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Abstract— Current movement prediction systems based on
electroencephalography were mainly developed and evaluated
in highly controlled scenarios, in which subjects concentrate
only on the desired task with as few as possible disturbing
sources present. However, it has not been addressed sufficiently
how the suggested methods perform in more complex and
uncontrolled environments. In this work we predict arm move-
ments online in a robotic teleoperation scenario and present a
completely online running methodology. The system is evaluated
on ten sessions from three subjects. Evaluation criteria are the
overall classification performance and the success in predicting
an upcoming movement in the application. Our results confirm
that it is possible to predict movements in less restricted
applications motivating the transfer of these methods to real
world applications.

I. INTRODUCTION

The possibility to know in advance if and when the
body will move has inspired the development and design of
novel devices, e.g., supporting humans during rehabilitation
[1]–[4], or enabling fluent interaction with machines [5].
Since a prediction here is the inference of a future event
from present data, it is in itself a challenging task and the
prediction system has to come up with an online capable
signal processing scheme that is fast enough to perform
continuous classification. The movement prediction can be
realized from measurements of brain activity such as the
electroencephalogram (EEG) where signals are evaluated that
mostly reflect preparatory processes before a movement.
In the EEG mainly two different signal types which are
both strictly time-locked to the movement have been applied
for such a prediction: a) event-related potentials contain
several pre-movement components denoted as movement-
related cortical potentials (MRCPs) including the early and
late readiness potential and the motor potential [6], [7]; b)
frequency components termed event-related desynchroniza-
tion (ERD) [8].Both signal types have been used successfully,
e.g., to set up brain computer interfaces (BCIs) (see [1] for
an overview).

While the feasibility of movement prediction using these
signals in the EEG has been demonstrated in rather controlled
scenarios [3], [9] that have only been partly conducted online
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Fig. 1. Experimental setup. Left – operator equipped with exoskeleton,
HMD and EEG cap. Right – operator’s view.

[2], [10], it remains to be shown how the suggested methods
perform embedded in a real application where the human can
act freely within the limits set by the application itself. In the
rather controlled scenarios, users are often instructed to avoid
eye blinks, swallowing and other movements not belonging
to the task (see, e.g., [9], [10]), since these increase noise
and thus hinder successful detection of the relevant signal.
In addition, experiments are usually conducted with the user
in one comfortable position and reduced only to the desired
task, e.g. in [2], [3]. For a final application this is usually
unrealistic. Subjects would want to blink, swallow or change
their position, or in other ways act unrestricted with respect
to the application.

Here, we follow a different approach by predicting move-
ments in a more unrestricted scenario to make a step towards
a real world application. Instead of reducing as many external
influences as possible, the subjects in the reported scenario
perform a demanding teleoperation task, are free-standing,
can move their head and body relatively freely, and are not
restricted in blinking, swallowing or moving their eyes. Still,
we demonstrate successful online prediction of upcoming
movements, presenting two evaluation schemes characteriz-
ing the classifier performance and its effective output for the
application.

II. APPLICATION: TELEOPERATION WITH AN
EXOSKELETON

Teleoperation of a robotic system can be quite complex
and requires even for simple tasks a notable amount of
training and concentration. In the application scenario, which
has been extensively described elsewhere [5], [11], [12], an
exoskeleton is used as an intuitive command interface.

During exoskeleton control the operator might want to
stay in position (see Fig. 1 left) but not to actively hold



the arm in position all the time. In this case it would be
comfortable if the exoskeleton compensates the arm weight
of the operator. While the transition from teleoperation mode
to such a weight-compensation mode can be triggered with-
out any effort on the operators part, e.g., by a certain time
the operator is not moving the exoskeleton, the transition
back to teleoperation mode requires action of the operator.
For example, a certain pressure against the force sensors
integrated in the exoskeleton over a certain time can be a
trigger to switch back to teleoperation mode. However, this
is perceived by the operator as resistance to his intention to
move. To make the transition more intuitive and smoother,
we use information from the movement prediction to reduce
the time the operator has to press against the exoskeleton’s
sensors. For the prediction, the EEG data of the operator
is continuously analyzed with the here presented movement
prediction system. Further details on the scenario and the
integration of movement prediction can be found in [5], [12].

To summarize, the experimental setup was as follows: Par-
ticipants were wearing an exoskeleton in order to teleoperate
a robotic manipulator arm (Fig. 1). They had two main tasks:
a) to steer the end-effector of the robotic arm through a
labyrinth and b) to perform movements out of a rest position
in which the exoskeleton carried the participant’s arm weight.
During both tasks participants had to respond to warnings
from the operator monitoring system.

