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Abstract

In this survey, different conventions for specifying kinematics of mechanisms and their properties are re-
viewed with emphasis on the convention developed by Sheth and Uicker in 1971. This convention partitions
displacements in joint- and link displacements and decomposes these displacements into three axial screw
displacements. Because of this systematic construction, the convention of Sheth and Uicker features several
practical and theoretical preferences which are reflected in this article. For doing so, two comparisons are
conducted: first, the Sheth-Uicker convention is compared to other kinematic conventions. Second, the con-
vention – as the Dual Euler Angle representation of finite spatial displacements – is placed into context of three
other popular displacemenent representations. For enabling these comparisons in a rather self-consistent text,
notations of necessary entites are assembled, adapted, or newly defined. In general, this article is intended
as a contribution to the development of a common normal form for kinematics of mechanisms.

Zusammenfassung

In diesem Übersichtsartikel werden verschiedene Konventionen zur Spezifikation von Mechanismen und ihre
Eigenschaften verglichen. Dabei steht die Konvention von Sheth und Uicker aus dem Jahr 1971 im Vorder-
grund: Bei dieser Konvention werden die relativen Posenversätze einer Kinematik in Versätze der Gelenke
und Versätze der Gliedmaße aufgeteilt und jeder relative Versatz wird in drei lineare Schrauben zerlegt.
Aufgrund dieser systematischen Behandlung ergeben sich für diese Konvention unterschiedliche praktische
und theoretische Vorzüge, die in diesem Artikel vorgestellt werden. Dafür werden zwei Vergleiche erarbeitet:
Zunächst wird die Sheth-Uicker Konvention mit anderen kinematischen Konventionen verglichen. Außer-
dem wird die Konvention – als Repräsentation über duale Eulerwinkel – in den Kontext von drei anderen
populären Repräsentationen für relative Posenversätze gestellt. Um die Vergleiche in einem konsistenten
Text durchzuführen, werden Notationen der notwendingen Größen zusammengestellt, angepasst oder neu
eingeführt. Allgemein soll dieser Artikel zur Entwicklung einer einheitlichen Normalform für Kinematiken
von Mechanismen beitragen.
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1 Introduction
Motivation. This survey article reviews different conventions which were developed to specify and to

compute the kinematics of mechanisms. In particular, these conventions – which here are briefly called
Kinematic Conventions – deliver sets of parameters that first and foremost can be used to parametrize
the displacements which appear in the computational routines of kinematics. Next to this main purpose,
kinematic convention fulfill another important function since they serve as normal forms of mechanisms.
A ‘normal form’ is briefly characterized as a way of representing objects such that a comparison with other
objects of the same type is enabled (see, e.g., [35, Sec. 1.2]). This ‘mathematical characterization’ of a normal
form gains a special meaning in context of the science and engineering of mechanisms: in particular, the
development of new machines often is an interdisciplinary effort which is conducted by teams of people with
different background, e.g., by industrial designers, mechanical engineers, simulation and control specialists,
as well as mathematicians and computer scientists. Throughout the entire development process – which
typically consists of a sequence of iterations of designs, trials, and errors, or, in other terms, of synthetical
and analytical steps – the involved people need to discuss their findings about function and form, and in
particular, about the topology and the geometry of a certain prototype of a mechanism. For this process, a
table which is created according to a certain kinematic convention should be considered as a medium1 that
allows to imagine, communicate, document and modify the kinematics of a mechanism prototype – briefly,
as a way to compare kinematics.

This overview about ‘normal forms of kinematics’ emphasizes the convention developed by Sheth and
Uicker in 1971. It points out the practical and theoretical preferences that this convention features for
computational and for comparative purposes, since this was not provided systematically by literature to the
author’s knowledge. Instead, the Seth-Uicker convention sometimes was considered as ‘complicated niche-
convention’ that ‘could be useful’ for dealing with parallel mechanisms. However, as explained here, the
convention features the right degree of complexity to represent arbitrary mechanisms conveniently.

Because of the mentioned interface-function of kinematic conventions, this article is intended to be valu-
able for a heterogeneous audience: independent to the reader’s prior knowledge and his working discipline,
he should be guided along the useful features of Sheth and Uicker’s convention. Of course, from this follows
that some parts of this text might be neither new nor interesting for a reader with an established theoretical
background, while for others, the presentation might be quite compact and therefore not simple to under-
stand. In particular, Section 3 is a comprehensive summary about displacement representations that contains
(slightly) more material than necessarily required for the remainder of the text. In both cases, the reader
is free to skip this section or to skim through it briefly, at first.2 Later, the section might be read in more
detail for looking up certain relations, or for using it as a compact guide or tutorial through the literature
of representation theory. To increase readability, a lot of concepts in this article are introduced by providing
sketches which illustrate their geometry.

Concept and Contribution. In this survey, four conventions for specifying kinematics of mechanisms
and their properties are compared in detail. First, the property of Sheth and Uicker’s convention of parti-
tioning displacements in joint- and link displacements, is formalized by a convention, that is named here as
as two-frame convention, since two-frames per joint are used. Subseqently, the well-known classic Denavit-
Hartenberg convention and its modifed variant are presented. Finally, Sheth-Uicker convention is introduced.
By introducing a notation that is based on frame sets which are indexed using a graph-related scheme, a
convenient comparison of the four conventions is obtained: it is shown how Seth-Uicker’s convention can
seamlessly be interpreted as the augmentation of (1) the two-frame convention (2) the well-known classic
Denavit-Hartenberg (DH) convention, and (3) the modified Denavit-Hartenberg convention. Therefore, here
the Sheth-Uicker convention is briefly called augmented convention.

By means of the two-frame convention, the augmented convention is also interpreted as a representation
for finite spatial displacements and compared against three other common representations. From this view-
point, the augmented convention can be interpreted as an affine generalization of z-x′-z′′ Euler angles. It is
remarkable that Yang published articles in 1969 where the same geometric decomposition was applied. Here,
it is argued that the decomposition of the augmented convention should be considered as a complementary
convention to the description of a finite displacement via a finite twist. The argumentation is based on the
fact that Dual Euler Angles representation and Finite Twist representation together form a certain spatial
triangle. The geometry of this triangle is analyzed.

1– next to physical setups, technical drawings, and, static and dynamic visualizations –
2Displacement representations are independent of ‘mechanism kinematics’, but not the other way round.
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1 Introduction

Next to this spatial comparison, Sheth-Uicker’s convention is analyzed as a representation for planar dis-
placements: it is elaborated that also for this more simple case, Sheth-Uicker’s convention features advantages
compared against the popular Denavit-Hartenberg convention.

Stemming from these theoretical findings, practical advantages of Sheth-Uicker’s convention can deduced
and are illustrated: next to the property of be useful for parallel mechanisms, it is illustrated that on line of a
table of Sheth-Uicker parameters reflect the geometry of a link geometry. Therefore, it is not only useful for
parallel mechanisms, but also for every kinematic chain that contains spatial displacements. In particular,
this article provided a detailed example for a chain that features a skew link geometry.

New light is shed on the augmented convention by showing connections to line, screw, and graph theory.
Additionally, it is shown that – next to its theoretical solidity – the augmented convention provides several
advantages for practical modeling tasks compared to a modeling based on other conventions. Since all
computations – that are needed to derive the description of a mechanism in terms of the augmented convention
– can be implemented in software, the convention is easy to use without manual effort. Finally, because Sheth-
Uicker’s convention is a generalization of the other three mentioned conventions, it can be used as a tool for
transfering the specification of a mechanism from one convention to another.

Structure. This document is structured as follows: In Section 2, a set of definitions is introduced
for dealing with mechanisms. Here, a frame-based and graph-based notation is prepared for the succeeding
sections. In particular, the problem of the kinematic specification of a mechanism is established (Problem A).
In Section 3, four types of representations of displacements are presented. We use the terms homogeneous-
linear, vectorial, symmetric, and sequential to describe these types. All four representations are popular and
are used in the comparison section (Section 6). Additionally in Section 3, facts about the geometry of lines
and screws is compiled.

In Section 4, the central Sheth-Uicker (SU) convention is introduced, next to the two-frame, the classic
and the modified Denavit-Hartenberg (DH) convention. Here, the preparations from the first two sections
(Section 2 and Section 3) are used. Each of the four conventions is introduced, first, in matrix form, second,
in terms of a frame-placing procedure, and, third, if possible, by means of finite twists. In Section 5, an
example is provided to illustrate Section 4: it shows the usage of the augmented convention in comparison
to classic and modified DH conventions. The example mechanism features a link whose joint axes define a
‘skew line geometry’.

Section 6 is somehow the central section of this article: first, the augmented convention is compared as
kinematic convention (Section 4 with regard to Section 2), second, the augmented convention is compared
as a displacement representation (Section 4 with regard to Section 3). By doing so, the properties of the
Sheth-Uicker convention are worked out. In the final Section 7, a comprehensive overview is provided.

Style. This document should be readable as a descriptive survey, but also as an article that introduces
novel comparisons and outlines based on a unified notation (based on frame-sets, tuple indices, and triple
indices). In general, the reader shall be guided by a lot of geometric insight. The notation has been adapted
to deal with aspects from different disciplines. For the sake of brevity, not every conversion formula be-
tween representations is contained. Other great articles exist, that contain those. For example, the exp-log
connection is missing. Also, the topics quaternions and dual quaternions are only introduced for reasons of
completeness, and not thoroughly. Finally, the proper handling of ‘terminal frames’ (frames at the first ‘base’
link and last ‘end-effector’ links) is missing.

Notation. Throughout this article, several conventions for notation are used. Here, they are briefly
introduced. A vector is denoted by a small bold letter, e.g., a, a matrix by capital bold letter, e.g., M .
Sets and other nested ‘container’ data types are represented with fractional letters, like S. Lines, screws,
displacements, links, joints, and frames are denoted by capital letters. Names of methods are set in typewriter
font, e.g., f. An entity that is normalized is attached with a hat, like ˆ(. ). The imaginary unit is denoted
with i =

√
−1, the imaginary vector unit is denoted with i = (i, j, k)T , such that i2 = j2 = k2 = ijk = −1.

The dual unit is named as ε =
√

0, a dual entity is equipped with a tilde as ˜(. ). The dual part of a dual
entity is indicated by a ring (̊. ). Time variant entities are marked as (. ), time invariant entities as (. ). The
vectors on the standard axes are denoted as ez, ey, ez. For operations, the following are needed: the
sign · indicates a scalar, vector, or matrix multiplication. Multiplications of dual entities are marked with a
ring, as �. The operator (. )⊗ creates the skew-symmetric matrix that corresponds to a vector; in the other
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direction, the operator (. )⊕ extracts the axis vector from a skew-symmetric matrix. The operator (. )∗, swaps
primal and dual part of a dual entity.

In this article, the notation of transposing (. )T is not used for vectors: instead of writing aT · b, a
shorter notation is used with the symbol ? to indicate the sum of element-wise multiplications, such that
a ? b =

∑
ai · bi. Two orthogonal projections are used in this article. First, the orthogonal projection of a

vector b ∈ Rd onto some vector a ∈ Rd is denoted as πa(b).

πa(b) = b ? a

a ? a
· a = argmin

κ·a, κ∈R
dist(κ · a, b) . (1)

Second, the orthogonal projection of a vector b ∈ Rd into the orthogonal complement a⊥ ⊂ Rd of some vector
a is denoted as τ a(b)

τ a(b) = b− b ? a
a ? a

· a = argmin
p∈a⊥⊂Rd

dist(p, b) . (2)

3



2 Mechanisms and Kinematics

2 Mechanisms and Kinematics
In this section, basically standard terms and problems are introduced by means of specific definitions and
notations. After introducing the terminology for mechanisms and graphs in Section 2.1, the problem of
kinematic specification is introduced in Section 2.2. In particular, this problem is expressed by means of
frame sets. Additionally, in Section 2.4 frame sets are used for the formulation of classic kinematic problems.

2.1 Mechanisms and Graphs
2.1.1 Links and Joints

A characterization of mechanisms by Phillips ([36, § 1.09]) reads “[..] It can be said [..] (a) that all motion
in constrained mechanism is determined by the real members or links of the mechanism, in contact with one
another at the joints of the mechanism; and (b) that, in mechanism, there is no thing existing which cannot
be seen as a link or a joint.” In this article, this characterization is kept and the meaning of ‘a mechanism’
is further constrained: in particular, other aspects of machinery, like actuators or dynamic properties (mass,
inertia, friction) are neglected. Therefore, the characterization may be formalized by the following definition.

Definitions 1 (Mechanism (Type), Links and Joints). A (type of a) mechanism3 M is defined as the
tuple M = (L,J ) where L denotes the set of sorted links and J the set of sorted joints as

L =
{
L1, L2, . . . , Ln

}
J =

{
Ji1,j1 , Ji2,j2 , . . . , Jim,jm

}
. (3)

Thereby, a joint4 Jik,jk ∈ J physically connects a link Lik ∈ L with a link Ljk ∈ L.
Remark: For convenience, the sorting of links can be conducted according to a spanning tree of the mech-
anism. The naming of joints can be standardized by the convention that ik < jk holds ∀ Jik,jk ∈ J .

Definitions 2 (Variables and Parameters). The vector of configuration variables is denoted as q ∈ Q
where Q is the configuration space of M. The vector of design parameters is denoted as d ∈ D where D is
the design space of M.

Definition 3 ((Euclidean) Mechanism). A (Euclidean) mechanism5 M is defined as the tuple of mech-
anism type and the vector of design parameters M = (M,d).
Remark: The configuration variables and the design parameters do not form a simple ‘vector’ but incorpo-
rate the topology of the mechanism defined in Definition 1. Kinematic conventions deal with the best way
to denote a mechanism together with its variables q and its parameters d (see Problem A).

Definition 4 (Mechanism with a Configuration). Given a Euclidean mechanismM, and a configuration
vector q = q(t) of some timestep t, the ‘mechanisms in that configuration’ can formally be denoted as

M(q(t)) =
(

(L,J ), (d, q(t))
)

(4)

Remark: Given a configuration, the posture of the mechanism is not unique, since the mechanism might be
arrangeable in multiple postures for one configuration. This is explained in more detail in Section 2.4 where
the forward kinematics problem (Problem B) is introduced.

3– or M is the topology or the combinatorics of a mechanism –
4– or often called a pair –
5– or M is a realization of the mechanism type M–

4



2.2 Kinematic Specification

Graphs and Euclidean Graphs. A graph is a pair G = (V, E) of sets such that E ⊆ V × V:
The elements of the set V are called vertices, the elements of the set E are called edges (e.g. [12]). The
combinatorics of a graph are defined by means of an incidence or adjacency structure. Specifically, in
application to kinematics, graph theory provides the tools to distinguish between kinematic chains, trees,
and graphs. The definition of the mechanism type from Definition 1 can seamlessly be interpreted as the ‘link
graph’ of that mechanism M∼= GL = (L,J ) (since V = L). In Section 6.1.2, it is illustrated how this simple
graph can systematically be extended to Special Euclidean Graphs (in the sense that nodes are attributed
with poses, edges attributed with spatial displacements) by means of the two-frame and the augmented
convention.

Complexity of Mechanisms. Complexity of mechanisms can be split into the categories combina-
torics, link geometries, and joint types. The pure, non-Euclidean combinatorics of mechanisms is covered by
the graph concept. In Section 6, it is illustrated that the Sheth-Uicker convention provides advantages com-
pared to Denavit-Hartenberg convention in presence of mechanisms with skew link geometries and kinematic
loops. Generally, Sheth-Uicker allows a concise modeling of mechanisms, in the sense that the ‘Euclidean
displacement graphs’ directly correspond to the combinatorics of the mechanism. This allows the definition
of hierarchies by modeling of a kinematic loop as a complex joint (see also [36, §2.37-2.41]). The focus of
this survey is explaining the aspects combinatorics and link geometries, and drawing comparisons, whereas
the argumentation for joints is constrained to simple joints. Therefore, this article complements the original
work by Sheth and Uicker [48] that also covers other joints types (namely spherical, planar, and gear joints)
and provides an example on the ‘epicyclic gear train’.

2.2 Kinematic Specification

Problem A (Kinematic Specification of Mechanism). Given an arbitrary, physical mechanism M, a
specification of M is needed that enables to create

(A) a physical copy of the mechanism featuring the same kinematic properties without knowing the original
mechanism,

(B) a software model of the mechanism featuring the same kinematic properties without knowing the original
mechanism.

Additionally, as motivated in the introduction, the specification should be human-readable, compact, and
should reflect topology and geometry of the mechanism.

2.3 Frames and Poses
A frame F is a simple term for local coordinate system. Here, a frame ‘remains the same’ if it moves over
time. Therefore, additionally the term ‘pose’ is introduced which is only valid for a certain timestep.

Pose. A pose P ∈ SE(3) describes the rotation and the translation relative to the origin. If a frame is
associated with some frame it is marked as P = PF . In matrix notation a pose is given as

P =
(
x y z p
0 0 0 1

)
, (5)

where x,y, z and p are elements of R3. In general, the pose of a frame PF is a function of time (this can be
indicated by the overline notation P ) and of the mechanism (its links and joints, the design parameters and
configuration variables) PF = PFM(t). We omit the pose, and only speak about the frame F = FM, if (a)
the concrete pose is not needed, or (b) the initial pose (at time step t = 1) of the frame is meant.

Poses via Lines. The pose P of a frame F can alternately be denoted by the set of the lines X, Y , Z
of the axes of the frame, so that simply P =

{
X,Y, Z

}
. In Section 3.2.2, lines are formally introduced. The

location p of the frame F can be determined as p = X ∩ Y ∩ Z.
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2 Mechanisms and Kinematics

Frame Axes Principle. In kinematics, the axes of frames are ordered and interpreted according to a
common principle: Let F be a frame as defined in Equation 5. Optionally, let F be attached to some simple
joint J .

