
Viewpoint-Based Modeling—Towards Defining the
Viewpoint Concept and Implications for Supporting

Modeling Tools

Klaus Fischer1, Dima Panfilenko1, Julian Krumeich1, Marc Born2, Philippe Desfray3

DFKI GmbH1, Saarbrücken, Germany
ikv++ technologies ag2, Berlin, Germany

SOFTEAM3, Paris, France
{firstname.surname}@dfki.de, born@ikv.de, philippe.desfray@softeam.fr

Abstract: Viewpoint-based modeling is an important recent development in software
engineering. It is likely to boost the wider use of modeling techniques because it
allows to tailor existing tools with respect to the different stakeholders in software
design. The paper reports on results from the VIBAM project in which viewpoint
concepts are investigated. We give an overview of the most important contributions
from literature regarding viewpoint concepts from which we derived the position that
we take in the VIBAM project. After presenting VIBAM’s position we derive fea-
tures that we consider important for tools that support viewpoint features. We plan
to integrate these features in the commercial modeling tools MODELIO and MEDINI
ANALYZE to the end of the VIBAM project.

1 Introduction

In the course of constructing large-scale and complex systems, models are a prevalent
means for gaining a better understanding of the underlying artifact that is to be engi-
neered. Especially in traditional engineering disciplines [BKS10], graphical representa-
tions of models are widely used to design, describe and discuss various types of systems
(take for instance building plans or engineering drawings). Apart from these traditional
engineering disciplines, models are being increasingly used in the course of developing
information systems as well as information systems architectures. In this regard, they do
not only serve as a means for building systems from scratch, they are also used to cap-
ture current as-is states, e.g. for documentation purposes, with the eventual goal to derive
optimized to-be states.

As a consequence, modeling techniques are commonly used nowadays—in particular stan-
dard modeling languages such as the Unified Modeling Language (UML) or the Business
Process Modeling Notation (BPMN), but also proprietary and domain specific modeling
languages such as those supported by Business Process Management (BPM) or Enterprise
Architecture (EA) tools. However, according to our estimation, their usage has reached
a significant threshold and a wider usage and diffusion needs more added value and per-



ceived Return on Investment (ROI) by the end users. This can only be achieved if model-
ing techniques as well as corresponding tools put actual stakeholders more into the focus
during the modeling process.

1.1 Motivation and Contribution of this Paper

According to Stachowiak [Sta73], models are a representation of a mental or physical
object, in which this object can again be a model itself. Due to the reduction feature of
models, they do not comprise every detail of the underlying object, since their purpose is
to describe and analyze complex systems in a manageable way. However—even though
models aim at reducing complexity—in large-scale systems, they are often still too com-
plex, which is a common modeling problem [BW06]. This becomes even worse if only
a single, rigid perspective is provided on models and moreover if models are used for
cooperative and collaborative system design.

In such settings, many different stakeholders are working together to design a system.
Each of them has very own skills, responsibilities, knowledge and expertise [FKN+92];
and thus, a very unique perspective on the system design. As a consequence, each per-
son or group of people that is in charge with the system design would like to view and
manipulate the models or model fragments according to their particular needs [DQvS08].
To foster the modeling usage considering these demands especially in the course of con-
structing large-scale systems, Viewpoint-Based Modeling (VBM) is an increasingly used
technique to reduce complexity and adapt an overall model to stakeholder specific frag-
ments in a successful manner [GBB12]. In doing so, the actual stakeholders are being put
more into the focus of the modeling process, which results in a higher perceived value for
them. By utilizing stakeholder-specific viewpoints on a model, its overall understanding
and productivity will increase [FKN+92]. As a direct consequence, the viewpoint concept
leads to better conceptual models, which is proven by several studies. For example, ac-
cording to [EYA+05], applying the viewpoint concepts effectively helps to cope with the
overall size of a given problem domain. Even though the usefulness of VBM is obvious
and objectively proven, the concept’s meaning is still quite fuzzy, since it is heavily over-
loaded in literature and frequently only defined in an informal manner [MP00], [GBB12].

