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Abstract

The ability of today’s robots to autonomously support humans in their daily activities is still limited.
To improve this, predictive human-machine interfaces (HMIs) can be applied to better support future
interaction between human and machine. To infer upcoming context-based behavior relevant brain states
of the human have to be detected. This is achieved by brain reading (BR), a passive approach for
single trial EEG analysis that makes use of supervised machine learning (ML) methods. In this work
we propose that BR is able to detect concrete states of the interacting human. To support this, we
show that BR detects patterns in the electroencephalogram (EEG) that can be related to event-related
activity in the EEG like the P300, which are indicators of concrete states or brain processes like target
recognition processes. Further, we improve the robustness and applicability of BR in application-oriented
scenarios by identifying and combining most relevant training data for single trial classification and by
applying classifier transfer. We show that training and testing, i.e., application of the classifier, can be
carried out on different classes, if the samples of both classes miss a relevant pattern. Classifier transfer is
important for the usage of BR in application scenarios, where only small amounts of training examples are
available. Finally, we demonstrate a dual BR application in an experimental setup that requires similar
behavior as performed during the teleoperation of a robotic arm. Here, target recognition processes and
movement preparation processes are detected simultaneously. In summary, our findings contribute to
the development of robust and stable predictive HMIs that enable the simultaneous support of different
interaction behaviors.

Introduction

During the last decades different approaches were developed to support humans in their daily life and
working environment or to restore sensory and motor functions with the help of intelligent and au-
tonomous robotic systems that behave situational and support humans according to the context [1–5].
However, autonomous systems do not yet come close to the cognitive capabilities of humans regarding
their ability to react mostly correctly and appropriately to a new situation. Therefore, the application of
robotic systems is to some degree restricted to certain situations and environments.

Some approaches solve restrictions of autonomous robotic behavior by using human-machine interfaces
(HMIs). HMIs for example explicitly send commands to robots when autonomous behavior cannot handle
a given situation as shown by, e.g., Kaupp et al. [2] for teleoperation. However, to explicitly send a
control command requires enhanced cognitive demands by the interacting human. Between humans,
implicit information is transferred beside explicit information during interaction that can be used by the
interacting persons to infer on the general state of each other, like the emotional state, involvement in
the interaction or communication or the mental load. This implicit information serves to adapt behavior
to interact better, e.g., more efficiently. Thus, a promising approach for improving the behavior of



2

autonomous artificial systems is to adapt them with respect to the state of the interacting human. Such
adaptation of technical systems is in a more general sense also known as biocybernetic adaptation [6].
It is usually used to, e.g., change the functionality of a system regarding fatigue or frustration levels of
a user and can enable better control over complex systems [7]. For this aim (psycho-)physiological data
from the user like galvanic skin response, blood pressure, gesture, eye gaze, mimic, prosody, brain activity
or combinations of those are applied [5, 6, 8, 9].

Establishing and Supporting Interaction by Brain-Computer Interfaces

The human’s EEG has been used since some decades to develop brain-computer interfaces (BCIs) with
the goal to (re-)establish explicit interaction and communication [10–15]. For this purpose, active and
reactive BCIs enable the user to control a computer or machine via the nervous system and can replace
classical HMIs for the explicit control of devices like keyboard, mouse or joystick. They were mainly
developed to open up new ways of communication for disabled persons [10,11,16], for example, to control
a speller by imaging hand movements [17]. Recently, active and reactive BCIs are also used by healthy
people [18], e.g., in BCI controlled computer games [19, 20]. Active and reactive BCIs have some main
drawbacks in their application: The user has to concentrate on the task of controlling the device via his
brain activity, hence the application of such BCIs typically requires a high amount of cognitive resources
from the user. However, training can improve, even automate the control of such BCI and thus reduce the
effort. Further, due to the direct link between brain and machine, misclassifications of the brain signals
always have an impact on the application and can lead to faulty behavior [21] or inaccuracies. There
are, however, promising approaches that attempt to automatically correct misclassifications in active
BCIs. For example, [22, 23] have shown that misclassifications of brain activity can be compensated by
autonomous interpretation of the situation by the cooperating robotic system.

To extend the usage of EEG activity for physiological computing [6] passive or implicit BCIs were
developed [24, 25]. They have their roots in several approaches in the past that focus on user-state
detection [25, 26]. For example, in [25] the detection of error potentials is used to correct errors that
happen during a rotation task which is performed by the application of an active human-computer
interface (HCI) that is manipulated in a way that execution errors are introduced randomly. Since users
of passive or implicit BCIs do not actively influence their brain activity, i.e., do not explicitly control a
device by brain activity and do not actively produce brain activity, they seem to be an appropriate tool
to improve human-machine interaction by implicitly gained information about the humans brain state. It
was further proposed that passive BCIs can be integrated into more complex and natural control systems,
like emergency braking assistance in cars to improve their functionality. Haufe et al. 2011 [27] discuss
that an emergency braking assistance system could be modified by predicting upcoming braking behavior
based on EEG analysis. The given examples furthermore show that compared to active or reactive BCIs,
passive BCIs seem to be even more easily applicable in hybrid HMI or BCI approaches [28,29], where at
least two different kinds of BCIs or a HMI and a BCI as in [25] are combined.

Embedded Brain Reading in Robotic Applications

Our approach to improve interaction in robotic application scenarios was to implement embedded brain
reading (eBR) [30]. It allows to integrate implicitly gained information about the human from his brain’s
activity into the control of HMIs to automatically adapt them for a better support of future interaction
behavior. Since such HMIs are adapted by eBR with respect to inferred upcoming interaction behavior
we call the resulting HMIs predictive HMIs. Since we make use of implicit information, our approach is
similar to the approach of passive BCI, however we focus on applications in which upcoming interaction
behavior can be supported instead of, e.g., correcting former false behavior. In eBR the detection of
specific brain patterns by means of machine learning (ML) methods and the process of relating them to
specific states of the user, e.g., his intentional state, is called brain reading (BR). BR was introduced as
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a method to gain information about hidden processes and states of the brain, i.e., the function of the
mind [31]. BR can even be applied to detect different conscious states of the human, i.e., in his conscious
perception [32]. However, more functional questions like the decoding of visual, auditory, perceptual
or cognitive patterns are addressed as well [33–37]. For our purpose, we define BR as the passive
decoding of brain activity, i.e., detection of certain brain patterns that are related to specific functional,
cognitive or intentional (but not necessarily conscious) processes, which are evoked by internal or external
events during human-machine interaction. BR takes place unnoticed by the user and requires no extra
attentional or cognitive resources of the user it is applied to.

The application of eBR to adapt HMIs and the tasks of BR can be explained on the example of a
robotic telecontrol scenario (see Fig. 1), where two HMIs are implemented for human-machine interaction.
During teleoperation the operator has to understand information about the general situation or possible
hazards, e.g., a person entering the operating area of the robot, a malfunction of the exoskeleton or
robot, or requests for communication from outside, such as a second task. It is known that under such
conditions of high workload attention to a second task can be impaired [7,38]. This impairment can lead
to failure in one of the tasks, most likely the subjectively less important one. Since manipulation of the
exoskeleton requires a very high amount of the user’s cognitive resources, it is very likely that he misses
important information. It is well known that the event-related potential (ERP) P300 is evoked whenever
the brain detects information that appears infrequently in the user’s subjective perception. Several sub-
components of the positive P300 are known, i.e., novelty P3, P3a and P3b [39–41]. The P3b component
is evoked by infrequent task relevant stimuli and is therefore not only an indicator for attentional, but
also for early cognitive processes, i.e., when target evaluation and recognition takes place [41–44]. The
amplitude of the P300 does not only depend on the subjective impression of the frequency of occurrence
of stimuli but also on the importance of a presented stimulus and whether a subject devotes high amounts
of effort to the task [38]. A reduction of the amplitude of P300 can be found in case of ambiguous stimuli
for which relevance and importance might not be clear. In case that a subject misses an important
stimulus it is expected that no P300 is expressed [45]. Since in the teleoperation scenario a dual-task
(controlling the robot by the exoskeleton and responding to important information) is performed, it can
further be assumed that besides brain activity related to target recognition processes also other partly
overlapping ERP components related to the retrieval of intended action from long-term memory, post-
retrieval monitoring, and task coordination processes will be evoked by target stimuli and accompanied
by further EPRs like the prospective positivity [46–48].

Hence, in the teleoperation scenario we used ERP activity, i.e., positive parietal ERP activity, mainly
the P300. Instead of having a second person to assist the operator we adapted the implemented operator
monitoring system (OMS) by eBR to better assist the operator under both conditions, i.e., if she/he
recognized an important warning or did not recognize it. The task of BR was to detect different brain
patterns, i.e., patterns that were evoked by the recognition of important stimuli (that contain a P300)
and patterns that were evoked by important stimuli that were not recognized, i.e., missed (containing no
P300). This information was then used to infer whether or not the operator would respond and to adapt
the repetition time for warnings appropriately by eBR. For example, if eBR infers that the operator will
respond (in case BR detected brain patterns related to the recognition of important stimuli) the tolerated
response time is extended. On the other hand, if eBR infers that the operator will not respond (in case BR
did not detect brain patterns related to the recognition of important stimuli) the allowed response time
is reduced or the important information is repeated immediately (see Supporting Information Video S1
and Fig. 2). Experiments conducted so far support our approach [49]. Subjects reported that an adapted
OMS can reduce stress by avoiding to force fast responses and emphasizes important information by
repeating them at a higher frequency in case the subject was distracted.