1. The z-axis is the major axis of F . It indicates the dominant direction of a frame. In case that F is
attached to J , the line Z of the z-axis coincides with the joint axis.6

2. The x-axis is the minor axis of F . It indicates the secondary direction of a frame. In case that F is
attached to J , the configuration of J is indicated by the line X of the x-axis.

3. The y-axis is the redundant axis of F . Its direction follows from the right-hand rule, i.e., y = z × x.

2.3.1 Pose Sets and Frame Sets

The ambiguous situation from Definition 4 can be solved by using frame sets.

Definitions 5 (Pose Sets and Frame Sets). Let F =
(
F1, F2, . . . , Fk

)
be some set of frames of cardinality

|F| = k, then P = P(F) denotes the set of poses of these frames, with P ∈ SE(3)k, as

P(F) =
(
P1, P2, . . . , Pk

)
=
(
P (F1), P (F2), . . . , P (Fk)

)
.

As for single poses, the following additional notation is convenient also for sets of poses: 1). If the initial
pose at timestep t = 1 is meant, then instead of using the symbol P, simply F can be used. 2). If the time
variance of a pose shall be indicated the overline notation is used: P = P (t) = P (F(t) ).

Definitions 6 (Link Covers and Minimal Link Covers). Let FL denote the set of the frames that
are attached to some link L ∈ F .7 Then, a frameset F is called covering if |FL| > 0 ∀ L ∈ L. A covering
frameset is denoted as F̂ . A frameset F is called minimal if |FL| = 1 ∀ L ∈ L.

Definition 7 (Mechanism with Unique Posture). Given a Euclidean mechanism M, and a covering
frame set F̂ together with the set of poses of these frames at some timestep t, P̂ = P (F̂ , t). Then, this
covering pose set defines a unique posture, such that ‘the mechanism in that unique posture’ P̂ can formally
be denoted as

M(P̂(t)) =
(
L,J , P̂(t)

)
. (6)

If the time is not important (‘in most of the cases treated’), but the (Euclidean) mechanism shall be described
in its initial posture at timestep t = 1, (thus, for short P̂ = P̂(1)) the former equation simplifies to

M̂ =
(
L,J , F̂

)
, (7)

hereby, L denotes the set of links and J denotes the set of joints, as introduced in Equation 3. Therefore,
the unique posture can be denoted as P̂ = P̂M = P (F̂M).
Remark: The posture P̂ of the mechanism is unique in contrast to Definition 4, since the frame set F̂
delivers a unique description in Euclidean space.

2.3.2 Kinematic Conventions

Specification by Frames. By means of using frames (i.e., by Definition 6 and Definition 7) the Problem
of Kinematic Specification (Problem A) boils down to the following two questions:

1. What frames shall be selected to describe the posture of the links?
2. How shall a displacement between a pair of frames be represented?
6E.g. the rotation, translation, or spindle axis.
7The overall frame set F can be partitioned as F = FL1 ∪ FL1 ∪ · · · ∪ FLn .
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2.4 Classic Kinematic Problems

Purposes of Kinematic Notation Conventions. As of today, the problem of kinematic specification
has not yet been solved. With regard to that, Thomas et al. resumed “till now, (...) a common notation for
parallel manipulators has not been accepted” [53], and Roth stated that “essentially what remains is largely
a question of notation.” [43]. It is about choosing an appropriate convention: since each notation convention
has different characteristics, it may not be the best for all purposes. In this paragraph, similar to [53], a
listing of several properties of kinematic conventions is provided to help judging about the quality of notation
conventions for a certain case.

To describe the properties of a convention C, a formal mapping SPECC is introduced. Given some mech-
anism of type M with a unique pose P̂, therefore given M̂, the mapping SPECC assigns the specification of
the mechanism in form of a table T according to some notation convention C.

SPECC : M̂ = (L,J , P̂) 7−→ TC(M̂) .

With respect to that definition, the following properties are introduced.
1. Uniqueness – One mechanism specification table should only be valid for one specific mechanism and

no other. Then, the mapping SPECC is right-unique with respect to M̂.
2. Generality – The specification convention should be applicable to a large class of different types of

mechanisms. In the best case, SPECC is left-total, meaning that all existing mechanisms can be specified.
3. Minimality & Compactness – In general, a short table TC(M̂) is preferred.8 However, to measure the

length of the table, different entities can be counted: frames, twists, or used parameters.
4. Unconditionality – The quality of the computation of the mechanism’s specification TC(M̂) is high if

it can be conducted by only a small number of conditions (case-by-case analyses).
5. Intuitiveness – The mechanism specification TC(M̂) should reflect the combinatrics and the geometry

of the mechanism SPECC in an intuitive way. 9

6. Flexibility – The zero posture, thus q = 0, should be assignable freely to each of the postures the
mechanism P̂ can have, i.e., for all possible poses P̂ the routine SPECC should compute a valid, unique
table TC(M̂).

7. Modularity – The mechanism specification should allow the substitution of a loop, or a subchain, by a
complex joint, influencing the structure of the entire table as little as possible.

8. Extendability – The mechanism’s specification should be extendable to incorporate other (e.g., dynamic)
properties of the mechanism.10

These properties should be kept in mind for Section 4 and Section 6.

2.4 Classic Kinematic Problems
This section illustrates how a concise definition of classic kinematic problems is easily derived by means of
frame sets.

The Forward Kinematics Problem. A characterization of the Forward Kinematics Problem by
Waldron and Schmiedeler ([55]) reads ‘[..] the forward kinematics problem is to find the relative position
and orientation of any two designated members given the geometric structure of the manipulator and the
values of a number of joint positions equal to the number of degrees of freedom of the mechanism.’
Definition 8 (Forward Kinematics Map). Given a mechanism M, the forward kinematics map of M
is the map which sends a configuration vector q ∈ Q to a set of poses P

FKM(q) 7→ P .

Often (e.g., in robotic textbooks), it is assumed that the FK is a function (thus, it has a unique solution);
however, generally, e.g., for parallel mechanism with different assembly modes, this is not true: it is a map.The
solution set P can be a discrete set P =

{
P (1), P (2), . . . , P (n) } or also an uncountable set, in particular some

semi-algebraic set.
Problem B (Forward Kinematics). Given a mechanism M and a configuration vector q, determine the
set of poses PFK ⊆ P so that

PFK = P(M)
FK (q) =

{
P | P ∈ FKM (q)

}
.

8Corresponds to a short overall description length.
9Then, a human ‘has to perform only a small number of case-by-case analyses’ to understand it.

10See the term comprehensiveness from [53].
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2 Mechanisms and Kinematics

Briefly, the problem of Forward Kinematics is to determine the image of the map FK for a certain configuration
vector q.

The Inverse Kinematics Problem. A characterization of the Inverse Kinematics Problem by Waldron
and Schmiedeler ([55]) reads ‘[..] given the relative positions and orientations of two members of a mechanism,
find the values of all of the joint positions. This amounts to finding all of the joint positions given the
homogeneous transformation between the two members of interest.’

Definition 9 (Inverse Kinematics Map). Given a mechanism M, the inverse kinematics map of M is
the map which sends a pose P ∈ SE(3) to some set of configuration vectors Q .

IKM(P ) 7→ Q

The solution set Q can be a discrete set Q =
{
q(1), q(2), . . . , q(n) } or also an uncountable set, in particular

some semi-algebraic set.

Problem C (Inverse Kinematics). Given a mechanism M and a pose P , determine the set of configu-
rations QIK ⊆ Q so that

QIK = Q (M)
IK (P ) =

{
q | q ∈ IKM (P )

}
.

Briefly, the problem of Inverse Kinematics is to determine the image of the inverse kinematics map IK for a
certain pose vector P .

Two Classes of Problems. Kinematic problems split up in two complexity classes: simple (P) and
hard (NP) problems. For example, the computation of forward kinematics of chains and trees is simple. E.g.,
in [5], the forward kinematics computation routine for kinematic trees is described by following the two-frame
convention. A multitude of different algorithmic approaches exists for solving hard kinematic problems and
this article does not intend to cover the related algorithmic questions. However, it is pointed out that certain
algorithms exist 11 that respect the topological and geometrical structure quite directly: for example, in the
class of heuristics, the cyclic coordinate descent method for computation of inverse kinematics of chains (see
e.g., [7]), and, in the class of global approaches, the CUIK suite for position analysis (see e.g., [37, 38]). Both
algorithms work near to the concrete kinematic specification of the mechanism, so that for these algorithms,
the Sheth-Uicker convention can be advantageous.

11– in contrast to more general approaches where the problem is seen as a general mathematical optimization problem –
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3 Representations for Finite Displacements
In this section, four different kinds of representations of finite spatial displacements in SE(3) are presented:
At first, the most common representation by a homogeneous matrix form is defined in Section 3.1. In addition,
the term spatial displacement is introduced as a synonym for the passive interpretation of a transformation.
Then, in Section 3.2, vectorial representations of displacements are explained: in particular, they are needed
later in Section 3.4. As third, in Section 3.3, the symmetric representation is presented. This elegant
representation – which is closely related to vectorial descriptions via twists of Section 3.2 – is briefly introduced
for reasons of completeness. At last, the sequential representations are presented in Section 3.4: later, it is
shown in Section 4 and Section 6, how the kinematic conventions are related to this representation. For all
presented four representations of displacements in SE(3), the linear equivalent for SO(3) of the representation
is introduced.

Motivation. Given a pair of frames, Fa and Fb with pose matrices P a and P b with respect to the standard
basis, the task is to derive a description of the displacement betwen the two frames. As an example, consider
the poses of two frames given by the matrices

P a =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 P b =


1 0 0 2
0
√

2
√

2 1
0
√

2 −
√

2 2
0 0 0 1

 .

The two frames are displayed in Figure 1. In this section, four different popular ways of describing the
displacement are compiled.12

Figure 1: Two frames Fa and Fb with skew z-axes za and zb are depicted. The lines Ga and Gb of the
z-axes and their common orthogonal GaGb are indicated. Additionally, a tube is drawn in rainbow colors
to support an intuitive imagination of the skew displacement. The tube may represent a trajectory or a link
between the two frames. For a clear view, the lengths of the frame axes vectors are shrinked.

3.1 Homogeneous-Linear Representation
Matrices are one main entity of linear algebra (see, e.g., [15]). Quadratic matrices form the general linear
group GL(n).

3.1.1 Rotation Matrix

A rotation matrix R ∈ GL(3) represents a linear map which has the properties that R ·RT = I3 and that
detR = 1. In particular, the first property expresses the orthogonality of a matrix, i.e., the three columns of
R are a set of orthogonal unit vectors. From this follows that a rotation preserves absolute values of angles.
From the second property follows that a rotation preserves volume and orientation. These two features are
expressed by the two conditions

|detR| = 1 detR > 0 .
12Anticipating the topic of kinematic conventions (Section 4), one observes that the displacement cannot be represented by

four classic or modified Denavit-Hartenberg parameters since the z-axes of the two frames are neither identical, intersecting,
or parallel, but skew. For this, it would be necessary that either the two z-axes, or one z- and one x-axis share at least one
common point.
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3 Representations for Finite Displacements

3.1.2 Homogeneous Matrix

The homogeneous matrix of a displacement is an element of GL(4); for such a matrix, here, the symbol
M is used. A homogeneous matrix M incorporates a linear rotation (via rotation matrix R ∈ GL(3)) and
an affine linear translation (via the translation vector t ∈ R3 that is linearized by the addition of the fourth
dimension), denoted as

M =
(
R t
0 1

)
. (8)

Any finite spatial displacement D(a,b) can be represented by means of a homogeneous matrix. This
homogeneous-linear type representation is characterized as:13

“Homogeneous Matrix := Rotation Matrix + Translation Vector” (A)

3.1.3 Active and Passive Interpretation

A matrix M can be used as a linear operator in two basic ways: either, it is used with right-multiplication
M · r, so that it acts as r 7→ Mr, or it is used with left-multiplication lT ·M , so that it acts as l 7→
lTM . For rigid body displacements, thus for a matrix with shape M = ( R t

0 1 ) as in Equation 8, this
corresponds to the active and the passive interpretation of a displacement (see e.g., [11]). To tighten notation,
in this survey, for these, the terms ‘spatial displacement’ and ‘temporal displacement’ are introduced: spatial
displacements describe the ‘relative, finite, spatial offset’ between two poses at the same timestep; whereas
temporal displacements describe the ‘relative, finite, temporal offset’ between two poses of the same body. In
this survey, always the passive interpretation is the one of interest.

Spatial Displacements. The term spatial displacement is used as a synonym for a proper rigid body
transformation in its passive interpretation. Let t be a fixed and arbitrary timestep, let FD and FA be
two frames in the same global coordinate system. Let P (t)

D and P (t)
A be the matrices (see Section 3.1) that

describe the poses of these frames at this timestep t. Then, the spatial displacement D(t)
(D,A) and its matrix

M
(t)
(D,A) between the two frames from FD to FA is expressed via

D
(t)
(D,A) : F (t)

D 7→
p
F

(t)
A M

(t)
(D,A) = (P (t)

D )−1 · P (t)
A . (9)

The passive interpretation is indicated by the usage of the symbol 7→p . This notation is chosen so that it
matches the notation in classic robotics textbooks (e.g., [44]): The forward kinematics map (see Definition 8)
of a kinematic chain is computed by composition from left-to-right as M (0,n) = M (0,1) ·M (1,2) ·. . .·M (n−1,n).

In other words, a ‘passive map from frame FD to frame FA’, is equivalent to a basis change transform
from basis FA to basis FD. According to this definition, poses (introduced in Section 2.3) can be interpreted
as certain spatial displacements: a pose of a frame FX describes a ‘spatial displacement relative to the global
coordinate frame FO’ so that P X = MO,X = (P (t)

O )−1 · P (t)
X = P

(t)
X .

Temporal Displacements. The term temporal displacement is used as a synonym for a proper rigid
body transformation in its active interpretation. Let FX be a frame, with poses P (t)

X and P (u)
X at timestep

t and u, with t < u. Then, the temporal displacement D(u,t)
X and its matrix M (u,t)

X between the two poses
P

(t)
X and P (u)

X is expressed via

D
(u,t)
X : F (u)

X ← [
a
F

(t)
X M

(u,t)
X = P

(u)
X · (P (t)

X )−1. (10)

The temporal displacement D(u,t)
X describes an active interpretation of the transformation, the usage of the

symbol 7→a indicates that: the temporal displacement describes the ‘movement’ object X between timestep t to
timestep u. This notation is chosen so that it matches the classical matrix multiplication from right-to-left.
Several temporal displacements can be composed as: M (t,0) = M (t,t−1) · . . . ·M (2,1) ·M (1,0).

13This type of characterization appears frequently in this survey.
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3.2 Vectorial Representations

Figure 2: For illustrating the conjugation duality between relative spatial (red) and relative temporal (blue)
displacements, DD,A and D(u,t) are marked by bold arrows: they are chosen to describe the same offset,
once in spatial, and once in temporal domain. To allow a comparison between spatial and temporal domain,
the frames FO and F

(t)
X coincide at the origin. The spatial displacement DD,A describes how frame FA

differs from frame FD (both attached to an (ellipse) object) at the same timestep. It is integrated in left-
to-right concatenation to compute the overall spatial displacement DO,D as DO,D = DO,D ◦ DD,A starting
from FO. The temporal displacement D(u,t) describes how (bar) object X has moved between timesteps t
and u. It is integrated in right-to-left concatenation to compute the overall temporal displacement D(u,0)

as D(u,0) = D(u,t) ◦ D(t,0) starting from F (0). Both representation matrices, of DD,A and of D(u,t), can be
found in the sketch. A matrix contains the coordinates of a displacement relative to a basis. By definition,
the bases FO and F

(t)
X are of interest for DD,A and D(u,t). The matrix of relative spatial displacement DD,A

is given by frame FD−A – which is dual to the ‘temporal offset of’ object X between timestep t and u. The
matrix of relative temporal displacement D(u,t) is given by frame F (u−t)

X – which is dual to the ‘spatial offset
along’ object X between FO and FX.

Connection. The relative spatial displacement from Equation 9 is suited for left-to-right concatena-
tions. The relative temporal displacement from Equation 10 is suited for right-to-left concatenations. For a
moment, the introduced semantics about space and time are disregarded. By introducing P I = PD = P (t)

and P II = P A = P (u) for the poses, and MS = M
(t)
(D,A) and MT = M

(u,t)
X for the displacements, by

definition, the equation
MS = P I ·MT · (P I)−1

holds. Relative spatial displacement MS and relative temporal displacement MT are conjugated of each
other – they are similar with respect to the initial offset P I. This duality relation is illustrated in Figure 2.
14

3.2 Vectorial Representations
This section starts with the vectorial representation of spatial rotation in Section 3.2.1. Finally, vectorial
representation of spatial displacement is treated in Section 3.2.4. In between, necessary and useful aspects
of geometry of lines and screws is presented. For the topic of vectorial representation, also see the excellent
articles [54] and [3].

3.2.1 Angle and Axis

Theorem 1 (Euler’s Rotation Theorem) Any displacement of a rigid body such that a point on the rigid
body, say O, remains fixed, is equivalent to a rotation about a fixed axis ω through the point O. [27]

14Figure 2 is inspired by a pair of figures from [11, Fig. 4.2]. It unites those two separate drawings.
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3 Representations for Finite Displacements

Proof of Euler’s rotation theorem are provided, e.g., in [4] and [32]. The vector ω# that lies on the rotation
axis together with its length ‖ω#‖ can be computed as

ω# = (R−RT )⊕ ‖ω#‖ = 2 · sinφ . (11)

The rotation angle φ and the unit vector ω̂ of the rotation axis can be derived as

φ = acos
(

tr(R)− 1
2

)
ω̂ =

{
ω# / ‖ω#‖ if sinφ 6= 0
0 if sinφ = 0

. (12)

The tuple (φ, ω̂) delivers a representation for any spatial rotational displacement, like

“Rotation := Rotation Angle + Rotation Axis”. (B)

About this charcterization, it is important to note that the orientation of the rotation axis determines the
direction of rotation.15 As for planar rotations, the angle value of a rotation is made unique, if a modulo
operation to an half-open interval, e.g., [0, 2π), is applied.