Thus, this paper contributes towards knowledge on VBM in two respects: On the one hand,
it provides a systematic clarification of the viewpoint concept on a general abstract level.
In doing so, researchers will benefit from this definition and further research on VBM can
be conducted on this basis. On the other hand, this paper provides various features that
need to be considered in modeling tools in order to achieve a successful utilization of the
viewpoint concept. In doing so, tool builders and vendors will benefit from this catalogue
of features in order to validate their tools regarding VBM and to have a guideline for
building new tools which support VBM.



1.2 Scientific Methodology and Organization of the Paper

The results of the paper originate from the European research project VIBAM that aims
at investigating the viewpoint concept from a scientific perspective and integrate it into
the commercial modeling tools MODELIO and MEDINI ANALYZE of the two involved
project partners. In the first step towards analyzing and defining the viewpoint concept, a
broad foundation of publications consisting of some 200 papers was built up. This was
achieved by performing a search on the literature databases EBSCO Business Source
Premier, Thomson Reuters Web of Knowledge and Google Scholar using search terms
like ”viewpoint”, ”definition of viewpoint” or ”viewpoint-based modeling”. Afterwards,
promising literature mainly focusing on viewpoint definitions have been picked up and
screened to define our perspective on a general-applicable viewpoint definition. In order
to assure an objective analysis, a framework consisting of eight categories has been con-
structed. To derive implications for modeling tools, literature mainly focusing on general
and dedicated modeling features has been selected and analyzed by using two frameworks
that have been created and which consist of nine and seven categories respectively. In
this regard, we stress that some of these categories are taken from a number of viewpoint-
related methods originated from the Software Engineering and Enterprise Architecture
(EA) context.

To apply the proposed methodology, the remainder of this paper is organized as follows.
Section 2 presents a discussion on the multi-domain purpose of viewpoints and outlines
current limitations. In Section 3, viewpoints and adjacent concepts are defined and linked
to an overarching metamodel. Furthermore, the paper’s viewpoint concept is exemplified
on the EA domain based on the TOGAF framework. Moreover, implications for tooling
based on various features are illustrated. Finally, Section 4 summarizes the paper and
provides an outlook to our future work on VBM.

2 Viewpoints—A Multi-Domain Concept and its Current Limitations

Without doubt, the concept of viewpoints is not novel. According to Lankhorst [Lan09],
already in 1985, the MultiView approach proposed by Wood-Harper et al. [WHAA85]
forms the concept’s origin. MultiView aims at supporting the development process of
(computerized) information systems by splitting its complex process into five different per-
spectives respective viewpoints: Human Activity System, Information Modelling, Socio-
Technical System, Human-computer Interface, and Technical System. A decade later,
the MultiView framework has been revised to MultiView2 [AWHVW98]. Another early-
published and frequently-cited work was conducted by Finkelstein et al. [FEKN92]. Even
though it was published in the International Journal of Software Engineering and Knowl-
edge Engineering, the focus of their work is not limited to software development, but can
be applied to multiple kinds of artifacts which need to be constructed through a non-trivial
engineering process. Hence, this corroborates the multi-domain spanning interest of the
viewpoint concept, which will be further outlined in the remainder of this section.



With a stronger focus on software systems, Kruchten [Kru95] presents a model for de-
scribing the architecture of software-intensive systems, which it is often referred to as the
”4+1” View Model of Software Architecture. This approach aims at the design and the im-
plementation of the high-level structure of software. The architecture model is composed
of multiple, concurrent perspectives called views. A view addresses a specific set of con-
cerns looking on the system of the perspective of a particular stakeholder (group) [Kru95].
Also in the context of software development, viewpoints are utilized in the domain of
requirements engineering. For example, Kotonya & Sommerville present a Viewpoint-
Oriented Requirements Definition (VORD) approach in [KS96].

Another domain in which the viewpoint technique is frequently applied to is the Enterprise
Architecture (EA) domain. In the course of this, the Zachman Framework [Zac00] (initial
called as Framework for Information Systems Architecture), which is one of the earliest-
published and most known frameworks, consists of a two dimensional classification ma-
trix. The first dimension differentiates six different viewpoints: Planner, Owner, Designer,
Builder, Subcontractor and Functioning System view. Orthogonal to this dimension, the
Zachman framework differentiates between six different aspects: Data, Function, Net-
work, People, Time and Motivation description. Another EA framework that is frequently
used in practice is the The Open Group Architecture Framework (TOGAF) [The11]. TO-
GAF differentiates—without providing a concrete definition—between four viewpoints:
Business, Data, Application and Technology Architecture.

