
SmartTies
Management of Safety-Critical Developments?

Serge Autexier, Dominik Dietrich, Dieter Hutter, Christoph Lüth, and
Christian Maeder

Cyber-Physical Systems, DFKI Bremen, Germany

Abstract. Formal methods have been successfully used to establish as-
surances for safety-critical systems with mathematical rigor. Based on
our experience in developing a methodology and corresponding tools for
change management for formal methods, we have generalised this ap-
proach to a comprehensive methodology for maintaining heterogeneous
collections of both formal and informal documents. Although informal
documents, like natural language text, lack a formal interpretation, they
still expose a visible structure that reflects different aspects or parts
of a development and follows explicit rules formulated in development
guidelines. This paper presents our general methodology for maintain-
ing heterogeneous document collections and illustrates its instantiation
in the SmartTies tool that supports the development of safety-critical
systems. SmartTies utilises the structuring mechanisms prescribed in a
certification process to analyze and maintain the documents occurring
in safety-critical development processes.

1 Introduction

With the advent of sophisticated intelligent systems (so-called cyber-physical
systems), there is an increasing need to guarantee the safety of such systems.
Formal methods have been successfully used to establish such assurances by
providing mathematical proofs that specifications or implementations satisfy re-
quired properties. Industrial applications revealed that a flexible, evolutionary
formal development approach which efficiently supports changes is absolutely
indispensable as it was hardly ever the case that the development steps were
correctly designed in the first attempt.

In contrast, standards like IEC 61508 [10] or DO-178B [14] address the prob-
lem of establishing trust in such systems by regulating the development process,
requiring that all design decisions and safety arguments are documented in metic-
ulous detail. The documents arising during the development mutually depend on
each other, and changes in one document typically give rise to changes in oth-
ers. This makes changes cumbersome, thus decreasing flexibility. Further, the
amount of these dependencies explodes with the size of the developed system.

? This work was funded by the German Federal Ministry of Education and Research
under grants 01 IW 07002 and 01 IW 10002 (projects FormalSafe and SHIP)

2 Autexier, Dietrich, Hutter, Lüth, Maeder

There is a need for an efficient computer-aided document management that keeps
track of the various dependencies in and between documents occurring during
the development of safety-critical systems.

Existing tools do not cover this in full generality. They either cover specific
aspects of the development process (like DOORS [9], which handles require-
ments, or the iACMTool [6], which handles UML models), or are specialised
to a specific application domain and development methodology (for example,
PREEvision [12] to develop safety-critical systems in the automotive industry
using a model-based approach); they incorporate specialised knowledge about
the underlying domain in fixed rules for maintenance.

Our goal is a generic maintenance and change management tool that can be
tailored to deal with heterogeneous document collections, to maintain the cor-
responding dependencies and relationships, and to exploit them to propagate or
to restrict the impact of changes made in the documents [8]. The contribution
of this paper is the SmartTies tool, which supports the document types, opera-
tions and the workflow typically occurring in the development and certification
of safety-critical software.

SmartTies is built on top of the pure document-management system DocTip,
which is entirely parametric in the document type and change impact analysis
rule systems, and extends it by specific document types, impact analysis rules
systems, support for the development and certification workflow, as well as a
web-based front-end and mediators converting between the document formats
edited by the user and their internal, semantics-oriented representation. In the
following, we will not explicitly distinguish between SmartTies and DocTip.

The paper is organised as follows: In Sec. 2 we introduce all the documents,
relationships and consistency properties occurring in a software development
process regulated by the IEC 61508 and required by a certification authority
like the German TÜV. In Sec. 3 we present the different document types and
relationships in order to analyse the properties of the whole document collection.
Sec. 4 discusses the principles of document-type specific difference analysis and
change impact propagation and Sec. 5 presents the structures, relationships and
properties maintained in SmartTies as well as the supported workflow.

2 Developing Safety Critical Systems

Our running example here is the development of a system that calculates a
safety zone for a moving, autonomous robot, thus safeguarding the robot against
collisions with static obstacles. It is a very much simplified version of an actual
development in the SAMS project [15] which was certified as conforming to
IEC 61508 by the German TÜV. The documents occurring in this example are
representative of a typical medium-sized certification effort.

