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Abstract

We consider the problem of integrating Reiter�s default logic into ter�
minological representation systems� It turns out that such an integra�
tion is less straightforward than we expected� considering the fact that
the terminological language is a decidable sublanguage of �rst�order
logic� Semantically� one has the unpleasant e�ect that the conse�
quences of a terminological default theory may be rather unintuitive�
and may even vary with the syntactic structure of equivalent concept
expressions� This is due to the unsatisfactory treatment of open de�
faults via Skolemization in Reiter�s semantics� On the algorithmic
side� we show that this treatment may lead to an undecidable default
consequence relation� even though our base language is decidable� and
we have only �nitely many �open	 defaults� Because of these problems�
we then consider a restricted semantics for open defaults in our termi�
nological default theories
 default rules are only applied to individuals
that are explicitly present in the knowledge base� In this semantics it
is possible to compute all extensions of a �nite terminological default
theory� which means that this type of default reasoning is decidable�
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� Introduction

Terminological representation systems are used to represent the taxonomic
and conceptual knowledge of a problem domain in a structured and well

formed way To describe this kind of knowledge� one starts with atomic
concepts �unary predicates� and roles �binary predicates�� and de�nes more
complex concepts using the operations provided by the concept language of
the particular formalism In addition to this concept description formalism�
most of these systems also have an assertional component One can for
example state that an individual is an instance of a concept� or that two
individuals are connected by a role

In terminological representation formalisms� the concept descriptions are
interpreted as universal statements� which means� unlike frame languages�
they do not allow for exceptions As a consequence� the system can use
descriptions to automatically insert concepts at the proper place in the tax

onomy �classi�cation�� and it can use the facts stated about individuals to
deduce to which concepts they must belong �realization� For example� one
could de�ne the concept Mammal as an Animal that feeds its young with
Milk� where feeds�young�with is used as a role If the concept Platypus�

is de�ned as an Animal that lives�in the Water� feeds its young with Milk�
and reproduces with Eggs� then the system will recognize that Platypus is a
subconcept of Mammal

However� commonsense reasoning is often based on assumptions that may
ultimately be shown to be false In our example� one might want to assume
by default that Mammals reproduce Viviparously Only if it is known that a
speci�c mammal reproduces with eggs� should this assumption be cancelled
If one wants to use terminological systems for this kind of commonsense rea

soning� one needs a formalism that can handle such default assumptions� but
does not destroy the de�nitional character of concept descriptions�because
otherwise the advantage of automatic concept classi�cation� etc� would be
lost �see ���� Besides the general arguments for the importance of reason

ing with defaults� which can be found in the nonmonotonic reasoning lit

erature� the need for embedding defaults into terminological representation
formalisms is also substantiated by the fact that this is an important item on
the wish list of users of terminological representation systems �see eg �����

Several existing terminological systems� such as back ����� classic ����
k�rep �	��� loom �	��� or sb�one �	��� have been or will be extended to
provide the user with some kind of default reasoning facilities However� as
the designers of these systems themselves point out� these approaches usually

�We are taking this as our exceptional animal� in view of the fact that last IJCAI was

in Australia� and not in the Antarctic�
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have an ad hoc character� and are not equipped with a formal semantics For
example� defaults in the fame system� which is built using k�rep� �will not
be complete �or even consistent�� ��	��� p		� unless the user is very careful
when using them In classic� �a limited form of defaults can be represented
with the aid of rules and test functions� However� the user is warned to
�use this trick with extreme caution� ����� p������

Our arguments for the importance of default extensions for terminological
representation languages so far were given from the viewpoint of the termi

nological systems community However� these investigations may also be of
interest for research in nonmonotonic reasoning itself Most nonmonotonic
reasoning formalisms �eg Reiter�s default logic ����� Circumscription �	���
use full �rst
order predicate logic as their base language In this general form�
the formalisms are usually highly undecidable �see eg ���� Theorem ��� For
this reason� work on decision procedures for decidable subcases was mostly
restricted to propositional logic �see eg �	���� thus leaving the wide gap be

tween propositional logic and full �rst
order logic almost unexplored Since
most terminological representation languages can be viewed as decidable sub

classes of �rst
order logic�but are nevertheless much more expressive than
propositional logic�they can serve as interesting test cases for nonmonotonic
reasoning formalisms We shall see that this not only applies for algorithmic�
but also for semantic considerations

We shall here consider the problem of integrating Reiter�s default log

ic into a terminological representation formalism This treatment of de

faults in terminological systems has already been proposed by Brachman
and Schmolze ���� but to the best of our knowledge� this proposal was never
followed up Reiter�s default rule approach seems to �t well into the philos

ophy of terminological systems because most of them already provide their
users with a form of �monotonic� rules These rules can be considered as
special default rules where the justi�cations�which make the behaviour of
default rules nonmonotonic�are absent

At �rst sight� one might think that� from a semantic point of view� the
proposed integration should be unproblematic In fact� the terminological
representation language we shall consider �see Section �� is a sublanguage
of �rst
order logic� and Reiter�s semantics has been formulated for full �rst

order logic However� on closer inspection it turns out that one runs into
severe problems� due to the unsatisfactory treatment of open defaults by
Skolemization �see Section ��

A similar problem arises when considering the integration from the al

gorithmic point of view In the abstract of their paper on how to compute
extensions for default logic� Junker and Konolige �	�� write that their method
is applicable if the default theory �consists of a �nite number of defaults and
premises and classical derivability for the base language is decidable� A
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related formulation can be found in the abstract of Schwind and Risch�s pa

per on the same topic ���� Since our base language is decidable� and we
certainly do not want to have in�nitely many default rules� these methods
seem to apply in our case However� a closer look at the papers reveals that
by �a �nite number of defaults� it is meant �a �nite number of closed de

faults� But the default rules we want to consider are open defaults In fact�
as already pointed out by Reiter ������ p		�� �the genuinely interesting cases
involve open defaults� In Section � we shall show that� with our �decidable�
terminological language as base language� a �nite set of premises and open
defaults may lead to an undecidable default consequence problem� if the open
defaults are treated as proposed by Reiter ������ Section �	�

Because of the semantic as well as algorithmic problems posed by Reiter�s
treatment of open defaults� we shall consider a restricted semantics for open
defaults in our integration� default rules are only applied to individuals that
are explicitly present in the assertional part �ABox� of the knowledge base
Though one may thus lose some intuitive default inferences� this treatment of
default rules is akin to the treatment of the monotonic rules in terminological
systems such as classic

With this restricted semantics� a �nite set of open defaults stands for a set
of closed defaults that is �nite as well Thus the above
mentioned methods
of Schwind and Risch and of Junker and Konolige can be applied to compute
extensions �see Section �� In order to make these methods more e�cient�
one has to solve certain algorithmic problems for the terminological language
For Junker and Konolige�s methods one has to �nd minimal proofs for asser

tional facts�which can be seen as an abduction problem for ABoxes�and
for Schwind and Risch�s method one must �nd maximal consistent sets of
assertional facts In Section � we shall point out how the tableaux
based
methods for assertional reasoning developed in our group ��	�� ��� can be
modi�ed to solve these problems

� The Representation Formalisms

First we shall brie�y review the terminological language ALCF �		� and
Reiter�s default logic Then terminological default logic is de�ned as the
specialization of default logic to ALCF  Finally an example will illustrate
why Reiter uses Skolemization in his semantics for open default theories

��� The terminological language ALCF

Terminological knowledge representation formalisms can be used to de�ne the
relevant concepts of a problem domain �terminological knowledge�� and to
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describe objects of this domain with respect to their relation to concepts and
their interrelation with each other �assertional knowledge� Depending on
which constructs are allowed for building concept descriptions we get di�erent
terminological languages In the present paper we restrict our attention to
the language ALCF 