While the previously mentioned concepts of viewpoints rather follow the idea of separating
an artifact of interest in a vertical dimension meaning a union of all viewpoints would pro-
vide an overall vision on an artifact based on a specific level of detail, there is also a pop-
ular concept following the opposite direction [GBB12]. The Model Driven Architecture
(MDA) [Obj03] follow the idea of introducing a strong separation of concerns regarding
modeling a system at different abstraction levels. This starts from computational (CIM)
and platform-independent (PIM) models and uses transformations to produce the actual
code for the selected programming language and platform (PSM). In contrast to vertical-
centric viewpoints, a viewpoint in MDA encompasses the whole underlying system, but on
its specific level of detail regarding the distance to a concrete system implementation. Of
course, even in MDA, a separation of concerns—preferable by using viewpoints—within
one abstraction level seems necessary to reduce complexity.

Even though this section outlined the fact that viewpoints as a concept are very often used
in multiple domains, the concept either lacks a definitional or scientific foundation (e.g.
[The11]) or it strongly focuses on a specific domain. Furthermore, knowledge on require-
ments and implications for modeling tools aiming at realizing the viewpoint for practical
usage concept is missing. One first approach towards this direction is the one recently pub-
lished by Goldschmidt et al. [GBB12]. Even though their work is closely related to the one
we present in this paper, it mainly focuses on a feature-based classification of view-based
domain-specific modeling concepts, while in contrast we follow a more general approach;
nevertheless, this recent paper shows that there is still a huge need in research particular
regarding modeling tools that provide means for using the viewpoint technique.



3 The Concept of Viewpoints—Definition, Usage and Tool-Support

According to our observations, most of the definitions we found have something in com-
mon: they define the concept of ”viewpoint” as a guideline for constructing views. This
can for example be observed in the IEEE 1471:2000 standard definition [Sof07] for view-
points, which was adopted by ISO/IEC as an ISO/IEC 42010:2007 standard in 2007
[Hil11]. Accordingly, a viewpoint is ”a specification of the conventions for constructing
and using a view”. This definition is most widely accepted in general system engineering,
but also in software development. A related viewpoint definition is for example given by
[ACWG94]. Consequently, the viewpoint can be seen as a pattern that defines a set of
views. Another common feature of most of those definitions is that a viewpoint explicitly
specifies one or more stakeholders, whose point of view it represents. Furthermore, some
definitions explicitly note that a viewpoint should be as much self-contained as possible.
What we are particularly interested in and will be investigating in this section is whether
viewpoints are defined in terms of a metamodel, as well as whether this metamodel is sep-
arate or somehow related to other metamodels. Having relations or guidelines that drive
viewpoint life-cycle and interaction as well as (de-)centralization of viewpoint underly-
ing metamodels are further aspects in this section. Furthermore, another feature we are
interested in is whether a viewpoint directly reflects the needs of a particular stakeholder.

3.1 Towards Defining the Viewpoint Concept

Due to the large amount of the related work and definitions found in the literature (more
then a dozen of definitions and additionally methods for dealing with viewpoints providing
their own definitions), we first clarify the terms and definitions which we take as a basis.
These terms are stated in the lists below and visualized in Figure 1. We give a brief
characterization of the basic terms where the first 5 below were derived and are in line
with the definition given in OMG’s Model Driven Architecture (MDA) [Obj03]:

Metamodel: A metamodel defines a frame and a set of rules for creating models for a
specific application domain. Metamodels typically establish possible domain ob-
jects and relationships between them, as well as constraints that should be applied
to them. Metamodels serve as a basis for models instantiating them, profiles refer-
encing them and viewpoints that choose multiple modeling concepts from various
metamodels to represent as a comprehensive big picture. Related modeling concepts
usually belong to a certain metamodel.

Model Concept: A model concept is an element of a metamodel. The metamodel
contains a type for each relevant modeling concept and defines the relation between
these types. Model concepts are part of certain metamodel and are the basis for
model elements in model instances as well as for the definition of viewpoints,
which might be defined across multiple metamodels.