Document-type specific structure. Table 1 shows the document types occurring
in our example. We mainly have documents in OOXML (Office Open XML,
MS-Word’s native format) and C source code. All documents have an internal

SmartTies – Management of Safety-Critical Developments 3

Document type Content Structure Format

Concept paper Describe fundamental concepts of the sys-
tem

Prose OOXML

FTA Fault Tree Analysis, models combinations
of fault events leading to a safety failure

Table OOXML

FMEA Software Failure Modes and Effects Anal-
ysis, describes possible causes of failure

Table OOXML

SRS Safety Requirement Specification, enu-
merates requirements that are necessary
to guarantee system safety

Table OOXML

Test plan Enumerates all test cases, together with
their current status

Table XML

Test suites Contains the test driver functions Functions C code
Implementation The actual implementation Functions C code

Table 1. Document types occurring in a safety-critical development process, together
with their inherent structure and document format.

structure that results from their designation and the formalisation prescribed
by the certification process. The concept paper introduces the underlying phys-
ical models for computing movement and braking of a vehicle that are used
as given assumptions in the software design process. It consists of prose text
possibly containing images and mathematical formulae. The fault tree analy-
sis (FTA) decomposes the undesired event of a collision with an obstacle down
to low-level fault events. The failure mode and effects analysis (FMEA) starts
from possible failures and analyses how they may contribute to a failure of the
safety function. The safety requirement specification (SRS) is an enumeration of
functional requirements ensuring the safety of the vehicle based on the afore-
mentioned physical models. All these documents are OOXML documents and
have document type specific structure and content: a row in a table of the fault
tree analysis document describes one undesired event, and a row in the FMEA
describes a single failure mode, while a row in a table of an SRS document de-
scribes a safety requirement. A table in a concept paper, however, is simply a
table without further document type specific semantics. The test plan consists
of all the test cases, stored in plain XML and edited over the web front-end;
implementation and test suites are MISRA-C source files, structured by the
underlying programming language (here, function definitions and declarations).

Document graph. The structure gives rise to relationships within and between
documents. Each basic semantic entity, such as safety requirements, fault events,
failure modes, test cases, or functions, can be linked to others. This resulting
graph structure, visualised exemplarily in Fig. 1, must satisfy a number of prop-
erties, which encode the restrictions on the development process prescribed by
the certification standard.

4 Autexier, Dietrich, Hutter, Lüth, Maeder

SR-1 The braking area should
be calculated according to (2).

TC_023,
TC_024.

The braking distance
is calculated as

 S = (2)
v0

2 abrk

Concept paper
Safety Requirement Spec

Test plan

TC-023
Tests wether the function
comp_safetyzone
calculates the braking area
correctly for w= 0.13, v= 0.75.

test_023

Test suite

void test_023()
{
 double w= 0.13, v= 0.75;
 double res; int st;
 ...
 st= comp_safetyzone(w, p, &res);
 CU_ASSERT_EQUAL(res, 0.46356);
 ...
}

int comp_safetyzone(double w,
 double v, double res);
{
 double s= 0;
 ...
 s= v / 2* conf-> a_brk;
 ...
 return OK;
}

Implementation

Fig. 1. Example document graph

Document collection properties. As a simple property, identifiers must be unique
throughout the whole document collection. Further, each leaf fault event must
reference at least one existing requirement. A requirement must either be decom-
posed into other requirements, or reference an existing function implementing
the requirement and an existing test case in the test plan. Each test case must
reference the function it is testing and the test driver function implementing the
test. For sanity reasons, each test case must serve a purpose, so it must either be
directly referenced from a requirement or it must be a precondition of at least
one other test case. As a last example, safety requirements are the outcome of
a hazard analysis documented in an FTA or FMEA, and we specify that each
safety requirement has to be referenced by a fault event or failure mode. Though
some automatic testing of properties exists for specific documents, checking all
properties is typically done manually and automation is highly desirable. In
particular, while we can check the presence of a link automatically, we cannot
check that it is justified — we cannot deduce that a test case really tests the
desired property. While we can assume that initially manual reasoning and re-
view will be sufficient (if performed and documented properly), it is essential
that when changes occur we can pinpoint their effects in terms of the manual
reviews necessary.