A central part of the teleoperation scenario (see Fig. 1) is an exoskeleton developed by our group [50]
to intuitively control different robotic arms or legs [51,52]. The exoskeleton used for teleoperation serves
both as a control device for a semi-autonomous robot as well as an interface for the control of a virtual
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scenario (for visualization of the scenario see Supporting Information Video S2). For control reasons
the switch between two operating modes of the exoskeleton: (i) a position control mode (PC) where the
exoskeleton supports the user, i.e., by allowing him to rest and (ii) a free run mode (FM) where the
operator can move freely and control the virtual scenario (see Fig. 3 adopted from [52]) is very interesting
for an adaptation by eBR and could be shown to be applied successfully [53]. During rest the applied
control mechanism of the exoskeleton cannot make predictions about upcoming behavior as it is possible
during interaction [54]. To improve interaction it is relevant to know whether the operator wants to move
again.

Movement intention can be predicted from the user’s EEG. Kornhuber and Deecke [55] showed that
a complex of ERPs precedes intended movements. Most prominent are the Bereitschaftspotential (BP)
or Readiness Potential (RP) and the Lateralized Readiness Potential (LRP) [55, 56]. The RP can be
recorded up to two seconds before the movement’s onset and is pronounced at central electrode sites [57].
The LRP has, in case of arm and hand movements, its maximal amplitude contralateral to the side of
movement above sensorimotor areas of the brain and will occur just before movement onset. By detecting
brain patterns by BR that are related to movement preparation processes, the onset of movement can
be inferred by eBR and used to adapt the interface, i.e., exoskeleton, for an easier lock-out from a rest
situation (PC mode in Fig. 3). However, even if BR detects movement intention, the exoskeleton’s mode
is not directly changed. Any change from PC to a FM mode will only happen after the inferred movement
onset is confirmed by the force sensors that are integrated in the exoskeleton (see Fig. 3 and Supporting
Information Video S3). This prohibits faulty behavior of the exoskeleton but improves interaction by
reducing the force that is required for lock-out in case the inferred behavior is indeed executed [52].

Goals: Applying and Improving BR during Complex Interaction

Although we were able to show in the teleoperation scenario that our approach of adapting both HMIs
by eBR works online and improves interaction [49, 53], it is not clear whether or not our approach of
BR to relate brain patterns that were detected by means of machine learning methods to certain states
of the human is appropriate for complex human-machine interaction scenarios. In the given application
example the intentional state ”movement intention” and the cognitive states ”recognition of important
stimuli and task coordination” are expected to be accompanied by ERPs, like the RP and LRP for
”movement intention” and the P300 and prospective positivity for ”recognition of important stimuli
and task coordination” as explained above. To support that BR indeed allows to detect these states,
correlation between brain patterns detected by ML and the above mentioned ERP activities must be
shown. One has to point out that other brain activity besides the expected ERP activity will be learned
by the classifier especially since applied ML methods can make use of all available signals from all
electrodes. This may on one hand decrease classification performance since the classifier might learn
unstable features that are for example present during training but not during testing and might reduce
the reliability of inferred behavior by eBR since brain processes other than the assumed ones might evoke
the brain patterns that were detected by BR. On the other hand, other brain activity than the here
investigated one will surely contribute positively to the classification performance. Hence, our goal was
not to prove that evoked brain activity not investigated here is not involved. Rather, the goal of this
work was to support the application of BR in complex human-machine interaction scenarios. Therefore,
we investigated whether predictions made by ML based on detected brain patterns can be related to
known patterns in the EEG, here ERPs, that are well understood in their meaning with respect to the
brain’s functioning as well as their psychological effects. Since we wanted to perform the above explained
investigations during complex interaction, the chosen experimental setups had to cover certain aspects
of the teleoperation scenario. Two experimental scenarios were designed. The teleoperation scenario
described above was not used since an investigation in this scenario with a high amount of subjects is
quite-time consuming and experiments could not easily be repeated and reproduced. Moreover, since in
the teleoperation scenario two different applications for eBR were implemented in the second scenario we
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investigated a dual BR approach.
We further systematically investigate experimentally the performance of BR with respect to training

data. To improve performance of BR by choosing most appropriate training data (here the relevant
training window as well as combinations of training windows) is important since BR as a passive approach
cannot make use of direct feedback during training to optimize brain activity as it is common for the
application of active and reactive BCIs and will hence not profit from effects of biofeedback [12,58]. Even
more critical than this is the fact that a complex application may not produce enough training data while
performance of ML strongly depends on the amount and quality of the training samples. Our robotic
application uses BR in situations which occur irregularly and are hard to reproduce for training. One
way to deal with this issue is to substitute the underrepresented training class by a training class for
which more and similar examples can be acquired. Such approaches are already applied with success.
In [59] an overview is given when and how transfer learning can be applied in general. For the detection
of brain patterns, classifier transfer was also proposed. Observation error related potentials (ErrPs) were
detected in a task on which the applied classifier was not trained [60]. In this study a classifier for the
same type of ErrP (observation ErrPs) was transferred between tasks. In [61] we showed that a classifier
which is trained on one type of ErrP can classify another type of ErrP. Although the underlying kind
of interaction (active versus passive interaction) is different, one can assume that similar brain processes
are responsible for the detection of errors. In this work we want to investigate whether it is possible to
transfer a classifier between classes used for training and testing that are similar with respect to the fact
that the individual ERPs do not contain a specific component, i.e., a P300. Our hypothesis is that this
is possible, if ERP analysis shows that the relevant component, i.e., the P300, is missing in both cases.
Hence, for classifier transfer we propose that the classifier does not have to be trained and tested on
examples that are evoked by the same brain processes (like error detection processes as explained above),
but by brain processes, which might be different, but evoke brain patterns, which are similar in shape
and characteristics, i.e., miss a prominent ERP component.

To summarize, in the following we will present results of two studies, which show that BR can be
applied during complex human-machine interaction to detect patterns in the EEG in single trial with
a high accuracy. In Part ”Labyrinth Oddball Scenario - Recognition of Important Stimuli and Task
Coordination Processes” we investigate, whether the cognitive states ”recognition of important stimuli
and task coordination” can be correlated to the results of ML analysis. For this goal the EEG was analyzed
by averaged ERP analysis and single trial ML analysis. The applicability of classifier transfer between
different classes is investigated in Sec. ”Window of Interest and Transferability of Classifier”. Furthermore,
we present results on improving the detection accuracy by choosing optimal training windows based on
ERP and ML analysis, i.e., show how to optimally combine different training windows (see Sec. ”Window
of Interest and Transferability of Classifier” and Sec. ”Combination of Training Windows for a Robust
Detection of Movement Intention” in Part ”Dual BR Scenario Armrest - Simultaneous Detection of Two
States”). In Part ”Dual BR Scenario Armrest - Simultaneous Detection of Two States” we further
present results for detecting both the intentional state ”movement intention” as well as the cognitive
state ”recognition of important stimuli and task coordination” within one experimental setup. Such a
dual BR approach that enables the simultaneous detection of two different brain states is an important
requirement to enable eBR to adapt two HMIs, i.e., the OMS and an exoskeleton, within one application,
i.e., the above described teleoperation scenario. Furthermore, in Sec. ”Performance of BR in the Detection
of a Highly Underrepresented State” we replicated some results of the first study under more realistic
conditions to confirm that our approach of classifier transfer works even in case of reduced numbers of
samples of the relevant class. In Sec. ”Conclusions” conclusions are drawn regarding the results gained
in our studies with respect to the applicability of BR for self-controlled, predictive HMIs in robotics.
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Labyrinth Oddball Scenario - Recognition of
Important Stimuli and Task Coordination
Processes
To support our hypotheses that ERP activities evoked by the presentation and processing of different
stimuli contributes strongly to the separability of classes in ML analysis and that BR can hence be applied
to detect the cognitive states of ”recognition of important stimuli and task coordination” the test scenario
Labyrinth Oddball (Fig. 4) was developed. By means of this test scenario we further show that classifier
transfer is possible between classes that contain examples of similar shape and characteristics, i.e., miss a
P300. The scenario allows to investigate the EEG activity of an operator who is controlling a device while
reacting to incoming infrequent information at the same time. This mimics the situation in the described
teleoperation scenario (see Fig. 1), where the operator performs a main task involving continuous motor
activity (telecontrol of the robot), while monitoring and responding to important information that is
given to him. In the teleoperation scenario, response time is expected to jitter in a wide range depending
on the workload that is induced by the main task. This is expected to be similar in the Labyrinth Oddball
setup (for visualization of the scenario see Supporting Information Video S4).