Model: A model is an instance of a metamodel. It contains a concrete set of model ele-
ments, which adhere to the rules defined in the corresponding metamodel. Models
can apply certain profiles and thus represent model elements accordingly and serve
as collection items for views.

Model Element: A model element is a concrete instance of a modeling concept, and thus
it represents either a domain object or a relationship between two or more objects.
These elements are a part of a certain model and are being exposed in certain views
belonging to certain viewpoint instances.

Profile: A profile is an extension of a metamodel, which uses the metamodel as a refer-
ence for redefining existing modeling concepts and thus targeting specific domains.
It serves a basis for viewpoints, refers to a certain metamodel and can be applied to
various models for domain alignment.

Figure 1: VIBAM’s Position on Viewpoint Concept.

We give an additional list of important terms with brief characterizations where we give
references to the work that was of major influence on our understanding of the meaning:

Viewpoint (cf. [The11], [Lan09], [CMR03]): The purpose of a viewpoint is to support
a stakeholder in contributing to system design from a specific perspective. A view-
point defines what concepts and relations can be used to define, view, or manipulate
model instances within this viewpoint. It is therefore related to a (set of) meta-
model(s), a (set of) profile(s) or a part of them. The viewpoint in this sense can
restrict the original metamodel(s) but it can also correspond to a metamodel 1:1.
The viewpoint is defined by the collection of view types that it offers to the stake-
holders and which are instantiated by views.



View Type (cf. [GBB12]): A collection of view types is defined for each viewpoint. A
view type serves a basis for view instantiation and offers a specific slice of system
perspective to the stakeholders (i.e. human users).

View (cf. [Lan09], [CMR03]): A view defines the presentation of model elements to a
stakeholder and the way(s) how they can be modified (this is usually achieved by
diagram types). It enables the user to interact with particular aspects of one or more
models that adhere to the viewpoint’s metamodel.

Projection (cf. [Pra11], [IBM03]): Function that maps a model instance M to another
model instance M ′ where M ′ is a restriction of M in the sense that it contains only
elements that are also contained in M and both M and M ′ are instances of the same
metamodel. A projection is a special case of defining a view.

An intuitive reading of the metamodel depicted in Figure 1 is that viewpoints are either
directly defined on metamodels or on top of profiles. Viewpoints offer a set of views
which allow the stakeholder for whom the viewpoint was defined to access the model
instances. Based on the general terms and the analysis of existing definitions, we derived a
harmonized viewpoint definition that serves as a basis for the work in the VIBAM project.

Definition: A viewpoint is defined in relation to one or more metamodels. For each
viewpoint a non-empty set of view types is defined. In a viewpoint instance any number
of instance views for each of the view types can be dynamically created.

In the following we list features of viewpoint definitions which we consider important and
which influenced our understanding on viewpoints during related work analysis. More-
over, Table 1 shows whether these features are considered within existing definitions
(cf. [Sof07], [Val01], [Hil11], [The11], [Pra11], [IBM03], [SADL04], [Kru95], [RW05],
[Zac09], [Nus94], [ACWG94], [DQPvS04], [FEKN92]).

Table 1: Viewpoint Definition Features.

A viewpoint is a partial specification of a system: A viewpoint contains certain functional
description and information types which are implemented and used in the developed sys-
tem at run-time. As we can see from Table 1, almost all of the research shares this opinion
over the viewpoint definition. A viewpoint is composed of one or more views: A viewpoint