In addition to the exoskeleton, participants were equipped
with a head mounted display (HMD) on which the tele-
operation site (including surroundings, labyrinth and robot)
could be seen. Information from the control system, a camera
picture of the real scene and tools like a gyroscope depicting
the orientation of the end-effector were at any time in the
operators field of view. Head and hand movements of the
operator were tracked (InterSense, Billerica, USA) and used
to update the HMD as well as to generate event markers for
supervised machine learning.

III. DATA AND METHODS
A. Description of Empirical Data

Three male subjects (age 27.33 ± 2.52) participated in
the experiments. A total of ten sessions were recorded.
The movement prediction system was active in four out of
the ten sessions (online sessions) and inactive in the other
sessions (pseudo-online sessions). Pseudo-online sessions
were afterwards evaluated in an online fashion, i.e., the data
of all sessions were treated the same way.

A 64-channel actiCap system and two amplifiers (both
from Brainproducts, Munich, Germany) were used to acquire
the EEG data with 5 kHz sampling rate. Since both, EEG
cap and HMD were mounted on the head (see Fig. 1 left)
four electrodes (FC5, FC6, FT7, FT8) of the extended 10-
20 system were omitted. Together with the EEG stream the
occurrence of events was stored, of which two were relevant
for the analysis: a) transition change from teleoperation
mode to weight-compensation mode (lock-in event), b) arm
movement of 5 cm out of a rest position in one direction
based on the hand tracking data (movement event). Since

event b) was on average 0.25 s after the actual movement
onset (determined by average ERP analysis), we corrected
every movement marker by subtracting 0.25 s.

Pseudo-online sessions consisted of three, and online
sessions of four runs, each containing 24 ± 8 movements
(mean and standard deviation). Between two runs there was a
short break of 2-3min, except before the last run in the online
sessions where the movement prediction system had to be
trained and thus the break lasted around 10min. The last run
of each session was used for evaluation, in particular every
time period from lock-in to movement onset. The training
data consisted only of valid movements from the remaining
runs. At least 5 s of rest preceded each valid movement.

B. Processing methods

We used our software pySPACE (Signal Processing And
Classification Environment)1 for online and pseudo-online
data analysis. The overall processing time of a window
(preprocessing and classification) took ≈ 25ms. The used
processing system is structured as follows:

1) Windowing: All subsequent processing was performed
on equally-shaped windows of data with 1 s of duration,
which were overlapping by 0.95 s to generate time slices
of 0.05 s distance in time. All windows were processed
independently from each other.

2) Preprocessing and feature generation: The data was
preprocessed in several steps. First, the data were stan-
dardized channel-wise, i.e., the mean signal value of the
channel was subtracted and the result divided by the stan-
dard deviation of the channel in the corresponding signal
window. Next, a decimation with an anti-alias finite impulse
response filter was performed to reduce the sampling rate
of the data from 5000Hz to 20Hz. These operations were
parallelized channel-wise using OpenMP [13] to achieve the
required performance for online usage of the system. This
was followed by another band pass filter with pass band
from 0.1 to 4.0Hz. Subsequently, the window was reduced to
the most recent 200ms since the latest relevant information
for an evolving MRCP is expected in this time range. The
number of channels of the remaining data is reduced to four
retained channels by applying the xDAWN spatial filter [14].
The remaining four samples per channel of this preprocessed
data are combined to a feature vector, which is standardized
by subtraction of the mean and division by the standard
deviation for each feature separately.

3) Classification and movement probability estimation:
We used a support vector machine (SVM) with a linear
kernel for classification. For integration into the exoskeleton
control, we used the predicted score instead of the binary
label prediction as a measure of confidence of the prediction.
This is mapped to a probability estimation by fitting a sig-
moid curve on the training data scores [15] using Newton’s
method with backtracking [16].

1publication planned in July at http://pyspace.github.com/pyspace



4) Training and parameter optimization: Since the ex-
tracted data instances are highly unbalanced with respect to
the class, and labeling of instances in the transition area be-
tween no movement preparation and movement preparation
is ambiguous, not all time slices were used for training.
Instead, two time windows around the movement onset
(ending at −0.15 s and 0.05 s relative to movement onset)
and non-overlapping windows during lock-in at least 2 s prior
to movement onset were used for the movement preparation
and no movement preparation class, respectively.