The Labyrinth Oddball scenario can be described as follows: A subject plays a virtualized BRIO R©

labyrinth game wearing a head mounted display (HMD). This demanding task was chosen to put the
subject into a situation of high workload while performing the second task, which is to react to infrequent
warnings (first and second target stimuli, see ”Target 1” in Fig. 4 for first targets, second targets were
represented as a full form in the shape of a diamond matching the color and size of the first target)
by pressing a buzzer. Subjects were asked to respond immediately and not to ignore any target stimu-
lus. Target stimuli (infrequent, important information) were mixed up with standard stimuli (frequent,
unimportant information that require no response, see ”Standards” in Fig. 4; the corner with the longer
sides points upwards instead of sidewards if compared with the first targets) in a ratio of about 1:6. The
inter-stimulus interval (ISI) was 1000 ms with a random jitter of ±100 ms. For more general details about
this experimental setup see [44]. Since the manipulation task was very demanding, a rather long response
time from 200 ms to approximately 2000 ms (i.e., 1800 ms to 2200 ms due to jitter in inter stimulus inter-
val) after target stimulus presentation was allowed during the recording of training data before a second
warning was presented. In case there was no response within this period, the trial was labeled as missed
target. On the second target a response time of 200 ms to 1000 ms was allowed. In contrast to the scenario
used in [44], visual presentation (shape and color) of standard stimuli that require no response and first
target stimuli that require a response were kept very similar (see Fig. 4) in order to avoid differences
in early visual processing of the stimuli. This assures that differences in the EEG recorded after the
presentation of both stimuli types were mainly caused by processes of higher cognitive processing.

As discussed in Sec. ”Introduction” classifier transfer is possible between two classes if the patterns
of the samples of both classes (used for training and for test) are similar in shape and characteristics.
For the detection of target recognition processes by BR we substituted our test class in ML analysis,
i.e., infrequent samples evoked by situations in which the user missed the first targets (missed targets),
with a training class of frequent samples (standards), i.e., EEG instances evoked by frequent unimportant
information to which the user was not required to respond (Fig. 5). This approach was based on the
assumption that ERP activity evoked by standards is very similar in shape and characteristic to ERP
activity evoked by missed targets and that both differ from ERP activity evoked by targets, which
represent the second training and test class. The expected similarities between EEG activity evoked by
standards and missed targets is mainly the absence of a P300. Only perceived target stimuli will evoke
a P300 (mainly P3b due to the task relevance of the target stimuli). Our hypothesis is that the P300
substantially contribute to the class separability in ML learning. We further assume that the absence of
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target detection processes, either because of a failure of recognition or complete miss (for missed targets)
or because it is not required (for standards) mainly contributes to the similarities between ERPs evoked
by standards and missed targets.

Another implicit difference is that response behavior is only executed after target stimuli and not
after standard and missed target stimuli. It is known that motor-related potentials that are evoked by
the preparation and execution of response behavior can influence the amplitude of P300 (i.e., P3b in [43])
which is expected to be evoked by targets but not by standards and missed targets. However, we can
largely rule out a major impact on P300 amplitude differences by motor-related activity and by this a
major influence of response preparation and execution on class separability and classifier transferability
in our experiment for at least three reasons: First, studies showed that the P300 latency is not correlated
with reaction time [42]. Only in case that a very fast response time is requested a correlation can
be found between response preparation and P300, i.e., P3b (see [43] for discussion). In the Labyrinth
Oddball scenario we expected that motor response activity will be late and poorly time-locked to the
stimulus onset with a low correlation due to the dual task condition. Hence, related EEG activity is not
expected to overlap largely. Second, possible differences related to motor activity are most prominent at
frontal and central electrodes [57] and should not heavily influence ERPs at electrode Pz, where highest
amplitudes for P3b are expected. Third, subjects are constantly performing the labyrinth task during the
experiment and therefore motor-related activity (not corresponding to the oddball response) is evoked
while processing all types of stimuli. Thus, motor activity is not only prominent after target stimuli.
Furthermore, it could be shown that the execution of button press in a simple oddball setting does
reduce the amplitude of the midline P3b [43]. By weakening the amplitude of the P3b by motor response
on targets, ERP activity that is evoked by target stimuli would be more similar to ERP activity on missed
targets than the latter to standards which is rather the opposite of the hypothesis we want to validate
here.

To support our hypothesis, we conducted an ERP study in the Labyrinth Oddball scenario investigating
differences in ERPs after the presentation of standard, target and missed target stimuli. First, the behavior
of the subjects is analyzed to differentiate between EEG trials with correct, incorrect and missed behavior.
Further, the reaction time for correct trials is calculated. In the average ERP analysis we focus on EEG
activity occurring 300 ms after stimulus onset at electrode locations Cz, Pz, and Oz, since the P3b
component should be expressed at that time or later with maximal amplitude at electrode positions Cz
and/or Pz in case of target recognition [41]. The relevance of the P300, i.e., P3b, for class separability and
classifier transferability is investigated by the above mentioned average ERP analysis and by a systematic
machine learning (ML) analysis. By comparing the results of both analyses we investigate whether ERP
activity recorded in the time range of the P3b is suited to make predictions on the transferability of a
classifier. In the ML analysis we systematically train a classifier on different sub-windows to evaluate how
well the transfer works for different windows. Following and depending on the outcome of the ERP average
study we investigate which window and which window size is most important and what performance can
be achieved after optimization of preprocessing and classification. A reduction of window size contributes
to lower computational costs and is therefore desirable for online analysis.

Methods

Experimental Procedures and Data Acquisition

Six subjects (males; mean age 27.5, standard deviation 2.1; right-handed, and normal or corrected-to-
normal vision) took part in the experiments. Subjects were instructed to respond to all target stimuli
even in case they were uncertain. By this procedure, we ensured that missed targets were indeed missed
and not perceived as important and task relevant stimuli. Subjects were in a competition to miss as few as
possible targets while achieving good performance in the game. Recognizing and responding to all targets
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was rated higher than performing the senso-motor, i.e., labyrinth task. One subject had to be excluded
in retrospect due to extensive eye blinks which made average ERP analysis impossible. The experiment
was split into two sessions with at least one day rest in between. In each session, each subject performed
5 runs with 120 target 1 stimuli (important information) and about 720 standard stimuli (unimportant
information, shape of stimuli see Fig. 4). Stimuli were presented in random order.

While the subjects were performing the task, the EEG was recorded continuously (62 electrodes,
extended 10-20 system with reference at FCz) using a 64 channel actiCap system (Brain Products GmbH,
Munich, Germany). Two electrodes of the 64 channel system were used to record the electromyogram
(EMG) of muscles of the upper arm (M. bizeps brachii) related to the buzzer press in order to monitor
muscle activity. Impedance was kept below 5 kΩ. EEG and EMG signals were sampled at 1 kHz, amplified
by two 32 channel BrainAmp DC amplifiers (Brain Products GmbH, Munich, Germany) and filtered with
a low cut-off of 0.1 Hz and high cut-off of 1 kHz.

Ethics Statement: The study has been conducted in accordance with the Declaration of Helsinki and
approved with written consent by the ethics committee of the University of Bremen. Subjects have given
informed and written consent to participate.

Behavior

For behavioral analysis we investigated the performance of the subjects in the oddball task. For this,
we analyzed the subject’s correct behavior and incorrect behavior (commission error, i.e., response on
standard stimuli and omission error, i.e., missing response on target stimuli).

Further, we investigated the response times and jitter in response times based on buzzer events and
EMG onsets (see Fig. 6 for averaged EMG activity based on EMG onset and buzzer event). The onsets
in the EMG signal had to be labeled manually, due to poor signal quality and constant movement of the
subject an automated onset detection as described in [62] was not possible. For the analysis of EMG onset
the signals from the two unipolar EMG channels were subtracted from each other to calculate a bipolar
signal. The raw bipolar signal was preprocessed using a variance based filter with a window length of
1 s [62]. The resulting signals were visually inspected and each onset was marked in the EEG data. The
single response time was then measured as interval between the target onset and the corresponding EMG
onset. Single response times on the buzzer events were measured as time between the onset of stimulus
presentation and the onset of buzzer press. Further, we calculated the median of response time over all
sets (3 sets × 2 sessions) for each subject and also minimal response time and maximal response time.
After that, the mean of subject’s medians was calculated.

Average ERP Analysis

To identify relevant ERP activity an average ERP analysis was performed. EEGs from runs 2, 3 and
4 of both sessions were analyzed off-line with the BrainVision Analyser Software Version 2.0 (Brain
Products GmbH, Munich, Germany). Run 1 and 5 were not used for analysis to reduce the amount of
data and thus processing time for the ML analysis presented in Sec. ”ML Analysis”. We chose the middle
runs to minimize side effects due to training or exhaustion.

EEGs were re-referenced to an average reference (excluding electrodes Fp1, Fp2, F1, F2, PO9, PO10,
FT7–FT10 due to artifacts and electrodes TP7 and TP8 which were used to record EMG activity) and
filtered (0.2 Hz low cutoff, 4.0 Hz high cutoff). The low-pass filter was chosen with an untypical low cutoff
frequency, since results of average ERP analysis should be compared with results of ML analysis. Although
different pass bands are reported in P300 classification (see [63,64]) a study about the important factors
on P300 detection concluded that the main energy of this type of ERP is concentrated below 4 Hz [64].
Our own investigations support this conclusion (see for example [65]). An ERP analysis of EEG data
from a very similar experimental setting which considers a wider frequency range (higher low pass filter)



9

is currently under preparation. Preliminary results are published in [47]. Artifacts (e.g., eye movement,
blinks, muscle artifacts, etc.) were rejected semi-manually (maximal amplitude difference in 200 ms
intervals was 50µV, gradient 75µV/ms, low activity was 0.1µV over 100 ms). EEGs were segmented into
epochs from 100 ms before to 1000 ms after stimulus onset. Epochs were averaged separately for each
stimulus type. Only segments in which a stimulus of type target was followed by a response within the
given response time contributed to mean ERP curves on the stimulus type target. Segments in which no
response followed after a stimulus of type target were defined as missed target trials and contributed to
generate mean ERP curves on the stimulus type missed target. Baseline correction was performed before
averaging (pre-stimulus interval: −100 to 0 ms). In case of missed target events a second target (target
2) followed. In this study we did not evaluate ERP activity evoked by stimulus type target 2 and missed
target 2.