3.2.2 Geometry of Lines

For our purposes, lines are one-dimensional affine-linear subspaces of R3. Algebraically, two forms of lines
are very common and are presented here: these are the parametric and the homogeneous form.

Parametric Form of Lines.
Let G be a line passing through two points a and b. Define ωL := b − a. Then the parametric form of

the line reads as
G = G(aL,ωL) = aL + λL · ωL (13)

whereby aL denotes an anchor point of the line, and ωL denotes the direction vector 16 of the line. Briefly,
we also refer to the anchor point of a line as the location of a line and to uL as the direction of the line.

In the parametric form, a line can be interpreted like

“Line := Anchor + Direction”. (C)

Homogeneous Form of Lines. Again, let G be a line passing through two points a = (a0,a) and
b = (b0, b). Then the homogeneous form of the line reads

G = G(a, b) = (a0, a) ∧ (b0, b) = (a0b− b0a, a× b) = (ω,v0) (14)

The coordinates of the homogeneous form are also called Plücker coordinates. In this article, vector ω is
refered to as the direction, and v0 as the orthogonal moment of the line. The homogeneous coordinates fulfill
the Grassmannian condition (see e.g., [25]) ω ?v0 = 0. Homogeneous lines are elements of a projective space
and can be thus be interpreted as equivalence classes as

G = [ω,v0 ] = [ω1 : ω2 : ω3 : (v0)1 : (v0)2 : (v0)3 ] . (15)

The homogeneous coordinates of a line also have a representation as a dual entity G̃ like

G̃ = g + ε · g̊ = ω + ε · v0 . (16)

This relation is also refered to as ‘Study map’, e.g., in [39]. It is generalized by the concept of dual quaternions,
see Section 3.3. In this article, both representations of lines are used. The conversion from homogeneous to
parametric form can be derived by setting aL = v0×ω

‖ω‖2 and ωL = ω, see e.g., [45, Sec. 6.2]. A sketch of a
line in homogeneous coordinates is provided in Figure 3(a). Further visualizations can be found, e.g., in [13,
Sec. 11.3.1, Sec. 12.1.1].

15In the considered usecase of mechanism kinematics, the orientation of the rotation axes is defined by the way the joints are
assembled within the overall mechanisms.

16The symbol ω is chosen to be consistent with screw notation: In those cases, the angular velocity is expressed by ω.
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3.2 Vectorial Representations

Configuration Symbol Common Points Directions Distance Special Points

coincident infinite linear dependent d = 0 anchor midpoint
parallel none linear dependent d > 0 anchor midpoint projections

intersecting one linear independent d = 0 intersection point
skew none linear independent d > 0 closest points

Table 1: Four relative poses (coincident, parallel, intersecting, skew) of two lines together with some charac-
teristic entities.

Definition 10 (Line Scalar Product). The scalar product 〈(. ), (. )〉⊗ of two lines G̃(1) = (ω(1),v
(1)
0 ) and

G̃(2) = (ω(2),v
(2)
0 ) is defined as

〈G̃(1), G̃(2)〉⊗ = 1
2 ·
(
ω(1) ? v

(2)
0 + v(2)

0 ? ω(1) ) . (17)

Lines are self-dual with respect to the scalar product that means: 〈G̃, G̃〉⊗ = 1
2 ·
(
ω?v0+v0?ω

)
= ω?v0 = 0,

so that the Grassmannian condition from above is recovered. The normalization of a line to a unit line
Ĝ = (ŵ, v̂0) with ‖ŵ‖ = 1 is possible; it is explained below together with the normalization for screws. In
the homogeneous form, a line can be interpreted like:

“Line := Direction + Orthogonal Moment”. (D)

Poses of Lines. In Table 1, the four possible poses of a pair of lines are compared. By means of homo-
geneous coordinates and the scalar product (Definition 10), these four poses can be conveniently analyzed:
The lines are coplanar (coincident, parallel, or intersecting) if and only if

〈G̃(1), G̃(1)〉⊗ = 1
2 ·
(
ω(1) ? v

(2)
0 + v(1)

0 ? ω(2) ) = 0 (18)

Translational and rotational distance of two lines G̃(1), G̃(2) can be computed together via the dual scalar
product of Definition 14 as

〈G̃(1), G̃(2)〉G̃ = cosφ− ε · d · sinφ

See e.g., [39] and [13, Sec. 11.7.1], for further details about the analysis by homogeneous coordinates. See
e.g., [49] for numerically stable computations. See e.g., [56], [51] robotic modeling with respect to Grassman-
Cayley algebras.

Closest Points and Common Perpendicular.

Skew Lines. In case of two given lines G and H that are skew, for each line, one can find a point that
has closest distance to the other line. For example, the closest point on G to H will be denoted by πG(H)
via the orthogonal projections for lines17 as

πG(H) = argmin
p∈G

dist(p, H) . (19)

If two lines G and H are skew, then there is a unique line GH that connects the lines L and G with minimal
length. This line is called ‘the common perpendicular’ GH = ⊥(G,H) and defined as

GH = ⊥(G,H) = πG(H) + λGH · ωGH . (20)

The distance of two lines can be computed by means of the closest points πG(H) and πH(G) as

d = dist(G,H) = ‖πG(H)− πH(G)‖ . (21)
17In accordance to orthogonal projections for vectors, see Equation 1, that is πx(y) = argminκ·x, κ∈R dist(κ · x,y).
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3 Representations for Finite Displacements

(a) A line G̃(a, b) = [ b− a, a× b ] = [ω, v0 ] with direc-
tion ω and orthogonal moment v0.

(b) A twist $FD,FA = (ω, v) = (ω,ω × r + h · ω) with
direction ω and moment v depending on pitch h.

Figure 3: Visualization of a line G̃(a, b) and a twist $, with screw axis S0 = G̃.

Coplanar Lines. In this paragraph, the definitions of closest points and common perpendicular are
adjusted by ‘generalized variants’ for lines lying in a common plane. For the case of intersecting lines, the
closest points πG(L) and πL(G) coincide with the intersection point L ∩ G. The distance of intersecting
lines is dist(P,H) = 0. In case of coincident and parallel lines, neither πG(H) nor πH(G) can be determined
from the geometry, since all points provide the same (minimal) distance to the other line. However, if an
anchor point of the line is defined (which happens in kinematics applications in the following sections), the
following ‘trick’ can be used: given the anchor points aG and aH of the lines, the midpoint mGH of those
two mGH = 1

2 (aG+aH) is determined. Then, the closest points of G to this midpoint mGH is determined as
πG(mDH) and defined to be ‘the’ closest point πG(mH) on G to H. For the other line H, the computation
works analogously.

Definition 11 (Generalized Closest Points). Given two lines Gij and Gjk with anchor points pij ,
pjk, the generalized closest point π?Gij (Gjk) on Gij to Gjk is defined as

π?Gij (Gjk) =
{

πGij (Gjk) if lines Gij , Gjk are intersecting or skew,
1
2 · πGij (pij + pjk) if lines Gij , Gjk are coincident or parallel.

(22)

The generalized closest point π?Gij (Gjk) on Gij equals (1) the closest point on line Gij in case of skew
lines, (2) the intersection point in case of intersecting lines, (3) the midpoint of the anchor points in case of
coincident lines, (4) the projection midpoint of the anchor points in case of parallel lines, see Table 1.

Definition 12 (Generalized Perpendicular Direction). Given two lines Gij and Gjk with directions
ωij , ωjk and anchor points pij , pjk, the generalized perpendicular direction ω?(ij),(jk) is defined as

ω?(ij),(jk) = ⊥?(ωij ,ωjk) =
{
ωij × ωjk if lines Gij , Gjk are intersecting or skew,
τ ωij (pjk − pij) if lines Gij , Gjk are coincident or parallel.

(23)

By the preceding two definitions, the generalized common perpendicular ⊥?(G,H) can be defined as follows.
Definition 13 (Generalized Common Orthogonal). Given two linesGij andGjk and with directions

ωij , ωjk and anchor points pij , pjk. The line that passes through generalized closest points π?Gij (Gjk) and
π?Gjk(Gij) has direction ω?(ij),(jk) and reads in parametric form as

G?(ij),(jk) = ⊥?(Gij , Gjk) = π?Gij (Gjk) + λGH · ω?(ij),(jk) . (24)

By means of the last three definitions, it is possible to determine a ‘shortest connection’ between two lines
with given anchors, independently of how these are opposed to each other.

3.2.3 Geometry of Screws

To derive a definition of a screw, the concept of lines is enriched with a pitch. A pitch describes the relation
between translational and rotational displacements; for details, see below in Section 3.2.4. For the moment,

14



3.2 Vectorial Representations

it is sufficient that a pitch h is a scalar that expresses the ‘slope’ of the screw. In a simple terms, the object
screw can be geometrically characterized as

“Screw := Line + Pitch”. (E)

In addition to pitch h, a screw incorporates a radius vector r that points from the screw axis line to the
origin with an orthogonal angle. With these two entities, a scew reads formally as

S = (ω,v) = (ω, ω × r + h · ω) . (25)

Thereby, notation of v0 is chosen such that it corresponds with the line notation of Equation 14, for a pitch
that equals zero, h = 0. The algebraic interpretation for a screw (Equation 25) is expressed as

“Screw := Direction + Moment”. (F)

While screws are ‘still’ members of a projective space, a screw is – in contrast to a line – not self-dual. Thus
in general, for h 6= 0,

〈S, S〉⊗ = 1
2 ·
(
ω ? v + v ? ω

)
= ω ? v 6= 0 . (26)

Scalar Product. The scalar product for screws is an extended version of the product for lines 〈G̃(1), G̃(2)〉⊗
from Definition 10. It is defined in accordance with scalar products of other dual entities, in particular of
dual quaternions (Definition 16).

Definition 14 (Screw Scalar Product 〈S̃(1), S̃(2)〉G̃ ). The scalar product of the screws S̃(1) and S̃(2) is
defined as

〈S̃(1), S̃(2)〉G̃ = 〈S̃(1), S̃(2)〉G + ε · 2 · 〈S̃(1), S̃(2)〉⊗
= ω(1) ? ω(2) + ε ·

(
ω(1) ? v(2) + v(1) ? ω(2) ) (27)

The expression 〈. , . 〉G represents vector multiplication of the primal parts 〈S̃(1), S̃(2)〉G = ω(1) ?ω(2). The
line scalar product 〈S̃(1), S̃(2)〉⊗ is defined as in Equation 17.

Normalization. Just like lines, screws are elements of a projective space, so that S = [ω,v ]: the
geometric object ‘screw’ S is invariant to a scalar multiplication of the screw coordinates. Therefore, the
norm of a screw vector S = (ω,v) can be

(i) set to a normal value: the screw coordinates can be scaled such that ‖ω̂‖ = 1, or they can be scaled
such that ‖ω̂‖ = 0 and ‖v̂‖ = 1 for pure translations;

(ii) used to encode the magnitude of a finite displacement that it represents18.

Option (i) is described in the following paragraph, the following Section 3.2.4 is dealing with option (ii).

Normal Screw Coordinates. In Section 3.2.1, it is described how a unit vector ω̂ describing the axis
of the angle-axis representation of rotation is computed. This is generalized to derive the normal screw Ŝ
featuring the properties of option (i) above: Given some screw S = (ω,v), the corresponding unit screw
Ŝ = (ω̂, v̂) can be computed via the two equations

ω̂ =
{
ω / ‖ω‖ if sinφ 6= 0
0 if sinφ = 0

v̂ =
{
v / ‖ω‖ if sinφ 6= 0
v / ‖v‖ if sinφ = 0

(28)

For a normal screw Ŝ, the scalar products 〈Ŝ, Ŝ〉G̃ and 〈Ŝ, Ŝ∗〉G̃ , according to Definition 14, become sim-
ple in both cases: In case of a proper screw, with sinφ 6= 0, it holds that 〈Ŝ, Ŝ〉G̃ = 1 + ε · 2 · h# and
〈Ŝ, Ŝ

∗
〉G̃ = h# + ε · (1 + ( ‖v‖

‖ω‖ )2) (for h#, see Equation 31). In case of a pure translation, with sinφ = 0, it
holds that 〈S̃, S̃〉G̃ = 0 and 〈S̃, S̃∗〉G̃ = ε.

18In the instantaneous case, the norm of the screw can be set to represent the intensity of the associated physical entity.
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3 Representations for Finite Displacements

3.2.4 Finite Twists

Screw Displacements. In the last two sections, Section 3.2.2 and Section 3.2.3, facts about the ge-
ometry of lines and screws were presented; therefore, the vectorial representation of displacements, the
representation via twists, can be introduced. The following famous Chasles Theorem is a generalization both
of the theorem about rotation axis of spatial rotations (Theorem 1) and of the theorem about rotation pole
of planar displacements (Theorem 3).

Theorem 2 (Chasles) The most general rigid body displacement can be produced by a translation along a
line followed (or preceded) by a rotation about that line. [27]

A proof of Chasles’ Theorem can be found in [4]. In particular, the theorem states that an affine line (that
generalizes the rotation pole and the (linear) rotation axis) together with a translation and a rotation, in
short, a twist, can be found. In this article, the ‘translation along a line’ is referred to as absolute translation19

and denoted by s. The length of the absolute translation is referred to as shift s = ‖s‖. The ‘rotation about
that line’ is shortly referred to as spin and denoted by φ. Since a line with six homogeneous coordinates only
contains four ‘effective’ parameters, a version which is scaled by a certain factor can be used to describe a
twist along that line. In other words, with a finite spin φ and a finite shift s = ‖s‖ it can be written:

$G(φ, s) = $G(φ̃) ∼= (φ, ω̂, s, v̂0) . (29)

We reach the following external characterization of a twist: a screw displacement can be interpreted as a
segment with angle (spin) φ and height (shift) s of a cylinder with radius r, aligned along (the axis G of) a
screw. In Figure 3(b), this cylinder segment is also indicated.

“Twist := Line + Spin + Shift” (G)

Given a displacement in terms of a rotation matrix R and a translation vector t, Equation 12 provides the
way to compute axis direction ω# and spin φ. The next paragraph describes how to compute the absolute
translation s and orthogonal translation t0 via orthogonal decomposition of the translation vector t.

Orthogonal Decomposition of Translation. The translation vector t can be decomposed into ab-
solute translation s along the screw axis, and orthogonal translation t0 that lies in the plane orthogonal to
the screw axis as

t = πS0(t) + τS0(t) = s+ t0 . (30)

Standard Twist. The pitch h# of standard twist is the fraction of shift s and spin φ and is computed
as

h# = s

φ
= ω# ? v#

ω# ? ω# . (31)

In accordance to determination of ω# in Equation 11, the moment vector v# of the classic twist can be
computed as (see [11])

v# =
(
(
⊗
t ·R)− (

⊗
t ·R)T

)⊕
. (32)

Similar to the computation of the orthogonal translation t0, the orthogonal moment v#
0 can be determined. It

can be computed in two ways; either in the manner of the former Equation 32, or via orthogonal decomposition
(see Equations 1, 2) as

v#
0 =

(
(
⊗
t0 ·R)− (

⊗
t0 ·R)T

)⊕
v#

0 = v# − h · v# = v# − πω(v) = τ ω(v) . (33)

Hereby, the norms of these two expressions do not equal. However, this is not an issue since, in the given
context, one is only interested in the normalized orthogonal moment v̂0 = v̂0 / ‖v̂0‖. According to [21], the
standard twist $# can be defined by the multiplication of a unit line vector Ĝ with a dual angle φ̃ = (φ+ ε ·s)
like

$# = (ω#,v#) = φ̃� Ĝ = (φ+ ε · s)� (ω̂ + ε · v̂0) . (34)
19For the term ‘Rodrigues’ absolute translation’ see [57].
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3.2 Vectorial Representations

Method I. M2T – Matrix to Twist Conversion.

(In) Homogeneous matrix M representing a spatial displacement D ∈ SE(3), a pitch concept η(φ, s).
(Out) Twist $h representing that spatial displacement D with pitch h according to η, twist axis S0.

1. Spin φ of the twist and unit direction of the screw axis ω̂ are computed according to Equation 12.
2. Shift s of the twist is computed via an orthogonal decomposition of t along ω̂ according to Equation 30.
3. Orthogonal moment v#

0 is computed by one of the two possibilities in Equation 33.
4. Classic twist $# = (ω#, v#) is computed with φ̃ = (φ, s) according to Equation 34.
5. Twist axis S0 = (ω#,v#

0 ) is determined. A unit line Ŝ0 is computed as Ŝ0 = S0 / ‖S0‖.
6. Pitch h = η(φ, s) of the screw is computed according to Equation 35.
7. A representative of h-screw Sh = (ωh,vh) is computed by setting ωh = ω# and vh = v#

0 + h · ω#.
8. Twist intensity ρ = ρη(φ, s) is computed as ρ = d(φ) / ‖ω#‖, with d(φ) as in Equation 35.
9. Twist $h = ρ · Sh corresponding to displacement D is computed by scaling h-screw Sh with intensity ρ.

Alternatively (Equation 34), twist $h is directly computed via unit twist axis Ŝ0 from step 5 as $h = φ̃� Ŝ0.

The interpretation of Equation 34 reads like
“Standard Twist := Unit Line + Spin + Shift”. (H)

The coordinates of twists with different pitch-models can be computed from this standard twist. It is briefly
sketched in the next paragraph.