SmartTies – Management of Safety-Critical Developments 5

Fig. 2. Excerpt of the Safety Requirements Specification (in German)

3 Document Management

Each version of a document arising during the development process represents
the state of the development, documenting and justifying design decisions made
at that particular point in time. In early software development methodologies
these documents were developed sequentially (waterfall model [13]). While this
has the advantage that design decisions once made never have to be reconsidered,
and thus assumptions can never become invalid, the underlying premiss that de-
velopment can be finished successfully with the first attempt has proven highly
unrealistic. Therefore, recent methodologies (such as agile development [5]) ad-
vocate an intertwined approached resulting in a parallel evolution of numerous
documents. In this approach, changes occur frequently, and system support is
needed to ensure they do not break the development.

Thus, we need systems which can handle and maintain change. However, as
demonstrated in Sect. 2, there are number of different document types and for-
mats, all with different editing tools, accompanied by tools such as compilers,
test frameworks which run test suites and analyse the result, or verification tools
to analyse and prove formal specifications. To handle change in this setting uni-
formly, we have developed a document broker called DocTip1 that maintains and
propagates changes and advances of individual documents to related documents.
The general idea is that DocTip is notified about changes in documents made
in the individual editing or analysis tools, computes their effects on other doc-
uments and initiates the necessary changes in the affected documents. DocTip
is generic with respect to the document types supported and provides generic
mechanisms to add new document types to the system [1, 3].

Generic Representation of Documents. We use XML as a common metalan-
guage to represent explicitly the structure of documents that is intrinsic to their

1 http://www.dfki.de/cps/projects/doctip

6 Autexier, Dietrich, Hutter, Lüth, Maeder

<Document>
...
<srs>
<csrs component="Primäre Sicherheitsanforderungen">
<reqspec>
<reqid name="SR-1"/>
<description>
<paragraph>
<text> Das berechnete Schutzfeld muss die gesamte beim Bremsen bis zum Stillstand

wie durch das Bremsmodell beschrieben überstrichene Fläche überdecken.
</text>

</paragraph>
</description>
<measures>
<paragraph> <ref kind="function" name="IMPL-compute_safetyzone"/> </paragraph>
<paragraph> <ref kind="testcase" name="TC-test_safetyzone"/> </paragraph>
<paragraph> <ref kind="label" docid="DOK-K-1" name="TestSafetyzone"/> </paragraph>

</measures>
</reqspec>
<reqspec>
<reqid name="SR-2"/>
<description><paragraph><text>Das berechnete Schutzfeld muss eine Latenzzeit von </text>
<formula style="inline">...</formula>
<text> beinhalten, in der das Fahrzeug mit unveränderter Geschwindigkeit

und Richtung weiterfährt.</text></paragraph>
</description>
<measures><paragraph><ref kind="requirement" name="SR-3"/> <text>, </text>
<ref kind="requirement" name="SR-4"/></paragraph></measures>

</reqspec>
...

</csrs>
</srs>
</Document>

Fig. 3. Corresponding XML version of the excerpt of the Safety Requirement Table

individual types. For instance, consider the safety requirement specifications.
While written and edited in MS-Word, DocTip maintains an XML representa-
tion that explicitly segments the document in tables of safety requirements and
their relations to implementation and environment descriptions. Document type
specific parsers encode documents in XML and thus enable DocTip to maintain
them but also decode modified XML versions back to the original document
language. In SmartTies we developed encoders and decoders for the individual
document types that are, for instance, used by MS-Word (which uses a different,
richer layout information, but provides less content structure). The correspond-
ing document type specific XML languages provide the structuring mechanisms
for both, the generic outline of OOXML documents and the (partial) knowl-
edge about the semantics of the individual document parts. Depending on the
degree of natural language understanding and of syntactical restrictions by the
document type (e.g. by using domain specific languages), we obtain a more shal-
low or deep XML encoding of informally written documents containing more
or less chunks of non-parseable document fragments. As an example, consider
Fig. 2 showing the original document as presented by MS-Word, and Fig. 3 the
representing XML document making the implicit structure explicit.