is defined by a language which we can refer to as a metamodel, and it explicitly addresses
specific stakeholders. Only a few authors (IEEE [Sof07] and ISO [Hil11] standards, Zach-
man [Zac09] and Finkelstein et al. [FEKN92]) use this notion of the viewpoint in their
definitions, whereas this leads us to a more comprehensive and consistent system descrip-
tion. A viewpoint is a specification for creating views: A viewpoint is a pattern or template
from which to develop individual views. Thus a view is a concrete instance of a viewpoint.
Most of the authors see the viewpoint as this, whereas specification of views as view typ-
ing is how the authors of this paper understand this term. A viewpoint is defined by means
of a metamodel: A viewpoint is a type of metamodel for view creation. As in the previous
point, almost everybody agrees on metamodels being a basis for viewpoints defining their
target domain usage. Metamodels are centralized: This means there is no clear separation
between viewpoints and views. Each viewpoint governs which kind of model element can
be represented, the consistency rules and completeness rules that needs to be applied, and
the different view that can be provided. Only PRAXEME [Pra11] method partly defends
this point of view. Metamodels are decentralized: This means a viewpoint is a loosely cou-
pled, locally managed, coarse-grained object which encapsulates partial knowledge about
the system and domain, specified in a particular, suitable representation scheme. Apart
from PRAXEME [Pra11] and RUP [IBM03] other methods are not supporting this point
of view. There is assignment of stakeholders: Each view targets a specific group of stake-
holders, thus separating modeling concerns and assuring consistency. Each stakeholder is
then responsible for designing his model part with the aid of constructs provided by the
assigned view. This is agreed upon by everybody except for Ainsworth et al. [ACWG94]
and Nuseibeh et al. [Nus94]. There is a method which adopts the definition: Existence of a
method in research or industry, which uses the current viewpoint definition, is under ques-
tion here. If a viewpoint definition is not used in any methods, this makes the definition a
pure academic matter.

3.2 Applying Viewpoints on TOGAF

In order to clarify our theoretical explanations, this section will exemplify our understand-
ing of the viewpoint concept on the Enterprise Architecture domain using the TOGAF
framework as a basis. As already mentioned in Section 2, TOGAF differentiates between
four different viewpoints. Figure 2a shows the different stakeholders regarding the TO-
GAF method for system design. When we want to deal with viewpoint concepts in a
technical sense, we can start off with looking at an application domain for which we cap-
ture the relevant concepts in one or more metamodels. We refer to the set of these basic
metamodels with Mb (displayed in blue in Figure 2a). To define a viewpoint we select
the set of concepts from Mb that we consider relevant for the viewpoint (see Figure 2b).
The selection criteria is whether a specific concept is relevant for the stakeholder which
the given viewpoint should then support. The selected concepts form the concepts for the
viewpoint metamodel Mv . The relations for all concepts in Mv have to reflect the rela-
tions between the corresponding concepts in Mb. We do assume that the relations between
concepts in Mb do not contradict each other.



(a) (b)

(c)

Figure 2: TOGAF Perspective to System Design and Information Exchange between Viewpoints.

For a viewpoint metamodel Mv we now can define concrete views that will allow the
stakeholder to actually access the model instances that adhere to the viewpoint metamodel
Mv . Model to model transformations are used to pass information or model fragments
between different viewpoints (see Figure 2c). OCL constraints included in the metamodel
representations are used to validate model instances. Even within a viewpoint definition
given by a viewpoint metamodel Mv projections can be used to distinguish between dif-
ferent stakeholders and with this support them with different views to the model instances.
Projections are defined on the model instance level and can be even defined dynamically
by attaching annotations to the model instances. There is no real need to make a copy
of a model instance to create a new projection. Rather the defined views are adapted or
restricted in a manner that serves the respective stakeholder best. If more than one human
user is manipulating the same model instance possibly using different perspective (i.e. by
using different projections), consistency of the model instance is of major concern.

3.3 Implications for Tooling

The features of viewpoints given in this section were derived with respect to VIBAM’s
viewpoint definition to allow for a comparison of viewpoint definitions of relevant meth-
ods from literature. In the following we present the comparison of the methods which we
consider most important: IEEE 1471-2000 [Sof07], Kruchten [Kru95], RM-ODP [Val01],
ISO/IEC 42010 [Hil11], SysML [Obj11], Zachman [Zac09], MODAF [Cro09], TOGAF
[The11], Boiten [BBD+00], PRAXEME [Pra11], RUP [IBM03]. The selected viewpoint
methods have been examined from two angles: general and dedicated features. The dif-



ference between them lies in the scope of the analysis of the viewpoint methods under
surveillance. The general features refer rather to the external influence on the viewpoints
like support for predefined viewpoints and transformation rules between them. Dedicated
features refer to the internal features of the viewpoints like viewpoint definition, consis-
tency rules inside and between viewpoints. A closer look at the analysis tables below gives
insight into the tooling features we derived and recommend for further implementation.

General Viewpoint Features of the Methods

Table 2: Viewpoint General Features.