Other Pitch Definitions. The classic screw from the last section is one of the possibilities for defining
the pitch of a screw. In the past, a multitude of different pitch concepts were developed. For this, see e.g.,
[33, 21, 54, 10, 46, 34, 47]. Common to all these different pitch concepts is that in the infinitesimal case,
finite twists correspond to instantaneous twists. Additionally, all pitch concepts express the ‘slope of the
screw’ (see Section 3.2.3). That means that they relate the finite rotation displacement to the finite absolute
translation, the shift. 20 In particular, all pitch concepts η can be computed as a fraction of some function
n = n(s) over some function d = d(φ).

h = η(φ, s) = n(s)
d(φ) . (35)

Computation. If a displacement is given in terms of a homogeneous matrix as in Equation 8, the com-
putation of a twist with a certain pitch concept can be conducted with method Method I.21 The computation
of the twist vector by scaling the screw Sh with an intensity ρ (as in Method I) motivates the well-known
geometric interpretation of a twist.22

“Geometric Twist := Screw + Magnitude = Line + Pitch + Magnitude”. (I)

Here, this characterization is only listed for reasons of completeness. In the following, all screw displacements
are specified via a spin φ and a shift s, only. Therefore, no particular pitch definitions are needed and
interpretation (G) is sufficient.

Properties. For the remainder of this article, two additional properties of screws are needed. Namely,
these are orthogonality and linearity of twists (and screws and lines).

Orthogonality. Two linesG1, G2, two screws S1, S2, or two twists $1, $2 are orthogonal if their directions
ω1,ω2 are orthogonal. In particular, if the following equality is fulfilled:

ω1 ? ω2 = 0 . (36)

Linearity. A line L, screw S, or twist $ that fulfills the property ‖r‖ = 0 is called linear, otherwise it
is called affine. A line L, screw S, or twist $ that is linear and its direction is aligned to one of the standard
axes ez, ey, or ez is called axial. In particular, in the remainder of this article, an axial twist is marked as
$x, $y, or $z. In [14, Appendix A], the efficient algorithmic treatment of axial twists is described.

20The question if there is a ‘correct’ way to do so is raised in [2].
21The described computation routine is a generalized version of the one in [11, Sec. 4.6.4]. However, degenerate cases (e.g.,

sinφ = 0) are not respected, here.
22Characterization (I) can also be read as the ‘internal’ interpretation, in contrast to the ‘external’ characterization (G): a twist

is regarded as a segment (of the ‘trajectory curve’) of a certain screw.
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3 Representations for Finite Displacements

3.3 Symmetric Representation
In this section, the ‘symmetric’ representation of displacement via dual quaternions is briefly introduced.
Rooney judges that “the chief advantage in adopting a dual quaternion representation for a screw displacement
lies in its simplicity and economy” ([42]). Next to their simplicity and economy, dual quaternions feature
algebraic properties that can effectively be used for solving practical problems, see e.g., [23].

3.3.1 Quaternions

Quaternions are generalized complex numbers. A quaterion q ∈ H can be denoted in Gaussian form as

q = q0 + i ? q . (37)

Definition 15 (Quaternion Scalar Product). The scalar product 〈. , . 〉H of two quaternions q(1) and q(2)

as in Equation 37 is defined as
〈q(1), q(2)〉H = q(1) ? q(2) .

Therefore, the norm of a dual quaternion is

‖q‖2 = ‖q‖2H = 〈q, q〉H = q ? q . (38)

In polar form, as q = ‖q‖ · (cos φ2 + sin φ
2 · i ? ω̂), where next to absolute value ‖q‖ and argument φ

2 a rotation
axis ω̂ needs to be defined. Like lines (Section 3.2.2), quaternions are elements of a projective space, so that
the rotation that is encoded in the quaternion is invariant to the quaternion norm (modulo a volume scaling).
Therefore, for a finite rotational displacement R ∈ SO(3), the corresponding quaternion is normalized to the
unit quaternion q̂ = q / ‖q‖ with ‖q̂‖ = 1.

q̂ = cos φ2 + sin φ2 · i ? ω̂ . (39)

Essentially, unit quaternions contain angle and axis of the rotation R (see Section 3.2.1) in a ‘renormalized’
manner, such that the vector is element of a sphere element q̂ ∈ S(3) ⊂ R4. A simple characterization is
stated:

“Unit Quaternion := Rotation Angle + Rotation Axis”. (J)

3.3.2 Dual Quaternions

Generally, a dual quaternion consists q̃ of the sum of a primal quaternion q and a dual quaternion q̊, so that
it can be denoted in Gaussian form as

q̃ = q + ε · q̊ = q0 + i ? q + ε · (q̊0 + i ? q̊) . (40)

Conjugations, Dualization, Scalar Product. Two kinds of conjugations can be conducted for dual
quaternions: first, a complex conjugation q̃ is defined that negates all complex elements of q̃ so that
q̃ = q0 − i ? q + ε · (q̊0 − i ? q̊), second, a dual conjugation q̃ is defined that negates all dual elements of
q̃ so that q̃ = q0 + i ? q − ε · (q̊0 + i ? q̊). The geometric effects of these operations are derived in [23] and are
depicted and described with respect to geometry of twists (of the previous section) in Figure 4. The complex
conjugation occurs in the definition of the dual quaternion scalar product, below. In accordance to twists,
screws and lines, the ‘dualization’ of a dual quaternion swaps primal and dual part. The scalar product for
dual quaternions is a generalization of Definition 14 for screws and of Definition 16 for quaternions.

Definition 16 (Dual Quaternion Scalar Product). The scalar product 〈. , . 〉H̃ of two dual quaternions
q̃(1) and q̃(2) as in Equation 40 is defined as

〈q̃(1), q̃(2)〉H̃ =1
2 · (q̃

(1) � q̃(2) + q̃(2) � q̃(1))

= 〈q(1), q(2)〉H + ε ·
(
〈q̊(1), q(2)〉H + 〈q(1), q̊(2)〉H

) (41)
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3.3 Symmetric Representation

Figure 4: Depiction of dual quaternion conjugations for a displacement R = Rz(π / 4), t = (5, 1, 0)T . The
complex conjugation q̃ inverts the displacement. In other terms, it inverts the direction of the twist. The
dual conjugation q̃ inverts the location of the twist from P to P . The combination of complex and dual
conjugation q̃ inverts direction and location of the twist.

Therefore, the squared norm of a dual quaternion is defined as

‖q̃‖2 = 〈q̃, q̃〉H̃ =
(
‖q‖+ ε · 〈q, q̊〉

‖q‖

)2
.

Dual quaternions are elements of a projective space, as lines and screws, and primal quaternions are.
Therefore, the displacement that is encoded in a dual quaternion is invariant to the quaternion norm (modulo
a volume scaling). Therefore, for a dual quaternion q̃ an equivalence class of so-called Study parameters
[ q̃ ] = [ q, q̊ ] can be identified (as generalization of Equation 15 for lines). This topic is also named as
kinematic map, see, e.g., [39, Sec. 8.2], [22].

For a finite spatial displacement D ∈ SE(3) the corresponding dual quaternion is normalized to the dual
unit quaternion (without volume scaling) ˆ̃q = q̃ / ‖q̃‖ with ‖ˆ̃q‖ = 1.23 The dual unit quaternion ˆ̃q can be
determined by means of the dual angle φ̃ = (φ, s) and the dual vector Ĝ = (ω̂, v̂0). In particular, the following
description is possible (as generalization of Equation 34 and of Equation 39):24

ˆ̃q = cos φ̃2 + sin φ̃2 · Ĝ (42)

The previous equation expands to the following

ˆ̃q = cos φ2 + sin φ2 · i ? ω̂ − ε ·
(

sin φ2 ·
s

2
)

+ ε · i ?
(

cos φ2 ·
s

2 · ω̂ + sin φ2 · v̂0
)
. (43)

A third alternative to represent a dual unit quaternion by means of setting qR = q̂ from Equation 39, and
qT = 0 + ε · i ? t

2 , reads like
ˆ̃q = qR + ε · (qR · qT ) . (44)

From Equation 42 and Equation 43 an interpretation of a quaternion displacement can be derived that
consists of the four geometric entities (φ, ω̂, s, v̂0) that specify a twist displacement independently of the
screw type that was chosen, see Equation 29: dual unit quaternions renormalize this information such that
ˆ̃q ∈ S̃(3) ⊂ R4 +ε · R4. Essentially, the interpretation

“Dual Unit Quaternion := Rotation Angle + Rotation Axis + Shift + Moment” (K)

is deduced. A dual unit quaternion ˆ̃q as representations of a finite displacement D ∈ SE(3) stands in context
with other dual and complex constructions, an overview of that is provided in Figure 5. For more information
about dual quaternions, see e.g., [45, Sec. 9.3], [23, Appendix], etc. See e.g., [8] for dual complex number
algebra.

23Note that the scalar product and the norm for dual quaternions are ‘complete’ (in contrast to those for screws, before) for
arbitrary screw displacements and translations.

24Equation 42 can be derived via the exponential map: ˆ̃q = exp( φ̃·Ĝ2 ) = cos φ̃2 + sin φ̃
2 · Ĝ, see [45, p.214].
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3 Representations for Finite Displacements

Quaternions H SO(3) SE(3) Dual Quaternions H̃

Complex Numbers C SO(2) SE(2) Dual Complex Numbers C̃

Real Numbers R SO(1) SE(2) Dual Numbers R̃

Figure 5: Complex and dual constructions for representing special orthogonal and special Euclidean groups.

3.4 Sequential Representations
3.4.1 Euler Angles in Bunge Convention

‘Passive’ Euler Angles in Bunge Convention. One classic set of Euler angles is the usage in the
z-x′-z′′ order (the so-called Euler angle sequence for orbits [26, Sec. 4.5.1]) or Bunge convention [6]. In this
sequence, the combination of three angles (γ, β, α) is applied. In the passive interpretation this means: first,
a basis change from FD to FC about degree γ is performed, then, from FC to FB about the degree β, finally,
from FB to FA about α.

R(γ, β, α) := R
(p)
dyn(γ, β, α) = R

(p)
sta(α, β, γ) =

 cγ cα− sγ cβ sα − cγ sα− sγ cβ cα sγ sβ
sγ cα + cγ cβ sα − sγ sα + cγ cβ cα − cγ sβ

sβ sα sβ cα cβ

 (45)

For the sake of brevity, for some angle θ the common abbrevations sθ = sin θ and cθ = cos θ are used in the
equation above.

R(γ, β, α) := R
(p)
dyn(γ, β, α) = Rz(γ) ◦Rx′(β) ◦Rz′′(α) (46)

The characterization reads as

“Euler-Bunge Rotation := z-Rotation + x′-Rotation + z′′-Rotation”. (L)

3.4.2 Dual Euler Angles in Bunge Convention

The concept of Euler angles can be generalized by dualization, so that given a displacement D(D,A)
(Equation 9) between frames a ‘sequential representation’ can be derived. The term ‘Dual Euler Angles’ was
first used in applied kinematics by Yang for the dynamic study of spatial five-link mechanisms [58], and for
the dynamic study offset unsymmetric gyroscope [59]. In particular, in [58, Fig. 1] the representation of
spatial displacements by Dual Euler Angles is explained. In those papers, computations are performed by
means of 3x3 dual transformation matrices M̃ ∈ G̃L(3) within the active interpretation.

The dual Euler parameters in Bunge convention are the ‘Yang-Sheth-Uicker’ sequence

ũ = (γ̃, β̃, α̃) = (γ, c), (β, b), (α, a) (47)

In function form / by means of axial twists (that were introduced in Section (I)):

D(γ̃, β̃, α̃) = D
(p)
dyn(γ̃, β̃, α̃) = $z(γ̃) ◦ $x′(β̃) ◦ $z′′(α̃) = $γ̃ ◦ $β̃ ◦ $α̃ . (48)

Spoken more verbally, the following characterization is possible:

“Euler-Yang Displacement := z-Twist + x′-Twist + z′′-Twist”. (M)

The geometry of this convention is described in more detail in Section 4.4 about the Sheth-Uicker convention.
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3.5 Other Representations

Matrix Form. Given Dual Euler angles γ̃ = (γ, c), β̃ = (β, b), and α̃ = (α, a), the translation vector t
can be computed as

t = t(γ̃, β̃, α̃) = c ·
( 0

0
1

)
+ b ·R(γ, 0, 0) ·

( 1
0
0

)
+ a ·R(γ, β, 0) ·

( 0
0
1

)
(49)

Concluding, the homogeneous matrix representation of the displacement D(D,A) reads

M = M(γ̃, β̃, α̃) =
(
R t
0 1

)
. (50)

with rotation matrix R as defined in Equation 45 and translation vector t as defined in Equation 49.

3.5 Other Representations
Other representations of spatial displacements are described and compared, e.g., in [16]. See e.g., [40] for
more representations of spatial rotations. See [54] and [3] for the vectorial representations. See e.g., [46, 47]
for exponential and Cayley maps.
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4 Kinematic Modeling Conventions

General notation F(ij)i F(ij)j F(ijk̂)j
F(̂ijk)j F(jk)j

Two-Frame SU 3 3 – – 3
Classic DH – – – 3 –

Modified DH – – 3 – –
Augmented SU 3 3 3 3 3

Fixed chain notation FAi FDj FCj FBj FAj

Table 2: Usage of frames of different conventions to describe a joint-link displacement D(ijk), expressing the
displacements from joint Jij to joint Jjk via link Lj . The first column represents joint frame F(ij)i attached
to the previous link Li. The following four frames are attached to link Lj . These are the joint frame F(ij)j ,
the augmented frames F(ijk̂)j and F(̂ijk)j , and finally joint frame F(jk)j .

4 Kinematic Modeling Conventions
4.1 Prerequisites
In the following, in Sections 4.2–4.4, the (1) two-frame Sheth-Uicker, (2) the classic, and the (3) the modified
Denavit-Hartenberg, and (4) the augmented Sheth-Uicker convention are presented in a unified notation.
The link-covering frame set F̂ delivers the possibility to determine the unique posture (Definition 7) of a
mechanism, and so to solve Problem A, since each frame is specified by (at least) one frame. Equation 7
reads like M̂ =

(
L,J , F̂

)
so that a mechanism with a link-covering frame set F can be determined in its

unique posture like P̂(t) = P ( F̂M(t) ). So, for each of the four conventions, a certain link-covering frame set
will be introduced. At the end of this section, in Section 4.5, four additional kinematic modeling conventions
are reviewed.

Usage of Frames. The four different conventions differ according to the frames used. To establish
a unified notation, four different frame sets are introduced. In particular, these are the frame set (1) of the
two-frame SU convention F?, (2) of the classic DH convention FC , (3) of the modifified DH convention FM ,
and (4) of the augmented SU convention FA. In Table 2, the usage of frames of the different conventions is
shown. In particular, the equation

FA = FC ∪ FM ∪ F? (51)

about the combinatorics of the frame sets can be read off from that table: the augmented frame set is created
from the frame sets of the other three conventions.

Short Notation. In this article, links are enumerated with simple indices, while joints and their axes
are enumerated with double indices to achieve a notation that reflects the topology of the mechanism (see
Definition 1). In this section, pairs of lines (of joint axes) and frames located on these are considered. For
this purpose, a short notation is introduced. Let Zij and Zjk be two joint axes that share one index j because
the two joints connect with the same link Lj . Then, the definitions

c ijk̂ = π?Zij (Zjk) c îjk = π?Zjk(Zij) Xijk = ⊥?(Zij , Zjk) (52)

shorten notation by canceling redundancy, but still reflect the necessary combinatorics.25

Frames of the augmented convention are enumerated with triple indices for the same reason. To order to
allow intuitive comparisons of the conventions, let an arbitrary chain of links which are connected by joints
be fixed by Li-Lj-Lk passing link Lj . Let F(ij)i , F(ij)j , Fijk̂ , Fîjk, F(jk)j and F(jk)k be the consecutive
frames in FA associated the chain of links. Then, for the frames that are attached to link Lj , the following
short notation is defined

FDj := F(ij)j FCj := Fijk̂ FBj := Fîjk FAj := F(jk)j . (53)

25The ‘hat’ in the used triple index (ijk̂) can be read as a ‘not’. For example: “the point c(ijk̂) belongs to the line tuple
(Zij , Zjk). It is that closest point of the line pair that does not lie on the line which contains the index k in its name”.
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4.2 Two-Frame Convention

Method II. TWO-SU – Frame Placings for Two-Frame Convention.

(In) A simple joint Jij (with anchor point aij joint axis zij) that connects a link Li with a link Lj .
(Out) Frames FAi = F(ij)i and FDj = F(ij)j that are associated to that joint and attached to link Li and Lj .

(p) The locations pAi and pDi frames FAi and FDj are located at the anchor point aij of joint Jij .

(z) The z-axes zAi and zDj of frames FAi and FDj are aligned along the joint axis zij of joint Jij .

(x) The x-axes xAi and xDj of frames FAi and FDj are chosen conveniently
(e.g., in accordance with the local geometry of the link they are attached to).

(y) The y-axes yAi and yDj of frames FAi and FDj are aligned so that they complete right-hand systems.

Parametric and Variable Poses and Displacements. In Definitions 5, the overline notation for
indicating time variance is introduced for poses. Similarly, if a displacement D ∈ SE(3) is time variant (it
depends on the configuration variables q), the notation D is used. Contrary, if the displacement D is time
invariant (it does not depend on q, but only on the design variables d and the frames are attached to the
same link) then the notation D is used.