De�nition ��� The terminological part of the language ALCF consists of
the following concept description formalism� The concept terms of this for�
malism are built from concept� role and attribute names using the con�
structors conjunction �C uD�� disjunction �C tD�� negation ��C�� exists

restriction ��R�C�� value
restriction ��R�C�� and agreement �u

�
� v�� Here

C�D stand for concept terms� R for a role or attribute name� and u� v for
�nite sequences of attribute names�
The assertional part of our language allows us to assert facts concerning par�
ticular objects� These objects are referred to by individual names� and we can
state that an object belongs to a concept �written C�a��� or that two objects
are related by a role or attribute �written R�a� b��� Here a� b stand for indi�
vidual names� C for a concept term� and R for a role or attribute name� A
�nite set of such facts is called an ABox�

The semantics of an ABox can either be given directly by de�ning inter

pretations and models� or by a translation into �rst
order logic In order to
make the fact explicit that we are dealing with a sublanguage of �rst
order
logic� we choose the second option

Concept names are considered as symbols for unary predicates� and role
and attribute names as symbols for binary predicates Consequently� concept
names A are translated into �atomic� formulae A�x� with one free variable�
and role and attribute names R into �atomic� formulae R�x� y� with two free
variables The attributes have to be interpreted as partial functions� which
can be expressed by a formula �x� y� z� �f�x� y� � f�x� z� � y � z� for each
attribute name f 

Concept terms are also translated into formulae with one free variable
The semantics of conjunction� disjunction� and negation are de�ned in the
obvious way� ie� �C u D��x� �� C�x� � D�x�� �C tD��x� �� C�x� � D�x��
and ��C��x� �� �C�x� For value
restrictions we de�ne ��R�C��x� ��
�y� �R�x� y� � C�y��� and the semantics of exists
restrictions is given by
��R�C��x� �� �y� �R�x� y� � C�y�� Let u � f� � � � fm� and v � g� � � � gn be
sequences of attributes The agreement construct built from these sequences
is translated into the formula �u

�
� v��x� �� �y�� � � � � ym� z�� � � � zn� �f��x� y���

� � � fm�ym��� ym� � g��x� z�� � � � � gn�zn��� zn� � ym � zn��
The individual names of the Abox are considered as constant symbols

In terminological systems one usually has a unique name assumption� which
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can be expressed by the formulae a 	� b for all distinct individual names
a� b The formula corresponding to the assertional fact C�a� �resp R�a� b��
is obtained by replacing the free variable�s� in the formula corresponding to
C �resp R� by a �resp a� b� To sum up� an ABox is translated into a set
of �rst order formulae consisting of the translations of the ABox facts� the
formulae expressing unique name assumption� and the formulae expressing
that attributes are partial functions

The basic inference service for ABoxes is called instantiation It answers
the question of whether �the translation of� a given ABox fact C�a� is a
�logical� consequence of �the translation of� a given ABox A If the answer
is yes we say that a is an instance of C with respect to A �A j� C�a�� Algo

rithms which solve this inference problem have� for example� been described
in �	�� ��

��� Reiter�s default logic

Reiter ���� deals with the problem of how to formalize nonmonotonic rea

soning by introducing nonstandard� nonmonotonic inference rules� which he
calls default rules A default rule is any expression of the form

� � ��� � � � � �n
�

�

where �� ��� � � � � �n� � are �rst
order formulae Here � is called the prerequi�
site of the rule� ��� � � � � �n are its justi�cations� and � is its consequent For a
set of default rules D� we denote the sets of formulae occurring as prerequi

sites� justi�cations� and consequents in D by Pre�D�� Jus�D�� and Con�D��
respectively

A default rule is closed i� �� ��� � � � � �n� � do not contain free variables A
default theory is a pair �W�D� whereW is a set of closed �rst
order formulae
�the world description� and D is a set of default rules A default theory is
closed i� all its default rules are closed

Intuitively� a closed default rule can be applied� ie� its consequent is
added to the current set of beliefs� if its prerequisite is already believed
and all its justi�cations are consistent with the set of beliefs Formally�
the consequences of a closed default theory are de�ned with reference to
the notion of an extension� which is a set of deductively closed �rst
order
formulae de�ned by a �xed point construction �see ����� p��� In general�
a default theory may have more than one extension� or even no extension
Depending on whether one wants to employ skeptical or credulous reasoning�
a closed formula � is a consequence of a closed default theory i� it is in all
extensions or if it is in at least one extension of the theory In general� this
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consequence relation is not even recursively enumerable �see ����� Theorem
���

Reiter also gives an alternative characterization of an extension� which we
shall use� in a slightly modi�ed way� as the de�nition of extension Here and
in the following� Th� � stands for the deductive closure of a set of formulae
 

De�nition ��� Let E be a set of closed formulae� and �W�D� be a closed
default theory� We de�ne

E� ��W

and for all i 
 �

Ei�� �� Ei � f� j � � ��� � � � � �n�� � D� � � Th�Ei��
and ���� � � � ���n 	� Th�E�g�

Then Th�E� is an extension of �W�D� i�

Th�E� �
��
i��

Th�Ei��

Note that the extension Th�E� to be constructed by this iteration process
occurs in the de�nition of each iteration step Since we are only adding
consequents of defaults during the iteration� any extension Th�E� of �W�D�
is of the form Th�W � Con�D��� for a subset D� of D Reiter shows ������
Theorem ��� that the set

bD �
n� � ��� � � � � �n

�
� D j � � Th�E� and ���� � � � ���n 	� Th�E�

o
�

always satis�es this property For this reason it is called set of generating
defaults for the extension Th�E� Another easy consequence of De�nition ��
is that �W�D� has an inconsistent extension i� W is inconsistent

Reiter de�nes extensions of arbitrary default theories �W�D�� ie� default
theories with open defaults� as follows First� the formulae of W and the
consequents of the defaults are Skolemized �see ����� Section �� Second� a
set D� of closed default rules is generated by taking all ground instances �over
the initial signature together with the newly introduced Skolem functions� of
the defaults of D Now E is an extension of �W�D� i� E is an extension of the
closed default theory �W ��D��� where W � is the Skolemized form of W The
reason for Skolemizing before building ground instances will be explained by
an example in Subsection ��
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��� Terminological default theories

A terminological default theory is a pair �A�D� whereA is an ABox and D is a
�nite set of default rules whose prerequisites� justi�cations� and consequents
are concept terms Obviously� since ABoxes can be seen as sets of closed
formulae� and since concept terms can be seen as formulae with one free
variable�� terminological default theories are subsumed by Reiter�s notion of
an open default theory

However� as for ABox reasoning without defaults� we are not interested in
arbitrary formulae as consequences of a terminological default theory �A�D��
but only in assertional facts of the form C�a�� where a is an individual name
occurring in the original ABox A

��� Why is Skolemization necessary �

The following example shows that intuitively valid consequences would get
lost if one did not Skolemize Suppose that our ABox consists of the fact
that Tom has some child who is a doctor� ie� A � f��child�doctor��Tom�g
By default we want to conclude that doctors usually are rich persons� and
usually have children who are doctors Thus D consists of the default rules

doctor � rich�person

rich�person
and

doctor � �child�doctor

�child�doctor
�

Skolemization of the world description A yields A� � fchild�Tom�Bill��
doctor�Bill�g� where Bill is a new Skolem constant� whereas Skolemization
of the consequent of the second default yields a unary Skolem function�
say child�of It is easy to see that the corresponding closed default theo

ry has exactly one extension� and that this extension contains the asser

tional facts that Tom has a rich child and a grandchild who is a doctor�
ie� ��child�rich�person��Tom�� and ��child��child�doctor��Tom� Intuitive

ly� this comes from the fact that the closed defaults obtained by instantiating
our open defaults with the Skolemconstant Bill are applicable Without these
ground instances� the above facts could not have been deduced by default To
deduce by default that the grandchild of Tom is not only a doctor� but also
a rich one� the �rst default has to be instantiated by the term child�of�Bill�

� Problems Caused by Skolemization

In addition to the problem that Skolemization usually destroys the nice com

positional character of our concept formulae� it is also problematic for more

�The concept terms occurring in one rule are assumed to have identical free variables�
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severe reasons to be presented below We shall give three examples which
demonstrate that Reiter�s treatment of open defaults is problematic� from an
intuitive as well as a formal point of view