Support for Predefined Viewpoints: A predefined viewpoint is defined prior to the appli-
cation of a method. Usually, there is a fixed set of predefined viewpoints unrelated to
any domain, i.e. they are for example defined by the method itself (cf. RM-ODP). As
a consequence, this feature can imply a limitation on versatility of the method’s applica-
tion. One example in this regard is TOGAF which is a dedicate enterprise architecture.
Apart from ISO/IEC and SysML, all of the methods are defining viewpoints in advance.
Support for Addressing Specific Stakeholders: This feature defines whether the method
targets specific stakeholders and hence proposes specific concepts for these stakeholders.
This implicates a number of predefined user groups, which in turn means targeting specific
domains in advance resulting in limitation of versatility and more specific stakeholder tar-
geting. As a result, all considered methods except for ISO/IEC and SysML are defining
stakeholders a priori. Support for Adaptable Presentation Formalisms: Adaptable presen-
tation formalisms provide the ability to adjust the presentation of model elements to the
needs of certain users or to conform to certain viewpoints. This can be realized by a pro-
file. Apart from IEEE, Kruchten, ISO/IEC and PRAXEME, all methods allow a flexible
definition of views. Support for Transformation Rules between different Viewpoints: This
feature expresses the existence of constructive rules that allow deriving model elements
for a particular viewpoint out of model elements from another viewpoint. These rules can
be understood as model transformation between different viewpoints. Although almost all
of the viewpoint definitions support decentralized viewpoints, not every method provides
transformation rules—except for IEEE, ISO/IEC and PRAXEME. Support for Ad Hoc
Viewpoint Creation: Some methods recommend to define viewpoints during a project’s



preparation phase to address unforeseen stakeholder groups. This feature is called ”ad
hoc” in contrast to ”predefined” viewpoints. However, only SysML and TOGAF see the
need for making room for such developments. Support for Dynamic Viewpoint Creation:
Creating a viewpoint completely dynamically in a sense of creating a viewpoint on the
fly after a project has already begun. SysML is the only method that provides means for
giving stakeholders this capability. Support for Dedicated Exploitation: A certain need
for a usage of a viewpoint unintended during the design time may occur at run-time (e.g.
a viewpoint with deactivated dependencies to other viewpoints for protecting sensible in-
formation). Most of the methods support this at least partially. Support for Adaptation to
the Organization Context: This feature defines whether the existing viewpoint of a method
can be adapted to a specific organizational context in order to suit the intended usage of
the system. The three methods—Kruchten, RM-ODP and Boiten—do not see the need for
adapting the viewpoints to specific organizations. Support for Relationship between View-
points and Development Lifecycle: This features outlines whether the method provides
certain guidance or recommendations to relate viewpoints with the development lifecy-
cle of systems. This is not supported by all of the methods—only two of them, namely
PRAXEME and RUP, are looking into realizing this feature to the full extent.

Dedicated Viewpoint Features of the Methods

Table 3: Viewpoint Dedicated Features.

Contains an own viewpoint definition: This feature signifies whether the method provides
its own viewpoint definition. SysML, MODAF and Boiten do not provide own definitions.
Contains impact analysis features: The question here is whether a traceability method-
ology is available and, if yes, whether it allows impact analysis of the model changes
between viewpoints. All the methods except for Kruchten and Zachman do explicitly state
this. Contains projection features: This feature is derived from the projection definition
in Section 3.1. Hence, the idea is to let different viewpoints edit the same model, whereas
certain constructs are represented in different ways in each of the viewpoints. None of the
methods apart from PRAXEME and RUP adhere to this feature. Contains filtering fea-
tures: In their filtering capacities, viewpoints will filter out those model elements that are
not allowed to appear under a certain view, and thus only elements eligible for a viewpoint



will be provided for view modeling. The two methods IEEE and PRAXEME are at least
partially support this capability. Contains consistency rules between different viewpoints:
If a system is modeled using different viewpoints, the model elements which are defined
in these viewpoints are usually not completely independent form each other. There might
be certain rules that need to be obeyed to ensure the overall consistency of the underlying
model. All of the methods support the consistency rules feature. Contains consistency
rules between views: In the same manner as it was for consistency between different view-
points, certain rules may need to be obeyed in order to ensure the consistency in a certain
viewpoint between its views. All of the methods ask for consistency between the views.
Contains consistency rules within a view: As in the two features before, there might be a
threat for inconsistencies inside a certain view due to editing from the different view in-
stances. As a consequence, certain instance level consistency rules may have to be obeyed.
All methods require this feature.