4.2 Two-Frame Convention
Idea. The idea of the two-frame convention is to achieve a partition of displacement into link and joint

displacements. The practical advantages of such a partition are explained in [5]. In [48], in Section 4.4 and
Section 6, the advantages of the augmented convention – that is achieved from the two-frame convention –
are discussed. Since there are exactly two frames at each joint the convention, in total, a frame set of size
|F?| = 2 · |J | is defined. Since for each joint-link pair there is exactly one frame defined, to each link there are
|F?L| = |JL| ≥ 1 frames attached to it, so that the two-frame convention is not minimal (Definition 6). Sheth
and Uicker mention in [48] that this redundancy can be reduced by re-unifying link- and joint displacements
for purposes of efficient computation. For the two-frame convention with frame set F? Equation 7 becomes

M? =
(
L,J ,F?

)
(54)

Procedure. Method II contains a description of the frame placings routine for the Sheth-Uicker two-
frame convention, TWO-SU.

Decomposition into Joint- and Link Displacements. The combined joint-link displacement Dijk

is decomposed into joint displacement Dij and link displacement D?
ijk like

Dijk : F(ij)i 7→p F(jk)j Dijk = Dij ◦D?
ijk (55)

such that the link displacement D?
ijk is an arbitrary displacement in SE(3) that maps from joint frame

F(ij)j to joint frame F(jk)j passively: D?
ijk : F(ij)j 7→p F(jk)j . It is further decomposed by the augmented

convention (Section 4.4). The displacement Dij is the short notation for D(ij)i,(ij)j that expresses the time-
dependent displacement between the frames F(ij)i and F(ij)j at joint Jij . In the passive interpretation, it can
be computed as a spatial displacement as

Dij : F(ij)i 7→p F(ij)j Dij = (F(ij)i)−1 ◦ F(ij)j . (56)

In case of a simple joint, this displacement can be expressed via one finite twist as

D(ij) = $̄d̃ij = $̄z(δij , dij) . (57)

The handling of other complex joint types is described in the original work by Sheth and Uicker [48].
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4 Kinematic Modeling Conventions

Computation of Forward Kinematics. By means of the two-frame convention, the forward kine-
matics map of a kinematic chain is computed as

D(1,n) = D1,2 ◦D?
1,2,3 ◦D2,3 ◦D?

2,3,4 ◦ · · · ◦D(n−2,n−1) ◦D?
(n−2,n−1,n)

= D(1,2,3) ◦D(2,3,4) ◦ · · · ◦D(n−3,n−2,n−1) ◦D(n−2,n−1,n) .
(58)

In [5], it is discussed how the forward kinematics map for kinematic trees can be computed and how kinematic
loop computations can be integrated into that by means of the two-frame convention.

4.3 Denavit-Hartenberg Conventions
Idea. For the classic DH and the modified convention with frame sets FC and FM , Equation 7 reads

like

MC =
(
L,J ,FC

)
MM =

(
L,J ,FM

)
Classic and Modified DH convention define minimal link covering frame sets (see Definition 6), thus

|FC | = |FM | = |L| The classic DH convention (see [20], and e.g., [44, 50], [50]) and its modified variant (see
e.g. [9, 28], [11, p.219]) represent the most popular standard for specifying a kinematic chain. Classic and
modified DH convention use a set of four parameters, namely the quadruple

(θ, t), (β, b) .

Generally, a spatial displacement (defined by two different frames) can be specified by minimally six param-
eters (see the twist displacement in Section 3.2) – the ‘trick’ of the DH convention is to place the frames
such that the displacement between them can be described via the four parameters θ, t, β, b. The geometric
meaning is described in Table 4 and Table 5. Therefore, it has to be distinguished between the four possible
cases of line configurations (see Section 3.2.2): in case of coincident and intersecting axes lines, everything ‘is
nice’. In the cases of parallel and skew lines, the frames have to be ‘moved’ according to certain rules (this
is also further discussed in Section 6.1.1).

Proximal and Distal. The classic DH convention is a distal convention in the sense that a frame j
(that is attached to link Lj) is located at the end of the common perpendicular Xijk = ⊥?(Zij , Zjk) on joint
axis Zjk (see Definition 13).

The modified DH convention is a proximal convention in the sense that a frame j (that is attached to link
Lj) is located at the beginning of the common perpendicular Xijk = ⊥?(Zij , Zjk) on joint axes Zij .26

For a better overview of this frame alignment, see Figure 6 for classic DH, and Figure 7 for modified
DH convention. Their drawing style is adapted from [50]. It is important to mind that in contrast to the
preceding two frame convention, generally neither FBi and FBj (classic) FCj and FCk (modified) correspond
to the anchor points of the joints.

Decomposition into Two Axial Twists. More concrete, each displacement can be decomposed into
two screw displacements. By means of the frame names that were introduced in equations 53, the displace-
ments read for the classic convention:

DC
ij : FBi 7→p FBj DC

ij = $z(θij , tij) ◦ $x(βijk, bijk) (59)

And for the modified convention:

DM
jk : FCj 7→p FCk DM

jk = $x(βijk, bijk) ◦ $z(θij , tij) (60)

Procedure. Method III displays a detailed view of the frame-placing routine CLS-DH for the classic DH
convention according to the four general positions. Method IV displays a detailed view of the frame-placing
routine CLS-DH for the modifed convention according to the four general positions.

26When using, e.g., for chains, simple joint indices, the classic convention has the unsatisfactory property that a frame j is
placed on joint axis j + 1. To facilitate this situation, the modified version was introduced. In this article, this issue does not
occur since tuple indices instead of simple indices are used to identify joints.
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4.4 Augmented Convention

Method III. CLS-DH – Frame Placings for
Classic DH Convention.

(In) 1. Joint axes lines Zij and Zjk of two simple joints Jij
and Jjk,
2. classic DH frame FBi for link Li.

(Out) Classic DH frame FBj for link Lj .

(⊥) The common perpendicular X?ijk = ⊥?(Zij , Zjk) =
(ω?ijk,v

?
ijk) of lines Zij and Zjk is computed.

(p) The location pBj of frame FBj is being fixed on line
Zij . In case that the lines Zij and Zjk are

1. coincident, pBj is fixed to some point on Zjk,
e.g., the line anchor point ajk.

2. intersecting, pBj is fixed to some point on Zjk,
e.g., the line intersection point c ijk̂ = c îjk.

3. parallel, pBj is fixed to some point on Zjk,
e.g., the line anchor point ajk.

4. skew, pBj is fixed to the closest point
c îjk of Zij on Zjk.

(z) The z-axis zBj of frame FBj is aligned along the joint
axis line ljk.

(x) The x-axis xBj of frame FBj is aligned perpendicular
to both lines Zij and Zjk. In case that the lines Zij
and Zjk are

1. coincident, xBj is fixed to some direction in the
plane orth. to lines Zij and Zjk, e.g., along xCi .

2. intersecting, xBj is fixed along the common
perpendicular X?ijk.

3. parallel, xBj is fixed to some direction in the
plane orth. to lines Zij and Zjk, e.g., along X?ijk.

4. skew, xBj is fixed along the common
perpendicular X?ijk.

(y) The y-axis yBj of frame FBj is aligned so that it com-
pletes a right-hand system.

Method IV. MOD-DH – Frame Placings for
Modified DH Convention.

(In) 1. Joint axes lines Zij and Zjk of two simple joints Jij
and Jjk,
2. the modified DH Frame FCi for link Li.

(Out) Modified DH frame FCj for link Lj .

(⊥) The common perpendicular X?ijk = ⊥?(Zij , Zjk) =
(ω?ijk,v

?
ijk) of lines Zij and Zjk is computed.

(p) The location pCj of frame FCj is being fixed on line Zij .
In case that the lines lij and ljk are

1. coincident, pCj is fixed to some point on Zij ,
e.g., the line anchor point ajk.

2. intersecting, pCj is fixed to some point on Zij ,
e.g., the line intersection point c ijk̂ = c îjk.

3. parallel, pCj is fixed to some point on Zij ,
e.g., the line anchor point ajk.

4. skew, pCj is fixed to the closest point
c ijk̂ of Zjk on Zij .

(z) The z-axis zCj of frame FCj is aligned along the joint
axis line Zij .

(x) The x-axis xCj of frame FCj is aligned perpendicular
to both lines Zij and Zjk. In case that the lines lij and
ljk are

1. coincident, xCj is fixed to some direction in the
plane orth. to lines Zij and Zjk, e.g., along xCi .

2. intersecting, xCj is fixed along the common
perpendicular X?ijk.

3. parallel, xCj is fixed to some direction in the
plane orth. to lines Zij and Zjk, e.g., along X?ijk.

4. skew, xCj is fixed along the common
perpendicular X?ijk.

(y) The y-axis yCj of frame FCj is aligned so that it com-
pletes a right-hand system.

Discussion. Each DH displacement is expressed by only four parameters. This is achieved by the special
placing of frames in FC , and FM . However, this has the consequence “in certain circumstances, this will
require placing the origin of frame i in a location that may not be intuitively satisfying, but typically this will
not be the case” as Spong and Hutchinson characterize in [50]. The mentioned ‘certain circumstances’ describe
the case of skew line geometry; this is illustrated in example mechanism in Section 5 and the configuration in
Figure 16, Section 6.2.1. A lot of real mechanisms feature skew line geometry. And further, if one assumes a
‘probabilistic mechanism’ (that might arise from or for a simulation), with randomly defined joint axes, skew
geometries of these appear with probability one.

The property of minimal DH that the x-axes of the frames need to be adjusted to so that they intersect
with the ‘other’ joint axis, leads to another disadvantage: since a minimal frame set is chosen and therefore
the poses of the frames are influenced by both, design parameters and configuration variables, the zero pose
of the mechanism is implicitly defined by the geometries of the joint axes pairs and cannot be chosen freely.
In particular, it is not possible to adjust the zero configuration to the poses of the integrated physical joints
or to the specific wishes of the modelers.

4.4 Augmented Convention
Idea. The frames of the minimal DH conventions are located in such a manner that a displacement

between the consecutive frames can be expressed by four parameters: the displacements between two succes-
sive frames in FC and FM may differ by two screw displacements. The frames of the two-frame convention
are freely located at the joint positions. Thus the arbitrary spatial displacement between them can be min-
imally described by six parameters (see vectorial representation, Section 3.2, and sequential representation,
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4 Kinematic Modeling Conventions

Method V. AUG-SU – Frame Placings for Augmented SU Convention.

(In) Two frames FDj = F(ij)j and FAj = F(jk)j at joints Jij and Jjk and attached to link Lj .
(Out) Two augmenting frames FCj = F ijk̂ and FBj = F îjk attached to link Lj .

(⊥) The common perpendicular X?ijk = ⊥?(Zij , Zjk) = (ω?ijk,v
?
ijk) of lines Zij and Zjk is computed.

(p) The locations pCj and pBj of frames FCj and FBj are fixed to the closest points c?
ijk̂

and c?
îjk

of lines zij and zjk.
The closest points are determined by c?

ijk̂
= x?ijk ∩ zij and c?

îjk
= x?ijk ∩ zjk.

(z) The z-axes zCj and zBj of frames FCj and FBj are aligned along the z-axes zDj and zAj of frames FDj and FAj .

(x) Do the lines zDj = zij and zAj = zjk of frames FDj and FAj share (at least) one common point?

Yes. (in case of coincident and intersecting z-axes)

• The x-axes xCj and xBj of frames FCj and FBj
are aligned along the x-axes xDj and xAj of
frames FDj and FAj .

No. (in case of parallel and skew z-axes)

• The x-axes xCj and xBj of frames FCj and FBj
are aligned along the along the direction of the
common perpendicular ω?ijk .

(y) The y-axes yCj and yBj of frames FCj and FBj are aligned so that they complete right-hand systems.

Section 3.4). Sheth-Uicker’s uses the latter, the Dual Euler Angles representation and thus consists of a se-
quence of three screw displacements. In this section, this idea is more formalized by introducing the augmented
frame set FA. Two consecutive frames of this frame set may differ by at least one screw displacement and
can be described by two parameters (that together make a dual angle). Then, for the augmented convention
with frame set FA the Equation 7 reads like

MA =
(
L,J ,FA

)
(61)

Decomposition into Three Axial Twists. Decompose the link displacement D∗ijk from Equation 55
into three twists

(
$c̃ijk , $b̃ijk , $ãijk

)
. A sketch of the three twists is given in Figure 9. Then, the decomposition

of D∗ijk can be written as
D∗ijk = $c̃ijk ◦ $b̃ijk ◦ $ãijk . (62)

Each of the screws is made up by two parameters, thus we have six major parameters, namely the tuple

(γ, c), (β, b), (α, a) (63)

The geometric meaning of these six parameters is described in Table 6. In more detail, the three twists are
axial twists (see Section 3.2.4)

$c̃ijk : F(ij)j 7→p Fijk̂ $c̃ijk = $z(γijk, cijk) (64)

$b̃ijk : Fijk̂ 7→p Fîjk $b̃ijk = $x(βijk, bijk) (65)

$ãijk : Fîjk 7→p F(jk)j $ãijk = $z(αijk, aijk) (66)

Procedure. The frame-placing procedure is described in detail in Method V. It describes the frame-
placing routine AUG-SU for augmented convention for a given pair of frames F(ij)j , F(jk)j ∈ F?; thus after
Method II has been executed.

Discussion. The joint frames are aligned according to the Frame Axes Principle from Section 2.3.
Z-lines indicate the joint axes. The decomposition takes place along these lines, thus preserving them. This
is discussed in Section 6. Table 3 depicts how the pose of the line pair of joint axes can be read off from a
Sheth-Uicker table.

In e.g., [30] the Sheth-Uicker convention was applied.
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4.5 Other Modeling Conventions

Symbol Pose of Lines ⇐ γ c β b α a

coincident ς/2 s/2 – – ς/2 s/2

parallel ς/2 s/2 – ∗ ς/2 s/2

intersecting . . ∗ – . .

skew . . ∗ ∗ . .

Table 3: Deducing the mutual line pose from SU parameters: In coincident and parallel cases, the generalized
common orthogonal (Definition 13) is placed in between the frames so that the twists along the Z-line and
the Z ′′-line have identical twist parameters. In the other two cases, these are arbitrary. The distribution of
the non-zeros (∗) of the parameters β and b of β̃-twist along the X ′-line allows a unique interpretation of the
mutual pose of the lines.

Computation of Forward Kinematics. By means of the augmented SU convention, the forward
kinematics map of a kinematic chain is computed as

D(1,n) = D1,2 ◦D?
1,2,3 ◦D2,3 ◦D?

2,3,4 ◦ . . . ◦D(n−2,n−1) ◦D?
(n−2,n−1,n)

= $d̃12 ◦ $
c̃123
◦ $

b̃123
◦ $

ã123
◦ . . . ◦ $d̃n−1,n

◦ $
c̃n−2,n−1,n

◦ $
b̃n−2,n−1,n

◦ $
ãn−2,n−1,n

,
(67)

whereby the first equation is identical to Equation 58.

4.5 Other Modeling Conventions
In the final part of this section, next to the two frame convention (Section 4.2), the two variants of Denavit-
Hartenberg’s convention (Section 4.3), and Sheth-Uicker’s augmented convention (Section 4.4), four further
conventions for modeling the kinematics of mechanisms are reviewed briefly. By outlining their interconnec-
tions, a broad overview of the state-of-the-art in kinematic modeling shall be permitted.

Yang’s Convention. Yang modeled spatial mechanisms in the works [58] and [59] by means of twists
along the joint axes, and twists along common perpendiculars of consecutive pairs of these axes. In the
notation of frame sets, the frame set FY that is used by Yang contains those frames that are located in
the intersections of these twists. Therefore, the set FY can be obtained from the augmented frame set by
substracting the frames at the joints - the frames of the two-frame convention, as FY = FA \ F?. The
convention by Yang is not a minimal convention in terms of frames, but a minimal convention in terms of
twists: twists on the same axis are ‘accumulated’ into one twist. There is no separation between joint and
link displacements. This convention is illustrated within the example in Section 5.

Khalil-Kleinfinger Convention. Khalil and Kleinfinger developed a convention that is a ‘case-sensitive
blend’ between Denavit-Hartenberg’s and Sheth-Uicker’s convention [24]. In dependence of the topology of
the mechanism (chain, tree, loop), the convention changes between the usage of only two, or more than two,
twists per row. Comparing to Sheth-Uicker’s convention, a number of case distinctions has to be conducted.
In Section 5, the conversion of conventions is illustrated: i.e., frames of the the augmented convention can
be filtered to achieve a minimal convention for a subchain of a mechanism. By doing so, similar results to
Khalil-Kleinfinger’s convention can be achieved in a way that saves the case distinctions during the ‘construc-
tion phase’ of the convention. Similar to this article, Khalil and Kleinfinger used tuple indices to enumerate
elements of the mechanism. However, the set of joints was chosen as the ground set of their indexing scheme,
in contrast to the set of links which is chosen here. If one applies an adjacency-based indexing together with
Khalil-Kleinfinger’s scheme for a link which connects to a multitude of k other links via k joints, the ‘name’
of this link becomes an impractically long tuple of – principally unrestricted – length k.27

Thomas-Maciuszek-Wahl Convention. Thomas, Maciuszek, and Wahl developed a convention for
handling spherical joints by extending the convention by Denvait-Hartenberg with one additional rotational
degree of freedom to each row of the original Denavit-Hartenberg table [53]. The convention follows a one-
frame convention, i.e., it uses one frame at the anchor point of each joint. In this sense, the convention by
Thomas et al. is a ‘total blend’ of the minimal Denavit-Hartenberg convention and the two-frame convention.

