hrsg.), Interaktion und
Kommunikation mit dem Computer. Informatik Fachbericht 238. Berlin: Springer
Verlag, 1989.

[Quast 91] K.-J. Quast. PLANET, Planerkennung mit aktivierten Handlungsnetzen.
Sankt Augustin: GMD, 1991.

[Rathke 87] M. Rathke. UNDO/REDQ - Szenarien und Anforderungen fir eine an-
wendungsneutrale Implementierung. In: M. Paul (Hrsg.), GI - 17. Jahrestagung
Computerintegrierter Arbeitsplatz im Biiro, Berlin, Heidelberg, New York, Lon-
don, Paris, Tokyo, 1987. Springer.

Rathke 89] M. Rathke. Erweiterung interaktiver Anwendungen um Undo-Mechanismen.
g g
In: Software Ergonomie: Aufgabenorientierte Systemgestaltung und Funktion-
alitat, GI Band 32, Stuttgart, 1989. Teubner.

[Rich 89] E. Rich. Stereotypes and User Modeling. In: Kobsa und Wahlster
[Kobsa & Wahlster 89], S. 35-51.

[Scheidel 92] H. Scheidel. Intelligentes Online-Tutorial mittels planbasierter Verfahren.
Diplomarbeit, Fachbereich Informatik, Universitat Stuttgart, Germany, 1992.

[Shneiderman 83] B. Shneiderman. Direct Manipulation: A step beyond programming
Languages. IEEE Computer, 16, 1983.

[Shneiderman 87] B. Shneiderman. Designing the User Interfaces: Strategies for effec-
tive Human-Computer Interaction. Massachusetts: Addison Wesley, 1987.

[Sukaviriya & Foley 90] P. Sukaviriya und J. D. Foley. Coupling a Ul Framework with
Automatic Generation of Context-Sensitive Animated Help. In: Proceedings of the
ACM SIGGRAPH Symposium on User Interface Software (UIST’90), New York,
1990. ACM SIGGRAPH, acm Press.

31

[Sukaviriya 88] P. Sukaviriya. Dynamic Construction of Animated Help from Appli-
cation Context. In: Proceedings of the ACM SIGGRAPH Symposium on User
Interface Software (UIST’88), New York, 1988. ACM SIGGRAPH, acm Press.

[Thies & Berger 92a] M. A. Thies und F. Berger. Plan-Based Graphical Help in Object-
Oriented User Interfaces. In: T. Catarci, M. F. Costabile, und S. Levialdi (Hrsg.),
Proceedings of the International Workshop AVI'92, Advanced Visual Interfaces,
Band 36: World Scientific Series in Computer Science, Rome, Italy, May 1992.
World Scientific.

[Thies & Berger 92b] M. A. Thies und F. Berger. Planbasierte graphische Hilfe in ob-
jektorientierten Benutzungsoberflichen. In: K. Kansy und P. Wilkirchen (Hrsg.),
Innovative Programmiermethoden fiir Graphische Systeme, Berlin Heidelberg New
York, 1992. Springer-Verlag.

[Thies & Berger 92c] M. A. Thies und F. Berger. The PLUS System - A Plan-Based
Help System. System specifications, German Research Center for Al (DFKI),
Saarbricken, Germany, 1992.

[Thies & Berger 93] M. A. Thies und F. Berger. Tusk-Oriented User Assistance for In-
teractive Graphical Environments. In: Proceedings of the 5th International Confer-
ence on Human-Computer Interaction, HCI International '93, Orlando, FL, USA,
August 1993. Forthcoming.

[Thies 90] M. A. Thies. Interaction Control Manager: Ein System zum Navigieren
durch Interaktionen und Pline. Diplomarbeit, Fakultat Informatik, Universitat

Stuttgart, 1990.

[Thies 92] M. A. Thies. InCome* - User’s Guide. Technical memo, German Research
Center for Al (DFKI), Saarbricken, Germany, 1992.

Thies 93] M. A. Thies. Animated Help as a Sensible Extension of a Plan-Based Hel
1 P
System. In: Proceedings of the 5th International Conference on Human-Computer
Interaction, HCI International '93, Orlando, FL, USA, August 1993. Forthcoming.

