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Abstract
Electromagnetic articulography (EMA) captures the position
and orientation of a number of markers, attached to the artic-
ulators, during speech. As such, it performs the same function
for speech that conventional motion capture does for full-body
movements acquired with optical modalities, a long-time staple
technique of the animation industry.

In this paper, EMA data is processed from a motion-capture
perspective and applied to the visualization of an existing mul-
timodal corpus of articulatory data, creating a kinematic 3D
model of the tongue and teeth by adapting a conventional motion
capture based animation paradigm. This is accomplished using
off-the-shelf, open-source software. Such an animated model
can then be easily integrated into multimedia applications as a
digital asset, allowing the analysis of speech production in an
intuitive and accessible manner.

The processing of the EMA data, its co-registration with 3D
data from vocal tract magnetic resonance imaging (MRI) and
dental scans, and the modeling workflow are presented in detail,
and several issues discussed.
Index Terms: speech production, articulatory data, electromag-
netic articulography, vocal tract, motion capture, visualization

1. Introduction
Speech scientists have a number of medical imaging modalities
at their disposal to capture hidden articulatory motion during
speech, including realtime magnetic resonance imaging (MRI),
ultrasound tongue imaging, and electromagnetic articulography
(EMA) [1], the latter more recently in 3D [2]. Such techniques
are commonly used to analyze and visualize the articulatory mo-
tion of human speakers. Indeed, the resulting data has been ap-
plied to articulatory animation for audiovisual (AV) speech syn-
thesis [3–8]; using motion-capture data to animate such mod-
els can lead to significant improvements over rule-based ani-
mation [9]. However, these synthesizers are generally focused
towards clinical applications such as speech therapy or biome-
chanical simulation.

While the lip movements can be acquired using optical
tracking and the teeth and jaw are rigid bodies, the tongue is
more complex to model, since its anatomical structure makes
it highly flexible and deformable. The majority of previous
work has modeled the tongue based on static shapes (obtained
from MRI) and statistical parametric approaches to deform-
ing them by vertex animation [6, 7] or finite element model-
ing [10–14]. [4] and [15] are an exception in that they deform

the tongue model using a skeletal animation technique, which
rigs the tongue mesh on an armature of pseudo-bones exerting
varying degrees of influence on the position of the mesh ver-
tices.

In this paper, we describe a technique for articulatory ani-
mation, i.e., visualization of movements of the articulators dur-
ing speech, by adapting a conventional motion capture based
animation paradigm (Section 2). A form of skeletal animation
is applied to the tongue, but driven directly by EMA data, with-
out the intermediate abstraction of independent parameters. The
static 3D model is extracted from volumetric MRI and dental
scans from the same speaker as the EMA data. In this way, we
avoid the issue of cross-speaker vocal tract normalization.

The reader is kindly requested to note that this technique is
by no means intended to provide an accurate model of tongue
shapes or movements, as previous work using biomechanical
models does; rather, the advantage here is the lightweight im-
plementation, which relies exclusively on the articulatory data
itself, processed as described in Section 3.2, and a conventional
3D modeling workflow using industry standards and off-the-
shelf, open-source software (cf. Section 3.3); this eliminates
the implementation issues which burden more ambitious frame-
works [13, for instance].

2. EMA as motion capture
Motion capture has been used for many years to analyze human
movements, gait and gestures, and to control the motions and
expressions of avatars and virtual characters in a variety of me-
dia [16]. Accordingly, an entire industry has formed around the
acquisition and processing of motion capture data, and the rig-
ging and animation of 3D models that are controlled using this
data. There is a huge community of producers and consumers
of motion capture, countless databases and stock animation re-
sources, and a rich ecosystem of proprietary and open-source
software tools to manipulate them.

Despite attempts to design and promote elaborate and flex-
ible universal standards for motion capture data [17,18], certain
other industry-backed file formats have evolved to become de-
facto standards instead [19]. One format in particular, Biovi-
sion Hierarchy (BVH), has survived the company that created it
and is now widely supported, presumably because it is simple
and clearly defined, straightforward to implement, and human-
readable [20, 21].

