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Abstract

Unsupervised anomaly detection is the process of finding outlying
records in a given dataset without prior need for training. In this paper
we introduce an anomaly detection extension for RapidMiner in order
to assist non-experts with applying eight different nearest-neighbor and
clustering based algorithms on their data. A focus on efficient implemen-
tation and smart parallelization guarantees its practical applicability. In
the context of clustering-based anomaly detection, two new algorithms
are introduced: First, a global variant of the cluster-based local outlier
factor (CBLOF) is introduced which tries to compensate the shortcom-
ings of the original method. Second, the local density cluster-based
outlier factor (LDCOF) is introduced which takes the local variances
of clusters into account. The performance of all algorithms have been
evaluated on real world datasets from the UCI machine learning repos-
itory. The results reveal the strengths and weaknesses of the single
algorithms and show that our proposed clustering based algorithms out-
perform CBLOF significantly.

1 Introduction

Anomaly detection is the task of finding anomalous or outlying records in
datasets, whose behavior does not conform with the behavior of the majority.
These records have been of increasing interest in many application domains,
because their presence could indicate an unauthorized access of a system, credit



card fraud, a failure in a part of a monitored system or a diagnosis of an
unknown disease.

There are many attempts to solve the anomaly detection problem. The
approaches that are more widely applicable are unsupervised algorithms as
they do not need labeled training data meeting the requirements of practical
systems. The presented anomaly detection extension for RapidMiner1 imple-
ments most of the commonly used unsupervised anomaly detection algorithms.
In contrast to supervised machine learning, there is up to now no freely avail-
able toolkit such as the presented extension in the anomaly detection domain.
Now, non-experts can easily integrate the implemented operators into com-
plex processes using the intuitive graphical user interface of RapidMiner. The
algorithms were implemented efficiently in order to ease the comparison of the
approaches for researchers as well as making it possible for non-experts, ana-
lysts and researchers to freely use the algorithms and perform experiments on
larger datasets.

Anomaly detection algorithms could either be global or local. Global ap-
proaches refer to the techniques in which the anomaly score is assigned to each
instance with respect to the entire dataset. On the other hand, the anomaly
score of local approaches represent the outlierness of the data point with re-
spect to its direct neighborhood. The local approaches can detect outliers that
are ignored using global approaches, especially in case of a varying densities
within a dataset.

The anomaly detection extension contains two categories of approaches:
nearest-neighbor based and clustering based algorithms. Algorithms in the
first category assume that outliers lie in sparse neighborhoods and that they
are distant from their nearest neighbors [1]. The second category operates on
the output of clustering algorithms being thus much faster in general. The
extension contains the following algorithms:

• Nearest-neighbor based algorithms

1. k-NN Global Anomaly Score
2. Local Outlier Factor (LOF)
3. Connectivity based Outlier Factor (COF)
4. Local Outlier Probability (LoOP)
5. Influenced Outlierness (INFLO)
6. Local Correlation Integral (LOCI)

• Clustering based algorithms

1. Cluster based Local Outlier Factor (CBLOF)
2. Local Density Cluster based Outlier Factor (LDCOF)

A variant of CBLOF, unweighed-CBLOF, is incorporated into the Cluster
based Local Outlier Factor (CBLOF) operator.

1For source code and binaries see http://madm.dfki.de/rapidminer/anomalydetection.



The organization of the remainder of the paper is as follows: In Section 2, a
quick overview of the implemented nearest-neighbor algorithms will be given.
Then in Section 3, the clustering based algorithms are described with a focus
on our new approaches. Section 4 describes some optimizations that were
implemented including a smart parallelization for the nearest-neighbor based
algorithms. In Section 5, the experiments that were performed on real world
data to evaluate and compare the algorithms are shown and finally Section 6
concludes.

2 Nearest-Neighbor based Algorithms

Nearest-neighbor based algorithms assign the anomaly score of data instances
relative to their neighborhood. They assume that outliers are distant from
their neighbors or that their neighborhood is sparse. The first assumption
corresponds to k-NN which is a global anomaly detection approach, while the
second assumption refers to local density based approaches.