Amplitude differences were analyzed using repeated measures ANOVA with the within-subjects factors
stimulus type, electrode, and time window and between-subjects factor subject. To find the expected
P300 effect, we compared amplitude differences between the three stimulus types (standards, targets,
and missed targets). Additionally, the factor electrode (Cz, Pz and Oz) served to investigate spatial
differences in the P300 effect. Time window was used as factor, since visual inspection of the averages
of activity evoked by targets revealed multiple peaks in the time range of 300–900 ms for each subject.
Therefore, we divided the 300–900 ms window into two separate windows (300–600 ms and 600–900 ms
after the stimulus) to cover early and late parts of the broad peak (as seen in grand average in Fig. 4),
accounting for multiple, possibly overlapping positive ERP components. To investigate subject-specificity
of the effects, subject was used as a between-subjects factor. Where necessary, the Greenhouse–Geisser
correction was applied and the corrected p-value is reported. For pairwise comparisons, the Bonferroni
correction was applied.

ML Analysis

All ML evaluations have been performed using the open source signal processing and classification envi-
ronment pySPACE [66]. Data processing was as follows: Windowing and preprocessing were performed
directly on the raw data from the recording device. In order to avoid that preprocessing artifacts such
as, e.g., filter border artifacts, influence classification performance, we performed the complete prepro-
cessing (including decimation and filtering) on a larger window between −200 and 1400 ms relative to the
stimulus onset. We chose the following preprocessing based on the rationale issued above (see Sec. ”Av-
erage ERP Analysis” and [64]): The data were baseline-corrected (with 100 ms window prior to stimulus
onset), decimated to 25 Hz and subsequently lowpass filtered with a cut-off frequency of 4 Hz.

As in the ERP analysis, run numbers 2, 3 and 4 of both sessions were used for training and testing.
In contrast to the average ERP analysis described above we included the early time window of 0–300 ms
in the ML analysis. This was done to control for the fact that early time windows may still contribute to
the classification of the different classes (standards, targets, missed targets) even though we hypothesized
that main differences are caused by the P300 effect (see Sec. ”Relevant Averaged ERP Activity”).

It is important to note here that several dependencies have to be kept in mind when evaluating the
results: First, performance depends on window size since a larger window contains more features and
thus a higher dimensionality of the signal. Second, the classifier parameters depend on the underlying
data (and dimensionality). However, the purpose of this investigation was to compare different windows
(and sizes) concerning their quality for classification, so we assessed the results always with respect to
window size and starting point of the window and performed statistical analysis only on windows of equal
length.

Furthermore, the parameters of the classifier were adjusted to an unspecified value to omit data-
dependent effects: in the entire analysis, we used a support vector machine (SVM) as implemented in
LIBSVM [67] (SVC-C with a linear kernel) with a fixed complexity of 100 simulating a hard margin.
Hence, we cut different windows by varying starting point (0 ms-700 ms) and window size (200 ms-800 ms)
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in steps of 100 ms. Data used for training and testing were different, as outlined above: We trained on
standards and targets of one experimental run and tested missed targets versus targets of another run
within one session. All possible combinations of the above mentioned runs within one session were tested.
Classifier features were the preprocessed time-channel values, i.e., the amplitudes.

The corresponding classification performance was computed using the area under curve (AUC) [68]
which is an indicator of general separability of the two classes in the data. AUC is the area under the
receiver operating characteristics curve. This curve maps the different true positive rates (TPR) and false
positive rates (1-TNR) obtained when the decision boundary is varied from −∞ to ∞. The AUC is then
computed as the integral of the resulting function. In this way, we investigated the linear separability of
the data essentially independent of the applied classifier.

For statistical inference, we chose three time windows from the aforementioned temporal segmen-
tation that match the later time windows which had been chosen for ERP analysis (300–600 ms, and
600–900 ms see Sec. ”Average ERP Analysis”) and the early time window of 0–300 ms. This procedure
relates the results of the classifier performance-based approach to the results of the ERP analysis. Clas-
sification performances for the different window sizes were statistically analyzed using repeated measures
ANOVA with the within-subjects factors time window (0–300 ms, 300–600 ms, and 600–900 ms) and sub-
ject. Corrections were applied where necessary. Classification performance after optimizing the classifier
were analyzed using repeated measures ANOVA with subject as within-subjects factor. Where neces-
sary, the Greenhouse–Geisser correction was applied and the corrected p-value is reported. For multiple
comparisons, the Bonferroni correction was applied.

In a further analysis we investigated the possibility to improve classification performance by the
combination of information from two windows. We combined the middle time window (300 to 600 ms)
with both other time windows (early: 0 to 300 ms and late: 600 to 900 ms time window) separately.

To determine classification performance that can be achieved under optimized conditions we finally
performed a final analysis with the goal to get a better estimate of the applicability of our approach of
classifier transfer between the classes standard and missed target. The processing window was chosen
based on the results of the systematic ML analysis explained above. We performed a classifier optimization
of the SVM parameter complexity using a 5-fold cross validation in combination with a pattern search
algorithm [69] to evaluate the overall performance in the application with an adjusted classifier.

In this subsequent investigation we used an optimized SVM on a chosen time window. Further, we
computed the balanced accuracy (BA) as a performance measure for the chosen time window. The
balanced accuracy [70] is the arithmetic mean of true positive rate (TPR) and true negative rate (TNR)
and calculated accordingly

BA =
1

2
(TPR + TNR) . (1)

Both performance measures used (AUC and BA) are insensitive to unbalanced or even changing ratios
of the two classes (positive class P and negative class N), which is most important in the application
where we have an oddball-like situation with frequent and infrequent examples. It holds for both metrics
that a value of 0.5 means guessing and 1 means perfect classification.

Results

Behavior

In total 724 omission errors (575.2 ± 82.23) occurred, thus 724 missed targets were observed and 2876
targets stimuli were found with correct responses. No commission error (i.e., responses on standards
stimuli) could be found.

Figure 7 shows the median response time for each subject across two sessions. Based on the buzzer
press event, responses occurred 837 ms after the target stimuli (mean of subject’s medians). The median
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of minimal response time was 597 ms and the median of maximal response time was 1783 ms. The
difference between the minimal and maximal response time was between 686 ms and 1657 ms (median:
1131 ms). EMG onsets began even earlier in time (mean of subject’s medians: 551 ms). The median
of minimal response time was 336 ms and the median of maximal response time was 1466.5 ms. The
difference between the minimal and maximal response time was between 563 ms and 1621 ms (median:
1130.5 ms). No difference exists between median difference in response time based on the buzzer event
(median: 1131 ms) and median difference of response time based on the EMG onset (median: 1130.5 ms).

Relevant Averaged ERP Activity

The grand average over all subjects of the standard, target and missed target ERP pattern in the centro-
parietal electrode (Pz) is depicted in Fig. 4. Significant differences between standards and targets (i.e.,
P300 effect) were observed [F (2, 50) = 65.27, p < 0.001, pairwise comparisons: standards vs. targets:
p < 0.001]. The P300 effect was stronger at the electrodes Cz and Pz compared to the electrode Oz [P300
effect at Cz: p < 0.001, P300 effect at Pz: p < 0.001, P300 effect at Oz: p < 0.045]. The significant
amplitude difference between the ERPs evoked by targets and missed targets stems from a higher positive
amplitude on targets for both time windows [p < 0.001]. This higher positivity elicited by targets was
significant for four subjects [targets vs. missed targets: p < 0.02 for four subjects, p = n.s. for one
subject (subject 1), see Fig. 8]. Furthermore, no subject showed differences between ERPs evoked by
missed targets and standards in the 300–600 ms time range recorded over central electrodes [standards
vs. missed targets: p = n.s.]. However, in the 600–900 ms window, amplitude differences between missed
targets and standards are more subject-specific [standards vs. missed targets: p = n.s. for subject 4 and
5, p < 0.029 for subject 1, 2, and 3, see Fig. 8].

To summarize, a P300 effect elicited by targets was observed for both time windows and in all subjects
with a maximum amplitude intensity at the central and parietal electrodes (Cz and Pz). The morphology
of the ERP form elicited by missed targets is, especially in the 300–600 ms time window, similar to ERP
forms elicited by standards and supports our hypothesis that EEG instances evoked by standard stimuli
can potentially be used to substitute EEG instances evoked by missed targets during training. For the
later time window results differed. Only two subjects showed no differences between standards and missed
targets.