[Wahlster & Kobsa 89] W. Wahlster und A. Kobsa. User Models in Dialog Systems.
In: Kobsa und Wahlster [Kobsa & Wahlster 89], S. 4-34.

[Wahlster et al. 93] W. Wahlster, D. Dengler, M. Hecking, und C. Kemke. SC: The
SINIX Consultant. In: P. Norvig, W. Wahlster, und R. Wilensky (Hrsg.), Intel-
ligent Help Systems for Unix - Case Studies in Artificial Intelligence. Heidelberg:
Springer, 1993. forthcoming.

[Wilensky et al. 84] R. Wilensky, Y. Arens, und D. Chin. Talking to UNIX in English:
An Qverview of UC. Communications of the ACM, 27(6), June 1984.

[Wilensky et al. 88] R. Wilensky, D. N. Chin, M. Luria, J. Martin, J. Mayfield,
und D. Wu. The Berkeley UNIX Consultant Project. Computational Linguistics,
14:35-84, 1988.

[Yang 90] Y. Yang. Current Approaches € New Guidlelines for Undo Support Design.
In: H.-J. Bullinger und B. Shackel (Hrsg.), Human-Computer Interaction - IN-
TERACT’90, North-Holland, 1990. Elsevier Science Publishers B.V.

4

ol o

UL - LCe N

33

Deutsches

far Kanstliche
Intelligenz GmbH

DFKI Publikationen

Die folgenden DFKI Veroffentlichungen sowie die
aktuelle Liste von allen bisher erschienenen
Publikationen konnen von der oben angegebenen
Adresse bezogen werden.

Die Berichte werden, wenn nicht anders
gekennzeichnet, kostenlos abgegeben.

Forschungszentrum

DFKI

-Bibliothek-

PF 2080

D-6750 Kaiserslautern
FRG

DFKI Publications

The following DFKI publications or the list of all
published papers so far can be ordered from the
above address.

The reports are distributed free of charge except if
otherwise indicated.

DFKI Research Reports

RR-92-21

Jorg-Peter Mohren, Jiirgen Miiller
Representing Spatial Relations (Part II) -The
Geometrical Approach

25 pages

RR-92-22
Jorg Wiirtz: Unifying Cycles
24 pages

RR-92-23

Gert Smolka, Ralf Treinen:
Records for Logic Programming
38 pages

RR-92-24

Gabriele Schmidt: Knowledge Acquisition from
Text in a Complex Domain

20 pages

RR-92-25

Franz Schmalhofer, Ralf Bergmann, Otto Kiihn,
Gabriele Schmidt: Using integrated knowledge
acquisition to prepare sophisticated expert plans for
their re-use in novel situations

12 pages

RR-92-26

Franz Schmalhofer, Thomas Reinartz,

Bidjan Tschaitschian: Intelligent documentation as a
catalyst for developing cooperative knowledge-based
systems

16 pages

RR-92-27

Franz Schmalhofer, Jorg Thoben: The model-based
construction of a case-oriented expert system

18 pages

RR-92-29
Zhaohui Wu, Ansgar Bernardi, Christoph Klauck:
Skeletel Plans Reuse: A Restricted Conceptual

Graph Classification Approach
13 pages

RR-92-30

Rolf Backofen, Gert Smolka:

A Complete and Recursive Feature Theory
32 pages

RR-92-31

Wolfgang Wahlister:

Automatic Design of Multimodal Presentations
17 pages

RR-92-33
Franz Baader: Unification Theory
22 pages

RR-92-34

Philipp Hanschke: Terminological Reasoning and
Partial Inductive Definitions

23 pages

RR-92-35

Manfred Meyer:

Using Hierarchical Constraint Satisfaction for
Lathe-Tool Selection in a CIM Environment
18 pages

RR-92-36

Franz Baader, Philipp Hanschke:

Extensions of Concept Languages for a Mechanical
Engineering Application

15 pages

RR-92-37

Philipp Hanschke: Specifying Role Interaction in
Concept Languages

26 pages

RR-92-38

Philipp Hanschke, Manfred Meyer:

An Alternative to H-Subsumption Based on
Terminological Reasoning

9 pages

RR-92-40
Philipp Hanschke, Knut Hinkelmann: Combining
Terminological and Rule-based Reasoning for

Abstraction Processes
17 pages

RR-92-41

Andreas Lux: A Multi-Agent Approach towards
Group Scheduling

32 pages

RR-92-42

John Nerbonne:

A Feature-Based Syntax/Semantics Interface
19 pages

RR-92-43

Christoph Klauck, Jakob Mauss: A Heuristic driven
Parser for Attributed Node Labeled Graph Grammars
and its Application to Feature Recognition in CIM
17 pages

RR-92-44

Thomas Rist, Elisabeth André: Incorporating
Graphics Design and Realization into the
Multimodal Presentation System WIP

15 pages

RR-92-45

Elisabeth André, Thomas Rist: The Design of
Illustrated Documents as a Planning Task

21 pages

RR-92-46

Elisabeth André, Wolfgang Finkler, Winfried Graf,
Thomas Rist, Anne Schauder, Wolfgang Wabhlster:
WIP: The Automatic Synthesis of Multimodal
Presentations

19 pages

RR-92-47

Frank Bomarius: A Multi-Agent Approach towards
Modeling Urban Traffic Scenarios

24 pages

RR-92-48

Bernhard Nebel, Jana Koehler:

Plan Modifications versus Plan Generation:
A Complexity-Theoretic Perspective

15 pages

RR-92-49

Christoph Klauck, Ralf Legleitner, Ansgar Bernardi:

Heuristic Classification for Automated CAPP
15 pages

RR-92-50

Stephan Busemann:
Generierung natiirlicher Sprache
61 Seiten

RR-92-51

Hans-Jiirgen Biirckert, Werner Nutt:

On Abduction and Answer Generation Lhrough
Constrained Resolution

20 pages

RR-92-52

Mathias Bauer, Susanne Biundo, Dietmar Dengler,
Jana Koehler, Gabriele Paul: PHI - A Logic-Based
Tool for Intelligent Help Systems

14 pages

RR-92-54

Harold Boley: A Direkt Semantic Characterization
of RELFUN

30 pages

RR-92-55

John Nerbonne, Joachim Laubsch, Abdel Kader
Diagne, Stephan Oepen: Natural Language
Semantics and Compiler Technology

17 pages

RR-92-56

Armin Laux: Integrating a Modal Logic of
Knowledge into Terminological Logics

34 pages

RR-92-58

Franz Baader, Bernhard Hollunder :

How to Prefer More Specific Defaults in
Terminological Default Logic

31 pages

RR-92-59

Karl Schlechta and David Makinson: On Principles
and Problems of Defeasible Inheritance

13 pages

RR-92-60

Karl Schlechta: Defaults, Preorder Semantics and
Circumscription

19 pages

RR-93-02

Wolfgang Wabhlster, Elisabeth André, Wolfgang
Finkler, Hans-Jiirgen Profitlich, Thomas Rist:
Plan-based Integration of Natural Language and
Graphics Generation

50 pages

RR-93-03

Franz Baader, Berhard Hollunder, Bernhard Nebel,
Hans-Jiirgen Profitlich, Enrico Franconi:

An Empirical Analysis of Optimization Techniques
for Terminological Representation Systems

28 pages

RR-93-04

Christoph Klauck, Johannes Schwagereit:
GGD: Graph Grammar Developer for features in
CAD/CAM

13 pages

RR-93-05

Franz Baader, Klaus Schulz: Combination Tech-
niques and Decision Problems for Disunification
29 pages

RR-93-06

Hans-Jiirgen Biirckert, Bernhard Hollunder, Armin
Laux: On Skolemization in Constrained Logics
40 pages

RR-93-07

Hans-Jiirgen Biirckert, Bernhard Hollunder, Armin
Laux: Concept Logics with Function Symbols
36 pages

RR-93-08
Harold Boley, Philipp Hanschke, Knut Hinkelmann,
Manfred Meyer: COLAB: A Hybrid Knowledge

Representation and Compilation Laboratory
64 pages

RR-93-09
Philipp Hanschke, Jorg Wiirtz:

Satisfiability of the Smallest Binary Program
8 Seiten

RR-93-10

Martin Buchheit, Francesco M. Donini, Andrea
Schaerf: Decidable Reasoning in Terminological
Knowledge Representation Systems

35 pages

RR-93-11

Bernhard Nebel, Hans-Juergen Buerckert:
Reasoning about Temporal Relations:

A Maximal Tractable Subclass of Allen's Interval
Algebra

28 pages

RR-93-12

Pierre Sablayrolles: A Two-Level Semantics for
French Expressions of Motion

51 pages

RR-93-13

Franz Baader, Karl Schlechta:

A Semantics for Open Normal Defaults via a
Modified Preferential Approach

25 pages

RR-93-14

Joachim Niehren, Andreas PodelskiRalf Treinen:
Equational and Membership Constraints for Infinite
Trees

33 pages

RR-93-15

Frank Berger, Thomas Fehrle, Kristof Klockner,
Volker Scholles, Markus A. Thies, Wolfgang
Wahlster: PLUS - Plan-based User Support
Final Project Report

33 pages

RR-93-16

Gert Smolka, Martin Henz, Jorg Wiirtz: Object-
Oriented Concurrent Constraint Programming in Oz
17 pages

DFKI Technical Memos

TM-91-12

Klaus Becker, Christoph Klauck, Johannes
Schwagereit: FEAT-PATR: Eine Erweiterung des
D-PATR zur Feature-Erkennung in CAD/CAM
33 Seiten

TM-91-13

Knut Hinkelmann: Forward Logic Evaluation:
Developing a Compiler from a Partially Evaluated
Meta Interpreter

16 pages

TM-91-14

Rainer Bleisinger, Rainer Hoch, Andreas Dengel.:
ODA-based modeling for document analysis

14 pages

TM-91-15

Stefan Busemann: Prototypical Concept Formation:
An Alternative Approach to Knowledge Representation
28 pages

TM-92-01

Lijuan Zhang: Entwurf und Implementierung eines
Compilers zur Transformation von
Werkstiickrepriisentationen

34 Seiten

TM-92-02

Achim Schupeta: Organizing Communication and
Introspection in a Multi-Agent Blocksworld

32 pages

TM-92-03

Mona Singh:

A Cognitiv Analysis of Event Structure
21 pages

TM-92-04

Jiirgen Miiller, Jorg Miiller, Markus Pischel,
Ralf Scheidhauer:

On the Representation of Temporal Knowledge
61 pages

TM-92-05

Franz Schmalhofer, Christoph Globig, Jorg Thoben:
The refitting of plans by a human expert

10 pages

TM-92-06

Otto Kiihn, Franz Schmalhofer: Hierarchical
skeletal plan refinement: Task- and inference
structures

14 pages

TM-92-08

Anne Kilger: Realization of Tree Adjoining
Grammars with Unification

27 pages

TM-93-01

Otto Kiihn, Andreas Birk: Reconstructive Integrated
Explanation of Lathe Production Plans v
20 pages

DFKI Documents

D-92-11

Kerstin Becker: Moglichkeiten der Wissensmodel-
lierung fiir technische Diagnose-Expertensysteme
92 Seiten

D-92-12

Otto Kiihn, Franz Schmalhofer, Gabriele Schmidt:
Integrated Knowledge Acquisition for Lathe
Production Planning: a Picture Gallery (Integrierte
Wissensakquisition zur Fertigungsplanung fiir
Drehteile: eine Bildergalerie)

27 pages

D-92-13

Holger Peine: An Investigation of the Applicability
of Terminological Reasoning to Application-
Independent Software-Analysis

55 pages

D-92-14

Johannes Schwagereit: Integration von Graph-
Grammatiken und Taxonomien zur Représentation
von Features in CIM

98 Seiten

D-92-15

DFKI Wissenschaftlich-Technischer Jahresbericht
1991

130 Seiten

D-92-16

Judith Engelkamp (Hrsg.): Verzeichnis von Soft-
warekomponenten fiir natiirlichsprachliche Systeme
189 Seiten

D-92-17

Elisabeth André, Robin Cohen, Winfried Graf,
Bob Kass, Cécile Paris, Wolfgang Wahlster (Eds.):
UM92: Third International Workshop on User
Modeling, Proceedings