The k-NN global anomaly score is one of the most commonly used nearest-
neighbor based algorithms. The anomaly score is either set to the average
distance of the k-nearest-neighbors as proposed in [2] or to the distance to the
kth neighbor like the algorithm proposed in [3]. Since the first method is much
more robust to statistical fluctuations it should be preferred and it is also the
method of choice in our experiments later on.

The first local density based approach is the local outlier factor (LOF) [4],
which seems to be the most used local method today. It compares the local
density of a data instance to that of its neighbors. The local density of a data
instance is inversely proportional to the average distance to the k-nearest-
neighbors. The LOF score is set to the ratio of the local density of the data
instance to the average local density of its neighbors.

This results in normal data having an LOF score of approximately equal
to 1, while outliers have scores greater than 1. This is explained by the fact
that if the data lies in a dense region, its local density would be similar to that
of its neighbors leading to a ratio of 1. For a sufficiently large dataset an LOF
score of up to 2 would indicate that the data instance is normal.

Several variants of the LOF algorithm are implemented in the extension.
The advantages of LOF include the ease of the interpretation of its score
and its ability to capture outliers that were previously unseen by the global
approaches. Each of the LOF variants have a different motivation in order to
overcome a disadvantage that the authors of the following algorithms observed
in the original LOF, while maintaining its advantages. The connectivity based
outlier factor (COF) [5] was proposed in order to handle outliers deviating from
spherical density patterns, for example straight lines. Influenced outlierness
(INFLO) [6] was introduced in order to give more accurate results in case of
clusters with varying densities that lie near to each other. This is accomplished



by taking more neighbors into account, namely the reverse k-nearest-neighbors
set (RNNk). RNNk(p) is the set of objects that has the data instance p in its
k-neighborhood set. Local outlier probability (LoOP) [7] incorporates some
statistical concepts in order to output the final score as a probability that a
particular data instance is a local density outlier. These probabilities facilitate
the comparison of a data instance with data in the same dataset as well as in
other datasets.

The local correlation integral (LOCI) [8] algorithm is also a variant of LOF.
In contrast to LOF, the density of a data instance in LOCI is proportional to
the number of objects within a particular radius, the r-neighborhood. For
each data instance, the neighborhood is grown from a minimum up to all
instances in the dataset. The main motive for this approach is that it doesn’t
have any crucial parameters like k in the previous approaches and should
automatically determine whether a local or global anomaly detection problem
has to be solved. This eases the application of the algorithm by the end
users. Unfortunately it also causes an increase in both, time O(n3) and space
complexity O(n2), restricting its use to very small datasets.

3 Clustering based Algorithms

The process of arranging similar objects into groups is referred to as cluster-
ing [1]. Clustering based anomaly detection techniques operate on the output
of clustering algorithms, e.g. the well-known k-means algorithm. They assume
that anomalous instances either lie in sparse and small clusters, far from their
cluster centroid or that they are not assigned to any cluster at all. The al-
gorithms that were implemented in our extension use the output of any good
clustering algorithm already available in RapidMiner. The initial step followed
by these algorithms is to classify the clusters into small and large clusters. The
user has the choice to select whether this partitioning is implemented similar
to what was proposed in [9] using two parameters α and β or using a single
parameter γ similar to the work in [10].

The CBLOF scores, calculated using Equation 1, assign an anomaly score
based on the distance to the nearest large cluster multiplied by the size of the
cluster the object belongs to. Figure 1 illustrates this concept. Point p lies in
the small cluster C2 and thus the score would be equal to the distance to C1

which is the nearest large cluster multiplied by 5 which is the size of C2.

CBLOF (p) =

{
|Ci| ·min(d(p, Cj)) if Ci ∈ SC where p ∈ Ci and Cj ∈ LC
|Ci| · d(p, Ci) if Ci ∈ LC where p ∈ Ci

(1)
The authors of [9] claim that weighting by the size of the cluster makes this

method local. However, to our understanding this does not make the method



Figure 1: For p, the distance to the cluster center of C1 is used for computing the
CBLOF score. In this example C1 and C3 are identified as large clusters, while C2

is considered to be a small cluster. The white points illustrate the cluster centers.

local as it does not take any local density into account - the amount of items
in a cluster does not necessarily refer to its density.

