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GeneTS� A Relational�Functional Genetic Algorithm for

the Traveling Salesman Problem

Markus Perling

August �� ����

Abstract

This work demonstrates a use of the relational�functional language RelFun for specify�

ing and implementing genetic algorithms� Informal descriptions of the traveling salesman

problem and a solution strategy are given� From these a running RelFun application is

developed� whose most important parts are presented� This application achieves good

approximations to traveling salesman problems by using a genetic algorithm variant with

particularly tailored data representations� The feasibility of implementing sizable applica�

tions in RelFun is discussed�

�
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� INTRODUCTION �

� Introduction

Important arguments for using declarative languages are the conciseness of program speci
�cations and support for e�cient highlevel program development� RelFun is a declarative
programming language that integrates the relational and functional paradigms� and we want
to demonstrate how RelFun combines the bene�ts of languages only embodying one of these
concepts� Furthermore� we want to show the feasibility of implementing serious projects in
RelFun� Both is done by giving an informal algorithmic description of our GeneTS� application
and systematically developing it into a complete RelFun program�
GeneTS searches good solutions for the �traveling salesman� problem �TSP� using a genetic al
gorithm �GA�� We chose the TSP because it is wellknown and constitutes a challenging testbed
for various optimization methods� as well as� like in our case� for programming paradigms� Also�
the combination of TSP and GA is a welldiscussed subject in the literature� see� e�g�� �Mic
���
�Gol	
�� on which our discussion is based �also see �RS
���� therefore our program will be com
parable to many other implementations� We will not detail here any discussion whether our
application is an evolution program or a genetic algorithm �see also �Mic
���� it doesn�t use
binary coding like GA�s in their original de�nition� but it still uses string coding �or� lists��
therefore we will speak of a GA� For direct comparisons between GAs in di�erent declara
tive languages one will �nd many �although mostly experimental and therefore undocumented�
implementations in Prolog� Lisp� Ei�el� Scheme� and others in the WWW �for a Lisp imple
mentation refer to �Koz
����
For further reading about the TSP� we suggest a recent text� �JM
��� It discusses several
optimization methods applied to the TSP� including genetic algorithms� and can be used as
backlink to earlier references� For remarks on the origins of the TSP see chapter �� in �Mic
��
and the footnote at the beginning of �DFJ���� The latter text is also the earliest reference we
found� �it is shown that a tour across �
 US cities has the shortest road distance��
This work is divided into two main parts� section � informally describes the TSP and GAs�
section � successively presents the conversion to their RelFun representation� There are two
appendices� Appendix A contains a pictorial sample trace of GeneTS applied to a chessboard
like city map� where the optimization process is visualized as an increase of ordering towards
an optimal route� In appendix B one �nds the complete source of the GeneTS program�

� The �Traveling Salesman� Problem and Genetic Algo�

rithms

In this section an introduction to the basic concepts of applying genetic algorithms to the TSP
is given� Originally� the idea for the project came from �Gol	
�� and we will follow the language
used in this book� Later� our implementation was modi�ed to �t to chapter �� of �Mic
��� which
describes the application of evolutionary algorithms to the TSP�

��� The �Traveling Salesman� Problem

The general TSP is to plan� as for a salesperson� the shortest possible route between a number
of cities� We neglect most of the restrictions that in real situations must be taken into account
�e�g� there may not exist a connection from each city to every other�� and assume that the
following holds�

� each city is connected to every other city�

� each city has to be visited exactly once�

� the salesman�s tour starts and ends at the same city

�GENEtic Traveling Salesman
from Webster�s NewWorld Dictionary� ge � net n� �ME� � OFr� genette � Sp� gineta � Ar� jarnayt� �� any of
a genus �Genetta� of small	 spottet African animals related to the civet �� its fur
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Using these assumptions� the heading �traveling salesman� should be interpreted generically
here� encompassing� e�g�� also the movement of a robot arm processing a circuit board�
The assumptions lead to a very simple model for the problem� a single tour� can be represented
by an enumeration of cities� by labeling each city with a number� a valid tour is expressed as a
permutation of the numbers �� � � � �m� if we consider m cities� E�g�

�� �� �� �� �� �

describes a tour starting at city number �� going across cities �� �� �� �� �� and ending at city
�� We assume that there exists a map of which the distances between each pair of cities can be
read o��
The search space for �nding the shortest path across m cities consists of all possible permu
tations of the numbers �� � � � �m and has therefore a size of �

�
�m � ���� the NPhardness of

the TSP was proven in �GJ�
�� In order to still cope with this� we give up trying to �nd an
optimal solution� Thus� our task is to �nd a reasonably fast algorithm generating satisfying
approximations�

��� A Bit of Genetics

It is assumed that the reader is already a little familiar �e�g� senior class level� with a few
fundamental biological facts concerning evolutionary processes� therefore� the main purpose of
this subsection is to make our terms clear�
Writing down number sequences � like the routes above � brings the structure of chromosomes
to mind� single �letters� from a �nite alphabet �A�G�C�T in real chromosomes� the numbers
�� � � � �m in the TSP�� become stringed together� The elements of the alphabet don�t have any
meaning in their own� only their ordering within the chromosome has� An organism�s properties
will be determined by subsequences of these chromosomes� �genes�� whose speci�c contents are
called �alleles��
In most higher species� individuals possess two samples of each chromosome� one inherited from
each parent� we call this �diploidity�� in contrast to a �haploid� set of genomes� In a diploid
genome set� each of the duplicate genomes can make contributions to the individuals appearance�
but often only one of both is expressed� This depends on the allele of the corresponding gene�
and we call this �dominance� of one allele over another� or� in the opposite case� an allele is
�recessive� �one remembers here Mendel�s laws��
We distinguish between an organisms appearance� the �phenotype�� and its genetic information�
the �genotype�� because the phenotype of an organism is not fully determined by its genotype�
but as well is in�uenced by its environment� Also� recessive genomes belong to the genotype�
but not to the phenotype�
A measure for the success of an individual�s interaction with its environment� its ��tness�� is
the number of its descendants� the better an individual copes with the environment� the more
descendants it will have� A descendant inherits its properties from its parents� therefore the
scions of successful individuals with high probability will also be successful and themselves have
more descendants�
One can regard a whole population of individuals as an information pool� each individual�s genes
representing a set of informations about how to cope with the environment� Genes� and therefore
the information� of �tter individuals will spread statistically over the whole population during
the succession of generations� and information possessed by less �t individuals will gradually
get lost�
If genes within the population wouldn�t occasionally be altered� at last the whole population
would converge to consist of individuals being exact copies of the initially �ttest individual�
The alteration of an individuals genetic information is called �mutation�� For simplicity� we
regard here only two kinds of mutation mechanisms� on the one hand� genetic information of
an individual can be altered during its lifetime and� on the other hand� genetic informations of
two di�erent individuals can be exchanged during the mating process between the descendants
chromosomes� We call the last case �crossover��

�From now on	 
tour� or a 
route� will always abbreviate a salesperson�s journey�
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��� Genetic Algorithms and the Traveling Salesman

Based on our informal depiction above� we describe our approach for solving the TSP� A more
formal model is developed� which will form the basis of our implementation�
The purpose of genetic algorithms is to simulate evolutionary processes and to apply them to
optimization tasks� Because of the observation that evolution in a changing environment leads
successively to well adapted organisms� the assumption is brought up that we can analogously
expect well �adapted� solutions� Roughly sketched� we generate a set of random quality so
lutions� and let an evolutionlike process take place that adapts this set to our optimization
�environment��
First thing to do when employing a genetic algorithm� is to reformulate our optimization prob
lem so that it can be represented by a �xedlength sequence of parameters P � fg�� � � � � gng�
Then the optimization function is a function of these parameters� fE�x�� � � � � xm� � P � � � � �
P �� R� parametrized by an environment E that we regard to be �xed� If the optimization
function is applied to a chromosome� the �tness �see below� of an individual can be obtained�
For our TSP� we have the reformulation already done�

� P is the set of m cities to be visited� represented as numbers

� routes over these cities are taken as chromosome

� a chromosome consists of only one gene� whose alleles are any permutation of numbers
�� � � � �m� we speak from here analogously of genes� chromosomes� or sequences

� the environment E is a map that contains the distances between each pair of cities

� the optimization function fE is the route length that has to be minimized�

We regard here a diploid chromosome set� where an allele that represents a shorter tour will
dominate and is the only one to be taken into account to determine an individual�s �tness�
A descendant of two individuals is created by selecting randomly one chromosome from each
parent and combining them to a new individual�

Parents A�B�

A� �Chrom�A�Chrom�A�

B� �Chrom�B�Chrom�B�

�

Descendant�

�Chrom�B�Chrom�A�

An individuals life cycle is reduced to birth and procreation� So we have a straightforward
optimization scheme� we employ a discrete time measure and permit only nonoverlapping
generations� each time interval represents an optimization step as follows�
Given a population of n members�

� select n� � times pairs of individuals out of the population and create n� � descendants

� calculate the �tness of each descendant

� form a new population from the n � � descendants and include additionally the �ttest
member of the previous population

� replace the old population with the new

� �nd the �ttest member of the new population and regard it as the actual optimization
result

The survival of a generation�s �ttest member is called �elitist� model and garantuees a monotone
descending sequence of optimization results� The essential of this optimization scheme is the �rst
step� because the �tness is strictly associated with the probability of being selected for mating
during one optimization cycle� We remain to a simple heuristics for obtaining an individual�s
�tness� the socalled roulette wheel selection� If the optimization function fE is applied to each
individual� �tnesses �values for each member of the population� fi� i � �� � � � � n� can be obtained�
The probability of being selected next time for mating is� pi �

fiP
n
j��

fj
� ��� ���

P
i pi � �� In
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our TSP� a natural order within the population is given by the route length� We regard an
individual representing a shorter tour as �tter than an individual representing a longer tour�
Therefore� we get fi simply by calculating the inverse route length� For a tour length Li� the
�tness is fi �

�

Li
and the corresponding probabilities are pi �

�

Li
�
Pn

j��
�

Lj
��� � ��� ���

To select a parent� the probabilities are associated with disjunct subintervals of length �

Li
of

the interval I � ���
Pn

j��
�

Lj
�� If a random number within I is picked� it lies in a subinterval

from which the corresponding individual can be obtained�
For example� the population may consist of three individuals A�B�C� representing tours of length
��� �� and � length units and having �tnesses ���� ���� ���� They are mapped onto the interval
� � � � ��	�

� ��� ��� ��	

Interval of individual� A B C

If� for example� the random value ������ is generated� individual B is selected because the value
lies in the corresponding subinterval� One checks easily that the interval assignment correlates
directly to the individuals� reproduction probability�
Involved in the reproduction cycle are mutation operators� In adaption to the TSP� each of
them must be formulated to avoid the generation of dubletts within the chromosomes� We here
describe� by example� �ve operations in their appropriate adaption to our algorithm �changing
chromosome positions are underlined��

�� Swap two random positions within a chromosome�

Example�
Given a sequence

�� 	� �� �� ��� �� �� �� �� 


becomes after mutation�

�� 	� �� �� ��� �� �� �� �� 


�� Reversion of a chromosome�s subsequence�

Example�
Given a sequence

�� �� �� �� �� �� 	� 
� �� ��

becomes after mutation�

�� �� �� 	� �� �� �� 
� �� ��

�� Remove a random position and insert it at another position�

Example�
Given a sequence

�� 	� �� �� ��� �� �� �� �� 


becomes after mutation�

�� 	� �� ��� �� �� �� �� �� 


�� Remove a whole subsequence and insert it at another position�

Example�
Given a sequence

�� �� �� �� �� �� 	� 
� �� ��
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becomes after mutation�

�� �� �� �� 	� �� �� 
� �� ��

�� Crossover between two chromosomes�

During the melting of two chromosomes subsequences are exchanged� Each subsequence must
have the same length and is reinserted at the same position in the partner chromosome�
To avoid double entries within a chromosome� we use the PMX �partially matched crossover�
algorithm� which works as follows�
Given a newly procreated individual�

�� choose randomly start and end positions

�� make copies of the subsequences within both of the individuals chromosomes� starting
and ending at the chosen positions

�� begin with the leftmost entry in the �rst chromosome�s original subsequence and compare
it� position by position� with the copy of the second chromosome�s subsequence� at each
position we have a tuple � the entry within the chromosome and the one within the copy
� that determines the values to be exchanged in the �rst chromosome� the same operation
is performed on the other chromosome�

The result is a new pair of chromosomes which have exactly exchanged their subsequences within
the chosen positions and are� eventually� modi�ed in another positions� For visualization� we
give an example�
Given two individuals consisting of the sequences