Generic Document Analysis. The key idea to design change impact analysis
(CIA) for informal documents is the explicit semantics method which represents

SmartTies – Management of Safety-Critical Developments 7

both the syntax parts (i.e., the documents) and the intentional semantics con-
tained in the documents in a single, typed hyper-graph (see [4] for details).
Document-type specific graph rewriting rules are used to extract the intentional
semantics of documents and the extracted semantic entities are linked to their
syntax source, i.e. their origin. The semantic graph is then analyzed to determine
and propagate the impact of changes through the semantic graph, which are then
projected backwards along the origin links to the syntactic nodes of the graph.
A corresponding impact annotation for the syntactic part of the documents is
then generated.

Generic Difference Analysis. Changes made to documents are recognised by
analysing the differences between the different versions of the corresponding
XML documents. Encoding all sorts of documents into different XML-based
languages allows us to make use of XML-based tree-difference algorithms to
compute differences between different versions of a document and represent the
changes in terms of a uniform language and protocol (XML update, [4]). While
we use a uniform XML diff algorithm to analyze differences of documents, this
algorithm is adjusted to the individual document types by defining individual
equivalence relations for each of them. These equivalence relations are used to de-
termine which subtrees in two documents are similar and thus should be related
to each other. This allows the diff algorithm to abstract from syntactical presen-
tation issues that would otherwise prohibit the matching of related document
parts. Equivalence relations are defined in terms of XML elements, attributes
and subelements which identify corresponding XML subtrees.

DocTip relies on the XML update protocol to integrate changes obtained
from the user interfaces or supporting analysis systems. Any change reported to
DocTip is analyzed by the change management, which computes the impacts of
these changes on other parts of a document or even in other documents. The
propagated impacts are included in the documents maintained by DocTip, and
passed along to the affected user interfaces and support systems.

In general, adding a new document type to DocTip involves the definition of
the following:

• an XML language by an XML schema S and an additional predicate P to
enforce properties of a document that are not covered by schema definitions.
A document D is of type S iff D satisfies the scheme S. It is admissible with
respect to S, P iff D satisfies S and P (D) holds.
• an invertible extraction function ω to extract the XML representation from the

actual syntax A of the document D, and to generate the actual syntax from the

A D T Ker Mod
ω ' ϕ ρ

π

Fig. 4. Document type specific analysis: A are the documents of that type in their
actual syntax, D the XML sublanguage for those documents, T the corresponding
text-graphs, Ker the model kernels, and Mod the model graphs.

8 Autexier, Dietrich, Hutter, Lüth, Maeder

ST Testcase ST Function
name: IMPL Bremsweg

ST ContentTracker

CodeFragment

...

Testcase

Testcase Status

Attribute
value: success

Testcase specification Function implementation

ST TestFunction

ST IsContentOf

Origin

Origin

:isin

IsAttribute

Fig. 5. Examples for text graph, model kernel and full model from the safety-critical
software development domain

XML representation. The extraction process then works as follows: Given A,
check whether ω(A) is admissible. If so, a text graph is computed. The graph
structure correlates to the (parse) tree representation of XML documents.
Hence, there is a one-to-one relationship between an XML document and its
corresponding text graph, i.e. we can construct the XML document from its
text graph and vice versa. A text graph is admissible iff its corresponding
XML document is admissible. The subtrees in dotted boxes in Fig. 5 show
parts of the text graphs from a testcase specification and an implementation.

• a document type specific ontology that describes the semantic concepts and
their relationships.

• an abstraction function ϕ that computes the model kernel from the text graph.
In contrast to the text graph, the model graph operates on semantic entities
and their relationships, i.e., it consists of nodes and edges that correspond to
the concepts and relationships that are defined in the corresponding ontology.
The model kernel has the property that each of its entities is linked to a
fragment of the text document, i.e. a node/link in the text graph, that caused
its generation. E.g. a safety requirement node in the model kernel graph is
linked to the corresponding text (i.e. the corresponding subtree in the XML
description, representing the row in a table) defining it. Or the test case node
in the model kernel graph is linked to the corresponding textual description,
and the source code node in the model kernel graph is linked to the original
source code (see Fig. 5). The idea is that the text graph will generate a model
kernel which is expanded by semantic analysis to a fully fledged model graph.