Window of Interest and Transferability of Classifier

The results in Fig. 9 illustrate how the separability of the two classes missed targets versus targets varies
when different time windows are used for classification. For small and early windows (before around
300 ms) the performance is lowest but above random guessing. For small window sizes (200–400 ms) the
performance reached a maximum when used with windows starting after 300 ms. With increasing window
size performance also increases, which is yet impacted with the increased dimensionality of the data (more
dimensions imply more information for the classifier) and has therefore to be considered carefully.

To investigate the amount of information in each time range, we compared performances on training
data with fixed window sizes of 300 ms as illustrated in Fig. 10. The statistical analysis of the AUC values
shows that performance is clearly affected by the choice of the time window [main effect of time window :
F (2, 22) = 82.43, p < 0.001] and that classification of the middle window (300 ms–600 ms) and the late
window (300 ms–600 ms) clearly yields higher performance compared to the early window (0 ms–300 ms)
[early window: mean AUC of 0.82, middle window: mean AUC of 0.90, late window: mean AUC of
0.88, multiple comparisons: 0–300 ms vs. 300–600 ms: p < 0.001, 0–300 ms vs. 600–900 ms, p < 0.001,
300–600 ms vs. 600–900 ms: p = 0.10].

In the further analysis were we combined the middle time window (300 to 600 ms) that is showing the
highest classification performance for most subjects (see Fig. 10) with both other time windows (early:
0 to 300 ms and late: 600 to 900 ms time window) separately, the main result was that classification
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performance could be improved by the combination of the middle and late time window compared to
the combination of the middle and early time window [main effect of combined time window : F (1, 11) =
13.03, p < 0.005, combination of the middle and early window: Mean of AUC of 0.89, combination of
the middle and late window: Mean of AUC of 0.92, pairwise comparison: combination of the middle and
early window vs. combination of the middle and late window: p < 0.02] again supporting our hypothesis
that later cognitive activity is most important for the prediction of the success of cognitive processing.

Given the results presented above we obtained the best results when starting the windows 300 ms
after the stimulus was presented (depicted in Fig. 9). This supports our hypothesis that P300 related
processes contribute substantially to class separability. Based on theses findings, we decided to use a
processing window in the time range between 300 ms and 1000 ms. As described in the methods section,
we now used an optimized preprocessing procedure and classifier for this window. On average, a BA
of 0.85 (standard deviation: 0.06) was obtained. While the measure of the AUC served for finding the
interesting window ranges, this performance measure now reflects what the particular classifier is able
to achieve. The distribution of the results is illustrated in the inset in Fig. 9 and the classification
performance for each subject is depicted in Fig. 11. A significantly higher classification performance
compared to all other subjects (except for subject 5) was shown for subject 4 [main effect of subject :
F (8, 88) = 2.97, p < 0.03, details see Fig. 11 lower right].

It is worth to point out that average ERP analysis for subjects 4 and 5 (with better classification
performance) in contrast to all other subjects could not reveal any significant differences in amplitude of
averaged ERP forms evoked by standards and missed targets in both time windows (300 to 600 ms and 600
to 900 ms). Based on our hypotheses, such similarity between ERP forms evoked by standard and missed
target stimuli and a clear absence of P300 and later EPR activity that may be related to task coordination
would suggest a good outcome for classifier transfer and high performance as was shown here. Hence,
results of ERP analysis can under certain conditions be used to infer classification performance.

Discussion: Labyrinth Oddball Scenario

Results of ERP and ML analysis confirm that ERPs evoked by stimulus recognition and subsequent
processes, e.g., change of task and preparation of response, are most important to detect the state of
target recognition by BR. This is a basic prerequisite for eBR to infer response behavior of the operator.
We showed that a classifier trained on the classes standards versus targets can be successfully transferred
to classify the classes missed targets versus targets. Results of ERP analysis of ERPs evoked in the middle
time window that were found to be maximally expressed on central and parietal electrodes (Cz and Pz)
were used to infer on classification performance. Thus, it is likely that the signal that is maximally
expressed at these electrodes contributes most to the differences and similarities of the overall signal on
all three types of stimuli.

Our hypothesis that ERP activity evoked by unimportant standard stimuli is similar in shape and
characteristic to ERP activity evoked by important stimuli that were not recognized as such (missed
targets) was supported by the results. Further, our results indicate that this similarity is in the middle
time windows mainly caused by the absence of target recognition processes, since the P300 is either missing
or massively reduced in amplitude. Certainly, processes later than the evaluation and classification of
stimuli (evoking a P300) that are related to task set preparation or response preparation and execution
will also be involved [47]. For example, for some of the subjects ERP activity evoked by unimportant
standard stimuli and by missed target stimuli shows significant differences in the later time window which
may be related to late task set preparation processes [46] or late P300 activity that did not lead to a
successful stimulus evaluation as discussed in [42] and requires further investigation (see Fig. 8, e.g.,
subject 1). Although a prominent similarity between standards and missed targets is the missing of a
response of the subject, our results show that response related activity should not have a major influence
on transferability of the classifier, since response time to individual target stimuli does widely vary (see
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Sec. ”Behavior”).
Results of ML analysis finally show that early stimulus processing in the time window 0–300 ms was

not equally important as EEG activity in the later time range (> 300 ms) investigated here. However,
early brain activity contributed as well. This might be caused by differences in attentional processes
which have to be investigated in future experiments and analysis.

To summarize, from our results we conclude that brain activity evoked by infrequent, unimportant
stimuli (standards) in the investigated low frequency range is highly similar to brain activity evoked by
missed targets, which are important stimuli that were not successfully processed, i.e., not recognized as
important stimuli or completely missed. To substitute infrequent examples of the class missed targets
by frequent examples of the class standards during training is possible and supports our hypothesis that
transfer between classes is a feasible approach for applying BR in scenarios in which the amount of
training data is way too small to implement methods that can handle few training data [71–73] (for a
brief discussion see [74]). Hence, the problem of few training examples in realistic scenarios can be solved
by our approach of classifier transfer with a high classification performance, and can be improved by
choosing appropriate window combinations. The choice of window, samples used for transfer and the
combinations of windows were first defined by knowledge about underlying brain activity gained from
average ERP analysis and confirmed by systematic ML analysis. Hence, it is shown that average ERP
analysis can be a useful method to choose appropriate training data, especially if processes are involved
that evoke pronounced patterns in the EEG like the P300.

Dual BR Scenario Armrest - Simultaneous
Detection of Two States
Since the BR system in the teleoperation scenario (see Fig. 1) should not only detect success in the
recognition of important information but also movement intention to optimize the exoskeleton’s control
(see Sec. ”Introduction”), a second test scenario, the Armrest setup, was developed to test a dual BR
approach. Experiments were conducted to test whether a simultaneous classification of different brain
states is possible by analyzing the EEG recorded in a complex scenario similar to the teleoperation
scenario. The Armrest setup copies a realistic dual-task situation that comes closer to the teleoperation
scenario than the dual task performed in the Labyrinth Oddball scenario (see Part ”Labyrinth Oddball
Scenario - Recognition of Important Stimuli and Task Coordination Processes”). That is because in the
Armrest setup the user is not always able to respond to information (responses to target events were not
allowed during the rest period - see below) but has to postpone his response. This restriction was most
important to prove that our approach still works under realistic conditions in which two motor tasks
may influence each other, thus one task inhibits the execution of the other one. Further, it is expected
that trained operators of teleoperation scenarios have a low rate of missed targets. Hence, to investigate
whether it is indeed possible to detect very few instances of missed targets by our approach, we designed
a test scenario in which subjects would not miss too many target stimuli.

The Armrest setup can be described as follows: Participants of the experiments wore a head-mounted
display (HMD) and stood in a dimly lit room while performing a task in a virtual environment. The
task was to move the right arm from a rest position in order to reach a virtual target ball which was
presented in the upper right corner marking a possible object which could be manipulated in a final
application case (Fig. 12A and B). A hand-tracking system was used to detect the point in time when
the hand left the armrest. Whenever subjects moved their arm 5 cm away from the rest position, a
marker for movement onset was sent and stored together with the EEG (movement marker was set at
time point ”0”, see Fig. 12C). After entering the target ball (see Fig. 12B-2), the subject returned to
the rest position. To support the rest state of the arm, an armrest was designed as part of our testbed.
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This armrest was integrated into the setup to imitate the strong support of the arm by the exoskeleton
during the position control in the teleoperation scenario. The arm and hand of the participant had to
stay in the rest position for at least 5 seconds. In case the subject left the rest position too early, the
target ball would disappear. This served to avoid too rapid changes between rest and movement which
was necessary to assure sufficiently long non-movement periods.

While the subject was performing this task, important versus unimportant information were presented
at a ratio of 1:20. Three different types of important stimuli (target 1) were presented requiring three
different responses, namely touching one of three virtual target objects in the virtual scenario as shown in
Fig. 12B-1, whereas each kind of warning required touching a particular one. Unimportant stimuli were
similar in shape and required no response. In case the user missed an important stimulus (target 1), i.e.,
did not respond within 10 s after stimulus onset, a second stimulus (target 2), visually highlighted with
a different color (orange instead of green), appeared. Again, important stimuli were expected to evoke a
P300 and overlapping later ERP components while unimportant stimuli should not (see Fig. 12D). All
three virtual response objects were presented at a position in the HMD that followed the head movement
to assure that all three objects were always visible on the left side of the visual field. Again subjects were
instructed to always respond to the target stimuli. This was the more important task.

