
CookIIS Mobile: A Case-Based Reasoning
Recipe Customizer for Android Phones

Kerstin Bach1,2, Klaus-Dieter Althoff1,2, Julian Satzky2, and Julian Kroehl2

1 Competence Center Case-Based Reasoning
German Research Center for Artificial Intelligence (DFKI) GmbH

Trippstadter Strasse 122, 67663 Kaiserslautern, Germany
firstname.surname@dfki.de

2 University of Hildesheim
Institute of Computer Science - Intelligent Information Systems Lab

Marienburger Platz 22, 31141 Hildesheim, Germany

http://www.dfki.de/web/competence/cccbr/

Abstract. Case-Based Reasoning (CBR) has been successfully applied
for recommending recipes within different scenarios in the course of the
Computer Cooking Contest and beyond. However, recipe recommenda-
tions are more useful when there are available in the kitchen, looking at
the fridge and planning to cook a dish. In this paper we will present the
CookIIS Android App, which has been implemented using myCBR 3 and
extended with the Open Source Business rule engine Drools. We will
show how completion and adaptation rules can be processed with this
new extension and how they affect the customization of cooking recipes.

Key words: Case-Based Reasoning, Android App, myCBR, Reuse, Adap-
tation and Completion Rules

1 Introduction

In this paper we will present a Case Study that uses the myCBR 3 SDK [2]
for the development of mobile applications as well as includes the Drools Rule
Engine for providing case completion and adaptation. We will use the Computer
Cooking Contest (CCC) prototype of our group to showcase how these two
extensions can enhance myCBR applications.

CookIIS today is completely based on open-source software and it now made
its way closer to the user’s current situation since it has an Android App. It
considers the restrictions given by the user and adapts available recipes to fit
the user’s wishes as much as possible. It provides cooking competence for those
not so familiar with cooking and by this opens the world of cooking for an
increasing number of people.

Customizing recipes can be challenging, because it is subjective. The taste
of people selecting and modifying can not be generalized. However, mobile apps

http://www.dfki.de/web/competence/cccbr/

provide many personal information of a user that can describe the context in
which an intelligent software system can adopt to its user. The Android applica-
tion for CookIIS is probably together with the insurance recommendation app
presented by [7], one of the first mobile apps including Case-Based Reasoning
(CBR). We believe CBR can be of a high value for mobile apps in various do-
mains, because it supports creative solutions or recommendations right at hand.
From our experience up to now, target domains for mobile CBR application are
personalized decision making and recommendation such as traveling, e-Health
or product recommendations. Furthermore, applying CBR in user interaction is
also a topic to be addressed for mobile applications, as it has been discussed for
web applications by [3].

1.1 Motivation

Including CBR in mobile application can help a knowledge-based system to
obtain user information for improving its task. Especially the exploitation of
contextual information can improve the application itself by increasing trust in
the results such a system produces.

Contextual information of mobile devices can be either provided by sensors
describing the current location, date and time, or the proximity of other devices
and therewith people. Furthermore, from the content of mobile phones even more
information - especially user characterization and preferences - can be obtained
and incorporated in mobile apps.

For the home cooking domain, information such as nutrition preferences (di-
ets, allergies, etc.) or available ingredients and tools are important. But also the
season, that influences the availability of fruits or vegetables and the favor of cer-
tain ingredients, should be taken into account. Moreover we know that individual
competences and experiences in cooking and the time available for preparation
has a high influence on the meal and menu selection. From our point of view,
the application domain of cooking is manifold and we are aiming to provide
technology show cases, which can be adapted within other domains.

With the application presented in this paper we surely do not address all
these challenges, however, we try to provide the information in place and show
how it can be customized according various parameters.

In this paper we are addressing recipe recommendation and adaptation and
the remaining of this paper is structured as follows: First we will give an intro-
duction to CookIIS including its general concepts and the architecture. Section
3 describes the customization of recipes using rules, while section 4 describes an
Android app and shows how the CBR features are supporting the user in finding
recipes. The last sections summarizes the current status of CookIIS and gives
an overview on the next steps.

2 CookIIS

CookIIS is a cooking recipe engine that showcases the strength of CBR in an
easily understandable domain, which affects everyone once in a while: what to

cook with the ingredients I love in respect to allergies or dietary practices.
CookIIS stores recipes and provides upon the user’s request the most similar
ones, adapts them to the user’s wishes and by this fulfills specific constraints
(allergies, vegetarian food etc.).