Our �rst example shows that the Skolemization of the world description
may lead to counterintuitive consequences of the default theory Consider
the following concept term which can be used to express that an adult man
is married to a woman or is a bachelor

��spouse�Woman� t Bachelor�

We assume that our ABox asserts that the individual Tom belongs to this
concept term� and that he is married to the woman Mary In addition� we
take the following default �without prerequisite�

� �Woman

�Woman
�

which corresponds to a still
prevailing male chauvinism in linguistic usage
In order to know with what individuals this default has to be instantiated�
we have to Skolemize our ABox facts Translated into traditional �rst
order
syntax� these facts yield the world description

f��y� spouse�Tom� y� �Woman�y�� � Bachelor�Tom��
spouse�Tom�Mary��
Woman�Mary�g�

The Skolemized version of the �rst formula is

�� �spouse�Tom�Gordy� �Woman�Gordy�� � Bachelor�Tom��

where Gordy is introduced as a new Skolem constant Because of the dis

junction in this formula� our Skolemized world description does not im

ply Woman�Gordy� Thus the chauvinistic default can �re� and we get
�Woman�Gordy� Together with the formula �� this yields Bachelor�Tom�
as a consequence of our default theory� which is rather surprising since our
ABox actually contains a female spouse of Tom

As already pointed out by Poole� the reason for this strange behaviour
comes from that fact that �we have lost the context of what the Skolem
constants represent� ������ p����� in our case the context that Gordy was
originally introduced to stand for a female spouse of Tom Poole proposes to
keep track of this context by using Hilbert�s �
symbol

Although Poole�s approach may avoid the problem in the above example�
it is of no avail in our next examples These examples demonstrates that�
due to the problems caused by Skolemization� the consequences of a default
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theory depend on the syntactic form of the world description� ie� for identical
sets of open defaults� logically equivalent world descriptions may lead to
di�erent results

In our second example we consider concept terms C� �� �R��A uB� and
C� �� �R�A where R is a role name and A�B are concept names Obviously�
if we assert that an individual a is in the �rst term this implies that it is
in the second one as well For this reason� the ABoxes A� �� fC��a�g and
A� �� fC��a�� C��a�g are logically equivalent When Skolemizing the �rst
ABox� we get a single new Skolem constant b which is R
related to a and lies
in A u B� whereas when Skolemizing the second ABox we get two Skolem
constants c and d� both R
related to a� but where c lies in AuB and d lies in
A Now consider the �open� default A � �B��B� For the Skolemized version
ofA�� this default is instantiated with a� b� whereas for the Skolemized version
of A� it is instantiated with a� c� d Obviously� the default rule cannot �re for
b and c� because their being in AuB is inconsistent with its justi�cation On
the other hand� this default rule can be applied to d� because being in A is
consistent with being in �B For this reason� d is put into �B� which shows
that the Skolemized version of A� has ��R��B��a� as a default consequence�
whereas this fact cannot be deduced by default from the Skolemized version of
A� Technically� the reason for this behaviour is due to the fact that� before
the application of the default� the individuals c and d might be identical
�which is the reason why the two ABoxes are logically equivalent� whereas
this is no longer possible after the default has been applied

The third example is similar to the second It is quite obvious that the
concept terms �R��A t B� and ��R�A� t ��R�B� are equivalent Let A�

be an ABox where a is asserted to be in the �rst concept term� and A� one
where a is asserted to be in the second concept term When using a standard
Skolemization method� the �rst ABox yields one new Skolem constant� and
the second ABox yields two Now it is easy to see that the corresponding
instantiations of the default ruleA tB � C�C can only �re for the Skolemized
version of the �rst ABox Consequently� we have a in �R�C as a default
consequence of the �rst ABox� but not of the second one� even though these
two ABoxes are equivalent

Lifschitz �	�� proposes a treatment of open defaults which avoids Skolem

ization by working with classes of models instead of sets of formulae in the
de�nition of default extensions Obviously� working with models means that
logically equivalent formulae must yield the same results This shows that
Lifschitz�s approach can overcome the problem pointed out in the previous
two examples� even though it was not motivated by the problems connected
with Skolemization �see footnote 	 in �	��� �Skolemization  is irrelevant
for this discussion�� Lifschitz�s motivation was to make it possible to derive
by default universally quanti�ed formulae of the form �x� C�x�� which is not

		



possible with Reiter�s approach� but which is not necessary in our context
�because the terminological inference service is only meant to derive new
ABox facts� ie� formulae of the form C�a�� From our point of view� the
main problem of Lifschitz�s approach is that working with models means that
it becomes even harder to get algorithms for computing extensions Another
problem of his approach is that one gets rather unexpected consequences�
due to the fact that models of di�erent cardinality are treated separately
For example� assume that one has formulae 
 � and � � expressing that a
model has at least � and at most � elements� respectively� which would� for
example� be available in concept languages allowing for number
restrictions
and a universal role� ie� a role U that satis�es �x� y� U�x� y� The default
theory consisting of an empty world description and the closed defaults

� � �

C�a�
and


 � �

C�a�

has C�a� as consequence� which means that this approach makes a case anal

ysis with respect to the cardinality of models But for other cases� Lifschitz�s
approach still does not make case analysis For example� the theory consist

ing of an empty world description and the closed defaults

A�a� �

C�a�
and

�A�a� �

C�a�

does not have C�a� as a consequence

� An Undecidability Result

In addition to the semantic problems caused by Skolemization� we shall now
show that� for our base language ALCF � this treatment of open defaults also
leads to an undecidable default consequence relation� even though ALCF is
decidable This is achieved by reducing the word problem for semigroups
���� to the consequence problem of a default theory

Let ! be a �nite alphabet� and let R � f�u�� v��� � � � � �un� vn�g be a �nite
set of relations presenting a semigroup over ! In the following we shall treat
the elements of ! as attribute names The semigroup presentation is used
to de�ne a �nite set of open defaults as follows For any f � ! and for any
relation �ui� vi� � R we have defaults

A �

�f�A
and

A �

ui
�
� vi

�

If we want to decide whether the words u� v are equivalent with respect to
R� we take the ABox Au�v �� fA�a�� �u

�
� u��a�� �v

�
� v��a�g as our world

description
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Proposition ��� With respect to the set of defaults induced by ! and R�
the ABox fact �u

�
� v��a� is a default consequence of Au�v i� u and v are

equivalent with respect to R�

Intuitively� the world description puts a into A� and asserts sequences
of attributes u� v starting from a The implicit individuals lying on these
sequences are made explicit by Skolemization The �rst type of defaults puts
all individuals reachable from a by a sequence of attributes into A� and the
second type identi�es individuals which can be reached by the respective
sequences ui and vi from an individual in A� thus simulating application of
relations from R �It should be noted that the consequents of this second
type of defaults are also responsible for the introduction of new implicit
individuals�

Since a formal proof of the proposition is straightforward but rather te

dious� we shall just illustrate it by an example Consider the semigroup
presentation R � f�fg� gf�g over the alphabet ! � ff� gg This presenta

tion is transformed into the default rules

A �

�f�A
�

A �

�g�A
� and

A �

fg
�
� gf

�

Obviously� the words fgg and ggf are equivalent with respect to R If we
want to obtain this equivalence as a consequence of applying the above default
rules� we take the Abox Afgg�ggf � fA�a�� �fgg

�
� fgg��a�� �ggf

�
� ggf��a�g

as our world description
Translated into �rst
order logic and then Skolemized� this ABox yields

the world description

f A�a��
f�a� b�� � g�b�� b�� � g�b�� b���
g�a� c�� � g�c�� c�� � f�c�� c���
�x� y� z� �f�x� y� � f�x� z�� y � z��
�x� y� z� �g�x� y� � g�x� z�� y � z� g�

where the last two formulae are expressing that f� g are interpreted as partial
functions� and b�� � � � � c� are Skolem constants Note that these formulae
have already been used to simplify the rest of the ABox� and that redundant
equalities have been removed We want to show that b� � c� is a consequence
of the default theory