In the following we present results that were conducted in the Armrest setup. The main goal was to
confirm our general approach of BR and to show that it still works in a dual BR scenario in which two
classified conditions may influence each other. Further, we re-tested the substitution of training examples
and hence, partly classifier transfer in this scenario that is similar to the teleoperation scenario and
produces even less training examples than the Labyrinth Oddball scenario did. Some extra questions were
addressed for the detection of movement preparation. During online detection of movement preparation
the classifier should to some extent be time shift invariant, hence should not only be able to detect the
EEG pattern at the point in time it was trained on, but also at adjacent instances. To obtain such a time
shift invariant classifier, Blankertz et al. [75] trained the classifier on two rather than just one window per
movement marker. In [54], we systematically analyzed the influence of the number of training windows
per movement on classification performance. We found that two training windows significantly improve
classification performance. A higher number of training windows per movement does not significantly
improve classification. Here, we address the question which combination of two training windows (labeled
by their end time with respect to the movement marker) provides the best results across subjects. The two
windows identified can subsequently serve for all subjects and an exhaustive re-optimization or re-analysis
is unnecessary. This is highly relevant for an online application.

Methods

Experimental Procedures and Data Acquisition

Four male subjects (between 25 and 31 years, right-handed, with normal or corrected-to-normal vision)
took part in the experiments which were divided into three runs conducted on the same day. In each run,
the subjects had to respond to 60 target 1 stimuli. The number of intentional movements from the rest
position differed from 116 to 159. This difference in the number of movement onset trials was caused by
the experimental condition that a minimum number for correctly responded target 1 trials was requested
per run but the amount of rest periods and their duration (a rest period had to take at least 5 seconds
but was allowed to take longer) was not predefined and hence varied between subjects.

For reasons of future data analysis and method development not presented here EEG was continuously
recorded with a high density of sensors, i.e., with a 128 electrode system (extended 10-20 system, actiCap,
Brain Products GmbH, Munich, Germany), referenced to FCz. Four electrodes of the 128 actiCap system
served to record the EMG of muscles of the upper arm (M. biceps brachii and M. triceps brachii) in order
to monitor muscle activity. All signals were amplified using four 32-channel BrainAmp DC amplifiers
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(Brain Products GmbH, Munich, Germany), were digitized with a sampling rate of 5 kHz and filtered
with a low cutoff of 0.1 Hz and high cutoff of 1 kHz. Impedance was kept below 5 kΩ.

Ethics Statement: The study has been conducted in accordance with the Declaration of Helsinki and
approved with written consent by the ethics committee of the University of Bremen. Subjects have given
informed and written consent to participate.

Behavior

As for the Labyrinth Oddball scenario we analyzed subject’s performance in the oddball task in terms
of the amount of target stimuli with correct response and false reactions (i.e., omission and commission
errors) as well as response times and jitter in response time based on the movement marker. We also
analyzed how many movements from the rest position were valid, i.e., followed five or more seconds of rest
and analyzed the EMG data with the method described earlier for EMG onset detection. Furthermore,
the physical movement onset was estimated based on the labels obtained from the interaction of the
subject in the virtual scenario and an analysis of movement speed in a study investigating intentional
arm movements [62].

ML Analysis: Detection of Target Recognition Processes

Data processing for the detection of the relevant patterns in the EEG by ML analysis was performed as
for the Labyrinth Oddball scenario in the optimized case (see Sec. ”Window of Interest and Transferability
of Classifier”) using the open source signal processing and classification environment pySPACE [66]. Due
to the reduced amount of training examples that could be recorded here, three runs that were recorded
in one session for one subject performing the task were joined to a single data set, which was used for
performance estimation based on a 5× 2-fold cross validation. For performance estimation we had to use
a modified cross validation strategy to estimate the classifier’s accuracy due to the low number of missed
targets. The partitioning of standard and target examples for training as well as the partitioning of target
examples for testing was performed as usual to generate mutually exclusive splits, but all missed target
examples of the whole dataset were used in every test split for estimating classification performance.
Note that due to the classifier transfer the classifier was not trained on the class of missed targets and
thus all missed target examples were unknown to the classifier during testing as it also holds true for all
targets examples that were used for testing.

To evaluate subject-specific differences in classification performance, the data were analyzed by one-
way repeated measures ANOVA with subject as within-subjects factor. For multiple comparisons, the
Bonferroni correction was applied. To compare classification performance between Labyrinth Oddball
scenario and Armrest scenario, the data were analyzed in two steps. First, the mean of classification
performance was calculated for each subject. Such subject’s means were calculated separately for each
of the scenarios, which were used for the dependent variables for the statistical test.

Second, two different scenarios were compared by using the Mann-Whitney U test: 1) The median of
the subject’s means was calculated for each scenario and 2) The mean rank for each scenario was calcu-
lated. Mann-Whitney U test was performed on subject’s means for each scenario to compare two different
scenarios. Note that different subjects participated in both experiments (Labyrinth Oddball/Armrest)
except for one subject (coded as subject 1 for the Labyrinth Oddball and subject 3 for the Armrest
scenario).

ML Analysis: Detection of Movement Intention

Again, all ML evaluations have been performed using the open source signal processing and classification
environment pySPACE [66]. To detect movement intention BR classifies two classes: (i) no movement
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preparation and (ii) movement preparation. For correct labeling of both classes during training and for
performance evaluation the problem of ambiguous instances emerges here, i.e., windows that neither
clearly belong to the movement preparation nor to the no movement preparation class. To deal with
this problem, training is performed time dependent on the lock-out event, i.e., only specific windows
were used for training. Since movement intention is neither locked to a certain stimulus (i.e., command)
nor happens after a fixed time of delay, it is necessary to continuously analyze the EEG stream during
test. This continuous analysis is based on a sliding window approach, i.e., a window of a fixed length is
extracted every 50 ms from the EEG stream.

For offline evaluation, an approach similar to the one presented in [54] was chosen: Windows for the
movement preparation class had a length of 1000 ms and were cut out with respect to the movement
marker. For training, 13 different windows were analyzed for that class that ended between −600 to 0 ms
relative to the movement marker, i.e., [−1600, −600], [−1550, −550], . . . , [−1000, 0]. Training windows
for the no movement preparation class were cut out every 1000 ms, if no other marker was stored in
the data stream 1000 ms before or 2000 ms after that window. Since the duration of a rest period was
not fixed, the number of instances per data set differed for that class (from 359 to 520). For testing,
sliding windows were cut out every 50 ms in the range from −4000 to 0 ms. Data processing in both cases
(training and test) was done as follows: All trials were standardized (µ = 0, σ = 1), decimated to 20 Hz
and band pass filtered (0.1-4.0 Hz). Only the last 200 ms were used for feature generation: 124 channels
× 4 time points = 496 features. Finally, a SVM was trained on the feature vectors of the training data.
In each training run, SVM parameters were optimized with an internal 5-fold cross validation using a
pattern search algorithm [69].

For classifier evaluation, a 5 × 2-fold cross validation was used for each subject on the merged data
of one session (3 concatenated sets). To calculate a performance measure (BA), labeling of the sliding
windows was required. Since the onset of the LRP cannot exactly be determined for single trials (see
explanations given above), we defined a time range from −600 to −350 ms based on average ERP analysis
(see Fig. 13) as an uncertain area, i.e., as a time range in which we could not be certain (for each single
trial) whether or not the brain was already preparing a movement. Sliding windows ending in this time
interval were left out for performance calculation. Also, predictions based on windows ending at −150
to 0 ms (see Fig. 13) were excluded due to the fact that the actual movement onset happens before the
movement marker is stored (see estimation of movement onset in Sec. ”Behavior”).

Since the training windows overlapped in time, similar performances for consecutive windows were
expected. Hence, overlapping windows were analyzed for each subject in order to find points in time which
lead to significantly different performances to define borders of clusters. To evaluate which combination
of two training windows is optimal, performance of all possible combinations of two training windows
were computed, i.e., combinations within the same cluster and between clusters. The mean performance
of all within–cluster combinations and all between-cluster combinations for each defined cluster, the mean
performances of the single training windows in each cluster, and the performance of all training windows
were finally compared using repeated measures ANOVA with combination (10 levels) as a within-subjects
factor. Here, performance for all 13 training windows served as a baseline, representing the case that no
specific training windows were chosen.

Results

Behavior

In the whole experiment, subjects responded in total to 720 target stimuli and missed 33 target stimuli
(mean and standard deviation across subjects for omission errors: 8.25 ± 2.63). This low amount of
omission errors, i.e., missed targets, was expected due to the low effort of the main task. In total 7
commission errors on standard stimuli occurred (subject 2: 1 commission error, subject 4: 6 commission
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errors). The response time was on average 4.7 sec (mean of subject’s median), with a median minimal
response time of 1.5 sec and a median maximal response time of 15.3 sec. The difference between minimal
and maximal response time was between 7.4 sec and 19.1 sec (median 13.8 sec). A rest period of at least
5 sec preceded on average 89 % ± 9 % of the performed movements. For EMG onset detection only the
data from M. biceps brachii contained usable information. However, we observed a preload in muscle
activity in the EMG recordings of one subject resulting in an EMG onset detection at around −1.7 sec
relative to the movement marker. Therefore, EMG onset was not used to determine movement onset.
Instead, movement onset was estimated based on the analysis of motion tracking data recorded during
intentional movements of the right arm in a study performed in [62]. We calculated the time it took to
move the arm by 5 cm from the rest position. For the subjects recorded in [62] such movement took on
average 154 ms. Based on this analysis, we assumed that the physical movement onset in this very similar
setup was around −150 ms relative to the movement marker.