27E.g., in a case of a Steward platform, the two ‘platform links’ connect via six spherical joints to each of the legs. Therefore,
for this example, both platform links are identified by tuples of length six.
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4 Kinematic Modeling Conventions

Compared to Sheth-Uicker’s convention, the convention by Thomas et al. saves one parameter per table
row. However, along with that, the strict separation of variable and constant displacements is lost – and
even more repealed than in the classic Denavit-Hartenberg convention. Further – if only five instead of six
parameters (Sheth-Uicker) are used to describe one joint-link displacement – the remaining of constraints on
the frame-placings is inevitable. Similar to Denavit-Hartenberg’s original work, tricky situations arise for the
modeling of mechanisms that feature branchings or skew line geometries. The notation by Thomas et al. is
based on the link-graph GL. However, since the enumeration of edges (joints) is simple, these do not reflect
the combinatorics of the mechanism.

Gupta’s Zero Reference Pose Convention. The zero reference pose method by Gupta is a method
by which the computation of the current pose of a kinematic structure is conducted with respect to its
zero reference pose, instead of using the joint-to-joint displacements which are used by the representations
explained here [18]. For that, similarity transformations are exploited. In contrast to the methods presented
before, Gupta’s method is more a computation method, instead of a method about the selection, naming,
location, and orientation of frames. In particular, it is a useful formalism for the computation of complex
mechanisms since it is demonstrated how to analyze a complex joint “as a separate entity and then ‘add on’
this solution to the rest of the manipulator solution” [18].
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4.5 Other Modeling Conventions

FT Axis Param. Geometric Description Alignment

$
adc

Zij θij angular distance of xBi and xCj around zBi
Zij tij linear distance of xBi and xCj along zBi

$
b

Xijk βijk angular distance of zCj and zBj around xCj
Xijk bijk linear distance of zCj and zBj along xCj

Table 4: Geometric meaning of four minimal parameters
(θ, d, α, a) of the classic Denavit-Hartenberg convention. The four
parameters describe a combined link-joint-link displacement.

Figure 6: Classic DH parameters for
a displacement between frames FBi
and FBj .

FT Axis Param. Geometric Description Alignment

$
b

Xijk βijk angular distance of zCj and zBi around xCj
Xijk bijk linear distance of zCj and zBi along xCj

$
adc

Zjk θjk angular distance of xBj and xCk around zBj
Zjk tjk linear distance of xBj and xCk along zBj

Table 5: Geometric meaning of four minimal parameters
(α, a, θ, d) of the modified Denavit-Hartenberg convention. The
four parameters describe a combined link-joint-link displacement.

Figure 7: Modified DH parameters
for a displacement between FCj and
FCk .

FT Axis P. Geometric Description Alignment

$d z(ij)
δ var. angular distance of xAi and xDj around zAi
d var. linear distance of xAi and xDj along zAi

$
c

z(ijk̂)
γ const. angular distance of xDj and xCj around zDj
c const. linear distance of xDj and xCj along zDj

$
b

x(iĵk)
β const. angular distance of zCj and zBj around xCj
b const. linear distance of zCj and zBj along xCj

$
a

z(îjk)
α const. angular distance of xBj and xAj around zBj
a const. linear distance of xBj and xAj around zBj

Table 6: Geometric meaning of (two plus) six parameters of
the Sheth-Uicker convention. The two parameters δ, d describe
the joint displacement of a simple joint. The six parameters
(γ, c, β, b, α, a) describe the link displacement.

Figure 8: Line configurations of Zij and Zjk for a chain of links
Li, Lj , Lk together with named frames.

Figure 9: Augmented parameters
for a displacement between frames
FDj and FAj . These frames may de-
fine a pair of skew lines by their z-
axes.
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5 Example

S1 =

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 S2 =

 1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1


S3 =

 1 0 0 0
0 1 0 0
0 0 1 2
0 0 0 1

 S4 =

 1 0 0 2
0

√
1/2

√
1/2 0

0 −
√

1/2
√

1/2 2
0 0 0 1


S5 =


1 0 0 2
0

√
1/2

√
1/2 1

0 −
√

1/2
√

1/2 3
0 0 0 1

 S6 =

 1 0 0 2
0

√
1/2

√
1/2 2

0 −
√

1/2
√

1/2 4
0 0 0 1



Figure 10: Set of matrices {S1, . . . ,S6} that determine the poses of
the frames of the example mechanism.

Figure 11: Example mechanism with
named links, joints and frames.

5 Example
In this section, an example for the modeling with augmented Sheth-Uicker parameters in comparison to
classic and modified Denavit-Hartenberg conventions is presented to clarify the similarities and differences
between the concepts. For simplicity, all angles are denoted in degrees.

5.1 Description of the Example Mechanism
The example mechanism M consists of three links L = {L1, L2, L3}. The first link is fixed and connected to
some origin frame FO, the last one can be thought of ending with some end effector, thus carrying a frame of
interest FI . The first and the third link are simple cylinders, while the second link is some curve (see below).
Two simple joints J12, and J23, here rotative joints, are used in the mechanism. They are collected in the set
J =

{
J12, J23

}
. In Figure 11, the named entities can be read off.

Two-Frame Convention. As explained in Section 6.1.2, mechanisms can be uniquely defined ... By
means of that, the mechanism M? can be specified in its unique pose via triple M? =

(
L,J ,F?

)
. The

frames of the two-frame convention F? is the following

F? =
{
FO, F(1,2)1 , F(1,2)2 , F(2,3)2 , F(2,3)3 , FI

}
. (68)

where the additional FO is introduced as an invariant frame at the origin of the very first link, and FI is
introduced to indicate the pose of the tip of the last link of the chain.

The set of matrices given in Figure 10 defines the poses of all frames that appear in different representation
conventions to specify the mechanism. For the two-frame convention this looks like as follows

PO = S1, P(1,2)1 = S2, P(1,2)2 = S2, P(2,3)2 = S5, P(2,3)3 = S5, PI = S6 . (69)

In Figure 12(a) the example mechanism is shown together with the frame set F2. The Sheth-Uicker two-frame
convention is not expressible in table from. The only possibility to specify the mechanism is the listing of
the displacements, e.g., in form of matrices.

The Second Link. The second link L2 was created by a multivariate Hermite spline. Start point p1
and start ‘velocity’ t1, target point p2 and target ‘velocity’ t2

p1 = (0.0, 0.0, 1.0)T t1 = 3 · (0.0, 0.0, 1.0)T p2 = (2.0, 1.0, 3.0)T t2 = 3 · 1√
2
· (0.0, 1.0, 1.0)T

5.2 Comparison
As explained in Section 4, in different conventions different sets of frames are used. For the present example
mechanism M, the overall mechanism can be seen with four different frame sets in Figure 5.2. In addition
to that graphical representation, the frames and their usages are also presented in Table 7.
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5.2 Comparison

S1 S2 S3 S4 S5 S6

Two Frame SU F? FO J1,2 – – J2,3 FI

Classic DH FC FO – – L2 – FI

Modified DH FM FO – L2 – – FI

Augmented SU FA FO J1,2 D̂1,2,3 D̂1,2,3 J1,2 FI

Table 7: Usage of frames in different conventions and associated entities. FO denotes the frame at the origin,
and FI the frame of interest. The table is according to the more general Table 2.

(a) (b) (c) (d)

Figure 12: Usage of frames for the example in (a) two-frame SU, (b) classic DH, (b) modified DH, and (d)
augmented SU convention. For a clear view, the norm of axis vectors of the frames was shrunk.

Classic and Modified DH Convention. The frame set FC for the classic DH convention consists of
the following three frames

FC =
{
FO, F(1̂,2,3), FI

}
. (70)

The frame set FM for the modified DH convention consists of the following three frames

FM =
{
FO, F(1,2,3̂), FI

}
. (71)

Analyzing Figure 12(b) and Figure 12(c), one notices that the frame sets do not represent the link geometry,
frames are in open space, no frames at the joints and joint displacements are merged. Table 8 and Table 9
show the well-known classic and modified DH parameters that can be determined via the frame sets FC and
FM .

Augmented SU Convention. The augmented SU parameters are determined by the set of augmented
frames FA. The frame poses are given in Figure 10.

FA =
{
FO, F(1,2)1 , F(1,2)2 , F1,2,3̂, F(1̂,2,3), F(2,3)2 , F(2,3)3 , F(2,3,4̂), F(2̂,3,4), FI

}
. (72)

Observing from Figure 12(d), the dense set of augmented frames FA is indeed an approximation of the
geometry of the mechanism.

(i, j) θ t β b

(1, 2) • 2.000 -45.000 2.000

(2, 3) • 2.828 – –

Table 8: Classic DH paramters.

(i, j) β b θ t

(1, 2) – – • 2.000

(2, 3) -45.000 2.000 • 2.828

Table 9: Modified DH paramters.
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5 Example

Index Joint Jij Joint Jjk Twist $d(ij) Twist $c(ijk̂)
Twist $b(ijk)

Twist $a(îjk)

(i, j) (j, k) δ d γ c β b α a

1 (−−, 1) (1, 2) – – – 0.500 – – – 0.500

2 (1, 2) (2, 3) • – – 1.000 -45.000 2.000 – 1.414

3 (2, 3) (3,−−) • – – 0.707 – – – 0.707

Table 10: Augmented Sheth-Uicker parameters; the two columns of twist $̄d(ij) represent the variable config-
uration vector q, the last six columns represent the vector of design parameters d.

Now, the two-frame convention was augmented in such a manner that a representation by a parameter
set is possible. The augmented SU parameters that are determined by the frame set FA are depicted in
Table 10. (Note: Compare these results to Table 3.)

Conversion from Augmented SU to Minimal DH Parameters. Here we give an example for
application of convention conversions that are possible with the augmented SU convention, as described in
Section 4.4. In particular, we show the set of classic and modified parameters again, but in a slightly differ-
ent notation, since these parameters were automatically derived from the set of augmented SU parameters
(previous Table 10). Briefly, the method to derive these can be described as the action to “filter” the frames
or to “accumulate” the displacements of a subchain. If this is conducted appropriately, the following two
tables are derived.

(i, j) θ t β b

(0̌, 1, 2) (0̂, 1, 2) – 0.500 – –

(0̂, 1, 2) (1̂, 2, 3) • 1.500 -45.000 2.000

(1̂, 2, 3) (2̂, 3, 4) • 2.121 – –

(2̂, 3, 4) (2̌, 3, 4) – 0.707 – –

Table 11: Re-classified DH parameters.

(i, j) β b θ t

(0, 1, 2̌) (0, 1, 2̂) – – – 0.500

(0, 1, 2̂) (1, 2, 3̂) – – • 1.500

(1, 2, 3̂) (2, 3, 4̂) -45.000 2.000 • 2.121

(2, 3, 4̂) (2, 3, 4̌) – – – 0.707

Table 12: Re-modified DH parameters.
Table 11 and Table 12 contain the same information as the previous Tables 8 and 9 but in a slightly exploded
form.

Conversion from Augmented SU to Yang’s Parameters. In Section 4.5, Yang’s modeling con-
vention was characterized as that convention that uses a minimal amount of screw displacements. Once the
augmented convention is computed, it is also possible to ‘filter’ to this convention. For the given example,
this results in three twists whose parameters are depicted in Table 13.

ν n β b µ m

• 2.000 2.000 −45.000 • 4.828

Table 13: Yang’s Parameters.
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6 Comparisons
This section consists of two parts: In the first (Section 6.1), Sheth-Uicker is compared as a kinematic con-
vention. In the second (Section 6.2), Sheth-Uicker is compared as a displacement representation.

6.1 Sheth-Uicker as a Kinematic Convention
To compare Sheth-Uicker as a kinematic convention, in Section 6.1.1, a geometric comparison is conducted.
Then, in Section 6.1.2, the combinatorical comparison of Section 4.1 is continued by relating to graph concepts.
A comparison of features and applications is drawn at last, in Section 6.1.3.

6.1.1 Screw, Planar, and Spatial Displacements

Table 14 compares different kinds of displacement that can be expressed via one, two, and three finite
screw displacements. Combining one aligned screw with another one that moves in an orthogonal direction
increases the space of displacements that can be described. Since classic and modified DH parameters can be
deconstructed into two orthogonal screws, this is a comparison against classic and modified DH conventions.
If the z-axes of the two frames are not co-planar (in case of coincident, intersecting, or parallel lines), the
displacement can not be described with two aligned screws.

Symbol Displacement One Finite Twist Two Finite Twists Three Finite Twists

Coincident Z-lines 3 3 3

Parallel Z-lines – 3 3

Intersecting Z-lines – 3 3

Skew Z-lines – – 3

Examples Simple Joints Minimal DH Augmented SU

Table 14: Displacements (defined by a pair of frames) that can expressed as screw displacement of one finite
screw, as the composition of two orthogonal screws, and as the composition of three pairwise orthogonal
screws.

As described, Sheth-Uicker convention is a generalization of Denavit-Hartenberg convention: it generalizes
from two-twist description to a three-twist description. Therefore, any finite displacement D ∈ SE(3) can
be described. Thus, also displacements with a skew line configuration can be displayed without changing
the defining frames. Note, that since the configurations of intersecting, coincident, and parallel lines are co-
planar, they are realizable in R2: Denavit-Hartenberg displacements are only able to describe displacements
D ∈ SE(2).

6.1.2 Sheth-Uicker and Parallel Mechanisms

While the link graph GL = (L,J ) does not carry Euclidean embedding, this concept can be extended
seamlessly by the triple-enumerated frame sets to ‘Geometric Graphs’. If the displacement sets

D? =
{
D(ij) ∪D?

(ijk) ∀ i, j, k : (J(ij) ∈ J ) ∧ (J(jk) ∈ J )
}

DA =
{
D(ij) ∪Da(ijk)

∪Db(ijk)
∪Dc(ijk)

∀ i, j, k : (J(ij) ∈ J ) ∧ (J(jk) ∈ J )
}

are defined, next to link graph GL = (L,J ) (see Section 2), the two-frame graph G? = (F?,D?) and
augmented graph GA = (FA,DA) can be properly defined. All vertices and edges express poses and spatial
displacements between them. Thus, these graphs can be called Special Euclidean Graphs. Here is a table:

Graph G GL G? GA

Vertex Set V L F? FA
Edge Set E J D? DA

Table 15: Three graphs for a mechanism (type) M and its Euclidean realization M.
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6 Comparisons

(a) A schematic drawing of an example mechanism that is
neither a kinematic chain (it features two end-effectors, at link
L8 and L14), nor a kinematic tree (it features a kinematic loop,
indicated by joint colors). The style of drawing indicates the
link graph GL = (L,J ). The links are enumerated according
to a spanning tree of this graph, also they are partitioned
(colored) into three chain-sets that appear in the depth-first
sorting of the tree. These link-chains are defined via the root
link L1, the branching links, L2, L4, L7, and the end-effector
links L8, L14.

(b) A schematic drawing of the combinatorics of links, joints,
and frames for a case of a link Lk with three adjacent joints
connecting to links Li, Lj , Ll. Three sets of vertices VL,
V∗, and VA can be identified by three different round types
of elements. The principle of the augmented DH convention
for decomposing a displacement (dashed arrows) between each
pair of joint frames via a set of three orthogonal twists (dotted
arrows) is illustrated. This sitution appears for all branching
links L2, L4, L7 of Figure 13(a).

Together, these graphs feature a hierarchy relationship (see also Figure 13(b)). By construction, the
combinatorics of the three graphs remain similar: G? can be constructed ‘straightforward’ from GL via
substitution of vertices by |V?L| = 2 · |JL| sub-vertices and the edge set of the complete graph K|JL| (sub-
edges) in between. The augmented graph GA can be constructed from two-frame graph G? via substitution
of the sub-edges by a chain of three sub-sub-edges and two sub-sub-vertices. Then one link-vertex L in
GL corresponds to |VAL | = |JL| + 2 ·

(|JL|
2
)

= |JL|2 vertices in GA. The argumentation also holds in the
opposite direction: first, the two-frame graph G? can be achieved from augmented graph GA by contracting
all suitable three-chains of edges eA ∈ EA (concatenation of three twist displacements) ‘inside’ the links to
one edge E? 3 e? = D?

ijk ∈ D? (link displacement) – G? is called a minor of GA. Second, link graph GL can
be achieved from two-frame graph G? by contracting of all edges ‘inside’ e? ∈ E? the links (link displacement)
such that the ‘abstract’ link VL 3 vL = L ∈ L ‘itself’ remains. Thus, GL is a minor of G?.

This is especially noteworthy since the concept of edge contraction and minor graphs, resp., can also be
used for expressing a kinematic loop by a complex joint, as introduced in Section 2.1 (an implementation by
means of the the two-frame convention is described in [5]): in particular, a subset of joints (edges of the link
graph) that builds a kinematic loop is contracted into one super-edge which represents the corresponding
complex joint.

6.1.3 Applications for Sheth-Uicker and Denavit-Hartenberg

In Table 16, an overall comparison for the four covered conventions is drawn. The feature handling of
branchings is a direct consequence of the feature that the atomic displacements in the two-frame convention
and in the augmented convention are clearly separated into link displacements and joint displacements.
Handling of branchings, and thus the handling of parallel mechanism is explained in Section 6.1.2 above. The
feature of properly handling skew lines is illustrated with an example in Section 5. The ability of the minimal
DH conventions to serve as a normal representation for planar displacements D ∈ SE(2) is only partially
valid as explained in Section 6.1.1. The table partially anticipates results from the following Section 6.2. In
particular, the ability of the augmented Sheth-Uicker’s convention to serve as a normal representation for
spatial displacements D ∈ SE(3) is explained in Section 6.2.1.
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6.2 Sheth-Uicker as a Representation for Displacements

Kinematic Modeling Convention Classic Modified Two-Frame Augmented
Denavit-Hartenberg Sheth-Uicker

(C)
Link Covering Frame Set FC FM F? FA

Frames per Link |FL| 1 1 2 · |JL| 4 · |JL|
Number of Parameters 4 4 (12) 6 (+2)

(P)

Description via 2 axial twists (matrices) 3 (+1) axial twists
Representable Line Pairs coincident, parallel, intersecting coincident, parallel, intersecting, skew

Representation of planar* displacements D ∈ SE(2) spatial* displacements D ∈ SE(3)
Atomic Displacements accumulated L-J-L displacements separated link and joint displacements

(A)

Freely Assignable Zero Posture – – 3 3

Preserving Joint Frames – – (3) 3

Simple Handling of Branchings – – (3) 3

Simple Handling of Skew Lines – – (3) 3

Geometry-Reflecting Parameters – – – 3

Table 16: Comparison of combinatoric (C), principal (P), and application-relevant (A) properties of the four
kinematic conventions. *Sheth-Uicker parameters are not only capable of displaying spatial, but also planar
displacements. In the planar case, at least one parameter of the X ′-twist simplifies to zero (see Table 3).
Also in this case, as indicated in the following Section 6.2.1, the additional third twist in Sheth-Uicker’s
convention allows reflecting the geometry of a planar displacement better, compared to the two twists used
in Denavit-Hartenberg’s convention. While Sheth-Uicker conventions permit the convenient treatment of
branchings and skew line geometries, this is not possible by means of the minimal DH conventions without
further ado, concretely without moving one of the two frames such the displacement becomes planar. This
does not only hold for spatial, but also for planar mechanisms, see Section 6.2.1.