• a document type specific propagation function ρ that computes the model
graph by adding new nodes and edges to the model kernel (also from the
corresponding ontology), representing derived information. E.g., in Fig. 5 the
test case node in the model kernel is related to the tested source code node.

• a document type specific projection function π that maps derived information
back to the text graph such that it can be presented to the user via ω.

• a document type specific equivalence model ≡ to be able to compute the
difference between two documents D and D′ of the same type.

SmartTies – Management of Safety-Critical Developments 9

Fig. 4 summarises the functions that need to be provided for each document
type, as well as their relations. The typical workflow is as follows: (1) Extract
the XML representation using ω, (2) generate the text graph, (3) generate the
initial model using ϕ, (4) compute the enriched model using ρ, (5) projecting
the changes back using π, and (6) propagating the information back to the user
document using ω−1.

4 Change Management

In [2, 11] we presented tools to maintain structured specification and verification
work in order to minimise the amount of proofs to be redone when modifying a
specification. This idea is now extended from theories to heterogeneous document
collections and from provers to arbitrary semantic analysis tools: we propagate
the syntactical changes observed by the XML diff algorithm towards a change
in the semantics and analyse these changes with respect to the deduced or user-
postulated properties. In the following we will elaborate in more detail.

As explained in Sec. 3, each document A gives rise to an XML document
ω(A) which induces a text graph T . Changes A → A′ in the document thus
result in changes T → T ′ of the corresponding text graph, which in turn cause
changes ϕ(T) → ϕ(T ′) in the model kerneland therefore also changes in the
preconditions of derived entities, rendering parts of the old model graph invalid
but also potentially enabling the deduction of new entities.

Since we are interested in the development process of documents, it is crucial
to encode explicitly what information changed from one version to another. This
is because stateful information, e.g., the result of executing a test case, might
invalidate due to a change, e.g., a change of the source code of the function that is
tested. Therefore, recomputing the model graph from scratch is not an option, as
it would not give us information about the changed parts, and therefore restrict
our approach to stateless properties.

Our solution consists in specifying graph rewrite rules that adapt a given
model graph based on the result of the difference analysis of the text graphs.
Thus, applying the rules propagates the differences ∆T to the kernel, such that
they are explicitly represented in ∆Ker (c.f. Fig. 6). Finally, the analysis function
ρ is invoked in ∆Ker to change derived properties in the model graph.

The transformation is successful if we reach a model graph that is consistent
with the new model kernel and incorporates the same level of analysis as the old
model graph. We define consistency by specifying the set of all consistent model
graphs by providing a predicate Pmod. Pmod(D) is true iff D is an element of
this set. Pmod is invariant with respect to the insertion of derived knowledge, i.e.
starting with a consistent model kernel the model graphs that are derived step
by step by applying transformation rules (assuming an empty old model graph)
will always stay consistent. Typically, Pmod is provided by a set of consistency
rules defining (sub)graph properties that each model graph has to satisfy.

Adapting an old model graph to a changed model kernel, we have to adjust,
delete or insert derived entities in the old graph to match the consistency rules

10 Autexier, Dietrich, Hutter, Lüth, Maeder

A ω(A) T Ker Mod

∆A ∆T
Ker∩Ker’

+∆Ker

Mod∩Mod’
+∆Mod

A′ ω(A′) T ′ Ker’ Mod’

ω ' ϕ ρ

ω ' ϕ ρ

ϕ ρ∆Ker

Fig. 6. Change Management: Changing a document A to A′ induces changes in the
text graph T , in the model kernel Ker, and in the model graph Mod. The differences
∆T of the text graph are propagated to determine ∆Ker and finally analyzed to derive
the changes of the model graph.

together with the new kernel graph. This transformation process will start at
differences between old and new kernel graph and will ripple along the lines of
analysis of the old model graph computing implicitly the differences between old
and new model subgraphs. This process obviously stops when there is no way
to adapt the lines of reasoning appropriately without violating the consistency
rules. As usual there are two ways to resolve such a conflict. First, we can drop
the further adoption of the old model graph (i.e. throwing away knowledge about
old bits that have been changed in the meanwhile). Second, we can speculate
about necessary changes in the already computed model (sub)graph in order to
satisfy the violated consistency rule and to propagate these required changes
back to the model kernel (and further to the text graph). Which way we proceed
depends on the character of the violated consistency rule.