CookIIS is a CBR cooking recipe engine based on the open source tool my-
CBR that can be used via a web interface or Android app. It is based on an
integrated knowledge model based on the former CookIIS model and makes use
of the more formalized recipe base provided by WikiTaaable. The actual system
now supports the full 4R CBR cycle [1]. Besides the similarity-based retrieval
and the application of specific requirements (dietary practices, allergies, exclu-
sion of certain ingredients), the system applies model-based adaptation alongside
regular adaptation based on rules. For the processing of completion and adapta-
tion rules we now use the Open Source rule engine Drools. CookIIS also collects
user feedback (revise) and includes new cases semi-automatically (retain).

Fig. 1. CookIIS Knowledge Model in myCBR

CookIIS is based on a comprehensive case representation including 22 at-
tribute descriptions of which 19 symbolic attribute descriptions represent the
different kinds of ingredients, types of meals and cuisines. Three String attribute
descriptions capture the title, preparation and raw ingredient data. The symbolic
attribute descriptions currently contain 2,416 modeled attribute values.

The recipes included in the prototype originate in the CCC case base. The
current case base contains the former Computer Cooking Contest (CCC) Com-
pulsory case base with 1,484 recipes, which have been derived from the Wiki-
taaable system [4]. Based on the source data, we load the cases from a Post-
greSQL data base into myCBR. The knowledge model along with the weights
for each attribute description is shown in Figure 1.

Quality improvements have been carried out manually and automatically
throughout the last 5 year through term, Bachelor’s and Master’s theses at
the University of Hildesheim. The idea behind this is that incoming case data
would be validated according to state of the art methodologies for experience
management. Currently our knowledge model contains terms to index the CCC
compulsory tasks’ case base. If novel recipes are submitted through the web inter-
face, they are not immediately loaded into the case base. Currently a knowledge
engineer has to initiate the case loading process and, if necessary, include new
attribute values. Currently we automatically verify the knowledge model against
the case base.

2.1 System Architecture

CookIIS is based on a client-server-architecture, which allows us to provide both
- a web-based and mobile application (see Figure 2).

Fig. 2. CookIIS Architecture

The CBR engine, which is wrapped in the OSGi framework, is deployed
on a Jetty Server. Further on, the cases and rules are mostly maintained in a
PostgreSQL database which is accessed from the application to load cases and

create the rule set to be applied. The server itself uses servlets for exchanging
data while the communication between the Server and the mobile application is
implemented using JSON3. For the development of the Android application we
have used the Android SDK.

The communication between client and server is carried out via the JavaScript
Object Notation (JSON). JSON is a very minimalistic format based on the java
JavaScript Notation for exchanging data between two communication parties.
Compared to XML, JSON requires resources to represent data, which makes it
an ideal match for mobile applications, because it is built using simple key-value-
pairs (objects) and ordered value lists (arrays).

The following listing shows a query send to the CookIIS server. Each query
contains the query type and the according specifications.

1 {”SEARCH: ”Extended” ,
2 ”Query” : ” ch icken ” ,
3 ” Exclude ” : ” g a r l i c ” ,
4 ” A l l e r g i e s ” : ”nut” ,
5 ” Diet ” : ” low c h o l e s t e r o l ” ,
6 ” Rating ” : 10}

The query is then processed by the CBR Engine. Therefore first a new case
has to be created which includes in the specifications. Afterwards the similarity-
based retrieval is carried out. Since the specifies parameters that might require
an adaptation, the rule engine is activated. Also the existing ratings are taken
into account, which then influences the ranking. The following listing shows the
retrieval result.

1 {” rec ipe name ” : ”Chicken in s a l s a verde ; ” ,
2 ”adapted” : t rue ,
3 ”newSim” : 0 . 30 ,
4 ” r e c i p e c a t e g o r i e ” : ”main course ; ” ,
5 ” r e c i p e i n g r e d i e n t s l i s t ” : [{” Oi l and Fat” : ” o i l ”} , {”Meat” : ”

ch icken ”} , {” Vegetable ” : ” onion ” , ” red pepper ” , ”tomato” , ”
green c h i l l i ” , } , {” Fru i t ” : ” apple j u i c e ”} , {” Spice and
Herb” : ” c i l a n t r o ”}] ,