6.2 Sheth-Uicker as a Representation for Displacements
In this section, the Sheth-Uicker and the Dual Euler Angles representation, resp., are compared to the Finite
Twist representation. First, in Section 6.2.1 this is conducted for planar displacements D ∈ SE(2), then, in
Section 6.2.2 for spatial displacements D ∈ SE(3). It turns out that studying the spatial setting has a lot
of parallels to the planar, in particular, a spatial setting can be ‘planarized’ via orthogonal decomposition of
the translation (see Equation 30).

6.2.1 Planar Displacements

Theorem 3 (Rotation Pole) “Every planar displacement D ∈ SE(2) is a rotation about a point (rotation
pole) P in the projective plane.”

The Rotation Pole Theorem is the planar version of the more general Theorem 2. A proof can be found, e.g.,
in [29, Theorem 2.4]. In case of pure translations, the pole lies at infinity. In the ‘finite case’, the location of
the pole can be constructed by intersecting bisectors of line segments between homologous28 points (another
way of constructing the location of the pole works via the radius r and is described below, in Section 6.2.2).
The value of the rotation around the rotation pole P equals the value of rotation of the displacement without
the translation. The rotation pole is not the only point where the rotation value is preserved: the rotation
pole is located on a circle that preserves this rotation value. This is characterized by the following Theorem
of Inscribed Angles which is a generalization of the Theorem of Thales.

Theorem 4 (Inscribed Angles) Let C ′ be a circle with center point M ′ and radius r′. Let A and B be
the intersection points of a secant c with the circle C ′. Then, the angle γ is constant for any triangle ABC
with C any third point on C ′. In particular, the angle γ equals 1

2 · µ where µ is the ‘central angle’ at point
M ′ in triangle ABM ′.

Proof The equation γ = 1
2 · µ is combined from the equations γ = β′′ − α′′ and µ = β′ − α′ together with

the relations α′′ = 1
2 · α

′ and β′′ = 1
2 · β

′. The latter follow from triangle sums 2 · α′′ + (π − α′) = π and
2 · β′′ + (π − β′) = π.

The idea of the proof is shown in Figure 15 which is a rotated version of Figure 13 so that position of
the pole (named as C) is located at (−1, 0)T . Then, the idea is to apply the arguments about half-angles

28in the sense of ‘corresponding’, used as in [57].

35



6 Comparisons

Figure 13: The rotation pole P lies in the intersec-
tion of the isometric circle and the perpendicular
bisector of the planar translation vector. While the
bisector is entirely determined by translation t0, the
circle is determined as that circle passing FD and FA
which preserves rotation angle φ.

Figure 14: The radius r lies on the diagonal of a dual
rhombus that is made by the location of FD that is
PD, location of FA that is PA = D0 ◦ PD, rotation
pole P and the location D−1

0 ◦ PD.

twice (for the half-angle parametrization, see e.g., [1]). The notation in Theorem 4 was chosen so that for
the radius of the screw r = ‖r‖ it holds that r = 2 · r′, for the twist angle φ it holds that φ = γ = 1

2 · µ (see
Figure 14).

Isometric Circle. The circle which the rotation pole is located on has a constant angle and in particular
this angle equals the angle of the rotation of the displacement. Because of that it is here called isometric
circle. It can be characterized to be the circle of intersection points of homologous axes.29

Sheth-Uicker and Denavit-Hartenberg. The sketch in Figure 16 is a rotated and extended version
of Figure 13. It depicts the same planar displacement, z-axes and x-axes are in the plane, the y-axes of
the frames were chosen to be orthogonal to the plane. A direct interpretation of the sketch as a planar
link displacement according to the two-frame convention is only possible if the frames FD and FA indicate
locations of slider joints. Figure 16 shows the points Y , M and H that correspond to SU, DH conventions.

One can observe that the Sheth-Uicker point Y also lies on that circle since the z-axes are homologous
axes. Therefore, the angle β between zD and zA equals the angle φ that is taken at the pole. The classic
Denavit-Hartenberg point H and the modified Denavit-Hartenberg point M do not lie on that circle. Because
of this property, it is concluded that while the two conventions – augmented Sheth-Uicker and minimal DH
– are combinatorically equivalent for planar displacements, the SU-convention ‘specializes better to SE(2)’
and provides a geometrically more concise representation of planar displacements D ∈ SE(2) than Denavit-
Hartenberg.

In the interpretation of the planar displacement as a link displacement, for the case of two rotative joints,
both joint axes would be orthogonal to the plane. For this case, in case of parallel joint axes, DH and SU
conventions are equivalent. In case of one rotative and one planar joint, while the mechanism is planar, the
link displacement is not planar in the sense of Theorem 3: it is not representable as an affine rotation in
the plane. In this case, the joint axes are skew such that the DH is not able to represent that displacement
without moving one of the two frames on its joint axis.

6.2.2 Spatial Displacements

A Spatial Perspective. In Figure 17, three-dimensional visualizations of a finite displacement together
with the ‘discrete’ Sheth-Uicker approximation and the ‘continuous’ Finite Twist approximation are provided.
In Figure 17(a), the line segments of the three axial twists are drawn, in Figure 17(b) the affine twist is drawn
as a segment of the ‘trajectory’ of a certain screw (see Characterization (I)).

29Homologous axes are defined in accordance with homologous points: If two homologous points PD and PA are chosen, then
the lines D-PD and A-PA passing from the two origins D and A through the points PD and PA are homologous.
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6.2 Sheth-Uicker as a Representation for Displacements

Figure 15: Sketch for proving the the-
orem of inscribed angles. The equal-
ity γ = 1

2 · µ can be deduced from
a twofold application of the half-angle
parametrization.

Figure 16: A planar displacement D defined by two frames FD
and FA, D = F−1

D ◦ FA. The equivalent rotation about pole P
is illustrated by a set of three sectors of circles. The point Y
is the point that corresponds to the location of frames FC and
FB. The point H for the classic DH convention is located at the
intersection of z and x′′. The analogous point M for the modified
DH convention is located at the intersection of x and z′′.

Combinatoric Equivalent Decompositions

Two Simplified Perspectives. Two perspectives on the two decompositions are shown in Figure 18. In
Figure 18(a), the view is aligned along the screw axis; in this case, the common orthogonal appears ‘oblique’.
In Figure 18(b), the view is aligned perpendicular to the common orthogonal; in this case, the axis of finite
twist appears ‘oblique’. The two decompositions of the displacement are complementary.

A Twist Decomposition. To compare the two descriptions in more detail, a decomposition of the
Finite Twist representation in the same manner30 as for Sheth-Uicker description is conducted below. Again,
the key ingredient of the decomposition of Sheth-Uicker is the definition of two augmenting frames. In this
case, they are named FT and FR and computed as in Method VI.

Method VI. DT – Decomposed Twist.

(In) Frames FD and FA that define a displacement.
(Out) Augmenting Frames FT and FR in the intersection of screw axis and orthogonal

planes which contain pD and pA.

(S) The twist axis S0 is computed (via Method I)

(p) The locations of FT and FR are computed as projections of the location points
pD and pA onto the screw axis: pT = πS0 (pD) and pR = πS0 (pA).

(R) The orientation of FT is set identical to the orientation of FD. The orientation
of FS is set identical to the orientation of FA.

The decomposition of the Sheth-Uicker representation SUD was described in Equation 62. By means of
the augmenting frames FT and FS, the decomposition of the Finite Twist representation can, analgously, be
described as

D = $t ◦ $s ◦ $r . (73)
30In this paper the Sheth-Uicker convention is introduced as an augmentation of the two-frame convention.
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6 Comparisons

(a) Sheth-Uicker Decomposition. (b) Finite Twist trajectory, scaled diameter.

Figure 17: Visualizations of Sheth-Uicker decomposition and Finite Twist trajectory between two frames
defining a spatial displacement. The displacement is identical to the link displacement of link L2 in example
of Section 5.

In this case, the general screw displacement $G(φ, s) (see Equation 29) is decomposed into three linear screw
displacements. However, in contrast to Sheth-Uicker (Equation 62), the three atomic displacements are not
axial, but linear screw displacements. On the other hand, $t and $s are more special: First, they do not
contain rotations. Second, the radius vector ‘is the same’31.

D = T−1
r ◦ $s ◦ Tr (74)

The situation is displayed twice in Figure 18 and schematically in Figure 19.

A Spatial Triangle. Combining Equation 62 and Equation 73, the following two chains can be observed:
FC FB

FD FA
FT FR

$c
$b

$a
$t

$s
$r

Computation of Angles and Radii. The spatial triangle features right angles at all frames, except
for FD and FA. At these frames, the angle is made up between the z-axes zD and zA and the radius vectors
rD and rA. If the angles are defined as

ψD = ](rD, zD) ψA = ](rA, zA)

then, the inner angles ‘inside’ the triangle, compare Figure 19, are ψ4D = π − ψD and ψ4A = ψA such that
ψ4D +ψ4A = π.32 To compute the angles ψD and ψA, an expression for radius vectors rD and rA is necessary.

One way to compute radius vector r#
D follows from the observation that rD ∼= v0 × ω. In particular, one

can write by means of using the Lie bracket

r#
D =

[ ⊗
v0,

⊗
ω
]⊕ =

( ⊗
v0 ·

⊗
ω − ⊗

ω · ⊗v0
)⊕

, (75)

whereby ω and v0 can be computed by using Equation 11 and Equation 33. The radius vector r#
A can simply

be computed via r#
A = R · r#

D . The norm of the radius r follows from triangle angle sums and the law of
cosines, see Figure 13, as

‖r‖2 = ‖t0‖2

2 · (1− cosφ) . (76)

By studying the geometry of that sketch in Figure 14, alternative and shorter expressions for r̂D and r̂A can
be deduced.

r̂D = R( 3
4
π − 1

2
φ, s ) · t̂0 r̂A = R( 3

4
π + 1

2
φ, s ) · t̂0 (77)

31this is described more in next paragraph
32The angle sum equation ψ4 = ψ4D + ψ4A + ψ4C + ψ4B + ψ4T + ψ4R = 6π2 of the spatial triangle is fulfilled.
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6.2 Sheth-Uicker as a Representation for Displacements

(a) The perspective is aligned along
axis S0 of the finite twist.

(b) The perspective is aligned along
the common orthogonal of the Z-lines.

Figure 18: Simplified views on the decompositions of the Finite-Twist
representation and of Sheth-Uicker’s representation into linear twists
are depicted for a displacement between two frames. The drawing of
the lines was chosen to reflect the duality between the vertices and the
sides of the spatial triangle which is formed by the loop of the six linear
twists involved in the configuration.

Figure 19: Simplified perspective
on the spatial setting of the two
decompositions including angles
ψD and ψA, isometric view circus
and spatial and planar transla-
tions t and t0.

Finally, with r̂D ? zD = r̂A ? zA (see Equation 79) the angles ψD and ψA can be determined as

ψD = ](rD, zD) = acos(r̂D ? zD) = acos(r̂A ? zA) = ](r̂A, zA) = ψA . (78)

From these, the angles ψ4D and ψ4D can be determined. Thus, a full description of the spatial triangle that is
built by the six displacements of the two decompositions is achieved.

Discussion. For the Sheth-Uicker Decomposition, the middle of the three screw displacements is the
linear twist $b that connects the two z-axes via the shortest possible route: the line of this twist $b is in the
middle of the two Z-lines. For the other case, for the Augmented Twist Decomposition, the middle of the
three screw displacements is the linear twist $s along the screw axis S0. This displacement also lies in the
middle in a geometric sense: At first, the location of twist $s, and therefore the locations of the frames FT and
FR, lie in the intersection of the r-circles around FD and FA. Thus, they are equidistant to both. Following
the other interpretation (see Section 6.1.1), the screw axis lies at the intersection of isometric view circle and
the perpendicular bisector of the planar translation vector t0. In this interpretation, too, the frames FT and
FR are located at the same distance to pD and pA. Furthermore, regarding the direction ω̂ of the twist, one
can deduce from Equation 11 that for ω̂ the following equations hold

ω̂ ? zD = ω̂ ? zA ω̂ ? xD = ω̂ ? xA ω̂ ? yD = ω̂ ? yA . (79)

This indicates, that also the direction ω̂ of the twist lies equidistant to the orientation of FD and FA.
Concluding, the geometric constructions (see Figure 18) of the two decompositions can be described as

Sheth-Uicker Decomposition : z-axes of FD and FA → Common perpendicular
Finite-Twist Decomposition : r-circles around FD and FA → Common intersection (80)

Reasoning about this analogy, one deduces two following statements: Firstly, the parameters of the one-
affine-twist representation contain the ‘actual’ amount of rotation (φ) and the ‘actual’ rotation (shift s). And
secondly, the parameters of Sheth-Uicker’s three-linear-twists representation accurately reflect the original
parameters, since they use a basis that is as similar, as possible. These findings lead to the following
reformulation of the construction principles of the decompositions:

Sheth-Uicker Decomposition : Successive-orthogonal basis preserving the dominant axes.
Finite-Twist Decomposition : Successive-orthogonal basis equidistant to poses of frames. (81)

For this, Table 17 provides a comprehensive overview.
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Convention Sheth-Uicker Finite Twist

Characterization Three-linear-twist description One-affine-twist description
Interpretation Linear-discrete Affine-continous
Basis Preserving z-axes Frame-symmetric screw axis
Parameters Speaking / dominant Absolute / essential
Related Decompositions Orthogonal Decomposition Eigen Decomposition
Advantages Readability, Speed Symmetry, Algebra

Table 17: Sheth-Uicker and Finite Twist representation and their decompositions in comparison.

Angle-Axis Unit Quaternion

R ∈ SO(3)

Euler Angles Rotation Matrix

Six Axes

Eigen Decomposition

Orthogonal Decomposition

Spherization

Linearization

Renormalization

Kinematic Map

Figure 20: Four representations of a finite
spatial rotation R ∈ SO(3) and some interre-
lations.

Finite Twist Dual Unit Quaternion

D ∈ SE(3)

Dual Euler Angles Homogeneous Matrix

Spatial Triangle

Eigen Decomposition

Orthogonal Decomposition

Spherization

Linearization

Renormalization

Kinematic Map

Figure 21: Four representations of a finite spatial dis-
placement D ∈ SE(3) and some interrelations.

6.2.3 Principles of Sheth-Uicker and Finite Twist Decompositions

Counterparts in SO(3). In Section 3.2.1, the Angle-Axis representation for a rotation R ∈ SO(3) is
introduced, in Section 3.4.1 its Euler Angles representation. In summary, one can state that both conventions
– the affine-one-twist and the linear-three-twist description – generalize from SO(3) to SE(3).

Counterparts in SE(2). Also, the representation of an element in SE(3) via a finite twist has a
counterpart-representation in SE(2): in particular, this is the rotation pole (see Theorem 3 and Figure 16).
In Section 6.1.1, it is also shown that Sheth-Uicker holds nicely for D ∈ SE(2) (since Y lies on the circle). In
summary, one can state that both conventions – the affine-one-screw and the linear-three-screw descriptions
– generalize from SE(2) to SE(3).

Counterparts in GL(n). In previous Section 6.2.2, it was demonstrated that both, Sheth-Uicker and
Finite Twist, can be understood as complementary decompositions into three linear, successive-orthogonal
screw displacements. In particular, in Equation 6.2.3, the constructions were formulated with respect to some
bases. If this is formulated in a more constructive manner, the following two principles can be observed:

Sheth-Uicker Decomposition : Iteratively project the displacement into the space of orthogonal complements
starting from the dominant axes of the frames.

Finite-Twist Decomposition : Formulate the displacement as being similar to a linear-screw displacement
along the linear frame-equidistant twist.

These two principles also occur in a similar manner for GL(n) for well-known matrix decompositions: in
particular, the Orthogonal and the Eigen Decomposition of a matrix: Thus, the Sheth-Uicker representation
provides a decomposition that is describable as a (symmetrized) Orthogonal Decomposition of a displace-
ment, thus comparable to a QR-Factorization of a matrix. And the one-twist representation provides a
decomposition that is comparable to an QDQ−1-Factorization of a matrix. These findings are compared and
summarized in Table 22.

Conclusion. As stated in the last three paragraphs, Sheth-Uicker and Finite Twist decompositions have
counterparts in SO(3), in SE(2) as well as in GL(n). This is summarized in Diagram 23.
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6.2 Sheth-Uicker as a Representation for Displacements

Sheth-Uicker Decomposition

A displacement can be combined from a set of
successive-orthogonal basis screws.

QR Decomposition

A matrix can be combined from a set of orthogonal
basis vectors.