Performance of BR in the Detection of a Highly Underrepresented State

The resulting BA values are shown in Fig. 14. Best classification performance was obtained for subject 1.
Mean classification performance was slightly lower compared to the Labyrinth Oddball scenario (see Fig. 14
vs. Fig. 11). However, classification performances between both scenarios did not differ significantly
[median for Labyrinth Oddball : 0.839, median for Armrest : 0.791, mean ranks of Labyrinth Oddball : 6.2,
mean ranks of Labyrinth Oddball : 7.8, U = 4, Z = −2.11, p = 0.19, r = 0.494]. These results show that
our classifier transfer approach can be applied to realistic scenarios in which the subject is performing
several tasks but is not always allowed to respond to an important stimulus straight away. Moreover, we
were successful in classifying a highly underrepresented class.

Combination of Training Windows for a Robust Detection of Movement In-
tention

Based on the statistical analysis that was performed to find time points which lead to significantly
different performances to define borders of clusters, 13 training windows were grouped in three clusters:
early [−600, −450] ms, middle [−400, −250] ms and late [−200, −0] ms. Across all subjects, the middle
cluster (cluster B) provided a significantly better classification performance compared to both the early
(cluster A) and late cluster (cluster C): B vs. A: p < 0.001, B vs. C: p < 0.001 (see also first three
columns of Fig. 15). Further, classification performance was significantly higher when using training
windows of the late cluster than when using training windows of the early cluster (C vs. A: p < 0.001).
Figure 15 depicts a comparison of classifiers trained on one, two or else all 13 training windows.

Results showed that the combination of two training windows increased classification performance
(A+A vs. A: p < 0.001, B+B vs. B: p < 0.001, C+C vs. C: p < 0.001, A+B vs. A: p < 0.001, B+C
vs. B: p < 0.001, B+C vs. C: p < 0.001, C+A vs. A: p < 0.001, C+A vs. C: p < 0.001) except
when combining training windows from B and A in comparison to the performance when using single
windows from B (A+B vs. B: p = n.s.). The overall best performance was obtained when combining
training windows from cluster B and C, although there was no significant difference compared to window
combinations within B (B+C vs. B+B: p = n.s.). The average TPR from training window combination
of cluster B and C at time point −200 ms (latest time point of movement preparation class and before
estimated movement onset at −150 ms, see Fig. 13 and Sec. ”Behavior”) was on average 0.85 ± 0.066.
For the application in the exoskeleton this would mean a correct modulation of the control in 85 out of
100 movements. Performance of a classifier trained on all 13 training windows was worse than that of
the classifier trained on the best pair of windows (All vs. B+C: p < 0.001).



18

Discussion: Dual BR Scenario Armrest

In the experiments performed in the Armrest scenario we showed that our approach of classifier transfer
for the detection of the recognition of important information, which was developed in the Labyrinth
Oddball scenario, can be transferred into a new setup in which two tasks had to be performed that
influence each other while still achieving similar classification performance. We confirmed our results from
Part. ”Labyrinth Oddball Scenario - Recognition of Important Stimuli and Task Coordination Processes”
that substitution of training examples and hence, partly classifier transfer between two different classes
in training and test is possible. Our results indicate that the supervision of trained operators in a
teleoperation scenario is feasible, since trained operators will miss only few examples of target stimuli
similar to subjects that are performing a simple task in the Armrest scenario (compared to the more
demanding Labyrinth Oddball scenario). In both cases only very few examples for missed target stimuli
were available. These few examples could not have been sufficient for alternative training methods
that allow direct training with few training examples as already shown for the Labyrinth Oddball setup
(see [74]).

Besides the detection of the success of information recognition we showed that the detection of move-
ment intention based on EEG data in the ERP range [75–78] is possible under dual task conditions
in which the subjects are not solely concentrating on movement preparation. Within the sliding win-
dow analysis we investigated the influence of different training windows for classifier construction on the
performance when continuously predicting upcoming movements. We found subject-independent time
intervals, which provide different detection rates depending on which interval the training window belongs
to. This allows more general suggestions for classifier training on data of new subjects, like using a first
training window ending between −400 to −250 ms before movement marker (cluster B) and a second
one between −200 to 0 ms (cluster C). For our experiments we estimated the actual movement onset at
around −150 ms before the movement marker. However, this is only a rough approximation since the
movement marker was set after 5 cm movement in one direction. Still, results of time intervals with
significantly different performance remain and are valid.

The choice of the training windows critically depends on the point in time when the movement has
to be predicted (e.g., in a range from −300 to −200 ms relative to the movement marker (Fig. 13)). If
the application requires an earlier prediction, this may have an influence on the choice of the optimal
training window. Exact interval boundaries for choosing appropriate training windows for movement
prediction remain to some degree subject-specific. However, based on the results obtained here, large
subject-specific differences are not expected.

To summarize, with the experiments conducted in the dual BR scenario Armrest, we showed that: (i)
the intentional state ”movement intention” as well as (ii) the cognitive state ”recognition of important
stimuli and task coordination” can be detected in single trial by BR while a subject is performing a
dual-task that is similar to the described dual-task that has to be performed during the teleoperation of
a robot. The classification of the different states resulted in high performance. Reliability of the detec-
tion of movement preparation processes could be improved by combining appropriate training windows.
Classification of missed target instances versus target instances was made possible by applying our ap-
proach of classifier transfer. The reliable and high performance in single trial prediction of the dual BR
we obtained is an important prerequisite for our approach of adapting both the OMS and exoskeleton
control with respect to the changing requirements of the user.

Conclusions

The recording, analysis, and integration of (psycho-)physiological data to adapt human-machine interfaces
with respect to changing intentional or cognitive states and behavior of the user is a promising way to
improve the functionality of technical systems that are interacting with the user [30]. We presented
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two different scenarios here to investigate the application of BR. In the Labyrinth Oddball scenario we
showed that BR, i.e., the detection of human states (here the cognitive state of ”recognition of important
stimuli and task coordination”) based on ML analysis of the EEG, is possible. This result is supported
by the finding that results of average P300 analysis is predictive for performance of ML analysis for
P300 detection and vice versa. In the Armrest scenario two different states (”movement intention”
and ”recognition of important stimuli and task coordination”) could successfully and simultaneously be
detected by a dual BR approach while a human was interacting in this scenario, which was very similar
to the teleoperation scenario.

In the Labyrinth Oddball scenario we developed an approach for classifier transfer in which a training
class with few examples (missed targets) is substituted by a training class with many examples (stan-
dards). Instances of both classes could be shown to evoke very similar but not the same ERP activity.
Here the missing of a pronounced ERP activity, namely the P300, was sufficient to allow the transfer.
Hence, we showed that classifier transfer is not only possible between classes of samples that contain
the same or very similar ERPs evoked by the same or at least very similar brain processes (see [60, 61]).
More important for the success of classifier transfer in our example is the absence of some brain process,
i.e., target recognition processes, than the similarity of brain processes. Note that the absence of these
processes can have a number of different causes that were not further investigated here. Only for subjects
with clear absence of P300 on missed targets compared to targets and very similar shape of the average
ERP forms on missed targets and standards, a transfer of a classifier (trained on standard stimuli to later
detect missed targets) resulted in high classification performance. The classifier transfer could also be
applied successfully in the Armrest setup which produces only very few examples for the infrequent but
important class (missed targets) as it is expected to be the case for trained operators in teleoperation
scenarios. Small amounts of training data are not sufficient for direct training, but classifier transfer
allows to apply BR in such an application-oriented scenario. Furthermore, we showed for both applica-
tions of BR that classification performance can be improved significantly independent of the subject by
combining training windows identified to likely contain important information for classification.

To conclude, our work shows that BR can be applied during complex human-machine interaction,
since brain patterns that are detected by single trial ML analysis can be correlated to specific activities of
the brain, as shown for ERP activity, and hence correlated with specific states of the operator. The gained
knowledge about the occurrence of such states can then be used to infer upcoming behavior by means of
eBR [30]. The knowledge gained about upcoming behavior is a basic requirement for the implementation
of predictive HMIs that better support upcoming interaction and thus improve human-machine interaction
as explained by the example of robotic teleoperation. Earlier investigations with simulated adaptation of
an exoskeleton control by eBR showed that our concept of adapting the control of the exoskeleton for robot
teleoperation does indeed help to reduce the effort of the user during interaction [52]. Further, results
of a recently conducted online study in the teleoperation scenario [49, 53] showed that our approach can
successfully be applied online and be fully integrated for the adaptation of the exoskeleton and the OMS
as proposed in this paper. To implement predictive HMIs, BR has to be embedded into an application
as formally described in [30]. For this it is not only required to automatically describe interaction rules
and behavior of the interacting human as discussed in [30] but to particularly understand the nature of
detected brain patterns during complex interaction. That the later is possible was shown in the work
presented here.