6 ” r e c i p e a v g r a t i n g ” : 4 ,
7 ” d i s l i k e c o u n t e r ” : 0 ,
8 ” r e c i p e p r e p a r a t i o n ” : ”Spray a non−s t i c k s k i l l e t with vege tab l e

cooking spray . Heat o i l and saute ch icken . Add onion and
<f on t c o l o r=’#D3D3D3 ’>(g a r l i c)<\/font> red pepper<\/b>
, s t i r r i n g u n t i l l imp . Add remaining i n g r e d i e n t s . Reduce
heat , cover , and simmer about 15 minutes . ” ,

9 ” r e c i p e i d ” : ” cookery 881” ,
10 ”oldSim” : 0 . 34 ,
11 ” r e c i p e r a t i n g c o u n t ” : 2 ,
12 ” r e c i p e i n g r e d i e n t s ” : ”2 t s Canola o i l [. . .] ”}

3 http://json-lib.sourceforge.net/index.html

http://json-lib.sourceforge.net/index.html

The advantages of JSON in our scenario are that it can be parsed using
less resources and it is independent from the programming language. Having a
look in line 3 and 10 one can see that the adaptation and the rating weight
caused a decrease of the similarity assigned to that case. Further on, line 5
the classification of the ingredients found while line 8 already contains HTML
markup for displaying the adaptation’s result to the user.

3 Recipe Customization

The customization of recipes is done within the reuse step of the 4R cycle by so
called adaptation rules. The core of myCBR does not contain any support for
rules and for that reason we were investigating various rule engines that could
be integrated.

JBoss Drools4 has been applied as rule engine for adaptation knowledge
in another case study [6] and we decided to evaluate it for myCBR as well.
Eventually we decided to use Drools rather than the Open Source and Java-based
rule engines jRete5 or jRuleEngine6, because Drools comes with a clean and
modularized structure that allows us using the functionalities we need. Further
on there are tools for maintaining, debugging and editing rules.

Drools in general is an Open Source Framework for developing rule-based
systems. The framework contains tools for creating, compiling and executing
rules. It requires that first IF fact(s) THEN action rules have to be created. The
facts are extracted from the case to be adapted and the actions are applied to
that particular case. The facts are stored in memory, so an inference engine can
recognize the given pattern in order to apply the desired actions. Within CookIIS,
these rules either enhance the case description or substitute ingredients.

In Drools, rules are defined and stored in a particular language called Drools
Rule Language (DLR). The major functionalities are available as bundle and ser-
vice, so they are easy to integrate in an existing OSGi framework. myCBR itself
had also to be integrated in its own bundle now providing case retrieval services.
Therefore each method can be used to create, change and retrieve cases has to be
provided. With the current implementation, we provide general CBR services,
so the OSGi infrastructure of myCBR can be reused. Of course, changes in the
SDK’s API, would also require OSGi refinements.

In CookIIS three different types of rules are implemented: completion, adap-
tation and exclusion rules. These rules are provided as drl-files, which can either
only handle the IF-THEN clauses or more comprehensive tasks as described in
section 3.1.

Extensions that Drools did not directly support are the handling of knowledge
models (in form of ontologies or taxonomies) in general and the modification of
attribute values in cases. This functionality has been implemented as a service
of the rule engine, which can be activated and deactivated during runtime. Even

4 http://json-lib.sourceforge.net/index.html
5 http://sourceforge.net/projects/jrete/
6 http://jruleengine.sourceforge.net/

http://json-lib.sourceforge.net/index.html
http://sourceforge.net/projects/jrete/
http://jruleengine.sourceforge.net/

if we are currently not using this feature from the application, we can imagine
that this dynamic activation can increase the customization.

Completion Rules The process of applying Drools rules as completion rules is
pictured in Figure 3. After the initial case base has been loaded, the completion
rules are loaded from a CSV file and executed on every case. They enhance the
cases with information based on the existing attribute values.

Fig. 3. Completion Rules for myCBR based on Drools

Completion rules are simple if-then-rules that are applied to each case, where
the if clause describes the condition and the then part the action. If an attribute
value is already set it replaces the existing or adds another value. An example
for such a rule is

IF case.title = Kippferl THEN set case.typeofcuisine = austrain

In the same manner, the rule engine applies completion rules to each query
submitted to the system.

Adaptation Rules Adaptation rules are more complex since the conditions as
well as their following actions might cause time-consuming changes on a case.
These rule types are used to either remove or replace unwanted ingredients and
is therewith one of the core features of the case customization. They are depend-
ing on the underlying knowledge models such as similarity tables, taxonomies,
calculations, adequate substitution candidates. Also value changes have to be
retrieved along with the conditions that specify the circumstances when a rule
can be applied. Afterwards the case itself gets adapted.