(a) Interpretation of a displacement and a matrix as maps
between ‘vector spaces’.

Finite-Twist Decomposition

There is a viewpoint such that a displacement
appears as a finte twist motion.
QDQ−1 Decomposition

There is a viewpoint such that a matrix appears as
scalings in orthogonal directions.

(b) Interpretation of a displacement and a matrix as elements
of ‘matrix spaces’.

Figure 22: Analogies of decompositions for a displacement and for a matrix.

Orthogonal Decomposition GL(n) Eigen Decomposition

Sheth-Uicker SE(3) Finite-Twist

Euler Angles SO(3) Axis-Angle

[ Denavit-Hartenberg ] SE(2) Rotation Pole

spatial triangle

Figure 23: Connections of Sheth-Uicker’s and the Finite Twist Representation for Finite Displacements.
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7 Conclusion

7 Conclusion
In this survey, the convention by Sheth and Uicker from 1971 was reviewed from two different perspectives.
In the first perspective, Sheth-Uicker was regarded as a convention for kinematic modeling: it was compared
to three other conventions in the ‘unified notation of frames’. As explained in the first section, conventions
for kinematic modeling have to deal with a ‘trade-off’ between compactness on the one hand, and generality
and intuitiveness on the other hand. It was shown how the two-axial-twist description of Denavit-Hartenberg
is extended to a three-axial-twist description by the Sheth-Uicker convention such that a mechanism can be
described by a table that reflects the geometry of adjacent joint axes and that has a structure that reflects
the topology of the mechanism type.

In particular, by the worked-out example, it was demonstrated that SU is not only useful for kinematic
loops, but also for chains that feature skew geometries of joint axes. Therefore, the Sheth-Uicker convention
generalizes Denavit-Hartenberg to the right amount, in the sense that it allows to cover the complexity of any
mechanism with one simple convention. Finally, it was derived that Sheth-Uicker is a representation with
respect to a basis that preserves the ‘dominant’ joint axes: therefore, the parameters of Sheth-Uicker provide
direct insight into the geometries of the links. In summary, Sheth-Uicker’s convention is not minimal, but
general and intuitive: therefore, it is optimally suited to specify the kinematics of mechanism in form of tables.
The question of efficient implementations (of displacement representations) and of kinematic conventions was
not covered in this article. However, it was demonstrated how Sheth-Uicker’s convention can be ‘thinned
out’ in several ways to increase redundancy for efficient subsequent computation purposes.

In the second perspective, Sheth-Uicker was identified as the Dual Euler Angles representation of displace-
ments of the two-frame convention. It was worked out in a comparison that Sheth-Uicker and Finite-Twist
can be regarded as complementary decompositions, and together form a certain spatial triangle. Addition-
ally, it was demonstrated that similar principles of both conventions can be found in more special, and in
more general groups. In addition to these comparisons, the interconnections between four displacement rep-
resentations were reviewed: in particular, a ‘geometric outline’ of screw theory for finite displacements was
provided in this survey. Dual quaternions were motivated as the ‘algebra-ized counterpart’ of screw theory.
In summary, it was shown how the Dual Euler Angle representation, and thus Seth-Uicker’s convention, is
embedded among other theoretically-solid displacement representations.

We hope that the practical and theoretical preferences of Sheth and Uicker’s convention have been ex-
plained in an coherent manner so that more people appreciate its usage. For further illustration, in future, it
might be worthwhile to compile specification tables according to Sheth-Uicker’s convention of a set of mech-
anisms which are of the same type but feature different geometries: for example, the Sheth-Uicker tables for
different Bennett mechanisms feature the same shape but different contents – depending on the set of design
parameters that describe their planar, spherical, or spatial realization.

A promising direction for continuing the work about kinematic conventions could be the study of con-
nections between Sheth-Uicker’s kinematic convention and sets of algebraic equations, as, e.g., developed by
Porta et al. (see [37, 38]), and, in particular, the development of automated derivations of these equations
from mechanism specifications.

The author would like to thank Prof. John Uicker and Prof. Hans-Peter Schröcker for valuable remarks on a draft
version of this document.

The research presented in this report was funded by the German Ministry of Education and Research (BMBF) within
the projects VI-Bot (Grant Number 01-IW-07003) and CAPIO (Grant Number 01-IW-10001).

42



Appendix

A Homogeneous Coordinates
Homogeneous Point Coordinates. If x = (x1, x2, . . . , xd)T is a point in Rd, its standard homog-

enization is a point in Rd+1 that contains the the same d coordinates and an additional coordinate which
equals one. In the most popular way, the additional coordinate is appended from back to the vector as the
(d + 1)-st coordinate (as done in the document). Equivalently, in the second-most popular way, the addi-
tional coordinate is appended from front as the 0-th coordinate. Then, the homogenized vector looks like the
following,

v = (1, v1, v2, . . . , vd) . (82)

This has the advantage that point homogenization and line homogenization are compatible. For homogenized
elements, equivalence classes can be defined - in this case, as

[v] :=
{
v′ ∈ R4 : v′ = λ · v, λ ∈ R

}
. (83)

The set of all such equivalence classes can be denoted as (see [41])

RP3 = R4 \{0}
R \{0} . (84)

Homogeneous Line Coordinates. In Section 3.2.2 homogeneous line coordinates, the Plücker coor-
dinates, were introduced. The two concepts of homogenization are opposed in the following tables.

Entity Formula

Point a ∈ R3

Homogeneous point a = (1,a) ∈ R4

Equivalence class [a] ∈ RP3 ∼= R4

Representative â = (1,a) ∈ R4

Table 18: Homogeneous coordinates for points, the
representative of a point equivalence class is the
point with one as additional coordinate.

Entity Formula

Two points a, b ∈ R3

Two homogeneous points a, b ∈ R4

Equivalence class g = [g, ḡ] ∈ RP5 ∼= R6

Representative ĝ = (ĝ, ˆ̄g) ∈ R6

Table 19: Homogeneous coordinates for lines, the
representative of a line equivalence class is the line
with normalized plücker coordinats.

B Vectors and Matrices
B.1 Matrixification and Vectorization
In this paragraph, the definitions of the operators (. )⊗ (. )⊕ are provided.33 An ‘encircled cross’ ⊗ in the
superindex of a vector v is a function that lifts the vector into the space of skew symmetric matrices. For
short, the cross can also be written as an accent.

(. )⊗ : R3 → se(3) ω 7→ ω⊗ = ⊗
ω (85)

An ‘encircled plus’ ⊕ in the superindex of a skew-symmetric matrix S is a function that extracts the direction
of the the orthogonal axis. For short, the plus can also be written as an accent.

(. )⊕ : se(3)→ R3 S 7→ S⊕ =
⊕

S (86)

The concrete definition of the skewing operation (. )⊗ reads like

ω = (ω1, ω2, ω3)T 7−→ S = ⊗
ω =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 . (87)

33The notation for this is adapted from [31]. However, in this text, a ‘hat’ is reserved for normalization and therefore a ‘cross’
and a ‘plus’ are used for matrixification and vectorization.
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B Vectors and Matrices

The concrete definition of the axing operation (. )⊕ reads like

S =

 0 −S12 −S13
S12 0 −S23
S13 S23 0

 7−→ ω =
⊕

S = (S23, S13, S12)T . (88)

B.2 Exponential and Logarithmic Function for Rotation Matrices
Let ω̂ denote the unit vector along the rotation axis, ω̂⊗ the corresponding skew-symmetric matrix (see last
paragraph), and φ the magnitude (i.e., angle) of the rotation. The rotation matrix R is computed as

R = R(φ) = exp(φ · ω̂⊗) . (89)

The expression exp(q · ω̂⊗) can be computed by the well-known Rodrigues formula34

exp(φ · ω̂⊗) = I + sinφ · ω̂⊗ + (1− cosφ) · (ω̂⊗)2 . (90)

In the other direction, given a rotation matrix R, the rotation angle φ can be determined as φ =
arccos

(
tr(R)−1

2

)
and the unit vector along the rotation axis ω̂ is determined via ω̂⊗ = 1

2·sinφ · (R −R
T ),

see Equation 12 and Equation 11. Instead of using these explicit formulas, the angle-axis representation can
also be derived via inverting the relation of Equation 89, as

ln(R) = φ · ω̂⊗ = φ

2 · sinφ · (R−R
T ) . (91)

For the computation of the logarithmic function for rotation matrices, see [52, Sec. 7], [31, Sec. 2.18] and
[17].

Summarizing the last two paragraphs, one can state:

“The vectorial representation (φ, ω̂) ∼= φ · ω̂⊗ and the linear representation R of a rotation are connected
via the exponential and the logarithmic map.”

The exponential function and the logarithmic function are not only defined for the angle-axis representations
of rotations but also for quaternions, see e.g., [19, chap. 18]. Also, the functions are defined for general, affine
case of spatial displacements, see e.g., [31, Sec. 3.2].

34See [31, Sec. 2.2.] for a derivation.
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Figure 24: Four relative positions of a pair of lines,
displayed with common and distinctive features.

Figure 25: Tetrahedron involved in the configuration
of two lines Gij , Gjk with anchor points pij , pjk.
The four vertices of the tetrahedron are the anchors
pij , pjk and the generalized closest points π?Gij (Gjk)
and π?Gjk(Gij) of the two lines.

C Geometry of Lines, Screws, Twists
In this appendix, the analysis of the mutual pose of two lines of Section 3.2.2 is supported.

C.1 Closest Points via Parametric Form
In the main body of the document, the closest points are briefly determined via orthogonal projections. Here,
the closest points in terms of the parameter forms are provided.35 Let two lines Gij and Gjk be given in
parametric form as

Gij = pij + λij · ωij (92)
Gjk = pjk + λjk · ωjk (93)

The closest points πGij (Gjk) and πGjk(Gij) are the points

πGij (Gjk) = pij + λ∗ij · ωij , (94)
πGjk(Gij) = pjk + λ∗jk · ωjk , (95)

whereby the parameters λ∗ij and λ∗jk with dij,jk = pjk − pij are determined as

λ∗ij = (ωij × ωjk) · (dij,jk × ωjk)
(ωij × ωjk)2 , (96)

λ∗jk = (ωij × ωjk) · (dij,jk × ωij)
(ωij × ωjk)2 . (97)

C.2 A Tetrahedron
When dealing with the mutual pose of two lines, Gij and Gjk, that are attached to anchors, pij and pjk,
a tetrahedron can be considered (see [25, Sec. III]). Concretely, via and the generalized closest points
(see Definition 6.1.2), p(ijk̂) = π?Gij (Gjk) and p(̂iij) = π?Gjk(Gij), the tetrahdron is defined as the convex
combination of these four points. The situation is displayed in Figure 25.

35For a derivation and more information on the parametric analysis of two lines, see, e.g., [49], http://paulbourke.net/
geometry/lineline3d/ and http://stochastix.wordpress.com/2008/12/28/distance-between-two-lines.
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C Geometry of Lines, Screws, Twists

If the indexing is simplified by setting v1 = pij , v2 = pjk, v3 = p(ijk̂) = π?Gij (Gjk), and v4 = p(̂iij) =
π?Gjk(Gij), and each point is denoted by unified coordinates as vl = (xl, yl, zl)T ∀ l = 1, . . . , 4, then, the
volume V of the tetrahedron is computed as

V = 1
6 ·

∣∣∣∣∣∣∣∣
x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4
1 1 1 1

∣∣∣∣∣∣∣∣ . (98)

Two general cases can be distinguished: Either, the four points vl ∀ l = 1, . . . , 4 are affine independent or
they are affine dependent: either the four points lie in generic pose, or they lie in degenerate pose. These
two cases correspond to the tetrahedron’s volume V as:

skew lines
co-planar lines

}
⇔

{
V > 0 for affine independent vi
V = 0 for affine dependent vi

. (99)

This tetrahedron can be appears twice: once for Sheth-Uicker Decomposition, once for the Decomposed
Finite Twist. In both cases, the regarded lines are passing through the anchors of two joint frames: in case of
the Sheth-Uicker decomposition, the lines are lying along the z-vectors, in case of the Finite-Twist decompo-
sition, the lines are lying along the r-vectors. Considering the tetrahedron for Sheth-Uicker decomposition,
the generic case V > 0 corresponds to skew Z-lines / joint axes. The degenerate case V = 0 corresponds to
co-planar Z-lines / joint axes.

Considering the tetrahedron for Finite-Twist decomposition, the tetrahedron is made by the four points
of the Decomposed Twist constrution (positions of frames, and the projections of these onto the axis of the
twist). The degenerate cases occur, generally, if the radius vectors rD and rA are either co-planar, or they
vanish; concretely, in the following cases:

• The rotation of the screw displacement has an angle of a multiple of half-turns (e.g., φ = 0 or φ = π).
Then, all four vertices are located in a common plane that also contains the axis of rotation.

• The screw displacement is a pure rotation (zero pitch). Then, all four vertices are located in the plane
perpendicular to the axis of rotation.

• The screw displacement is a pure translation (infinite pitch). Then, all four vertices are located on one
line.

• The screw displacement is a linear (zero radius). Then, all four vertices are located on the axis of the
screw.

C.3 An Overview of Screw Types
In Table 20 three types of screws and twists are opposed.

Kind of Screw Translation (ω = 0) Screw Motion Rotation (h = 0)

General Form (0, τ ) (ω, ω × r + h · ω) (ω, ω × r)

Linear Form (r = 0) (0, τ ) (ω, h · ω) (ω, 0)

Axial Form a (0, a) (a, h · a) (a, 0)

Pitch h =∞ 0 < h <∞ h = 0

Joint Type Prismatic Joint Spindle Joint Revolute Joint

Example (0, 0, 0, 0, 0, 1) (0, 0, 1, 0, 0, h) (0, 0, 1, 0, 0, 0)

Geometric Entity Free Vector Screw Line

Velocity Field Parallel Helicoidal Planar

Table 20: An overview of three displacement (and motion) types and their twists. The radius r is defined as
r = ‖r‖. An axis vector a is a vector that lies on one of the coordinate axes ex, ey, ez of R3.
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C.4 Three Basic Screw Displacements

C.4 Three Basic Screw Displacements
The homogeneous matrix representations of the three axial twists are defined here. The matrix of the axial
finite twist along x reads as

$x (φ, s) =


1 0 0 s
0 cφ − sφ 0
0 sφ cφ 0
0 0 0 1

 . (100)

The matrix of the axial finite twist along y reads as

$y (φ, s) =


cφ 0 sφ 0
0 1 0 s
− sφ 0 cφ 0

0 0 0 1

 . (101)

The matrix of the axial finite twist along z reads as

$z (φ, s) =


cφ − sφ 0 0
sφ cφ 0 0
0 0 1 s
0 0 0 1

 . (102)
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D Augmented Convention as Exchange Format

D Augmented Convention as Exchange Format
Figure 26 contains several frame sets that appeared in the main body of this document and shows relations
among those. At several places in the main body of this document, it is mentioned that frame sets can be
‘thinned out’. This operation of filtering frames and accumulating displacements, resp., described explicitely
in Method VII.

"filter towards joints" "filter towards links"

Figure 26: Frame sets and their relations: the augmented Sheth-Uicker frame set FA can be thinned out in
two directions, either in a joint- or in a link-related manner. In the first direction, FA is reduced to the set
F? (which contains two frames per joint) by discarding the augmenting frames. This can be further reduced
to a set FJ (which contains one frame per joint). In the second direction, FA is reduced to Yang’s minimal
twist frame set FY by discarding the joint frames. This can be further reduced to the classic and to the
modified Denavit-Hartenberg sets FC and FM .

Within Method VII, Equation 104 can be explained by the following: Let the equalities F pj = F ek and
F pj+1 = F ep hold as described in Method VII. Then accumulation displacement Dp

j,j+1 is computed as

Dp
j,j+1 = (F pj )−1 ◦ F pj+1 = (F ek )−1 ◦ F ep

=
(

(F ek )−1 ◦ F ek+1
)
◦
(

(F ek+1)−1 ◦ F ek+2
)
◦ · · · ◦

(
(F ep−1)−1 ◦ F ep

)
=
p−1∏
i=k

(F ei )−1 ◦ F ei+1 =
p−1∏
i=k

De
i,i+1 .

(103)

Method VII. AC – Accumulated Displacements for Filtered Frame Sets.

(In) (1) A set of frames FE =
{
F e0 , F

e
1 , . . . , F

e
n

}
of size |FE | = n + 1, and (2) a set of frames FP =

{
Fp0 , F

p
1 , . . . , F

p
m

}
of size |FP | = m+ 1, which is a subset of the first, i.e., FP ⊂ FE and m < n. Subset FP contains the same terminal
frames as FE . I.e., first and last frame are identical, Fp0 = F e0 and Fpm = F en.

(Out) Set DP of accumulated displacements between m pairs of consecutive frames in FP .

(I) Let E =
{
e0, e1, . . . , en

}
and P =

{
p0, p1, . . . , pm

}
denote the index sets of the given frame sets.

(D) Computation of n displacements DE =
{
Dei,i+1

}
i∈P\{ en }

between the frames of FE via (see Equation 9)

D
e
i,i+1 = (F ei )−1 ◦ F ei+1 .

(A) Computation of m ‘accumulated’ displacements DP =
{
Dp
j,j+1

}
j∈E\{ pm }

between the frames of the ‘filtered’ frame

set FP . For Fp
j

, let F ek denote the identical frame of FE and, for Fp
j+1, let F ep denote the identical frame of FE .

Briefly, let Fp
j

= F ek and Fp
j+1 = F ep , then for each j ∈ E \ { en } the accumulated displacement Dp

j,j+1 is computed
via (see Equation 103)

D
p
j,j+1 =

p−1∏
i=k

(F ei )−1 ◦ F ei+1 =
p−1∏
i=k

D
e
i,i+1 . (104)
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