254 pages

Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

D-92-18
Klaus Becker: Verfahren der automatisierten

Diagnose technischer Systeme
109 Seiten

D-92-19

Stefan Dittrich, Rainer Hoch: Automatische,
Deskriptor-basierte Unterstiitzung der Dokument-
analyse zur Fokussierung und Klassifizierung von
Geschiiftsbriefen

107 Seiten

D-92-21

Anne Schauder : Incremental Syntactic Generation of
Natural Language with Tree Adjoining Grammars
57 pages

D-92-22

Werner Stein: Indexing Principles for Relational
Languages Applied to PROLOG Code Generation
80 pages

D-92-23

Michael Herfert: Parsen und Generieren der Prolog-
artigen Syntax von RELFUN

51 Seiten

D-92-24

Jiirgen Miiller, Donald Steiner (Hrsg.):
Kooperierende Agenten

78 Seiten

D-92-25

Martin Buchheit: Klassische Kommunikations- und
Koordinationsmodelle

31 Seiten

D-92-26

Enno Tolzmann:

Realisierung eines Werkzeugauswahlmoduls mit
Hilfe des Constraint-Systems CONTAX

28 Seiten

D-92-27
Martin Harm, Knut Hinkelmann, Thomas Labisch:
Integrating Top-down and Bottom-up Reasoning in

COLAB
40 pages

D-92-28

Klaus-Peter Gores, Rainer Bleisinger: Ein Modell
zur Reprisentation von Nachrichtentypen

56 Seiten

D-93-01

Philipp Hanschke, Thom Friihwirth: Terminological
Reasoning with Constraint Handling Rules

12 pages

D-93-02
Gabriele Schmidt, Frank Peters,

Gernod Laufkétter: User Manual of COKAM+
23 pages

D-93-03

Stephan Busemann, Karin Harbusch(Eds.):
DFKI Workshop on Natural Language Systems:
Reusability and Modularity - Proceedings

74 pages

D-93-04

DFKI Wissenschaftlich-Technischer Jahresbericht
1992

194 Seiten

D-93-06

Jiirgen Miiller (Hrsg.):

Beitriige zum Griindungsworkshop der Fachgruppe
Verteilte Kiinstliche Intelligenz Saarbriicken 29.-
30. April 1993

235 Seiten

Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

g g i £
(33 \Lr:r | Al ¥ L4 ’
Ko ?) nh " 1
- 4 p |
5 e e A
357 s¥is £
: 3 VI5) {
' AP
< Lo
| i § ALt]
B 193 . %2 ’ 3y
§ & - LS By
v § 2 SOy
4 E § 4 PO
" s 9 ’ A 4
« L < . . p oy Lo R ot s
» - L5 ~4F
i k58 A
s 1 L
34 ¥ i
: o 2. ' $
14 i 1!
. 4
iy p
: i ¥ A a .
74
H & p
. - » '
AR A y
4
p i 1 : i o ERES | i
- Wnt's t At
Y
AR 9 S
- » 5N TAS AP g s
i CY 8 3 R 3 TU R oY & ; o g
: 3 3 $iks R b ALD ¥
. S Pl YT IHORT
2
£
8.0
P 4 5%) Ao § oo vy
Y R R 0 S S
ey i : 3) :
i o B! x .
Y 2 (Ve & e L
RAN MY i
T : 3
) Y b
ARl ¥ia ; i il J ¢
w3 ol ; | ALk
Fi
« s yadh A\t e gt ity 8
2 Ak P e g 52 e
v Ve VRS vi § 3 \ :
v ’ £y . :
I RS - {at Y
i 3 39 B 5L ¥ J { k NN & Rl ¥
{ : LI (i EACT T 4
b 1 A8 i
1 0
§ p b i X
% : ¥ ¥
R
i 3 ISR " P .
b 0D g 2 T4 u ; (o 0 818 ¢ o 2
4 ’ : § ¢ 3 R :
§ i (yo6 A > P] i 3 A

PLUS RR-93-15

Plan-based User Support Research Report

Frank Berger, Thomas Fehrle, Kristof Kidckner, Volker Schoélles, Markus A. Thies, Wolfgang Wahister