Upon the conduction of the initial experiments, it has been observed that
Equation 1 could lead to misleading results. Figure 2(a) shows an example of
such a case. The black cluster is the only small cluster in this synthetic dataset.
We have two points A and B; while it is obvious that A is more outlying than
B, the score assignment (bubble size) shows otherwise. This can be explained
by the fact that point B is multiplied by the size of the white colored cluster
which is much larger than the size of the black cluster. The example shows
that outlying points belonging to small clusters are discriminated against.
Hence, we propose a variant to the algorithm unweighted-CBLOF shown by
Equation 2.

unweighted-CBLOF (p) =

{
min(d(p, Cj)) if p ∈ SC where Cj ∈ LC
d(p, Ci) if p ∈ Ci ∈ LC

(2)

(a) CBLOF (b) unweighted-CBLOF

Figure 2: Comparing CBLOF with unweighted-CBLOF on a synthetic dataset. The
size of the point indicates the outlier score. The gray level indicates to which of the
four clusters the point belongs to.

Figure 2(b) shows the results of unweighted-CBLOF on the same artificial
dataset. As expected point A has a higher outlier score than point B. What
should be also noted, is that even the points deep inside the black cluster have
a high outlier score as we consider the small clusters outlying.



In an attempt to apply the local density principle, we introduce Local
Density Cluster-Based Outlier Factor (LDCOF). Local density based anomaly
detection approaches are popular as the anomaly score is normalized relative
to the neighborhood. Moreover, the anomaly score has a natural threshold
that would indicate whether the points are outlying or not.

The LDCOF score is defined as the distance to the nearest large cluster
as illustrated in Figure 1 divided by the average distance to the cluster center
of the elements in that large cluster. The intuition behind this is that when
small clusters are considered outlying, the elements inside the small clusters
are assigned to the nearest large cluster which becomes its local neighborhood.
Thus the anomaly score is computed relative to that neighborhood.

distanceavg(C) =

∑
i∈C d(i, C)

|C|
(3)

LDCOF (p) =

{
min(d(p,Cj))

distanceavg(Cj)
if p ∈ Ci ∈ SC where Cj ∈ LC

d(p,Ci)
distanceavg(Ci)

if p ∈ Ci ∈ LC
(4)

The algorithms discussed above work on the output of any useful cluster-
ing algorithm. However, some clustering algorithms produce better results
than others. Algorithms that take the number of clusters as a parameter,
e.g. k-means and k-medoids are in favor compared to algorithms that deter-
mine the number of clusters automatically, for example X-means. It seems
that overestimating the number of clusters performs in general better. Using
more clusters is particularly useful in case of having non-spherical distribu-
tions where instances at the peripherals could falsely be identified as outliers.
Additionally, the algorithm also considers small clusters as outlying, thus the
excessive division into clusters helps in reducing false positives.

4 Optimizations

4.1 Handling Duplicates

Local k-nearest-neighbor based approaches can face some problems in case
of having duplicates in the dataset. This arises as the density is inversely
proportional to the distance. In case we have at least k + 1 duplicates of
a certain data instance, the estimated density will be infinite. The solution
that was proposed in [4] was utilized for these cases, which states that the
distance to kth neighbor would be calculated relative to the data with distinct
spatial coordinates. Meaning that if we have D = {p1, p2, p3, p4} where the
coordinates of p2 is the same as p3 and d(p1, p2) = d(p1, p3) ≤ d(p1, p4) , then
the distance to the 2nd nearest-neighbor would be d(p1, p4).

Our implementation handles the duplicates as follows. The original dataset
is processed by removing all the duplicates and assigning to each record in the



new dataset a corresponding weighting factor which is equal to the number
of records with the same coordinates in the original dataset. The algorithms
operate on the new dataset and finally the scores are mapped while producing
the result set.

Besides solving the problem of duplicates, the preprocessing leads to an-
other advantage: It can significantly reduce the number of records which re-
flects positively on the execution time.

4.2 Parallelization

The main bottle neck for the nearest-neighbor based algorithms is the need
to compute the distances between each pair of data instances in the dataset.
For a dataset of size n, this computation is typically done in n2 operations,

however it can be done in (n−1)·n
2 if we take into account that the distance

functions are symmetric.
Besides the computational complexity, also the memory consumption has

to be minimal. Thus, our implementation does not store the complete distance
matrix in memory but only a list of the best k-nearest-neighbors found so far.
This list is then updated during the distance computation process if a closer
neighbor is found. This reduces the memory consumption from O(n2) to O(nk)
dramatically making it possible to process large datasets. Additionally, the use
of data structures containing non-primitive Java types was kept to a minimum.