First� �� �� �� �� �� �� 	� 
� �� ��

��� 
� 	� �� �� �� �� �� �� �

Second� �� �� �� �� �� 	� �� �� ��� 


�� �� �� �� �� �� �� 	� 
� ��

A descendant could be procreated as combination of the �rst chromosomes of the individuals
in the order listed here�

�� �� �� �� �� �� 	� 
� �� ��

�� �� �� �� �� 	� �� �� ��� 


If we decide to perform a crossover� the following happens�

�� select positions and corresponding subsequences�

�� �� �� �� �� �� 	� 
� �� ��

�� �� �� �� �� 	� �� �� ��� 


�� make copies of the subsequences�

�� �� �

�� �� 	

�� start pairwise processing of the �rst chromosome with help of the copy of the second
chromosome �double underlined positions are processed in the next step� single underlined
positions are already modi�ed in previous steps��

�� �� ���� �� �� 	� 
� �� ��

�� �� 	
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exchange � and ��

�� �� ���� �� �� 	� 
� �� ��

�� �� 	

exchange � and ��

�� �� ���� �� �� 	� 
� �� ��

�� �� 	

and� at last� exchange 	 and ��

�� �� ���� �� 	� �� 
� �� ��

�� �� 	

Analogously the other chromosome is examined� and we get as result�

�� �� �� �� �� 	� �� 
� �� ��

	� �� �� �� �� �� �� �� ��� 


One sees that positions � to � are exactly swapped and that there must be taken care to
avoid dublets� so that followup modi�cations take place at other locations�

� The Implementation in RelFun

��� Preliminaries on RelFun

RelFun is a tight relationalfunctional integration� it crossextends Horn relations and callby
value functions just enough to yield a uni�ed operator concept� as follows� ��� Horn relations are
extended to return the truthvalue true� ��� Functions are extended to allow nondeterministic
and nonground calls� this implies� e�g�� that functions can be inverted� RelFun possesses many
additional concepts� like higherorder operators and sorts� of which not all will be required here
�for further reading see �Bol
���� For the TSP application we restrict ourselves to a mostly pure
RelFun style� this allows comparisons with languages supporting di�erent paradigms�
RelFun�s syntax is Prologlike in the sense that programs written in Datalog are also in correct
RelFun syntax and have the same behaviour� however� for the full pure Prolog subset of RelFun
there are di�erences� e�g� structures are written with ����brackets� the Prolog is primitive
in RelFun is written as ��� and RelFun builtins� such as ��� �quotient�� are always written in
pre�x notation� Some readers will be familiar with RelFun�s capabilities common with Prolog
such as lists and variables�
For further understanding� we note some syntactical remarks�

� First� we have facts� which are the same as in Prolog�

op�arg�� � � � ��

� We also have Prologlike rules�

op�arg�� � � � � �� cnd�� � � � � cndn �

� Unconditional equations return the value of the �preceded expression�

op�arg�� � � � � �� exp �

� Conditional equations return the � exp value if all cndi succeed�

op�arg�� � � � � �� cnd�� � � � � cndn � exp �

The �rst two kinds of operator de�nitions� implicitely returning true� can be regarded as special
cases of the latter two�
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� A cut ��� can be joined with the neck symbol �	
 or 	���

op�arg�� � � � � �� cnd�� � � � �
op�arg�� � � � � �� exp �

Furthermore� active function calls must be distinguished from passive structures� whose argu
ments become not evaluated� Syntactically� structures are written like function calls except that
they use square brackets instead of parantheses� Structures are uni�ed like Prolog structures�
but function calls become �rst evaluated� then uni�ed�
Analogously� a list can be active or passive� Passive lists simply use square brackets� active lists
are generated via the primitive tup����� function�
The user interacts with the RelFun system making queries and requesting� Prologlike� an
arbitrary number of solutions� the demand for further solutions is called morerequest�
Further concepts will be explained at the places they occur�

��� How the Program Works

Given the scheme presented in section �� we now want to implement it in RelFun� In summary�
the program should initialize a starting population and iterate by delivering successively new
populations�
In our implementation� the user can specify the following parameters�

�� a list of coordinates for an arbitrary number of cities

�� the size of the population

�� the probability that an individual�s genes mutate during its life cycle

�� the probability for a crossover during a mating

�� a probability value that allows scaling between haploid and diploid chromosomes

The �rst four parameters should be clear� probabilites are always values between � and ��
inclusively� The last parameter determines the probability for the selection of the dominant
chromosome during mating to become part of a descendant� If this value is �� a diploid popula
tion is simulated� what means� the �tness is determined exclusively by the individuals� dominant
chromosomes� but with a probability of ��  each of an individual�s chromosomes may be in
herited� If the value is �� the recessive chromosomes are totally ignored and only the dominant
ones become inherited�
Initialization consists simply of generating a set of size n of individuals with random properties�
After that� the iteration is as straightforward as described in ����

��� The Data Structures� Using Structures and Lists

The structure of a population is summarized by the following BNFlike grammar�

population 		� �individualindividual���individual�

individual 		� indiv�route�lengthchromroute�lengthchrom�

chrom 		� ���������n� or permutated entries

route�length 		� number

The semantics is�

� the population is represented by a list of arbitrary size

� a single member of the population is a structure indiv�����

� indiv����� contains an individual�s two chromosomes together with the corresponding
route lengths� the entries are ordered� s�t� always the shorter route and its length are at
the �rst positions
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��� The Main Loop� Implementing Interaction via Nondeterminism

The program was devised to visually trace the successive generations of our population� after
each reproduction cycle the current optimization results will be printed� The kernel function of
our application works therefore tailrecursively and consists of two clauses� the �rst returns the
best member of the population so far� and the second� invoked by backtracking� creates a new
generation and calls itself with this new population� The user interacts by giving successive
morerequests until a satisfactory optimization has been reached�
The source shows this in greater detail�

ts�Pop����� 	


indiv�BestLengthBestRoute��� �� select�best�Popnth�Pop���

� tup�BestLengthBestRoute��sum�Pop�len�Pop����

ts�PopMapMut�rateCross�rateBetter�rate� 	


New�pop �� next�generation�PopMapMut�rateCross�rateBetter�rate�

� ts�New�popMapMut�rateCross�rateBetter�rate��

The function�s �rst argument is the population� the second the table of distances between the
cities� the other arguments will be explained below�
The �rst clause makes use of the utility functions select best and sum�� select best scans
the whole population exactly once and returns the individual whose �rst entry contains the
shortest route� ts returns the result of select best and the population�s average route length�
In practice� the ts function is best called via a testing function� which automatically generates
a population of a desired size and the distances table�

test�PlanPop�sizeMut�rateCross�rateBetter�rate� 	


Map �� generate�distmap�Plan�

Len �� ��len�Plan���

� ts�init�pop�Pop�sizeLenMapinit�list��Len��

MapMut�rateCross�rateBetter�rate��

Its arguments are a list of city coordinates� the demanded size of the population� the muta
tion rate� the crossover rate� and a weight parameter for scaling between haploid and diploid
genomes� which is described in detail below� The test function generates the distance table
using generate distmap and the coordinates table delivered by plan�

plan��� 	� �

����������������������������������������

��� � some further lines containing coordinates are omitted

������������������������������������������

init list��Len� generates a list containing the numbers � to Len� init pop creates the
initial population of the demanded size�

��	 Individuals� Self
evaluating Data Structures

A useful programming technique in RelFun is giving passive structures and active function calls
the same �constructor and function� name� An example in the TSP application is the name
indiv� If we use it as a constructor for a passive data structure� we cannot rest function calls
into its argument positions� However� we can de�ne a function of the same name that will just
evaluate to its own call �with its callbyvalue arguments recursively evaluated� as a passive
structure ��

indiv�L�R�L�R�� 	� indiv�L�R�L�R���

Now� one can� e�g�� more elegantly write indiv���AB�XYZ� instead of W �� ��AB�

indiv�WXYZ� and nevertheless get a data structure�

�also	 � and len are builtin�	 and user�de�ned utility functions	 respectively� division and length of a list
�similarly	 tup����� to tup����� or	 shortened	 �����
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��� The Roadmap� Converting a Coordinate List into a Distance Ta


ble

We use an utility function to convert a list of coordinate tuples into a coordinate table�

generate�distmap�Tab� 	� generate�distmap��TabTab��

generate�distmap������ 	� ���

generate�distmap���XY�Rest�T� 	�

tup�generate�distmap��XYT� � generate�distmap��RestT���

generate�distmap��XY��� 	� ���

generate�distmap��XY�X�Y��Rest�� 	�

tup�sqrt�����
�XX��
�XX�����
�YY��
�YY����� �

generate�distmap��XYRest���

generate distmap gets as argument a list containing an even number of real numbers and does
some calculating for returning a list of equallength lists �the table� containing the distances
between all cities� The ith entry in the jth lists contains the distance between cities i and j�

��� The Population� Nested Lists and Structures

A valid initial population of given size N is generated by init pop�

init�pop������ 	� ���

init�pop�NLenMapOri�template� 	


Chrom� �� randomize�list�Ori�templateLen�

Chrom� �� randomize�list�Ori�templateLen�

� tup�make�order�indiv�route�length�Chrom�Map�Chrom�

route�length�Chrom�Map�Chrom���

� init�pop��
�N�LenMapOri�template���

Its arguments are the demanded size of the population� the length of an individual� the roadmap
and a template list that has to be randomized� In the context of the TSP application� this is
usually a list containing the numbers �� � � � � N � First� two chromosomes are generated with
randomize list�

randomize�list����� 	� ���

randomize�list�ListN� 	


NN �� ���random�N�� � select an element from pattern

Elem �� nth�ListNN�

NewList �� kill�nth�ListNN� � remove this element from pattern

� tup�Elem�randomize�list�NewList�
�N���� � continue with rest

Then� a list is returned with the new individual as head and a recursively generated rest�
make order returns a dominanceordered individual�

�� The Mechanics of Reproduction� Selection via Probability

Now we describe the central part of the optimization process� As seen in ��� this is the function
next generation�

next�generation�PopulationMapMut�rateCross�rateBetter�rate� 	


H �� select�best�Populationnth�Population��� � step �

Temp�pop �� mutate�PopulationMapMut�rate� � step �

Probability�range �� probability�range�Temp�pop� � step �

indiv��Test��� �� H � for determing the number of cities

� tup�H�mate�Temp�popMaplen�Temp�pop� � step � � �

Cross�rateBetter�rateProbability�range

len�Test����
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The arguments are the last actual population� the road map and the probability arguments
passed through from the tsfunction� The function works in �ve steps �corresponding to the
comments in the source��

�� the �ttest member of the population is searched

�� a temporary population is generated from the original population by performing mutations

�� from these temporary population the interval for the roulette wheel selection� as described
in ���� is determined

�� using this interval for selection� a partial new generation is created from the temporary
population by performing mating and crossover

�� joining the resulting partial population with the �ttest member of the previous generation
gives the �nal population

Mating is performed by the function mate�

mate��������� 	� ���

mate�PopulationMapNCross�rateBetter�rateProbability�rangeLength� 	


P� �� select�parent�PopulationProbability�range� � step �

P� �� select�parent�PopulationProbability�range�

indiv��R��R�� �� mix�P�P�Better�rate� � step �

�R�newR�new� �� cross�over��R�R��Cross�rateLength� � step �

LR� �� route�length�R�newMap� � step �

LR� �� route�length�R�newMap�

� tup�indiv�LR�R�newLR�R�new�

� mate�PopulationMap�
�N�Cross�rate

Better�rateProbability�rangeLength���

mate works recursively and procreates a new individual n � � times �the best member of the
preceding generation must be saved� and the population shall remain of constant size�� The
creation of one individual again happens in four steps�

�� select two parents� using the interval generated in next generation�

�� create a new individual by selecting a chromosome out of each parent� this is done by the
function mix �see below�

�� perform crossover on this individual �see ��
���

�� determine the �tness of the resulting individual

The individual generated in this way is added to the list that will be returned as the new
population�
The mixing of chromosomes is done by a mix function�

mix�indiv�L�R����indiv�L�R����Better�rate� 	


��random�����Better�rate�

� make�order�indiv�L�R�L�R����

mix�indiv�L�P����P��� 	
 ���random���� � make�order�mix���L�P��P����

mix�indiv���L�P��P��� 	� make�order�mix���L�P��P����

mix���L�P��indiv�L�P����� 	
 ���random���� � indiv�L�P�L�P���

mix���L�P��indiv���L�P��� 	� indiv�L�P�L�P���

The parameters of mix are the two individuals to mate and the parameter Better rate� which
should be a value between � and �� Better rate is implemented to allow scaling between a
haploid and a diploid genome set� in mix a random value� is generated and dependent on this

�If the argument of the builtin random is a non�negative real r	 it returns a random value between  and r�
if the argument is a non�negative integer n	 a value between  and n � � is generated�
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value� either the �rst �and therefore better� genomes of each individual are put together� or in
mix�� the chromosomes are randomly picked� If Better rate equals �� a diploid population
is simulated� and if Better rate equals �� a haploid population is simulated� in this case the
mating mechanism degenerates to a selection of possible crossover partners�

��� Mutation and Crossover

Both mutation and crossover alter information that is contained within the population� but
each of them taking place at di�erent times� We have taken into account several possible ways
mutation can happen� but only one possibility of crossover� Therefore� two di�erent ways of
implementation were chosen� for mutation� the use of higherorder constructors is demonstrated�
whereas crossover is implemented �rstorder as usual�

���� Mutation Operators� Parameterization via Higher
Order Constructors

As shown above� the mutation is performed by the function mutate� It is called by next generation

and returns� for intermediate use� a population with mutated members� mutate is recursively
de�ned� it separates the �rst individual from the rest of the population and performs randomly
selected mutations on one of its chromosomes� The result is returned as a list� whose head is
the �possibly� mutated version of this individual and whose tail is recursively generated in the
same way� until the population is completely processed�

mutate������ 	� ���

mutate��First�Rest�MapRate� 	


P �� random�����

��PRate�

� tup�mutate��FirstMap� � mutate�RestMapRate���

mutate��First�Rest�MapRate� 	� tup�First�mutate�RestMapRate���

mutate��indiv��BetterLWorse�Map� 	


��random�����

Select �� random����

NewBetter �� mechanism�Select��Better� � call of mutation operator

� make�order�indiv�route�length�NewBetterMap�NewBetterLWorse���

mutate��indiv�LBetter�Worse�Map� 	


Select �� random����

NewWorse �� mechanism�Select��Worse� � call of mutation operator

� make�order�indiv�LBetterroute�length�NewWorseMap�NewWorse���

First� a random number is generated and tested against the usergiven mutation rate� If the
test succeeds� the function mutate� is called with the �rst member of the population and
the roadmap as arguments� mutate� picks� via random� one of the individual�s chromosomes
and selects� also by random� a mutation operator mechanism����� At this point one notices
a di�erent calling scheme� the head functor is no longer an atom but a structure �whose
parameters don�t necessarily need be instantiated�� This allows a syntactical distinction of
function parametrization and ordinary function arguments� The random number is selected
from the range � to 
� there are at most �� possible mutation operators that are taken into
account�
The mechanism function here supports four mutation operators� which are parametrized by the
numbers � to � �which� as shown above� can be generated by the random number generator��
An additional clause is added with free constructor parameters whose task is to catch calls to
unde�ned clauses� So the number of supported mutation operators has only to be known at
the place where they are de�ned�
We discuss here two of the mutation operators�

mechanism����Route� 	
 � reversion

Length �� len�Route�

Pos� �� ���random�Length��
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Pos� �� ���random�Length��

� reverse�sublist�RoutePos�Pos���

mechanism����Route� 	� Route�

mechanism����Route� 	
 ��� � swap two ids rest of clause omitted here

mechanism����Route� 	
 ��� � replace id rest of clause omitted here

mechanism����Route� 	
 � replace subsequence

Length �� len�Route�

P� �� ��random��
�Length���� P� �� ��random��
�Length����

Pos� �� min�P�P�� Pos� �� max�P�P��

Head �� get�sublist�Route��
�Pos���

Tail �� get�sublist�RoutePos�Length�

Middle �� get�sublist�RoutePos��
�Pos���

HT �� uni�HeadTail�

L �� len�HT� Pos �� ��random��
�L����

H �� get�sublist�HT��
�Pos�� T �� get�sublist�HTPosL�

� uni�Huni�MiddleT���

mechanism����Route� 	� Route�

mechanism�N��Route� 	
 NN �� mod�N�� � mechanism�NN��Route��

The �rst is the reversion operator that selects two random positions within a chromosome and
reverses the corresponding sublists� The second also selects a sublist� cuts it out� selects a new
position within the remaining list� and inserts the cut out sublist at this position ��

���� Crossover� PMX

Crossover is performed by the function cross over� It follows exactly the scheme presented in
section ����

cross�over��P�P��RateLength� 	


P �� random�����

��PRate�

� cross�over��P�P����random�Length�����random�Length����

cross�over��P�P����� 	� �P�P���

cross�over��P�P�Pos�Pos�� 	


��Pos�Pos��

� cross�over��P�P�Pos�Pos���

cross�over��P�P�Pos�Pos�� 	


Sub� �� get�sublist�P�Pos�Pos��

Sub� �� get�sublist�P�Pos�Pos��

� tup�map�subseq�P�Sub�Pos��map�subseq�P�Sub�Pos����

cross over �rst generates a random value and checks it against the usergiven mutation
probability� If the random value is higher� cross over acts as the identity operator� Else�
cross over� is invoked with the sequences on which to perform crossover and two random
positions as arguments� cross over� selects� via the utility function get sublist� the corre
sponding subsequences and calls the function map subseq� which does the swapping�

map�subseq�L���� 	� L�

map�subseq�L�First�Rest�Pos� 	


NewPos �� get�pos�LFirst�

� map�subseq�swap�elements�LPosNewPos�Rest���Pos���

�len� length of list	 uni� union of lists
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� Conclusions

The source parts explained in the body of this paper constitute approximately �� percent of our
completely implemented GeneTS application� which consists of about ��� lines of program code�
The omitted code parts are either the ones explicitely mentioned in the text or ordinary auxiliary
routines� Our experience with similar C implementations of genetic algorithms indicate a factor
of � to � in reduction of program size�
Through the development of GeneTS we showed that serious projects can be realised in RelFun
�Appendix A�� while bene�tting considerably from RelFun�s highlevelness �Appendix B�� Of
course� GAs are not a common RelFun application� Because RelFun does not possess any array
data type� GAtypical arraylike operations have to be simulated with lists� Therefore� the
e�ciency of GeneTS currently does not compete with implementations in imperative languages
like C� functional list manipulation in such cases is less e�cient than inplace array updates�
This behavior may lead to further optimization considerations towards inplace updates for lists
along the lines of �HB	�� CH
�� in our �WAM�compiler and emulator combination�
In further work� GeneTS can serve as prototype for a more generalized GA mechanism� Rel
Fun�s higherorder capabilities� which we have not used here� can� combined with headoperator
parameterization� support the implementation of classes of mutation� crossover and other op
erators� which can be instantiated by specifying toplevel parameters�
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A A Sample Trace of the �	�city Unit TSP