Change Management in the Small. The graph transformation process is imple-
mented with the help of a graph rewriting tool GrGen [7], which operates on
typed and directed multi-graphs with multiple inheritance on node and edge
types. In addition these types can be equipped with typed attributes and con-
nection assertions to formulate restrictions on graphs.

ST TestcaseFunctionChanged
descr: IMPL Bremsweg

ST Function
name: IMPL Bremsweg

ST ContentTracker
CIAStatus: modified

CodeFragment

...

Testcase

Testcase Status

Attribute
value: Open

Testcase specification Function implementation

CIAAnnotate ST TestFunction

ST IsContentOf

Origin

Origin

:isin

IsAttribute

Fig. 7. Excerpt of the document graph and its changes

SmartTies – Management of Safety-Critical Developments 11

For example, consider the relationship between the code of IMPL Bremsweg

and the corresponding test cases that are used to validate the implementation.
Changing the implementation, the corresponding tests specified in the test plan
have to be redone. Fig. 7 presents the part of the model graph concerning the
relation between the implementation of IMPL Bremsweg and the test case specifi-
cation. The model kernels of implementation and test cases are indicated by dot-
ted lines. The model graph connects both kernels making the relation between
both documents explicit (linking test case and code fragment via ST Testcase,
ST Function and ST ContentTracker).

Now suppose the implementation of IMPL Bremsweg is changed. Comparing
the XML versions of old and new version with the help of the XML-diff algorithm
SmartTies localises the changes and adds both old and new version of the im-
plementation of IMPL Bremsweg into the model graph. The propagation of such
a change is done with the help of GrGen graph rewrite rules. Since we are not
interested in the details of the changes here, the GrGen rewrite rules will simply
annotate the new implementation as changed by setting the CIA Status attribute
of ST ContentTracker to “modified” and removing the old version from the model
graph. In a second propagation phase this local change has to be propagated to
the entire development using GrGen rewrite rules.

In general, GrGen rules specify rewrite rules on graphs allowing for pattern,
replace and modify specification. A pattern matcher performs plain isomorphic
subgraph matching as well as homomorphic matching for selectable sets of nodes
and edges. Fig. 8 shows the rule used to propagate the modification of the imple-
mentation to the status of the tests. The block between iterated and modify con-
stitutes the pattern of subgraphs on which the rule is applicable. Furthermore,
the matches can be restricted by arithmetic and logical conditions on attributes
and types, in our example we are only interested in changed implementation
nodes, i.e if { c.status == CIAStatus::modified; }. Applying this rule to
the subgraph printed in black in Fig. 7 results in the red additions: a node Func-

tionChanged is added to the graph and linked to ST Testcase. Additionally, the
value in the node Attribute is changed to “open”, indicating the necessary re-
run of the test cases. In a third phase the impacts of the change propagation to
individual document parts are computed. Either they are automatically adapted

rule resetTestsWithChangedFunction {
iterated {

stc :ST Testcase <−:ST TestcaseFunction− stcused:ST Function;
stcused <−l:ST IsContentOf− c:ST ContentTracker;
if { c. status == CIAStatus::modified; }
stc −:Origin−> tc2:testcase;
tc2 <−:isin− status: testcasestatus <−:IsAttribute− statusattr : Attribute ;
modify {

stc <−:CIAAnnotate− a:ST FunctionChanged;
eval { a. description = a. description + stcused.name;

statusattr . value = "open"; } }
}

modify {}
}

Fig. 8. Graph Transformation Rule to Actualize Tests

12 Autexier, Dietrich, Hutter, Lüth, Maeder

or if this is impossible (because, e.g., manual interaction is required) comments
on necessary changes are added (e.g. as comments) to the document (cf. Fig. 10
for such annotations within the Safety Requirement Specification, SRS).

Change Management in the Large. In the following we sketch a typical scenario
illustrating the cascade of changes during a development. In our running exam-
ple, suppose a prototype of the system has been developed, comprising a concept
paper, which contains the formula to calculate the braking distance, an FTA and
an SRS which state inter alia that the braking distance must be calculated ac-
cording to this formula, an implementation of the calculation of the safety zone,
and test cases which check correctness of the calculation for various inputs.