In order to speed up the algorithms the code was parallelized for computing
the k-nearest-neighbors. This can be done by one of the following methods.
First we can compute the n2 distances and avoid the need for any synchro-

nization. The second option would be to compute only (n−1)·n
2 distances, this

would need some kind of synchronization because two threads could attempt
to update the best-k-nearest-neighbors list of the same point at the same time.
Synchronized blocks were used for synchronization since using Java Reentrant-
Lock was significantly slower.

The comparison of the two proposed methods was not straight forward.
This is due to the trade off between the time it takes to compute the distance
function (which depends on the number of dimensions) and the waiting time
of the threads. Figure 3 shows the results of running the two approaches on
100,000 randomly generated data instances with varying the dimensionality
using 4 threads. Since the order of the dataset can affect the execution time,
the average time of three runs with randomly shuffled input was taken.

It can be derived from Figure 3 that for smaller dimensions avoiding syn-
chronization is better while for larger dimensions computing less distances is
faster. This is because for higher dimensions the cost of computing the dis-
tances becomes more expensive than the waiting time of the threads. We
defined a threshold of 32 for the dimensionality of the dataset. Datasets hav-
ing lower dimensionality will be parallelized without synchronization, whereas
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Figure 3: The nearest-neighbor search speed-up of the two proposed methods using
4 cores varying the dimensionality of the dataset. The first method avoids synchro-
nization and the second (hatched) is using synchronized blocks.

synchronization is used for datasets with higher dimensionality.

5 Experiments

Experiments were performed on real world datasets from the UCI machine
learning repository [11]. Basically, our evaluation has two main goals: First,
it was used to verify that the algorithms have been implemented correctly by
running them on datasets that were previously used in the literature. Second,
we noticed that available literature today does not compare a sufficient amount
of different algorithms. In this context, we compare the performance of up to
eight different algorithms on global and local anomaly detection tasks.

The first dataset used is the Breast Cancer Wisconsin (Diagnostic) dataset.
The preprocessing applied is similar to what was performed in [7] where only
the first 10 malignant records are kept. This dataset will be referred to as
breast-cancer for the remainder of this paper.

The second dataset is the Pen-Based Recognition of Handwritten Text
dataset2. The dataset consists of digits written by 45 different writers. Two
different preprocessing steps are applied on this dataset. The first method is
similar to the one performed in [7] where the digit 4 was chosen to be the
anomalous class and only the first 10 records are kept in the dataset, resulting
in a dataset of size 6724. This can be interpreted as a local anomaly detection
problem since multiple classes with different densities may exist (referred to
as pen-local). As a second preprocessing method, the digit 8 was chosen to be
the normal class and thus all the remaining classes are sampled keeping only
the first 10 digits of each class. This results in a smaller dataset of size 809,
which can be interpreted as a global anomaly detection problem having one

2Only the training dataset was used



normal class and some outliers which are supposed to be further away from
the normal class (referred to as pen-global in the following).

Results and Discussion
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Figure 4: AUC for nearest-neighbor based algorithms for different k. It is shown
that the choice of k strongly depends on the data and that local methods tend to
fail on the global anomaly detection task (c).

For performance comparison, the receiver operating characteristic (ROC)
was computed using the ranking of instances according to their anomaly scores.
For simple comparison of the ROCs, the area under the curve (AUC) was com-
puted further. Figure 4 shows AUC values of the nearest-neighbor algorithms
on the different datasets. In 4(a) and 4(b) the local density based methods are
superior to the global k-NN method. The performance of LOF and INFLO
are very similar performing better at lower values of k, while for higher values
of k, LoOP performs best. In Figure 4(a) and 4(c) LOCI was also plotted even
though it does not vary with k. This was done in order to show how LOCI per-
forms compared to the other approaches. For these datasets the performance
of LOCI is worse than the other algorithms, however it can still be useful in
case the user has no idea about the parameter settings of k. In Figure 4(c),



the global k-NN method performs best, followed by COF. It is an important
finding, that global methods work fair enough on local problems but the the
other way round is not true. Some of the local approaches fail significantly on
the global anomaly detection problem - most likely due to the fact that the
normal instances at the border of the normal class might be found as local
outliers and score relatively high compared to the sparse global outliers.
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Figure 5: The AUCs for clustering based algorithms reveal that our two proposed
algorithms perform significantly better than the standard CBLOF. In contrast to the
k in nearest-neighbor based methods, the choice of α is much more critical.