We will give an example trace of the optimizing process by considering a chessboardlike ar
rangement of �� cities whose respective distances to their cartesian neighbors are � lenght unit
each�

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1u

1
u

It can be easily seen that the shortest route is �� length units� since the distance between two
neighboring cities in all rows and columns is exactly one length unit� Therefore� an optimal
tour consists exclusively of horizontal and vertical route segments� The optimization process
will become visible by decreasing an original �perturbation� towards a regularly shaped tour�
In other words� after each step that generates a better solution than the previous one� there are
less tour sections going transversely or overleaping any cities�
First� we begin with a random population�

rfc
p� test�plan����������������

�������������������������������������������

The arguments to the test function are the plan corresponding to the set of cities illustrated
above� a population size of ��� individuals� mutation and crossover probability of ��� and ����
respectively� and the value ��� indicates a complete haploid genome set� The �rst result is
the length of the shortest path within this population of ���
� length units� the average route
length of the population of ����� units� and the shortest route� The generated solution here is
the best one out of a completely random set of possible solutions�

The �rst city of the generated route is city �� here marked with a circle� One sees that this
tour is far from being optimal� Now three optimization steps are invoked�

rfc
p� more

���������������������������������������������

rfc
p� more

���������������������������������������������

rfc
p� more

���������������������������������������������

In each step the average route lenght is decreased� the third step evaluates an individual rep
resenting a shorter tour than the �ttest one of the �rst generation�
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The result is slightly better� but still contains unnecessary indirections� We will leave the next
� improvements uncommented�

rfc
p� more

��������������������������������������������

rfc
p� more

���������������������������������������������

rfc
p� more

���������������������������������������������

rfc
p� more

���������������������������������������������

rfc
p� more

��������������������������������������������

rfc
p� more

���������������������������������������������

rfc
p� more

���������������������������������������������



A A SAMPLE TRACE OF THE ��	CITY UNIT TSP �


rfc
p� more

���������������������������������������������

rfc
p� more

���������������������������������������������

This solution looks� compared to the initial solution� considerably more regular�

rfc
p� more

���������������������������������������������

rfc
p� more

�������������������������������������������

rfc
p� more

���������������������������������������������

rfc
p� more

���������������������������������������������

rfc
p� more

���������������������������������������������

rfc
p� more

���������������������������������������������

rfc
p� more

���������������������������������������������

rfc
p� more

���������������������������������������������

Here� we can recognize� what later will be characteristical for the whole population� the route
is divided into a lower and an upper half that are only connected by two tour segments between
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cities 
 and �� and cities � and 	� respectively�

rfc
p� more

���������������������������������������������

rfc
p� more

���������������������������������������������

rfc
p� more

���������������������������������������������

rfc
p� more

���������������������������������������������

rfc
p� more

���������������������������������������������

rfc
p� more

���������������������������������������������

In this result� a tour improvement is achieved by a more optimal course in the upper half�

Compared with the previous result� we observe that the only change in the chromosome was
the replacement of city � from position � to position ��

rfc
p� more

���������������������������������������������

Here� the lower half was optimized�

The overleap of city � seems to be a common genetic defect to the most individuals in the
population� Because we have now a result near to the optimum� it takes some more steps until
an individual accumulates enough rearrangements of its genetic information compatible with
the achieved optimization results�

rfc
p� more
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���������������������������������������������

rfc
p� more
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p� more

���������������������������������������������
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p� more

��������������������������������������������
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p� more

���������������������������������������������

rfc
p� more

��������������������������������������������

rfc
p� more

���������������������������������������������
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p� more
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p� more
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rfc
p� more

���������������������������������������������

Now the overleap of city � has vanished and we have found an almost wellformed tour across
the �� cities�

rfc
p� more

���������������������������������������������

rfc
p� more

���������������������������������������������

rfc
p� more

���������������������������������������������

rfc
p� more

����������������������������������������

The last result leads to an optimal tour� It di�ers from the previous one by replacing city �
from position � to position ��
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Our program has found one of the symmetrically equivalent optimal tours� re�ecting our choice
of a city map that can be connected by a regularly shaped route�
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B The Complete GeneTS Source

��� ts�rfp � find a nearly optimal solution of the

��� traveling salesman problem using a genetic algorithm

��� the algorithm uses a population of user�defined size	

��� each individual possesses a diploid genome set
 each

��� representing a tour through all cities	

��� the phenotype of an individual is represented by the

��� shorter tour� Each new generation is forme by random

��� selection and mixing of parents and their genomes

��� HOW TO USE�

��� �� the program needs an ENORMOUS amount of memory


��� allocate as many memory cells as you can

��� � type test�pln
p
q
r�
 where pl is a map of

��� coordinate pairs
 n is an integer
 p
q
r values

��� between � and �	

��� n is the population size


��� p the probability for each individual that a

��� mutation takes place

��� q the probability for a crossover during a mating

��� r determines the probability for the selection

��� of the better of an individuals chromosomes

��� for mating

��� �� the length of the shortest route
 the route

��� itself and the average route length of the

��� whole population is printed	 results will

��� be successively generated by �more� requests

�������� test function

test�Plan
Pop�size
Mut�rate
Cross�rate
Better�rate� ��

Map �� generate�distmap�Plan�


Len �� ��len�Plan�
�

� ts�init�pop�Pop�size
Len
Map
init�list��
Len��


Map
Mut�rate
Cross�rate
Better�rate��

plan��� �� �
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�������� main function

