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Introduction
• Anomaly detection finds outliers in data sets which

– only occur very rarely in the data and

– their features significantly deviate from the normal data

• Three different anomaly detection setups exist [4]:

1. Supervised anomaly detection (labeled training and test set)

2. Semi-supervised anomaly detection

(training with normal data only and labeled test set)

3. Unsupervised anomaly detection (one data set without any labels)

• In this work, we present an unsupervised algorithm which scores instances in a

given data set according to their outlierliness

Related Work
Unsupervised anomaly detection [4]

• Nearest-neighbor based algorithms

– Global k-nearest-neighbor (k-NN) [9]

– Well known local method: Local Outlier Factor (LOF) [3]

– Many improvements based on LOF:

Connectivity-Based Outlier Factor (COF) [10], Local Outlier Probability

(LoOP) [7], Influenced Outlierness (INFLO) [6] and Local Correlation

Integral (LOCI) [8]

– Best performing methods today [2]

– Computational effort for nearest-neighbor search basically O(n2)

• Clustering based algorithms

– Use k-means to cluster the data first

– Compute CBLOF [5] or LDCOF [1] scores based on clustering results

– Can be faster than k-NN methods

• Statistical methods

– Parametric methods, e.g. Gaussian Mixture Models (GMM)

– Non-parametric methods, e.g. histograms or kernel-density estimation (KDE)

Local Outlier Factor (LOF)
• Introduced by Breunig et al in 2000 [3]

• Three steps to compute LOF score:

1. Find the k-nearest-neighbors

2. For each instance compute the local

reachability density:

LRDmin(p) = 1/
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3. For each instance compute the ratio of local densities

LOFmin(p) =
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• Scores close to 1.0 indicate normal data

• Scores > (1.2 ... 2.0) are anomalies

• Most computational effort is finding the nearest neighbors O(n2),

often > 99% of the run time

Acknowledgment: This work is part of ADEWaS, a project of Deutsche Telekom Laboratories.

Performance Improvement Attempts
• Space partitioning algorithms (e.g. search trees): Require time to build the tree

structure and can be slow when having many dimensions

• Locality Sensitive Hashing (LSH): Approximates neighbors well in dense areas but

performs poor for outliers

FastLOF
• Idea: Estimate the nearest neighbors for dense areas approximately and compute

exact neighbors for sparse areas

• Expectation step: Find some (approximately correct) neighbors and estimate

LRD/LOF based on them

• Maximization step: For promising candidates (LOF > θ ), find better neighbors

Algorithm 1 The FastLOF algorithm
1: Input

2: D = d1, . . . , dn: data set with N instances

3: c: chunk size (e.g.
√
N)

4: θ: threshold for LOF

5: k: number of nearest neighbors

6: Output

7: LOF = lof1, . . . , lofn: estimated LOF scores

8: function FastLOF(D, c, θ, k)

9: shuffle(D)

10: Group d1, . . . , dn in chunk1, . . . , chunkc

11: active← D

12: while new NN
k found do

13: for all di ∈ active do

14: NN
k

i
← findNN(di, chunkci)

15: Update NN k

x
for new neighbor x in NN

k

i

16: ci++

17: LRD ← LRD(D,NN k)

18: LOF ← LOF(D,NN k)

19: active← 0

20: for all di ∈ D do

21: if lofi > θ then

22: active← di

23: return LOF
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Evaluation and Results
• Evaluation using UCI machine learning data sets (preprocessed as in [1]):

– Breast Cancer Wisconsin data set

– Pen-Based Recognition of Handwritten Digits data set

(global and local anomaly detection task)

Dataset k θ LOF

AUC

FastLOF

AUC

FastLOF

Calcs

Best

Alg.

Best

AUC

Worst

AUC

Breast Cancer Wisconsin 10 1.10 0.9916 0.9882 18,5% INFLO 0.9922 0.8389

Pen-based 4-anomaly (local) 10 1.01 0.9878 0.9937 16.0% FastLOF 0.9937 0.7010

Pen-based 8-normal (global) 40 1.00 0.8864 0.9050 35.5% uCBLOF 0.9923 0.6808

• 65% - 80% less distance computations than LOF

• Scores already available as approximations during calculation

• FastLOF scores converge to LOF scores (if θ decreases over time)
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