To optimize the complexity parameter of the SVM, a grid
search (tested values: 10−6, 10−5, . . . , 100) and an internal
5-fold cross validation were used, where the validation data
contained all time slices from −3.75 to 0 s with the training
data as described above.

C. Evaluation procedures

We evaluated the data in two different aspects: classifier
performance and success in the later application.

1) Classifier evaluation: Performance evaluation of the
classifier simply shows the ability to distinguish between the
two classes. For such an evaluation we essentially need the
true class labels. Since we are in a situation of prediction,
we cannot externally mark the onset of the MRCP.

To compensate for this and generate true labels, we
propose the following approach: The true class label function
f for movement prediction is defined as a step function

f(x(t)) =

{
SnoMP if t < c
SMP if t ≥ c

, t ≤ 0. (1)

Input of f is any data window x(t) that has been extracted
at time t relative to the upcoming movement onset at t =
0. The binary output of f corresponds to the true brain
states2 no movement preparation (SnoMP ) and movement
preparation (SMP ) and depends on the label change point
c. Specifying c means defining when exactly movement
preparation starts. Since stability of classifier predictions, i.e.,
being most similar to f irrespective of c, was more important
in our application than a constant time lag to the actual
movement onset, we did not fix c a priori to a specific value
but limited c to be in a feasible range (−1 s ≤ c ≤ −0.05 s).
Within this range c was determined for every movement by
going back in time from the actual movement onset until
the first stable prediction was found. Here, we defined stable
prediction as the first movement prediction after the last three
consecutive classifications of no movement.

Since the class ratio in the data is highly imbalanced, the
usage of the accuracy as classification metric is inappropriate.
Instead, the Balanced Accuracy (BA) is used for the evalu-
ation, which is based on the True Positive Rate (TPR) and
True Negative Rate (TNR) and therefore rather insensitive to
imbalanced class ratios. The BA is given by:

BA = 0.5 · TPR + 0.5 · TNR. (2)

2For more information on formalism of biosignal integration the interested
reader is referred to [12].

online pseudo-online

Sessions

0.75

0.80

0.85

0.90

0.95

1.00

B
a
la

n
ce

d
A

cc
u

ra
cy

Fig. 2. Classification performance in terms of balanced accuracy across
pseudo-online and online sessions.

2) Application oriented evaluation: In the application not
every classifier prediction may be of relevance. Instead it
is more important that the event, i.e., the movement, is
correctly predicted. Therefore, the TPR and the number and
duration of false positives (FPs) characterize the system’s
performance. However, the application itself may tolerate
misclassifications [5], so that a particular benefit or drawback
can only be evaluated with respect to the integration.

IV. RESULTS AND DISCUSSION

A. Classifier evaluation

Fig. 2 shows the distribution of classification performances
obtained for online and pseudo-online sessions. Performance
during online sessions was roughly as good as performance
of pseudo-online sessions (0.88 ± 0.04 and 0.87 ± 0.03,
respectively). The similar results indicate that pseudo-online
data analysis confirm online performance.

The high performance obtained is also a result of the
relatively loose restrictions on the label change point c,
which could be as late as −0.05 s. Indeed, this interval limit
was chosen for c on average in 41% of the movements for
both session types. For the remaining movements c was on
average −0.3 s.

B. Application oriented evaluation

In Table I different metrics that characterize the systems
performance during application are summarized. Again, met-
ric values for online and pseudo-online sessions were similar.

TABLE I
APPLICATION ORIENTED METRICS FOR ONLINE AND PSEUDO-ONLINE

SESSIONS IN TERMS OF TP AND FP CHARACTERISTICS.

Sessions
online pseudo-online

TPR (%) at −0.00 s 72.01± 6.02 72.09± 10.78
−0.05 s 65.35± 10.40 65.30± 11.84
−0.10 s 56.51± 13.13 54.88± 14.85

FPR (%) 10.23± 3.89 10.08± 2.30
time between 2 FPs (s) 1.16± 0.35 1.50± 0.37
FP duration (s) 0.15± 0.03 0.17± 0.05
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Fig. 3. Estimated movement probability over time t depicted as median
(solid line) and 25/75%-quantiles (shaded area) for all movements of
the online sessions (n = 80). The probability estimation crosses 0.5
(red horizontal line, classification threshold) around −0.17 s and has its
maximum 0.81 at t = 0.

On average approximately two out of three movements were
predicted just before movement onset (time point −0.05 s).
However, when all predictions within the interval [−1 s,
−0.05 s] were considered on average 89.05% of the move-
ments could be predicted. This indicates that although TPR
at a specific time point might be low, it can be adjusted
according to the application requirements by using more than
one prediction outcome.