�� generates subsequently new generations and prints

�� the shortest tour
 its length
 and the average

�� tour length of the population

ts�Pop
�
�
�
�� ��

indiv�BestLength
BestRoute
�
��

�� select�best�Pop
nth�Pop
���

� tup�BestLength
BestRoute
��sum�Pop�
len�Pop����

ts�Pop
Map
Mut�rate
Cross�rate
Better�rate� ��

New�pop �� next�generation�Pop
Map
Mut�rate


Cross�rate
Better�rate�

� ts�New�pop
Map
Mut�rate
Cross�rate
Better�rate��

�������� activation function for a passive structure

indiv�L�
R�
L
R� �� indiv�L�
R�
L
R��

�������� initialization routines

�� generates from a N�element sequence of

�� coordinate pairs a N�N tableau of distances

�� between each coordinate tuple using

�� euclidean metrics

generate�distmap�Tab� �� generate�distmap��Tab
Tab��

generate�distmap����
�� �� ���

generate�distmap���X
Y�Rest�
T� ��

tup�generate�distmap�X
Y
T� �

generate�distmap��Rest
T���

generate�distmap�X
Y
��� �� ���

generate�distmap�X
Y
�X�
Y��Rest�� ��

tup�sqrt�������X
X��
��X
X���
����Y
Y��
��Y
Y�����

� generate�distmap�X
Y
Rest���

�� initialize a whole population of size Indnum and

�� a genome length of Indsize

�� structure of an individual� indiv�L�
Chr�
L
Chr�

�� L�
L are the lengths of the tours represented by

�� the chromosomes Chr� and Chr� The shorter tour

�� is always at the first place�

init�pop��
�
�
�� �� ���

init�pop�N
Len
Map
Ori�template� ��

Chrom� �� randomize�list�Ori�template
Len�


Chrom �� randomize�list�Ori�template
Len�

� tup�make�order�

indiv�route�length�Chrom�
Map�
Chrom�


route�length�Chrom
Map�
Chrom��

� init�pop����N�
Len
Map
Ori�template���

�� randomizing a list

randomize�list���
�� �� ���

randomize�list�List
N� ��

NN �� ���random�N��


Elem �� nth�List
NN�


NewList �� kill�nth�List
NN�

� tup�Elem�randomize�list�NewList
���N����

�������� generator of successive populations

�� saves the fittest member of the older generation

�� ��elitist variant�� and generates N � � new members�

�� This process involves all mechanisms like mutation

�� and crossover�

next�generation�Population
Map
Mut�rate


Cross�rate
Better�rate� ��

H �� select�best�Population
nth�Population
���


Temp�pop �� mutate�Population
Map
Mut�rate�


Probability�range �� probability�range�Temp�pop�


indiv��
Test
�
�� �� H

� tup�H�mate�Temp�pop
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Map


len�Temp�pop�


Cross�rate


Better�rate


Probability�range


len�Test����

�� selects for each individual of a population randomly

�� a mutation operator and applicates it to the

�� genome
 respectively to the route� the resulting


�� possibly permutated
 routes are merged to a new

�� population

mutate���
�
�� �� ���

mutate��First�Rest�
Map
Rate� ��

P �� random�����


��P
Rate�

� tup�mutate��First
Map� �

mutate�Rest
Map
Rate���

mutate��First�Rest�
Map
Rate� ��

tup�First�mutate�Rest
Map
Rate���

mutate��indiv��
Better
L
Worse�
Map� ��

��random��
��


Select �� random����


NewBetter �� mechanism�Select��Better�

� make�order�indiv�route�length�NewBetter
Map�


NewBetter
L
Worse���

mutate��indiv�L
Better
�
Worse�
Map� ��

Select �� random����


NewWorse �� mechanism�Select��Worse�

� make�order�indiv�L
Better


route�length�NewWorse
Map�
NewWorse���

�� performs the reproduction cycle of the population�

�� The new population is generated by successive

�� selection of pairs of individuals and exchanging

�� the genome sequences� As an additional mutation

�� operator the crossover mechanism is invoked�

mate��
�
�
�
�
�
�� �� ���

mate�Population
Map
N
Cross�rate
Better�rate


Probability�range
Length� ��

P� �� select�parent�Population
Probability�range�


P �� select�parent�Population
Probability�range�


indiv��
R�
�
R� �� mix�P�
P
Better�rate�


�R�new
Rnew�

�� cross�over��R�
R�
Cross�rate
Length�


LR� �� route�length�R�new
Map�


LR �� route�length�Rnew
Map�

� tup�indiv�LR�
R�new
LR
Rnew� �

mate�Population
Map
���N�
Cross�rate


Better�rate
Probability�range
Length���

�� selects subsequences out of two routes at the

�� same position and exchanges them

cross�over��P�
P�
Rate
Length� ��

P �� random�����


��P
Rate�

� cross�over��P�
P
���random�Length��


���random�Length����

cross�over��P�
P�
�
�� �� �P�
P��

cross�over��P�
P
Pos�
Pos� ��

��Pos
Pos��

� cross�over��P�
P
Pos
Pos���

cross�over��P�
P
Pos�
Pos� ��

Sub� �� get�sublist�P�
Pos�
Pos�


Sub �� get�sublist�P
Pos�
Pos�

� tup�map�subseq�P
Sub�
Pos��


map�subseq�P�
Sub
Pos����

�� returns the sum of all probability weights	

�� to select a certain individual out of the population

�� each is assigned to an interval� the size of the

�� intervall is ��� times the reciprocal of the length

�� of the phenotypical route� all intervals can

�� be thought subsequential ordered on the real axis

�� beginning at �� the larger the interval the more

�� likely the random number generator will

�� generate a value within the interval so that

�� the individual will be selected�

�� annotation� possibly the reciprocal is not the

�� most perfect weighting
 there may be weights

�� that prefer the fitter individuals
 but this would

�� be unnecessarily complicated

probability�range���� �� ��

probability�range��indiv�L
�
�
���Rest�� ��

��probability�range�Rest�
�����
L���

�� selects an individual out of the population using

�� the interval returned by probability�range

�� �see there�

select�parent�Pop
Range� �� P �� random�Range�

� select�parent��Pop
P
���

select�parent���I�
�
�� �� I�

select�parent���indiv�L�
R�
X
Y����
P
Offset� ��

���P
��Offset
�����
L���� � indiv�L�
R�
X
Y��

select�parent���indiv�L
�
�
���Rest�
P
Offset� ��

select�parent��Rest
P
��Offset
�����
L����

�� mixes randomly the genome pair of two individuals

�� means� two lists
 each with two elements
 are mixed

mix�indiv�L�
R�
�
��
indiv�L
R
�
��
Better�rate� ��

���random�����
Better�rate�

� make�order�indiv�L�
R�
L
R���

mix�indiv�L�
P�
�
��
P
�� �� ���
random���

� make�order�mix���L�
P��
P���

mix�indiv��
�
L�
P��
P
�� ��

make�order�mix���L�
P��
P���

mix���L�
P��
indiv�L
P
�
��� �� ���
random���

� indiv�L�
P�
L
P��

mix���L�
P��
indiv��
�
L
P�� �� indiv�L�
P�
L
P��

�������� common utility functions

�� mutation operators

�� operator �� reversion of a whole sequence

�� operator �� swapping of two ids

�� operator � placing an id at an another position

�� operator �� placing a whole subsequence at

�� an another position

�� operator N� catching of operator numbers bigger

�� than  and mapping them to the first two

mechanism����Route� ��

Length �� len�Route�


Pos� �� ���random�Length��
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Pos �� ���random�Length��

� reverse�sublist�Route
Pos�
Pos��

mechanism����Route� �� Route�

mechanism����Route� ��

Length �� len�Route�


Pos� �� ���random�Length��


Pos �� ���random�Length��

� swap�elements�Route
Pos�
Pos��

mechanism����Route� �� Route�

mechanism���Route� ��

Length �� len�Route�


Pos� �� ���random�Length��


Pos �� ���random�Length��

� insertion�Route
Pos�
Pos��

mechanism���Route� �� Route�

mechanism����Route� ��

Length �� len�Route�


P� �� ��random����Length��
�


P �� ��random����Length��
�


Pos� �� min�P�
P�


Pos �� max�P�
P�


Head �� get�sublist�Route
�
���Pos���


Tail �� get�sublist�Route
Pos
Length�


Middle �� get�sublist�Route
Pos�
���Pos��


HT �� uni�Head
Tail�


L �� len�HT�


Pos �� ��random����L��
�


H �� get�sublist�HT
�
���Pos��


T �� get�sublist�HT
Pos
L�

� uni�H
uni�Middle
T���

mechanism����Route� �� Route�

mechanism�N��Route� �� NN �� mod�N
��

� mechanism�NN��Route��

�� changes the order within a genome in the way

�� that the shorter route is the first element	

�� the shorter route represents also the phenotype

�� therefore only one of the genomes has to be

�� tested to determine the fitness of an indivdual

make�order�indiv�L�
R�
L
R�� ��

��L
L��

� indiv�L
R
L�
R���

make�order�X� �� X�

�� computes the length of a route from a given

�� table which is a �dimensual array of

�� real�numbers whose entries are the distances

�� from one city to another

route�length��First�Rest�
Map� ��

route�length��First
�First�Rest�
Map��

route�length��F
�A�
Map� �� nth�nth�Map
A�
F��

route�length��F
�A
B�Rest�
Map� ��

��nth�nth�Map
A�
B�
route�length��F
�B�Rest�
Map���

�� selects the individual which represents

�� the shortest route out of the whole population

select�best���
Best� ��  � Best�

select�best��indiv�L�
R�
L
R��Rest�


indiv�L�
R�
L�
R��� ��

��L�
L��

 � select�best�Rest
indiv�L�
R�
L
R���

select�best����Rest�
Best� ��  � select�best�Rest
Best��

�� returns the sum of all route lengths in a population

sum���� �� ��

sum��indiv�L
�
�
���Rest�� �� ��L
sum�Rest���

�� embeds a sublist in a list and eliminates duplicates

map�subseq�L
��
�� �� L�

map�subseq�L
�First�Rest�
Pos� ��

NewPos �� get�pos�L
First�

� map�subseq�swap�elements�L
Pos
NewPos�


Rest
���Pos���

�������� general utility functions

�� reversion of a sublist from element no� Pos� to Pos

reverse�sublist�List
Pos�
Pos� �� !�Pos�
Pos�

� reverse�sublist��List
Pos
Pos���

reverse�sublist�List
Pos�
Pos� ��

reverse�sublist��List
Pos�
Pos��

reverse�sublist��List
�
�� �� List�

reverse�sublist��List
�
Pos� ��

reverse�sublist�List
��
Pos��

reverse�sublist���First�Rest�
Pos�
Pos� ��

tup�First�reverse�sublist��Rest
���Pos��
���Pos����

reverse�sublist�R
List
�� �� uni�List
R��

reverse�sublist��First�Rest�
L
N� ��

reverse�sublist�Rest
�First�L�
���N���

�� returns the union of two lists

uni���
L� �� L�

uni��First�Rest�
L� �� tup�First�uni�Rest
L���

�� returns nth element of a list

nth��First���
�� �� First�

nth����Rest�
N� �� nth�Rest
���N���

�� returns length of a list

len���� �� ��

len����Rest�� �� ��len�Rest�
���

�� initializes list of length Begin � End

�� with integer values Begin ��� End

init�list�End
End� �� �End��

init�list�Begin
End� ��

tup�Begin � init�list����Begin�
End���

�� replaces element of a list at position Pos

�� with Elem

replace�elem����Rest�
�
Elem� �� �Elem�Rest��

replace�elem��First�Rest�
Pos
Elem� ��

tup�First�replace�elem�Rest
���Pos�
Elem���



B THE COMPLETE GENETS SOURCE ��

�� swaps two elements of a list

�� at positions Pos� and Pos

swap�elements�List
Pos�
Pos� ��

A �� nth�List
Pos��


B �� nth�List
Pos�


L �� replace�elem�List
Pos�
B�

� replace�elem�L
Pos
A��

�� removes element at position Pos� and

�� inserts it at position Pos

insertion�List
Pos�
Pos� ��

!�Pos
Pos��

� insertion��List
Pos�
Pos��

insertion�List
Pos�
Pos� �� insertion�List
Pos�
Pos��

insertion��List
Pos�
Pos� ��

Elem �� nth�List
Pos��


NewList �� kill�nth�List
Pos��

� insert�NewList
Elem
���Pos���

insertion�List
Pos�
Pos� ��

Elem �� nth�List
Pos��


NewList �� kill�nth�List
Pos��

� insert�NewList
Elem
Pos��

�� returns list without nth element

kill�nth����Rest�
�� �� Rest�

kill�nth��First�Rest�
N� ��

tup�First�kill�nth�Rest
���N����

�� returns subsequence of a list from

�� position Pos� to pos� Pos

get�sublist�L
�
Pos� �� get�sublist��L
Pos��

get�sublist��First�Rest�
Pos�
Pos� ��

get�sublist�Rest
���Pos��
���Pos���

get�sublist���First���
�� �� �First��

get�sublist���First�Rest�
Pos� ��

tup�First � get�sublist��Rest
���Pos����

�� returns position of an element in a list

get�pos��First���
First� �� ��

get�pos����Rest�
E� �� ���get�pos�Rest
E���

�� inserts element into list at nth position

insert��First�Rest�
Elem
�� �� �Elem
First�Rest��

insert��First�Rest�
Elem
N� ��

tup�First�insert�Rest
Elem
���N����



G
en

eT
S

:
A

R
el

at
io

n
al

-F
u

n
ct

io
n

al
G

en
et

ic
A

lg
o

ri
th

m
fo

r
th

e
Tr

av
el

in
g

S
al

es
m

an
P

ro
b

le
m

M
ar

ku
s

P
er

lin
g

T
M

-9
7-

01
Te

ch
ni

ca
lM

em
o