4 Conclusion and Future Work

In this paper we reported on results of the VIBAM project in which viewpoint concepts
are investigated. We presented an overview of the current state-of-the-art for viewpoint
definitions, concepts and methods. Derived from the definitions we found in literature we
present definitions for the list of concepts on the basis of which we define the position
that we take in the VIBAM project regarding viewpoint concepts. After we discussed
VIBAM’s position on viewpoints we presented a list of features that we consider important
for tool support of the viewpoint definition presented in this paper.

The next step in our work is to integrated the defined concepts in the commercial modeling
tools MODELIO and MEDINI ANALYZE. With respect to the basic technologies the imple-
mentation of dynamic viewpoint creations is rather difficult to achieve. Even the definition
of views for example on the basis of EMF/GMF is cumbersome if one is not satisfied with
the default behavior that is offered for this technology stack. We will investigated what
changes would be needed to make the use of the basic technologies more flexible.

Acknowledgements: This work has been funded by the German Federal Ministry of Education and Research
(FKZ 01QE1106B/C) and by the French OSEO through ICT Project ViBaM (Viewpoint-Based Modeling) which
is running in the context of the European Eurostars Program (E!5529). The authors wish to acknowledge
EUREKA and the Commission for their support. We also thank the reviewers for their valuable comments.

References

[ACWG94] M. Ainsworth, A.H. Cruickshank, P.J.L. Wallis, and L.J. Groves. Viewpoint specifi-
cation and Z. In Information and Software Technology, 36(1):43–51, 1994.

[AWHVW98] D.E. Avison, A.T. Wood-Harper, R.T. Vidgen, and J.R.G. Wood. A further explo-
ration into information systems development: the evolution of Multiview2. In Infor-



mation Technology & People, 11(2):124–139, 1998.

[BBD+00] E. Boiten, H. Bowman, J. Derrick, P. Linington, and M. Steen. Viewpoint consis-
tency in ODP. In Computer Networks: The International Journal of Computer and
Telecommunications Networking, 34(3):503–537, 2000.

[BKS10] S. Buckl, S. Krell, and C.M. Schweda. A Formal Approach to Architectural De-
scriptions—Refining the ISO Standard 42010. In A. Albani, J.L.G. Dietz, W. van der
Aalst, J. Mylopoulos, M. Rosemann, M.J. Shaw, and C. Szyperski, editors, Advances
in Enterprise Engineering IV, Vol. 49 of Lecture Notes in Business Information Pro-
cessing, pp. 77–91. Springer, Berlin Heidelberg, Germany, 2010.

[BW06] P. Balabko, and A. Wegmann. Systemic classification of concern-based design meth-
ods in the context of enterprise architecture. In Information Systems Frontiers,
8(2):115–131, 2006.

[CMR03] J. Champeau, F. Mekerke, and E. Rochefort. Towards a Clear Definition of Patterns,
Aspects and Views in MDA. In Proc. of the First International Workshop on En-
gineering Methods to Support Information Systems Evolution, Geneva, Switzerland,
2003.

[Cro09] Crown. A summary of MODAF views by their use and data types, 2009.

[DQPvS04] R.M. Dijkman, D.A.C. Quartel, L.F. Pires, and M.J. van Sinderen. A rigorous ap-
proach to relate enterprise and computational viewpoints. In Proc. of the 8th IEEE
Enterprise Distributed Object Computing (EDOC) Conference, Monterey, Califor-
nia, USA, 2004.

[DQvS08] R.M. Dijkman, D.A.C. Quartel, and M.J. van Sinderen. Consistency in multi-
viewpoint design of enterprise information systems. In Information and Software
Technology, 50(7-8):737–752, 2008.

[EYA+05] S. Easterbrook, E. Yu, J. Ar, Y. Fan, J. Horkoff, M. Leica, and R.A. Qadir. Do
viewpoints lead to better conceptual models? An exploratory case study. In RE, pp.
199–208, 2005.