Figure 5 shows the effect of different values of α, the parameter affecting
the partitioning into small and large clusters. The algorithms operate on the
output of the k-means clustering algorithm with k set to 30. β was set to
infinity such that the partitioning is only determined by the choice of α. Fig-
ures 5(a), 5(b) and 5(c) all show that both, unweighted-CBLOF and LDCOF
are superior to CBLOF. Figures 5(a) and 5(c) show that the partitioning into
small and large clusters is better than having no small clusters at all, which is
at α = 100. This could be due to the size of those two datasets which is much
smaller than the size of pen-local. It is believed that all the implemented algo-
rithms produce better results when the number of clusters (k for the k-means



algorithm) is overestimated.
Finally, a comparison of the performance of nearest-neighbor based algo-

rithms with clustering based algorithms was performed. Table 1 shows the best
AUC that can be obtained by varying the parameter settings. For the breast-
cancer and the pen-local dataset the optimal k value for the nearest-neighbor
based algorithms is 10 except for LoOP where k is 20. For the pen-global
dataset the optimal k is 40. The optimal α for the clustering based algorithms
for the breast-cancer dataset is 90, while for the pen-local dataset the optimal
α for CBLOF is 90 and for the others it is 100. For the pen-global dataset,
80 is the optimal value for α. The performance of the nearest-neighbor algo-
rithms and the clustering algorithms is comparable: The unweighted-CBLOF
and LDCOF perform only slightly worse than the best nearest-neighbor based
algorithms on the first two datasets. The same algorithms even slightly out-
perform the best nearest-neighbor based algorithm on the pen-global dataset.
CBLOF performed worst on all datasets.

Table 1: Comparing AUC values for all algorithms using optimal parameter settings

Algorithm Breast-cancer Pen-local Pen-global

k-NN 0.9826 0.9852 0.9892
LOF 0.9916 0.9878 0.8864
COF 0.9888 0.9688 0.9586
INFLO 0.9922 0.9875 0.8213
LoOP 0.9882 0.9864 0.8492
LOCI 0.9678 −3 0.8868
CBLOF 0.8389 0.7007 0.6808
unweighted-CBLOF 0.9743 0.9767 0.9923
LDCOF 0.9804 0.9617 0.9897

6 Conclusion

An anomaly detection extension for RapidMiner was implemented that con-
tains the most well-known unsupervised anomaly detection algorithms. This
extension will enable analysts to use those algorithms and integrate the op-
erators into more complex processes easily. Also, the extension will enable
researchers to perform further comparisons on the algorithms which would be
beneficial as there is a general scarcity of those comparisons in the literature.

Our experiments show, that there is no overall best method for nearest-
neighbor based algorithms and a good choice of the parameter k strongly
depends on the data. Further it was shown that it is very important to know
in advance if a global or local anomaly detection problem is to be addressed
since local methods tend to fail on global tasks.

In the context of clustering based anomaly detection, unweighted-CBLOF
and LDCOF are introduced as two new algorithms. The first results look

3Not computable due to too high memory requirements for this dataset using LOCI.



promising as they both outperform the existing CBLOF in our experiments.
The observed behavior of both algorithms is very similar. However the scores
of LDCOF are more readily interpretable and thus the method should be
preferred. Similar to LOF, normal records have an anomaly score of approxi-
mately 1 while records having a score greater than 1 could be possible outliers.

Comparing nearest-neighbor and clustering based algorithms we found that
nearest-neighbor based algorithms perform slightly better. However, if very
large datasets have to be processed, one might choose clustering based algo-
rithms since their complexity is usually lower, e.g. O(nlog(n)) using k-means
in comparison of O(n2) for a nearest-neighbor search.
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