Fig. 4. Adaptation Rules for myCBR based on Drools

Figure 4 shows that we first check whether an adaptation is necessary, before
we execute the rules on a small subset of cases. For each case the attribute
description that will be adapted is selected and the rules are applied.

3.1 Model-based Adaptation

The model-based adaptation has been described in [5]. We kept the basic method-
ology, but transfered it into the myCBR-Drools Framework. This kind of adap-
tion produces reliable, but less creative substitutions, because substitution can-
didates are retrieved by browsing common subsets.

3.2 Community(-Driven) Adaptation

The basis for the newly integrated adaptation rule set are experiences provided
within a cooking community. Therefore we have analyzed comments of a large
German cooking portal. Each comment provided by users for a recipe has been
crawled and mined whether it includes adaptation knowledge for that recipe. In
particular, we applied Text Mining for identifying terms describing ingredients
using our knowledge model. Furthermore, the previous version of CookIIS, which
was based on the empolis Information Access Suite, contained the ingredient
names in German and English, which allowed us to translate the recognized
terms easily.

After we found terms indicating ingredients, we compared the recognized
ingredients with those included in the original recipe. Matching ingredients were
additionally tagged as < old > and the remaining as < new >. In the next
step, we searched for signal words that point to a substitution such as instead,
replace, etc. and tagged them - including them as well. In the final step, we were
looking for sets of < new >< signal − word >< old >, which are close to each
other and extracted them as rules.

Fig. 5. Community Adaptation Knowledge (raw)

To increase confidence rules, we also extracted user ratings and information
whether users found a certain comment helpful. This mainly removed all the
yummy, delicious dish and thanks comments. After extracting these pairs, they
are stored in the PostgreSQL database as it can be seen in Figure 5.

As you can see, we are also capturing more than one ingredient, but the
quality of these substitutions was not sufficient, so we only included substitutions
with clear ingredient assignments and a high confidence score.

3.3 Exclusion Rules

Exclusion rules are more strict than adaptation rules, because they are removing
results from the result set, if given conditions match. We decided to provide
these functionality to better support people with allergies and give the user the
opportunity the manually exclude ingredients. Since those rules do not need any
time of inference, we implemented them within the application rather than using
Drools. The input for the exclusion rules is retrieved from the user. After the
retrieval has been carried out, recipes matching the exclusion rules’ condition,
they are removed from the result set.

4 CookIIS Android App

The mobile app, which is one of the interfaces of CookIIS provides a search
interface that lets the user specify which kinds of ingredients are available and
which should be avoided. Figure 6 only shows the simple search interface. The
extended search also allows to specify diets, allergies and the weighting of user
comments.

Fig. 6. CookIIS Android app showing the query (left), the result list (middle)
and the recipe details including an adaption (right).

After the query has been specified, a list of ten recipes is presented to the user
from which he can choose. The ’A’ on the right of a recipe indicated that this has
been adapted. When the user selects one of the recipes, the ingredient list and
preparation instructions are shown. Furthermore, adapted ingredients (such as
garlic vs. ginger in Figure 6) are marked. Further on, recipes can be rated, add
to the users favorite list and the ingredients can be added to a shopping list. The
user’s favorites are used to recommend new recipes from the recipe base. Based
on the ingredients often used recipes are suggested. The shopping list allows the
user to mark available ingredients and also send those that are not available via
text message to someone from his/her contact list7.

4.1 Discussion

From our experience up to know, including the different kinds of adaptation
rules improves the retrieval results. However, the suggestions proposed by the
model-based adaptation highly depend on the quality of the knowledge model.
Further on, currently only a random ingredient is proposed to be the substitu-
tion candidate, because we do not maintain further information on successful
adaptations. On the other hand, the user interface should contain only the in-
formation necessary and we should not try to receive feedback at every possible
step.

During a short-term evaluation, which we placed underneath the retrieval
results on the website8, we found out that most of the users were satisfied with
the results. Figure 7 shows the user ratings.