The translated and Skolemized form of the consequent fg
�
� gf of the

third default is f�x� h��x�� � g�h��x�� h��x�� � g�x� k��x�� � f�k��x�� k��x�� �
h��x� � k��x�� where h�� h�� k�� k� are unary Skolem functions

Since A�a� is in our world description� the third default� instantiated
by a� is applicable� and yields f�a� h��a�� � g�h��a�� h��a�� � g�a� k��a�� �
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f�k��a�� k��a�� � h��a� � k��a� The formulae which express that f� g are
partial functions yield h��a� � b�� h��a� � b�� and k��a� � c�

Applying the second default� instantiated by a� we get �y� �g�a� y� �
A�y��� which in turn yields A�c�� Now we can apply the third default�
instantiated by c�� which yields f�c�� h��c����g�h��c��� h��c����g�c�� k��c����
f�k��c��� k��c��� � h��c�� � k��c�� Because of the formulae expressing that
f� g are partial functions we get c� � k��c��� c� � k��c��� and� using the
additional fact k��a� � c�� also k��a� � h��c��

To sum up we have b� � h��a� � k��a� � h��c��� c� � k��c�� � h��c���
and g�b�� b�� as well as g�h��c��� h��c��� This yields b� � h��c�� � c�� which
is what we wanted to show

Since the word problem for semigroups is in general undecidable� the
proposition shows that our terminological default theories in general have an
undecidable consequence problem

Corollary ��� The consequence problem for an open default theory is in
general undecidable� even if one has a �nite set of defaults and the base
language is decidable�

It should be noted that the default rules used in the reduction are mono

tonic �ie� they do not have justi�cations� Consequently� the default theory
has exactly one extension� which shows that the undecidability result is inde

pendent of whether one wants to employ skeptical or credulous reasoning In
addition� this shows that the consequences of rule applications in the classic
system would become undecidable� if classic applied rules not only to indi

viduals explicitly present in the ABox� but also to implicit individuals This
result for classic rules has already been mentioned by Nebel and Smolka
��	�� but without proof In the next section we shall see that the restriction
to explicit individuals leads to a decidable consequence relation even if one
allows nonmonotonic default rules instead of classic�s monotonic rules

� Computing Extensions

Because of the problems caused by Skolemization in Reiter�s treatment of
open defaults� we now propose a restricted semantics for open default the�
ories	 default rules are only applied to individuals that are explicitly men

tioned in the ABox

De�nition ��� In the restricted semantics for terminological default theo�
ries� an open default of a terminological default theory �A�D� is interpreted
as representing the closed defaults obtained by instantiating the free variable
by all individual names occurring in A�
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Because the ABox A and the set of open defaults D are assumed to be
�nite� we end up with a �nite set of closed defaults� Since our terminological
language is decidable� the methods of Junker and Konolige� or of Schwind and
Risch can be applied to compute all extensions �according to our restricted
semantics�

In principle� both methods depend on the fact that any extension of a
closed default theory �A�D� is of the form Th�A � Con� bD�� for a subset bD
of D If D is �nite� there are only �nitely many such subsets� and the only
problem is to decide which of these generate an extension In fact� if the
base language is decidable� one could even use for this purpose the iteration
process described in the de�nition of an extension This is so because de

cidability of the base language makes each iteration step e�ective� and the
iteration process terminates because there are only �nitely many consequents
to be added However� with this method one has to consider all the �expo

nentially many� subsets of D The two methods which we shall describe
below try to avoid considering all subsets� thus making the search for �the
sets of generating defaults of� all extensions more e�cient

��� Junker and Konolige�s method

Junker and Konolige �	�� translate a closed default theory �A�D� into a Truth
Maintenance Network �TMN� "a la Doyle ��� The nodes of the TMN are the
consequents CD� and the prerequisites and negated justi�cations LD of the
defaults A default � � ��� � � � � �n�� of D is translated into a nonmonotonic
justi�cation hin���� out����� � � � ���n� � �i of the TMN In order to sup

ply the truth maintenance system with enough information about �rst
order
derivability in the base language� each prerequisite and negated justi�cation
of a default gives rise to several monotonic justi�cations of the TMN These
justi�cations are of the form hin�Q�� qi where q � LD� and Q is a minimal
subset of CD such that A �Q entails q�ie� A � Q j� q but A � Q� 	j� q for
every proper subset Q� of Q

Junker and Konolige show that there is a 	#	
correspondence between
admissible labellings of the TMN thus obtained and extensions of the de

fault theory� and they describe an algorithm which computes all admissible
labellings of a TMN Given such an admissible labelling� the set of gener

ating defaults of the corresponding extension consists of the defaults whose
consequents are labelled �in�

In order to make the translation of terminological default theories into
TMNs e�ective� one has to show how to compute the above mentionedmono

tonic justi�cations of the TMN First note that the elements of LD � CD are
admissible assertional facts This is obvious for the prerequisites and the
consequents of our instantiated defaults� and for the negated justi�cations it
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follows from the fact that the concept language has negation as an operator
For this reason� A � Q for a subset Q of CD is an admissible ABox of our
language� and the entailment problem A � Q j� q for q � LD is an ordinary
instantiation problem As mentioned in Section �� the instantiation problem
is decidable for our language A brute force algorithm could just compute
all subsets Q of CD such that A � Q entails q � LD� and then� for each q�
eliminate the ones which are not minimal Of course� this simple algorithm
is very ine�cient� and thus not appropriate for actual implementations

Because A�Q entails an assertional fact C�a� i� A�Q� f�C�a�g is in

consistent� we need a solution of the following problem� Let A� B be ABoxes
Find all minimal subsets Q of B such that A � Q is inconsistent Since a
similar algorithmic problem has to be solved for the method obtained from
Schwind and Risch�s characterization of an extension� we defer the descrip

tion of a more e�cient solution of this problem to a separate section

A characteristic feature of Junker and Konolige�s method is that�after
the computation of the minimal sets Q�it is completely abstracted from
derivability in the base language This may be advantageous from a con

ceptual point of view� but it can be problematic from the algorithmic point
of view In fact� one has to compute the corresponding minimal sets for all
elements q in LD� even though this information may not contribute to the
computation of an extension

��� A method based on a theorem by Schwind and

Risch

Schwind and Risch ���� give a theorem which characterizes those subsets bD
of D which are sets of generating defaults of an extension of a closed default
theory �W�D� They use this characterization for computing extensions of
propositional default theories In this subsection� we shall show how to apply
the theorem to computing extensions of terminological default theories

Before we can formulate the theorem we need one more piece of notation

De�nition ��� Let W be a set of closed formulae� and D be a set of closed
defaults� We de�ne D� � � and� for i 
 ��

Di�� � Di � fd �
� � ��� � � � � �n

�
j d � D and W � Con�Di� j� �g�

Then D is called grounded in W i� D �
S
�

i��Di�

This de�nition of groundedness di�ers from the one given in ����� but
it is easy to see that both formulations are equivalent The advantage of
our formulation is that it can directly be used as a procedure for deciding
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groundedness� if D is �nite and the entailment problem in the base language
is decidable If D is not grounded in W� then

S
�

i��Di is the largest subset of
D that is grounded in W

The iteration process described above corresponds to the iteration in the
de�nition of extensions� with the main di�erence that it disregards the justi

�cations The second condition given in the following theorem makes up for
this neglect

Theorem ��� �Schwind and Risch Let �W�D� be a closed default theo�
ry� A subset bD of D is a set of generating defaults of an extension of �W�D�
i� the following two conditions hold	


� bD is grounded in W�

�� For all d � D with d � � � ��� � � � � �n�� we have d � bD i� W �
Con� bD� j� � and for all i� 	 � i � n� W � Con� bD� 	j� ��i�

IfD is �nite� and the entailmentproblem in the base language is decidable�
this theorem provides us with an e�ective test of whether a subset bD of D is
a set of generating defaults of an extension of �W�D� We shall now describe
a method based on this theorem which allows us to compute �the sets of
generating defaults of� all extensions without having to consider all subsets
of D

IfW is inconsistent then there is only one extension� namely the set of all
formulae In the following� we shall without loss of generality assume that
W is consistent Now� let D� be the largest subset of D that is grounded in
W� and let D�� � � � �Dm be all maximal subsets of D� such that W �Con�Di�
is consistent Since W is assumed to be consistent� extensions are consistent
as well� which means that a generating set of defaults of an extension is a
subset of one of the Di The idea underlying our method is to start with
these maximal sets Di� and successively eliminate defaults violating the �rst
condition of the theorem� or the �only if� part of the second condition If
no more defaults can be eliminated� the �if� part of the second condition is
tested

Figure 	 describes the procedure for computing all extensions of a closed
default theory To show soundness and completeness of the procedure �The

orem ��� we need three lemmas

Lemma ��� Let �W�D� be a closed default theory and let D� � D be such
that W�Con�D�� is consistent� Suppose the call Remove�Defaults�W�D�D��
returns the list L of sets of defaults� If D� � L then D� is a set of generating
defaults for an extension of �W�D��

	�



Compute�All�Extensions�W�D�
begin

�	� if W is inconsistent
��� then print �Inconsistent world description�
��� else for all maximal subsets D� of D� such that

W � Con�D�� is consistent
��� do Remove�Defaults�W�D�D��$
end

Remove�Defaults�W�D�D��
begin

�	� let D� be the largest subset of D
� that is grounded in W$

��� if W � Con�D�� j� ��i for some justi�cation �i � Jus�D��
��� then let d � � � ��� � � � � �n�� be the corresponding default$
��� Remove�Defaults�W�D�D� n fdg�$
��� for all maximal subsets D�� of D� such that

d � D�� and W � Con�D��� 	j� ��i
��� do Remove�Defaults�W�D�D���$
��� else if for each � � ��� � � � � �n�� � D n D� either W � Con�D�� 	j� �
��� or W � Con�D�� j� ��i for some i
��� then add D� to the list of sets of generating defaults$
end

Figure 	� Procedure for computing the sets of generating defaults of all
extensions of the closed default theory �W�D� Proviso	 D is �nite and
entailment in the base language is decidable

Proof� We prove this lemma by showing that a set D� of defaults con

tained in L satis�es Conditions 
 and � of Theorem ��

Suppose that D� is contained in L It is easy to see that D� is a subset of
D� that is grounded in W �because of line �	��� which shows that Condition

 of Theorem �� holds for D�

To show that D� satis�es the second condition of Theorem ��� �rst as

sume that d � � � ��� � � � � �n�� � D� Recall that D� is grounded in W�
which implies that W � Con�D�� j� � Furthermore� observe that� for all i�
	 � i � n� W � Con�D�� 	j� ��i �because the condition in line ��� does not
hold for D�� Both facts together show that the �only if� part of Condition
� holds

Now assume that d � � � ��� � � � � �n�� � D n D� Then either W �
Con�D�� 	j� � or W � Con�D�� j� ��i for some i �because the condition in
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lines ��� and ��� holds for D�� This shows that the �if� part of Condition �
is also satis�ed

Lemma ��� Let D� be a set of generating defaults for an extension of a
closed default theory �W�D�� and let D� be a subset of D such that D� � D�

and W � Con�D�� is consistent� If Remove�Defaults�W�D�D�� recursively
calls Remove�Defaults then there is a call with arguments W�D�D�� where
D� � D�� � D��

Proof� Let D� � D� be sets of defaults satisfying the assumptions of the
lemma Suppose Remove�Defaults is called with arguments W�D�D� Let
D�� be the largest subset of D

� that is grounded inW Then D� � D�� because
every set of generating defaults for an extension of �W�D� is grounded inW

If the condition in line ��� does not hold for D��� Remove�Defaults is
obviously not called recursively� and nothing has to be shown Thus assume
that the condition in line ��� holds for D�

�
 This means that there is a

default d � � � ��� � � � � �n�� � D
�

� such that W � Con�D��� j� ��i for some i�
	 � i � n

If d 	� D� we have D� � D�� n fdg � D��� and the call of Remove�Defaults
with arguments W�D�D�� n fdg� �cf line ���� satis�es the required property
Now assume that d � D� Since D� is a set of generating defaults for an
extension we know that W � Con�D�� 	j� ��i Thus there is a maximal
subset D�� of D�� with W �Con�D��� 	j� ��i that contains D�� and this means
that the call Remove�Defaults�W�D�D��� has the required property �cf line
��� and ����

Lemma ��� Let D� be a set of generating defaults for an extension of a
closed default theory �W�D�� and let D� be a subset of D such that D� � D�

and W � Con�D�� is consistent� Suppose Remove�Defaults is called with
arguments W�D�D�� Then

� there is a recursive call of Remove�Defaults� or

� D� is added to the list of sets of generating defaults�

Proof� Let D� � D� be sets of defaults satisfying the assumptions of the
lemma Suppose the call Remove�Defaults�W�D�D�� does not recursively
call Remove�Defaults This means that the condition in line ��� does not
hold for D��� where D

�

� is the largest subset of D
� that is grounded in W We

show that D�� � D�
Since D� is grounded in W� we get D� � D�

�
� and thus we only have to

show D�
�
� D� Assume to the contrary that D�

�
n D� 	� � First we show
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that W � Con�D�� j� � for some default � � ��� � � � � �n�� � D�� n D� To see
this� recall that D�

�
is grounded in W This means that there is a sequence

d�
�
� d�

�
� � � � of default in D�

�
such that W � Con�fd�

�
� � � � � d�k��g� j� ��k where

��k is the prerequisite of the k
th default Let l be the smallest number such
that d�l � D�� n D� Thus d�j � D� for all j� 	 � j 	 l� which shows that
W � Con�D�� j� ��l

Second� we have W � Con�D��� 	j� ��i for all justi�cations �i � Jus�D���
because the condition in line ��� does not hold for D�

�
 Since D� � D�

�
we

especially know that W � Con�D�� 	j� ��i for all justi�cations �i � Jus�D��
Thus� we have shown that there is some default d � D�� n D�� d �

� � ��� � � � � �n��� such that W � Con�D�� j� � and W � Con�D�� 	j� ��i
for all i� 	 � i � n Because of Theorem �� this is a contradiction with our
assumption that D� is a set of generating defaults Therefore the assumption
D�
�
n D� 	� � is falsi�ed� and we can conclude that D�

�
� D�

Since D� is a set of generating defaults� the condition in lines ���� ���
holds for D� �cf Condition � of Theorem ��� Thus D� is added to the list
of sets of generating defaults

Now we are ready to prove soundness and completeness of our algorithm
First we observe that every set of defaults computed by the algorithm is in
fact a set of generating defaults for an extension of a closed default theory
�W�D� �cf Lemma ���

Now assume that D� is a set of generating defaults for an extension of
�W�D� Recall that W � Con�D�� is consistent Thus there is a maximal
subset D� of D such thatW�Con�D�� is consistent and D� contains D� This
shows that Compute�All�Extensions�W�D� generates a call Remove�Defaults
with argumentsW�D�D� �cf lines ��� and ��� in the function Compute�All�

Extensions� for some subset D� of D with D� � D�
If the call Remove�Defaults�W�D�D�� returns the list L of sets of defaults

then D� is contained in L This result is an immediate consequence of the
previous two lemmas In fact� Lemma �� shows that there is a sequence of
calls of Remove�Defaults such that W� D� Ci are the arguments of the i
th
call where C� � D�� Ci�� � Ci� and D� � Ci for all i Since D is assumed to
be �nite and the Ci�s are decreasing� there is some m 
 i such that Remove�
Defaults�W�D� Cm� does not generate a recursive call of Remove�Defaults
In this case D� is added to the list L of sets of defaults �Lemma ���

Theorem ��	 The call of the procedure Compute�All�Extensions with input
�W�D� computes sets of generating defaults for all extensions of the closed
default theory �W�D��

The functions Compute�All�Extensions and Remove�Defaults use the fol

lowing subprocedures which have not explicitly been described�
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� Decide whether W is consistent

� Compute all maximal subsets D� of D such that W � Con�D�� is con

sistent

� Compute the largest subset D� of D� that is grounded in W

� Compute all maximal subsets D�� of D� such thatW�Con�D��� 	j� ��i

The �rst subprocedure is a direct application of the decision algorithm for
entailment in the base language The third subprocedure is simply obtained
by implementing the de�nition of groundedness

The other two procedures depend on an algorithm for the following prob

lem� which will be considered in the next section� Let A�B be ABoxes
Compute all maximal subsets Q of B such that A �Q is consistent

In fact� the second subprocedure is a direct application of such an al

gorithm For the fourth subprocedure� note that W � Con�D��� 	j� ��i i�
W � Con�D��� � f�ig is consistent

� ComputingMinimal Inconsistent andMax�

imal Consistent ABoxes

This section is concerned with the following algorithmic problems� Given
two ABoxes A�B� �nd all minimal �resp maximal� subsets Q of B such that
A �Q is inconsistent �resp consistent�

Since consistency of ABoxes in ALCF is decidable� there is the obvious
�brute
force� solution which tests consistency of A � Q for all subsets Q
of B� and then takes the minimal inconsistent �maximal consistent� ones
In the following we shall describe a more e�cient method of �nding these
minimal �maximal� sets The method is an extension of the tableaux
based
consistency algorithms for ABoxes described in �	� 	�� The idea of employing
tableaux
based methods for such purposes was already used in �	�� ���� but
these papers restricted themselves to propositional logic� which is a much
easier case

In order to decide whether an ABox A is consistent� the tableaux
based
consistency algorithm tries to generate a �nite model of A In principle� it
starts with A� and adds new assertional facts with the help of certain rules
until the obtained ABox is �complete�� ie� one can apply no more rules
Because of the presence of disjunction in our language� a given ABox must
sometimes be transformed into two di�erent new ABoxes� with the intended
meaning that the original ABox is consistent i� one of the new ABoxes is
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LetM be a �nite set of ABoxes� and let A� be an element of
M The following rules replace A� by an ABox A� or by two
ABoxes A� and A�

The conjunction rule� Assume that �C uD��a� is in A�� and that A�

does not contain both assertions C�a� and D�a� The ABox A� is
obtained from A� by adding C�a� and D�a�

The disjunction rule� Assume that �C tD��a� is in A�� and that A�

contains neither C�a� nor D�a� The ABox A� is obtained from A�

by adding C�a�� and the ABox A� is obtained from A� by adding
D�a�

The exists�restriction rule� Assume that ��R�C��a� is in A�� and
that A� does not contain assertions R�a� c� and C�c� for some indi

vidual c One generates a new individual name b� and obtains A�

from A� by adding R�a� b� and C�b�

The value�restriction rule� Assume that ��R�C��a� and R�a� b� are in
A�� and that A� does not contain the assertion C�b� The ABox
A� is obtained from A� by adding C�b�

Figure �� Transformation rules of the consistency algorithm for ALC

consistent Formally� this means that one is working with sets of ABoxes
instead of a single ABox

For ease of presentation� we restrict ourselves in this formal description
to the terminological language ALC where we do not have attributes and
agreements Later on� we shall point out how the algorithm can be extended
to ALCF 

Figure � describes the transformation rules of the tableaux
based con

sistency algorithm for ALC Without loss of generality we assume that the
concept terms occurring in A� are in negation normal form� ie� negation
occurs only directly in front of concept names Negation normal forms can
be generated using the fact that the following pairs of concept terms are
equivalent� ��C and C� ��C uD� and �C t �D� ��C tD� and �C u �D�
���R�C� and �R��C� as well as ���R�C� and �R��C

The following facts make clear why the rules of Figure � provide us with a
decision procedure for consistency of ABoxes of ALC �see �	�� 	� for a proof�

Proposition ���
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� If A� is obtained from A� by application of the conjunction� exists�
restriction� or value�restriction rule then A� is consistent i� A� is con�
sistent�

�� If A��A� are obtained from A� by application of the disjunction rule
then A� is consistent i� A� or A� is consistent�

�� A complete ABox� i�e�� an ABox to which no more rules apply� is
consistent i� it does not contain an obvious contradiction� i�e�� facts
A�b���A�b� for an individual name b and a concept name A�

� The transformation process always terminates�

An obvious contradiction of the form A�b���A�b� will also be called
�clash� in the following

To check whether a given ABox A is consistent one thus starts with fAg�
and applies transformation rules �in arbitrary order� as long as possible
Eventually� this yields a �nite set M of complete ABoxes with the property
that A is consistent i� one of the ABoxes in M is consistent Since the
elements of M are complete their consistency can simply be decided by
looking for an obvious contradiction

Now assume that A�B are ABoxes� and we want to �nd all minimal �resp
maximal� subsets Q of B such that A � Q is inconsistent �resp consistent�
We start with applying the tableaux
based consistency algorithm to A �
B Let A�� � � � �Am be the complete ABoxes obtained this way If one of
these is not obviously contradictory� A � B is consistent� and there are no
minimal inconsistent sets to compute �resp B is the maximal consistent
set� Otherwise� we want to know which elements of B can be dispensed
with without destroying the property that all complete ABoxes contain an
obvious contradiction �resp which elements of B have to be removed to get
at least one complete ABox without obvious contradiction�

For this reason� it is important to know which facts in B contribute to a
particular obvious contradiction To this purpose we introduce a proposition

al variable for each element of B� and label assertional facts with �monotonic�
boolean formulae built from these variables� ie� propositional formulae built
from the variables by using conjunction and disjunction only In the original
ABox A�B� the elements of A are labelled with �true�� and the elements of
B are labelled with the corresponding propositional variable If� during the
consistency test� n assertional facts with labels 
�� � � � � 
n give rise to a new
fact� the new one is labelled by 
� � � � �� 
n Since the same assertional fact
may arise in more than one way� we also get disjunctions in labels Again�
we end up with complete ABoxes A�� � � � �Am� but now all assertional facts
occurring in these ABoxes have labels
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More formally� we shall now describe a labelled consistency algorithm for
ABoxes A�B consisting of �hard� facts A and of �refutable� facts B With

out loss of generality we assume that the concept terms occurring in A � B
are in negation normal form Initially� the elements of A�B are labelled with
monotonic boolean formulae as described above We shall refer to the label
of an assertional fact � by ind��� Starting with the singleton set fA � Bg�
the transformation rules of Figure � are applied as long as possible

As for the unlabelled consistency algorithm� there cannot be an in�nite
chain of rule applications This can� for example� be shown by a straight

forward adaptation to the labelled case of the termination ordering used in
�	�

Thus the labelled consistency algorithm also terminates with a �nite set
of complete ABoxes� ie� labelled ABoxes to which no rules apply The labels
occurring in these ABoxes can be used to describe which of the original facts
in B are responsible for the obvious contradictions

De�nition ��� �Clash formula Let A�� � � � �An be the complete ABoxes
obtained by applying the labelled consistency algorithm to A�B� A particular
clash A�a���A�a� � Ai is expressed by the propositional formula ind�A�a���
ind��A�a��� Now let �i��� � � � � �i�ki be the formulae expressing all the clashes
in Ai� The clash formula associated with A� B is

n�
i��

ki�
j��

�i�j�

We have used conjunction when expressing a single clash because both
assertional facts are necessary for the contradiction Now recall that we need
at least one clash in each of the complete ABoxes to have inconsistency
This explains why disjunction is used to combine the formulae expressing
the clashes of one complete ABox� and why the formulae corresponding to
the di�erent complete ABoxes are combined with the help of conjunction