The median movement probability time course for all
movements of the online sessions is depicted in Fig. 3.
At time point −0.05 s the median estimated movement
probability was 0.75. In light of our previous results [5],
where we showed that a simulated probability of 0.75 has
a significant effect on the contributed interaction force of
the operator on the exoskeleton, the data here confirm that
the comfort of the system can be improved by movement
prediction based on EEG single trials.

During online sessions on average every 1.16 s FPs of
0.15 s duration occurred (see Table I). None of these FPs
led to an unwanted lock-out, since the release mechanism
was backed up by a force threshold (see Sec. II and [5]).

V. CONCLUSION

With the presented study we illustrate that it is indeed
possible to use online movement prediction from EEG data
within an application that has much fewer limitations than
classical paradigms. Within the teleoperation task, subjects
can, e.g., blink, swallow and change their position. Moreover,
they have to execute more than one task in this scenario,
and even when in resting position they additionally have to
monitor warnings of the system. Still, we can record and
classify EEG data and use it to make predictions of upcoming
movements. When the movement is predicted successfully,
robotic systems as the one used here, can use this information
for improvements, such as a more intuitive man-machine
interaction. In case of prediction errors, which occur and
are always possible, the system is just unmodified as is
and will in the worst case not facilitate execution of the
user’s movement. Performance evaluations of the movement

predictions show that our TPRs are slightly lower than what
has been reported in existing more controlled scenarios,
which is presumably attributed to higher noise levels in
the data due to a less controlled environment. It will be
part of future work to handle these noise levels by a more
elaborated signal processing. To this end, presented results
are encouraging to transfer movement prediction systems as
the one illustrated here to even more challenging real world
applications.
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gesamte Physiologie des Menschen und der Tiere, vol. 281, p. 52,
1965.

[7] H. Shibasaki and M. Hallett, “What is the Bereitschaftspotential?”
Clin. Neurophysiol., vol. 117, no. 11, pp. 2341–2356, 2006.

[8] G. Pfurtscheller and F. H. Lopes da Silva, “Event-related EEG/MEG
synchronization and desynchronization: basic principles,” Clin. Neu-
rophysiol., vol. 110, no. 11, pp. 1842–1857, Nov. 1999.

[9] M. Fatourechi, R. Ward, and G. Birch, “Evaluating the performance
of a self-paced BCI with a new movement and using a more engaging
environment,” in Engineering in Medicine and Biology Society, 2008.
EMBS 2008. 30th Annual International Conference of the IEEE, 2008,
pp. 650–653.

[10] O. Bai, V. Rathi, P. Lin, D. Huang, H. Battapady, D.-Y. Fei, L. Schnei-
der, E. Houdayer, X. Chen, and M. Hallett, “Prediction of human
voluntary movement before it occurs,” Clin. Neurophysiol., vol. 122,
no. 2, pp. 364–372, Feb. 2011.

[11] M. Folgheraiter, E. A. Kirchner, A. Seeland, S. K. Kim, M. Jordan,
H. Woehrle, B. Bongardt, S. Schmidt, J. Albiez, and F. Kirchner, “A
multimodal brain-arm interface for operation of complex robotic sys-
tems and upper limb motor recovery,” in Proc. of the 4th International
Conference on Biomedical Electronics and Devices (BIODEVICES-
11), P. Vieira, A. Fred, J. Filipe, and H. Gamboa, Eds. Rome:
SciTePress, Jan. 2011, pp. 150–162.

[12] E. A. Kirchner and R. Drechsler, “A Formal Model for Embedded
Brain Reading,” IND ROBOT, submitted.

[13] OpenMP, 2013. [Online]. Available: http://openmp.org/wp/; accessed
4-June-2013

[14] B. Rivet, A. Souloumiac, V. Attina, and G. Gibert, “xDAWN algorithm
to enhance evoked potentials: application to brain-computer interface.”
IEEE Trans. Biomed. Eng., vol. 56, no. 8, pp. 2035–2043, Aug. 2009.

[15] J. C. Platt, “Probabilistic Outputs for Support Vector Machines and
Comparisons to Regularized Likelihood Methods,” in Advances in
Large Margin Classifiers. MIT Press, 1999, pp. 61–74.

[16] H.-T. Lin, C.-J. Lin, and R. C. Weng, “A note on Platts probabilistic
outputs for support vector machines,” Machine learning, vol. 68, no. 3,
pp. 267–276, 2007.