Fig. 7. Retrieval Result Evaluation

7 A short video of how the app looks like and runs can be found at http://www.

youtube.com/watch?v=BgiPtpdYapU&feature=plcp
8 http://grievous.iis.uni-hildesheim.de:8080/myCookies/WebContent/JSPs/

index.jsp

http://www.youtube.com/watch?v=BgiPtpdYapU&feature=plcp
http://www.youtube.com/watch?v=BgiPtpdYapU&feature=plcp
http://grievous.iis.uni-hildesheim.de:8080/myCookies/WebContent/JSPs/index.jsp
http://grievous.iis.uni-hildesheim.de:8080/myCookies/WebContent/JSPs/index.jsp

When looking through the results it seemed that substitutions for spices
and herbs are usually rated quite poor, while fruits and vegetables are evalu-
ated much better. For that reason, we think about applying different adaptation
strategies on the attribute description. An idea in this context would be to only
use community-based adaptation rules for spices rather than the model-based.

Most of the work presented here, was carried out by students as their term or
bachelor’s thesis, which shows, that both, myCBR and Drools, can be handled
with relative easy and the success shows up quickly.

5 Summary and Outlook

In this paper we described how we have extended the myCBR 3 SDK in order to
use various types of adaptation and completion rules. The rule engine we have
integrated is JBoss Drools, which required to build an OSGi framework around
the myCBR API, but it allowed us to access the myCBR knowledge models
and carry out a model-based adaptation and directly adapt cases without any
workarounds.

A goal for the future is to create adaptation cases rather than adaptation
rules to describe more precisely how cases can be adapted. We think making use
of user generated content from an active community brings in many advantages:
First of all the amount of available data allows a more customized adaptation
with regard to a users preferences. Further on, creating a user context based
on the information provided by a mobile device (such as location, time frame,
season, activities), the adaptation can be even more personalized.

References

1. Aamodt, A., Plaza, E.: Case-based reasoning : Foundational issues, methodological
variations, and system approaches. AI Communications 1(7) (Mar 1994)

2. Bach, K., Althoff, K.D.: Developing Case-Based Reasoning Applications Using my-
CBR 3. In: Watson, I., Agudo, B.D. (eds.) Case-based Reasoning in Research and
Development, Proceedings of the 20th International Conference on Case-Based Rea-
soning (ICCBR-12). pp. 17–31. LNAI 7466, Springer (September 2012)

3. Bridge, D., Healy, P.: Ghostwriter-2.0: Product reviews with case-based support.
In: Bramer, M., Petridis, M., Hopgood, A. (eds.) Research and Development in
Intelligent Systems XXVII (Procs. of AI-2010, The Thirtieth SGAI International
Conference on Innovative Techniques and Applications of Artificial Intelligence).
pp. 467–480. Springer (2010)

4. Cordier, A., Lieber, J., Molli, P., Nauer, E., Skaf-Molli, H., Toussaint, Y.: WIK-
ITAAABLE: A semantic wiki as a blackboard for a textual case-based reasoning
system. In: SemWiki 2009 - 4rd Semantic Wiki Workshop at the 6th European
Semantic Web Conference - ESWC 2009. Heraklion, Grèce (May 2009)

5. Hanft, A., Newo, R., Bach, K., Ihle, N., Althoff, K.D.: Cookiis - a successful recipe
advisor and menu advisor. In: Montani, S., Jain, L. (eds.) Successful Case-based
Reasoning applications, p. to appear. Springer (2010)

6. Hanft, A., Schäfer, O., Althoff, K.D.: Integration of drools into an osgi-based bpm-
platform for cbr. In: Agudo, B.D., Cordier, A. (eds.) ICCBR-2011 Workshop Pro-
ceedings: Process-Oriented CBR (2011)

7. Sauer, C.S., Hundt, A., Roth-Berghofer, T.: Explanation-Aware Design of Mobile
myCBR-Based Applications. In: Watson, I., Agudo, B.D. (eds.) Case-based Reason-
ing in Research and Development, Proceedings of the 20th International Conference
on Case-Based Reasoning (ICCBR-12). pp. 399–413. LNAI 7466, Springer (Septem-
ber 2012)

	CookIIS Mobile: A Case-Based Reasoning Recipe Customizer for Android Phones
	Kerstin Bach and Klaus-Dieter Althoff and Julian Satzky and Julian Kroehl
	Introduction
	Motivation

	CookIIS
	System Architecture

	Recipe Customization
	Completion Rules
	Adaptation Rules

	Model-based Adaptation
	Community(-Driven) Adaptation
	Exclusion Rules

	CookIIS Android App
	Discussion

	Summary and Outlook