Proposition ��� Let � be the clash formula associated with A � B� let
Q � B� and let � be the valuation which replaces the propositional vari�
ables corresponding to elements of Q by �true� and the others by �false��
Then A �Q is inconsistent i� � evaluates to �true� under ��

Before proving this proposition we point out how the clash formula can
be used to �nd minimal �resp maximal� subsets Q of B such that A � Q
is inconsistent �resp consistent� By Proposition ��� such minimal �resp
maximal� sets directly correspond to minimal �resp maximal� valuations
making the clash formula � �true� �resp �false�� Here �minimal� and
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Let M be a �nite set of labelled ABoxes� and let A� be an
element of M The following rules replace A� by an ABox
A� or by two ABoxes A� and A� These new ABoxes either
contain additional assertional facts� or the indices of existing
assertional facts are changed In order to avoid having to
distinguish between these two cases in the formulation of the
rules� we introduce a new notation An ABox is extended by
an assertional fact with index 
 means the following� If this
fact is already present with index �� we just change its index
to ��
 Otherwise� it is added to the ABox and gets index 


The conjunction rule� Assume that �C uD��a� is in A�� and that A�

does not contain assertions C�a� and D�a� whose indices are both
implied by ind��CuD��a�� The ABoxA� is obtained by extending
A� by C�a� with index ind��C u D��a�� and by D�a� with index
ind��C uD��a��

The disjunction rule� Assume that �C tD��a� is in A�� and that A�

does not contain C�a� or D�a� whose index is implied by ind��C t
D��a�� The ABox A� is obtained by extending A� by C�a� with
index ind��C tD��a��� and the ABox A� is obtained by extending
A� by D�a� with index ind��C tD��a��

The exists�restriction rule� Assume that ��R�C��a� is in A�� and
that A� does not contain assertions R�a� c� and C�c� whose in

dices are both implied by ind���R�C��a�� One generates a new
individual name b� and obtains A� from A� by adding R�a� b� and
C�b�� both with index ind���R�C��a��

The value�restriction rule� Assume that ��R�C��a� and R�a� b� are in
A�� and that A� does not contain an assertion C�b� whose index is
implied by ind���R�C��a���ind�R�a� b�� The ABoxA� is obtained
by extending A� by C�b� with index ind���R�C��a��� ind�R�a� b��

Figure �� Transformation rules of the labelled consistency algorithm forALC

�maximal� for valuations is meant with respect to the partial ordering �� �
�� i� ���pi� � ���pi� for all propositional variables pi� where we assume that
�false� is smaller than �true�

It is easy to see that the problem of �nding maximal valuations making a
monotonic boolean formula �false� can be reduced to the problem of �nding
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minimal valuations making a monotonic boolean formula �true� In fact� for
a given monotonic boolean formula � and a valuation �� let �d denote the
formula obtained from � by replacing conjunction by disjunction and vice
versa� and let �d denote the valuation obtained from � by replacing �true�
by �false� and vice versa Then � is a maximal valuation making � �false�
i� �d is a minimal valuation making �d �true�

It should be noted that the problem of �nding minimal valuations that
make a monotonic boolean formula � �true� is NP
complete In fact� if �
is in conjunctive normal form� this is just the well
known problem of �nding
minimal hitting sets ���� �� On the other hand� if � is in disjunctive normal
form� the minimal valuations can be found in polynomial time Howev

er� transforming a given monotonic boolean formula into disjunctive normal
form may cause an exponential blow
up To optimize the search for minimal
valuations one can use the method described in ����

The rules of the labelled consistency algorithm as described have the un

pleasant property that deciding whether or not a rule is applicable is an
NP
hard problem In fact� the preconditions of the rules include an entail

ment test for monotonic boolean formulae� which is NP
hard However� one
can weaken the precondition by testing a necessary condition for entailment
�eg occurrence of the index in the top
level disjunction� without destroying
termination and the property stated in Proposition �� In this case� the
rules will in general produce longer formulae occurring as indices� but the
test whether a rule applies becomes tractable

Proof of Proposition ���
First we shall explain the connection between application of rules of the
labelled consistency algorithm� starting with A � B� on the one hand� and
application of rules of the unlabelled algorithm� starting with A � Q for
Q � B� on the other hand

De�nition ��� Let A� be a labelled ABox� and let � be a valuation� The
��projection of A� �for short� ��A��� is obtained from A� by removing all
facts whose labels evaluate to �false��

Let Q be a subset of B In the following� the valuation � is assumed to be
such that it replaces the variables corresponding to elements of Q by �true�
and the others by �false� Obviously� this means that ��A � B� � A �Q

Now we shall show how application of a rule of the labelled consistency
algorithm to a labelled ABox A� corresponds to application of a rule of the
unlabelled algorithm to ��A�� To get this correspondence� the conditions
on applicability of the disjunction and the exists
restriction rules have to be
weakened for the unlabelled algorithm�
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The modi�ed disjunction rule� Assume that �C t D��a� is in A�� and
that A� does not contain C�a� and D�a� The ABox A� is obtained
from A� by adding C�a�� and the ABox A� is obtained from A� by
adding D�a�

The modi�ed exists�restriction rule� Assume that ��R�C��a� is in A�
One generates a new individual name b� and obtains A� from A� by
adding R�a� b� and C�b�

Since the modi�ed exists
restriction rule can be applied in�nitely often to
the same fact ��R�C��a� the modi�ed set of rules need no longer terminate
But it is easy to see that the �rst two properties stated in Proposition �	
still hold This will be su�cient for our purposes

Lemma ��� Let A��A� be labelled ABoxes such that A� is obtained from A�

by application of the conjunction �resp� exists�restriction� value�restriction�
rule� Then we either have ��A�� � ��A��� or ��A�� is obtained from
��A�� by application of the �unlabelled� conjunction �resp� modi�ed exists�
restriction� value�restriction� rule�

Proof� �	� Assume that the conjunction rule is applied to the assertional
fact �C uD��a�� and that this fact has index 
 in A�

First� consider the case where ��
� � false In this case� we have ��A�� �
��A�� In fact� if C�a� �resp D�a�� is not in A� then this fact has index 
 in
A� Since ��
� � false this means that C�a� �resp D�a�� is not in ��A�� If
C�a� �resp D�a�� is an element of A� with index � then C�a� �resp D�a��
has index � � 
 in A� Since ��
� � false we have ��� � 
� � ����� which
shows that C�a� �resp D�a�� is an element of ��A�� i� it is an element of
��A��

Now assume that ��
� � true Thus �C uD��a� is an element of ��A��
Since A� is obtained by extending A� by C�a� and D�a�� both with index 
�
we also know that C�a� and D�a� are contained in ��A�� If both facts are
already present in ��A�� we have ��A�� � ��A�� Otherwise� ��A�� can be
obtained from ��A�� by applying the conjunction rule to �C uD��a�

��� Assume that the value�restriction rule is applied to the assertional
facts ��R�C��a� and R�a� b�� and that these facts respectively have index 
�
and 
� in A�

As for the conjunction rule� ��
� � 
�� � false implies ��A�� � ��A��
Thus assume that ��
� � 
�� � true Then ��R�C��a� and R�a� b� are con

tained in ��A�� Since A� is obtained by extending A� by C�b� with index

� � 
�� we know that C�b� is an element of ��A�� If this assertional fact
is already present in ��A�� then ��A�� � ��A�� Otherwise� ��A�� can be
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obtained from ��A�� by applying the value
restriction rule to ��R�C��a� and
R�a� b�

��� Assume that the exists�restriction rule is applied to the assertional
fact ��R�C��a�� and that this fact has index 
 in A�

The case where ��
� � false is again trivial Thus assume that ��
� �
true Then ��R�C��a� is an element of ��A�� The labelled ABox A� is
obtained from A� by generating a new individual b� and adding C�b� and
R�a� b� to A�� both with index 
 For this reason� C�b� and R�a� b� are con

tained in ��A�� We can obtain ��A�� from ��A�� by applying the modi�ed
exists
restriction rule to ��R�C��a� �without loss of generality we may assume
that the newly generated individual is called b� It should be noted that the
�unmodi�ed� exists
restriction rule need not be applicable since ��A�� may
well contain an individual c and assertions C�c� and R�a� c�

For the disjunction rule� we have a similar lemma

Lemma ��� Let A��A��A� be labelled ABoxes such that A��A� are obtained
from A� by application of the disjunction rule� Then we either have ��A�� �
��A�� � ��A��� or ��A��� ��A�� are obtained from ��A�� by application of
the �unlabelled� modi�ed disjunction rule�

Proof� Assume that the disjunction rule is applied to the assertional fact
�C tD��a�� and that this fact has index 
 in A�

If ��
� � false then ��A�� � ��A�� � ��A�� This can be shown as in
the corresponding cases in the proof of Lemma ��

Thus assume that ��
� � true Then �C tD��a� is an element of ��A��
In addition� we know that C�a� is contained in ��A�� and that D�a� is
contained in ��A�� If both C�a� and D�a� are already present in ��A��
then ��A�� � ��A�� � ��A�� Otherwise� we can obtain ��A��� ��A�� from
��A�� by applying the modi�ed disjunction rule to �C t D��a� It should
be noted that the �unmodi�ed� disjunction rule need not be applicable since
��A�� may well contain one of C�a� and D�a�� but not both

Now assume that we have obtained the complete ABoxes A�� � � � �An by
starting with A�B� and applying the rules of the labelled consistency algo

rithm as long as possible By Lemma �� and ��� and since the �modi�ed�
rules of the unlabelled consistency algorithm preserve solvability� we know
that ��A�B� � A�Q is consistent i� one of ��A��� � � � � ��An� is consistent
The next lemma implies that these projected ABoxes are also complete

Lemma ��	 Let A� be a labelled ABox to which none of the rules of the
labelled consistency algorithm applies� Then none of the �unmodi�ed� rules
of the unlabelled consistency algorithm applies to ��A���
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Proof� We consider an assertional fact �C u D��a� in ��A��� and show
that the conjunction rule cannot be applied to this fact in ��A�� �The other
cases can be treated similarly�

Since �C u D��a� is present in ��A�� its index 
 in A� satis�es ��
� �
true Completeness of A� implies that the �labelled� conjunction rule is not
applicable to �C uD��a� in A� For this reason� A� contains the assertional
facts C�a� and D�a�� and their indices �say ��� ��� are implied by 
 But
then ��
� � true implies ����� � true � ����� Thus C�a� and D�a� are
contained in ��A��� which shows that the conjunction rule is not applicable
to �C uD��a� in ��A��

Since A�� � � � �An are complete we thus know that ��A��� � � � � ��An� are
complete as well Now Proposition �	 implies that ��Ai� is inconsistent i�
it contains a clash A particular clash A�a���A�a� � Ai is still present in
��Ai� i� � evaluates ind�A�a��� ind��A�a�� to �true� Now let �i��� � � � � �i�ki

be the formulae expressing all the clashes in Ai Obviously� ��Ai� contains
a clash i� � evaluates

Wki
j�� �i�j to �true� For this reason� all the ABoxes

��A��� � � � � ��An� contain a clash i� � evaluates to �true� the clash formula

n�
i��

ki�
j��

�i�j

computed by the labelled consistency algorithm This concludes the proof of
Proposition ��

Extension to ALCF
In the remaining part of this section we shall sketch how the above described
algorithm can be extended to handle the attributes and agreements ofALCF 

Attributes in exists
 and value
restrictions are treated like roles Applying
the exists
restriction rule to two assertional facts ��f�C��a� and ��f�D��a� in

troduces two di�erent individual names c� d with the assertional facts f�a� c��
f�a� d� If f is an attribute� this means that c and d have to be interpreted
as the same individual This shows that we can no longer have a unique
name assumption for the individuals which are introduced by rules For this
reason� we shall now distinguish between �old� individuals� ie� individuals
present in the original ABox A � B� and �new� individuals introduced by
rule applications New individuals are not subjected to the unique name
assumption In order to make the constraint that c� d have to be interpreted
by the same individual explicit� the consistency algorithm for ALCF �see
�		�� identi�es these two individual names� eg� by replacing every occur

rence of c by d In the labelled consistency algorithm� instead of making
an actual replacement� we just introduce an equality fact c � d Of course�
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this equality has to be equipped with an index� in the same way as other
facts are Here the fact c � d gets index ind�f�a� c�� � ind�f�a� d�� if it is
newly introduced� otherwise one takes the disjunction of its old index with
ind�f�a� c�� � ind�f�a� d�� In case ind�f�a� c�� � ind�f�a� d�� implies the old
index� nothing has to be changed

With the help of the equality facts� it is easy to formulate an agreement
rule� In principle� the agreement rule applied to �f� � � � fm

�
� g� � � � gn��a� in


troduces the assertional facts f��a� c��� � fm�cm��� cm�� g��a� d��� � gn�dn���
dn� and cm � dn� where c�� � dn are new individual names Applicability of
this rule� and the indices of the new facts �or new indices of existing facts�
are de�ned analogously to the other rules

The equality facts de�ne an equivalence relation on individual names�
which has to be taken into account when �ring rules or looking for clashes
Premises of rules have to be read modulo this equivalence For example� this
means that the value
restriction rule may be applicable to the facts ��R�C��a�
and R�a�� b�� if there are equalities a � a�� a� � a�� � � � � an � a� in the ABox
Of course� the indices of these equalities have to contribute to the new index
of C�b� as well On the other hand� this rule need not be applied if there
exists an assertional fact C�b�� and equalities b � b�� b� � b�� � � � � bm � b� such
that ind���R�C��a�� � ind�R�a�� b�� � ind�a � a�� � � � � ind�an � a�� implies
ind�C�b��� � ind�b � b�� � � � � ind�bm � b��

Similarly� there is a clash if A�a� and �A�a�� is in the ABox� along with
equalities a � a�� a� � a�� � � � � an � a� Because we still have unique name
assumption for the old individuals� the equalities may cause another kind of
obvious contradiction We have a clash if a� a� are old individuals and there
are equalities a � a�� a� � a�� � � � � an � a� in the ABox The index associated
with this clash is ind�a � a�� � � � � � ind�an � a��

To sum up� we thus have a solution of the two algorithmic problems
described at the beginning of this section Together with the methods of
Section � this give us e�ective procedures to compute all extensions of ter

minological default theories

	 Conclusion

We have investigated the integration of Reiter�s default logic into a termi

nological representation formalism� and have shown that the treatment of
open defaults by Skolemization is problematic� both from a semantic and an
algorithmic point of view For this reason� we have considered a restricted se

mantics where default rules are only applied to individuals explicitly present
in the knowledge base This treatment of default rules is similar to the treat

ment of monotonic rules in many terminological systems� which means that
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users of such systems are already familiar with the e�ects this restriction to
explicit individuals has However� because of the nonmonotonic character of
default rules� this restriction may sometimes lead to more consequences than
would have been obtained without it

With respect to the restricted semantics� the methods of Junker and
Konolige and of Schwind and Risch for computing all extensions of a default
theory can be applied We have shown how the algorithmic requirements
for Junker and Konolige�s method �ie� the computation of minimal incon

sistent sets of assertional facts� and for an optimized algorithm based on a
theorem of Schwind and Risch �ie� the computation of maximal consistent
sets of assertional facts� can be solved by an extension of the tableaux
based
algorithm for assertional reasoning

As an alternative to the pragmatic solution described in the present pa

per� ��� proposes a new semantics for open defaults� in which defaults are
also applied to implicit individuals To make this possible without encoun

tering the problems pointed out in Section �� open defaults are not viewed
as schemata for certain instantiated defaults Instead� they are used to de

�ne a preference relation on models� which is then treated with a modi�ed
preferential approach

According to Reiter�s semantics the speci�city of prerequisites of rules
has no in�uence on the order in which defaults rules are supposed to �re In
��� we describe a modi�cation of terminological default logic in which more
speci�c defaults are preferred
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