[FEKN92] A. Finkelstein, S. Easterbrook, J. Kramer, and B. Nuseibeh. Requirements Engi-
neering Through Viewpoints. In DRA Colloquium on Analysis of Requirements for
Software Intensive Systems, pp. 18–26, Defence Research Agency, 1993.

[FKN+92] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and M. Goedicke. View-
points: A Framework for Integrating Multiple Perspectives in System Develop-
ment. In International Journal of Software Engineering and Knowledge Engineering,
2(1):31–57, 1992.

[GBB12] T. Goldschmidt, S. Becker, and E. Burger. Towards a Tool-Oriented Taxonomy of
View-Based Modelling. In E.J. Sinz, and A. Schürr, editors, Modellierung, Vol. 201
of GI-LNI, pp. 59–74, 2012.

[Hil11] R. Hilliard. Welcome to the ISO/IEC 42010 Website. http://www.
iso-architecture.org/ieee-1471/, Accessed July 2012.

[IBM03] IBM. Rational Unified Process: A Best Practices Approach, 2003.

[Kru95] P. Kruchten. Architectural Blueprints - The 4+1 View Model of Software Architec-
ture. In IEEE Software, 12(6):42–50, 1995.



[KS96] G. Kotonya, and I. Sommerville. Requirements Engineering With Viewpoints. In
Software Engineering Journal, 11(1):5–18, 1996.

[Lan09] M. Lankhorst. Enterprise Architecture at Work: Modelling, Communication and
Analysis. Springer, Berlin Heidelberg, Germany, 2009.

[MP00] R. Motschnig-Pitrik. The viewpoint abstraction in object-oriented modeling and the
UML. In Proc. of the 19th international conference on Conceptual modeling, ER’00,
Salt Lake City, Utah, USA, 2000.

[Nus94] B.A. Nuseibeh. A Multi-Perspective Framework for Method Integration. Disserta-
tion, Imperial College of Science, Technology and Medicine, University of London,
Department of Computing, 1994.

[Obj03] Object Management Group. MDA Guide Version 1.0.1. http://www.omg.org/
cgi-bin/doc?omg/03-06-01, Accessed July 2012.

[Obj11] Object Management Group. The Official OMG SysML website. http://www.
omgsysml.org, Accessed July 2012.

[Pra11] Praxeme Institute. PRAXEME - Opus, the Product. http://www.praxeme.
org/index.php?n=Opus.Opus, Accessed July 2012.

[RW05] N. Rozanski, and E. Woods. Software Systems Architecture: Working With Stake-
holders Using Viewpoints and Perspectives. Addison-Wesley Longman, Amsterdam,
2005.

[SADL04] M.W.A. Steen, D.H. Akehurst, H.W.L. Doest, and M.M. Lankhorst. Supporting
Viewpoint-Oriented Enterprise Architecture. In Proc. of the 8th IEEE International
Enterprise Distributed Object Computing Conference (EDOC’04), Monterey, Cali-
fornia, USA, 2004.

[Sof07] Software Engineering Standards Committee of the IEEE Computer Society. IEEE
Recommended Practice for Architectural Description of Software-Intensive Systems.
Software Engineering Standards Committee of the IEEE Computer Society, 2007.

[Sta73] H. Stachowiak. Allgemeine Modelltheorie. Springer, Berlin Heidelberg, Germany,
1973.

[The11] The Open Group. Welcome to TOGAF Version 9 - an Open Group Stan-
dard. http://pubs.opengroup.org/architecture/togaf9-doc/
arch/index.html, Accessed July 2012.

[Val01] A. Vallecillo. RM-ODP: The ISO Reference Model for Open Distributed Processing.
DINTEL Edition on Software Engineering, 3:66–69, 2001.

[WHAA85] A.T. Wood-Harper, L. Antill, and D.E. Avison. Information systems definition: the
Multiview approach. Blackwell Scientific Publications, Oxford, UK, 1985.

[Zac00] J.A. Zachman. Concepts of the Framework for Enterprise Architecture. http:
//www.ies.aust.com/papers/zachman3.htm, Accessed July 2012.

[Zac09] J.A. Zachman. The Zachman Framework: The Official Concise Definition. http:
//old.zachmaninternational.com/concise%20definition.pdf,
Accessed July 2012.