Acknowledgments

We would like to thank Yohannes Kassahun and Foad Ghaderi for reading the manuscript and their
helpful comments on it.



20

References

1. Young JE, Hawkins R, Sharlin E, Igarashi T (2009) Toward acceptable domestic robots: Applying
insights from social psychology. Int J Soc Robot 1: 95–108.

2. Kaupp T, Makarenko A, Durrant-Whyte H (2010) Human-robot communication for collaborative
decision making making - A probabilistic approach. Rob Auton Syst 58: 444–456.

3. Prodanov P, Drygajlo A (2005) Bayesian networks based multi-modality fusion for error handling
in human-robot dialogues under noisy conditions. Speech Communication 45: 231–248.
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17. Blankertz B, Dornhege G, Krauledat M, Schröder M, Williamson J, et al. (2006) The Berlin Brain-
Computer Interface presents the novel mental typewriter Hex-o-Spell. In: Verlag der Technischen
Universität Graz. pp. 108–109.
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Figure Legends
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Figure 1. Experimental setup for the teleoperation scenario - a holistic feedback control of
semi-autonomous robots: In the teleoperation scenario an operator is wearing an exoskeleton and,
with the support of a virtual scenario, is tele-manipulating a robotic arm. A: three kinds of virtual
response cubes (different responses are required for different types of warnings); B: different kinds of
stimuli: unimportant stimulus (STATE OK - no response required), warning (first target - response
required), repeated and enhanced warning (second target - response required), third warning (response
is critical, e.g., exoskeleton control is disabled); C: labyrinth that the robot has to be moved through; D:
virtual hand.
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Figure 2. Adaptation of an operator monitoring system by BR: The currently implemented
message scheduling procedure which is controlled by the operator monitoring system (OMS) is shown.
The OMS considers the cognitive state that is detected by BR and allows to infer the behavior of the
human. The general procedure is described in the following: After a warning the operator’s EEG is
analyzed by BR. Detection of successes versus no success in the recognition of important information by
BR allows to infer future behavior (response or no response) by eBR. As a consequence, the behavior of
the OMS is adapted, i.e., the tolerated response time is extended or a second warning is presented right
away by the OMS. In case the operator does not respond to the second warning, a third warning
follows. Approximate time required for predictions made by BR and predefined response times are
given in the arrows.
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Figure 3. Adaptation of the exoskeleton’s control by BR: It is shown how BR adapts the
exoskeletons control. The exoskeleton is supporting the user while moving (free mode: FM). In case the
user stops moving, the exoskeleton will lock in to support the arm at a chosen position (position control
mode: PC). For release the user has to press against sensors that are integrated into the exoskeleton.
To ease the release BR detects movement intention. The movement prediction score is then used to
modulate the exoskeleton’s control by eBR: the higher the prediction score (i.e., the more certain the
classifier is) the stronger is the adaptation of the exoskeleton’s control and the lower is the effort for the
user to transfer the exoskeleton from PC to FM mode. Pressure against the sensors is always required
for release, which is minimizing the risk of false lock out in case of possible false detection of movement
intention by BR. Adapted from [52].



28

Standards Target 1

720 120Number of stimuli per run

Target 1StandardsStimulus type

Averaged ERP
2

-2

4

-4

0 300 600 ms

2

-2

4

-4

0 0

0 300 600 ms

Buzzer

ms

Pz

!V

ms

P300

Pz

!V

Figure 4. Experimental setup Labyrinth Oddball: In the Labyrinth Oddball setup subjects
perform a dual-task, i.e., they play a virtualized labyrinth game and react to less frequent first and
second target stimuli by pressing a buzzer. A second target is presented in case that the first target was
missed. Brain activity recorded after the different stimuli was averaged over all subjects, sessions, and
runs (total number of trials after artifact removal: target 1 (red ERP curve, right side): n = 1623;
missed target 1 (blue ERP curve, right side): n = 439; standards (black ERP curve): n = 13598).
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A B

Figure 6. Averaged EMG activity: Average EMG activity of subject 1 that was averaged based on
two different events is displayed. A: Averaged activity based on buzzer press event is shown. B:
Average activity based on EMG onset is shown.
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Figure 8. Averaged ERPs in the Labyrinth Oddball scenario: Different averaged ERP patterns
evoked by standards, targets, and missed targets are shown for two subjects. A: Subject 1: No
significant difference in ERP amplitude between targets and missed targets but significant difference in
ERP amplitude between standards and missed targets for the late window was found. B: Subject 5: A
higher P300 effect on targets compared to both standards and missed targets and no significant
difference in ERP amplitude between standards and missed targets for the late window was found.
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Figure 9. Classification performance obtained in the Labyrinth Oddball scenario for
different windows of EEG data: The dependency between classification performance and window
size as well as start point of window are displayed for the classification of missed targets versus
recognized targets. The start position (y-axis) is given relative to stimulus onset. The inset on the right
indicates the optimized performance using the window from 300 to 1000 ms. The different windows are
compared using the AUC, while the optimized performance is given as BA.
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Figure 10. Classification performance for different time windows: The mean classification
performance is shown for each time window and each subject.
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Figure 11. Classification performance in the Labyrinth Oddball scenario: For each subject
for a window from 300 to 1000 ms the evaluated classification performance and statistics are shown.
The red lines in the main diagram mark the median values of obtained classification performances for
each subject. The inserted diagram shows that highest classification performance was obtained for
subject 4 and 5 (mean classification performance and standard error of mean (SEM) are depicted).
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Figure 12. Armrest scenario: The experimental setting Armrest is illustrated and most relevant
ERP activity evoked by brain processes involved in target recognition and failure in target recognition
as well as motor preparation are shown. A: Experimental setup is displayed. B: Three types of virtual
response cubes (B-1) and the virtual target ball (B-2) are shown. C: Averaged difference curve between
electrodes C3 and C4 (number of trials for movement events: 279) shows differences recorded over the
primary motor cortex ipsi- and contralateral to the side of movement (movement onset marker at
dashed line). D: Averaged ERP patterns at electrode Pz on different stimulus types (number of
standards: 2968, number of targets: 156, number of missed targets: 9) are depicted.
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Figure 13. Classifier evaluation for sliding windows: It is illustrated how evaluation was
performed in the sliding window approach. Evaluation depends on the end time of a sliding window: (i)
less than −600 ms: true label “no movement preparation”, (ii) between −300 to −200 ms: true label
“movement preparation”, (iii) in gray shaded area: left out for evaluation due to unknown true label or
already started movement. The black line illustrates the average ERP difference curve for channels
C3/C4 over all subjects.
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Figure 14. Classification performance in the Armrest scenario: Results for the performance of
the classifier trained in the dual BR scenario for the classification of missed target vs. target instances
after classifier transfer are shown for all subjects individually. The red lines in the main diagram mark
the median values of obtained classification performance for each subject. The inserted diagram
illustrates mean classification performance values and standard error of mean (SEM). Highest
classification performance is observed for subject 1.
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Figure 15. Method illustration and performance for different training windows: The
diagram illustrates the combination of training time of two windows using the previously found clusters
(see methods description for details), classification performance and statistics. Classification
performance of a 5× 2-fold cross validation for four subjects quantified with mean BA and standard
error is presented by the dots in the diagram. The x-axis shows different training settings: A, B, C – one
training window per movement marker ending at different times with respect to the movement marker;
A+A, B+B, C+C, A+B, B+C, C+A – two training windows per movement marker, combined within
the same cluster or with other clusters. All – all 13 training windows were used to train a classifier.
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Supporting Information Legends

Video S 1. Online adaptation of the OMS by eBR in the teleoperation scenario: It is shown
how the OMS that is adapted by eBR supports the current state, i.e., success or failure in the
recognition of important information, of an operator who is teleoperating a robotic arm. In case a
failure in the recognition of important, i.e., task-relevant, information is detected, the important
information is repeated after a short while. In case that success in the recognition of important
information was detected, the important information will not be repeated for a longer time during
which a response of the subject is monitored. In case the response is missing within the extended
response time the important information is repeated although BR detected success in the recognition of
the important, i.e., task-relevant, information.

Video S 2. Teleoperation scenario and eBR for the adaptation of two HMIs: It is shown how
an operator controls a robotic arm via a virtual scenario that is presented to him by an HMI. The
control of the robotic arm is enabled by an exoskeleton. While controlling the robotic arm, the operator
has to respond to important warnings. The implemented OMS is supporting the operator in this task.
Both HMIs, the OMS and the exoskeleton, are adapted by eBR.

Video S 3. Online adaptation of the exoskeleton by eBR in the teleoperation scenario: It is
shown how the exoskeleton’s control is adapted by eBR to ease the lock out from a rest position. Online
prediction values and the point in time at which sensors that are integrated in the exoskeleton detect
the movement onset are visualized in an inserted diagram. Video and online prediction values for BR as
well as movement onsets are synchronized in time. The video shows that too early or false movement
predictions by BR are irrelevant for the control of the system. Only correct movement predictions ease
the handling of the exoskeleton by the operator.

Video S 4. Online detection of failure and success in the recognition of important
information in the Labyrinth oddball scenario: It is shown how BR is able to detect the success
and failure in the recognition of important, i.e., task-relevant, information. P300 related processes that
are evoked by target recognition processes are detected online in the Labyrinth Oddball scenario.