The prototype is presented for internal review to the quality assurance de-
partment, and sure enough there is an error in the actual formula calculating the

braking distance (it was s = v0
2abrk

, and should have been s =
v20

2abrk
). This causes

a series of corrections which ripple down the development graph (see Fig. 1):

1. The formula is corrected, and an analysis is triggered. Because there is a
reference link to the formula from safety requirement SR-1, the correction in
the formula will flag up an annotation in the safety requirement specification
at SR-1 to check this event or requirement, respectively. Because we do not
deal with the semantics of the formula, we cannot deduce what changes
need to be made, but we can ask the specifier to recheck that SR-1 and its
handling are still valid.

2. The specifier discovers that SR-1 as written is still valid, because they refer-
ence the formula and do not copy it verbatim, but SR-1 references test cases
TC-023 and others. Test case TC-023 refers to rest function test_023. This
test function is now wrong (or rather, the reference link is wrong), because
the test data are calculated using the old (wrong) formula. The test functions
are corrected, and another document analysis is run. This will invalidate the
test results, as the test functions are now newer than the results.

3. The tests are re-run, and the their results uploaded into SmartTies. The
changed tests covering SR-1 now fail, because the implementation in function
comp_safetyzone uses the old formula.

4. The function comp_safetyzone is adapted, and assuming this is done in
the correct way, the tests will now succeed again. A final document analysis
asserts everything is consistent again, and we can re-present the documents
for the next internal review.

Of course, in an example as small as this, a circumspect developer might make all
changes in one go, but in larger developments, this type of support rippling small
changes along the dependencies is the key to handling changes efficiently. Also,
the initial error may have been rather obvious, but it is typical of a class errors
which occur quite often but have wide-ranging consequences on the development
process, namely modelling assumptions that do not quite hold in the real world
(normally more subtle).

SmartTies – Management of Safety-Critical Developments 13

5 Document Semantics and Implementation

SmartTies supports the documents enumerated Table 1 which occur in the de-
velopment of safety-critical software in a certification context. We have defined
XML schemata which encode the semantic structure described rather straight-
forwardly. For these documents, SmartTies provides extraction functions ω as
follows:
– For concept papers, FMEAs, FTAs and SRSs, the structured content is ex-

tracted by functions which parse OOXML;
– The source code is parsed by the frontend of the SAMS verification frame-

work, and split into a sequence of external declarations;
– The test plan is kept as an XML document, and edited through the web

interface.
The consistency checks and change propagation rules have been implemented
using 49 graph rewrite rules and 66 graph test patterns.

As tools, SmartTies uses MS-Word for editing the informal text documents,
an IDE of the user’s choice for the source code, CUnit as the unit test framework
(with a simple parser extracting the test results from the log file and inserting
them into the test plan), and Subversion as the configuration management and
version control backend.

The system architecture is web-based: the SmartTies server allows the user
to upload or download documents, trigger the document analysis, and commit
and update from a Subversion repository. The user accesses the system by two
means: firstly, a plug-in for MS-Word allows to download and upload directly
from within MS-Word, and secondly, a web interface allows to download and
upload other documents, gives an overview over the current development status,
and allows to start internal and external reviewing (Fig. 9). When the user
triggers a document analysis, impacts in Word documents are reflected back to
the user by annotations which show up in MS-Word as comments (see Fig. 10).
This allows a seamless workflow within MS-Word.

The workflow is further supported by a document status cycling through
phases from in progress during development to approved after a successful ex-
ternal review; SmartTies keeps track of the status, makes sure changes to it are
properly documented by review reports, and versions the documents appropri-
ately. The review process is supplemented by a simple ticketing system, which
allows reviewers (in particular external) to register a list of open question which
the system developers have to account for.

6 Conclusion

This paper presented an application of the generic DocTip-methodology for
maintaining heterogeneous document collections in the area of safety-critical
systems. While the DocTip engine is generic with respect to document types
and operates purely on documents written in XML, SmartTies provides the nec-
essary encodings of the application-depending document types in XML and the

14 Autexier, Dietrich, Hutter, Lüth, Maeder

Fig. 9. The SmartTies web interface.

Fig. 10. Annotated Primary Safety Requirement Table (in German)

graph rewriting rules to propagate local changes in one document to the en-
tire document collection. This allows for flexible development environments in
which a user can provide or assemble specifications and corresponding propaga-
tion rules for their individually used document types. As a use case we applied
SmartTies for a development of a small project with five MS word documents
(concept paper, test concept description, FTA, SRS, and a user manual), a test
plan with 40 test cases, ca. 650 loc CUnit test suites, and 430 loc implementation
in C. We were able to successfully model the consistency rules and uses cases
from Sect. 2 and Sect. 4 in our system. The text graph for the whole collection
consisted of about 15000 nodes and the model graph of about 900 objects and
1500 relations. The analysis of a change using the graph rewriting rules consists
of about 900-1000 graph rewriting rules and takes about 8.7s on an 2.8 GHz
Intel Core i7 with 4GB RAM.

SmartTies – Management of Safety-Critical Developments 15

Up to now, instantiating the DocTip framework for a specific setting such
as SmartTies has been laborious work, especially when formalising the impact
analysis in terms of graph rewriting rules. However, we are working on general
patterns for such analysis rules that will simplify this process significantly.

References

1. S. Autexier, C. David, D. Dietrich, M. Kohlhase, and V. Zholudev. Workflows for
the management of change in science, technologies, engineering and mathematics.
In Conferences on Intelligent Computer Mathematics (CICM-11), 2011.

2. S. Autexier and D. Hutter. Formal software development in MAYA. In D. Hutter
and W. Stephan, editors, Mechanizing Mathematical Reasoning. Springer, LNCS
2605, 2005.

3. S. Autexier and C. Lüth. Adding change impact analysis to the formal verification
of c programs. In D. Méry and S. Merz, editors, Proc. 8th International Conference
on Integrated Formal Methods (iFM’10), LNCS. Springer, 2010.

4. S. Autexier and N. Müller. Semantics-based change impact analysis for heteroge-
neous collections of documents. In M. Gormish and R. Ingold, editors, Proc. 10th
ACM Symposium on Document Engineering (DocEng2010), 2010.

5. K. Beck. Embracing change with extreme programming. IEEE Computer, 32(10),
1999.

6. L. C. Briand, Y. Labiche, L. O’Sullivan, and M. M. Sówka. Automated impact
analysis of UML models. Journal of Systems and Software, 79(3):339–352, 2006.

7. R. Geiß, G. Batz, D. Grund, S. Hack, and A. Szalkowski. GrGen: A fast SPO-based
graph rewriting tool. In A. Corradini, H. Ehrig, U. Montanari, L. Ribeiro, and
G. Rozenberg, editors, Third International Conference on Graph Transformation
(ICGT 2006). Springer, LNCS 4178, 2006.

8. D. Hutter. Semantic management of heterogeneous documents. In Proc. Mexican
International Conference on Artificial Intelligence. Springer, LNAI 5845, 2009.

9. IBM. Rational DOORS. http://www-01.ibm.com/software/awdtools/doors/.
10. IEC. IEC 61508 – Functional safety of electrical/electronic/programmable elec-

tronic safety-related systems. IEC, Geneva, Switzerland, 2000.
11. T. Mossakowski, S. Autexier, and D. Hutter. Development graphs – proof manage-

ment for structured specifications. Journal of Logic and Algebraic Programming,
67(1–2):114–145, 2006.

12. C. Reichmann. PREEVision - bridging the gap between electrical/electronic and
mechanical areas. Automobile Konstruktion, 1:1–4, 2011.

13. W. Royce. Managing the development of large software systems: Concepts and
techniques. In ICSE, pages 328–339, 1987.

14. RTCA/DO-178B. Software Considerations in Airborne Systems and Equipment
Certification. RTCA, Inc., Washington, D.C. 20036, 1992.

15. H. Täubig, U. Frese, C. Hertzberg, C. Lüth, S. Mohr, E. Vorobev, and D. Wal-
ter. Guaranteeing functional safety: design for provability and computer-aided
verification. Autonomous Robots, 32(3):303–331, April 2012.