A BVH file contains ASCII text divided into two sections,
which define the skeletal objects underlying the motion cap-



ture data in a HIERARCHY of joints, and the MOTION of these
objects, respectively. Although most BVH data describes the
shape and motion of bipedal humanoids, this is by no means a
requirement; multiple independent objects of arbitrary internal
structure can be defined.

This feature of the BVH format, along with its widespread
support, is a simple, but fundamental point for the premise of the
present paper. By interpreting the coils of EMA data as objects
whose motion is captured over time and describing it in a format
such as BVH, it becomes straightforward to introduce the EMA
data into a conventional motion capture processing workflow
and to use it to control the visualization of geometric models of
speech articulation.

3. Articulatory animation
Based on previous work exploring the feasibility of articulatory
animation based on EMA in a motion capture paradigm [22], we
apply our articulatory modeling approach to a large multimodal
corpus of articulatory data.

While we had previously experimented with a layout of
seven EMA coils on the tongue, we found that the resulting ani-
mation was vulnerable to noise and errors in the seven-coil data,
potentially due to the influence of any or all of the following fac-
tors: (a) coil detachments during the recording session, (b) faulty
coil hardware, (c) interference due to coil proximity, and (d) is-
sues with the post-processing software [23].

3.1. Multimodal corpus

The mngu0 corpus [24] contains articulatory data obtained from
a single male speaker of British English, using a variety of
modalities. This data is freely available for research purposes.
Several hours of speech were recorded using a Carstens AG500
articulograph and video camera, yielding 3DEMAdata and syn-
chronized video and audio for more than 2000 utterances [25].
In addition, a set of volumetric and dynamicMRI scans were ac-
quired of the speaker’s vocal tract during sustained and vowel-
consonant-vowel speech production, respectively [26]. Finally,
dental casts were made of the speaker’s teeth, gums, and palate;
the casts were then scanned to produce high-resolution, digital
3D models.

3.2. Data processing

3.2.1. EMA data

For this paper, the “day 1” subset of the EMA data in the mngu0
corpus was used; the layout features EMA coils on the upper and
lower lip, three tongue coils (T1-3, on the tip, blade, and dorsum,
respectively), and mandibular incisors, as well as reference coils
behind each ear, on the bridge of the nose, and on the maxillary
incisors.

The large number of utterances and unusually high quality
of the data greatly outweigh the sparse coverage of the tongue
surface represented by only three coils. Nevertheless, it turns
out that the spline IK based animation (cf. Section 3.3.2) yields
satisfactory results with this arrangement.

The mngu0 EMA data is provided in binary EST_Track
format, which can be manipulated using the Edinburgh Speech
Tools [27]. The data was processed directly from the raw
amp files produced by the AG500, using a custom version of
TAPADM [28]. The EMA coil orientation is encoded not as two
Euler angles, as in the pos file format produced by the Carstens
software [29], but as three rotation normals.

HIERARCHY
ROOT T3
{

OFFSET -0.083 -0.686 0.722
CHANNELS 6 XPosition YPosition ZPosition …

XRotation YRotation ZRotation
End Site
{

OFFSET 0.000 -1.000 0.000
}

}
ROOT upperlip
{

OFFSET -0.945 0.297 -0.130
CHANNELS 6 XPosition YPosition ZPosition …

XRotation YRotation ZRotation
End Site
{

OFFSET 0.000 -1.000 0.000
}

}
MOTION
Frames: 724
Frame Time: 0.005
6.790 12.273 1.200 -8.137 56.687 -1.782 …

-6.083 12.965 0.386 19.706 -11.455 …
-52.567 0.175 0.978 -3.002 3.939 24.401 …
-51.690 0.053 -0.487 -2.579 56.493 9.144 …
-2.778 0.005 -0.006 5.717 56.740 1.991 …
7.709 -0.003 -0.026 0.006 -57.279 -1.344 …
0.390 0.258 1.551 -0.986 7.964 -30.909 …
-47.582 0.106 3.215 0.254 -8.542 -56.293 …
-6.396 0.112 5.056 -0.049 -4.804 -39.311 …
41.405 0.096 -1.061 -0.194 -54.183 …
17.068 -7.465

6.789 12.272 1.201 -8.140 56.686 -1.790 …
-6.083 12.966 0.386 19.704 -11.460 …
-52.566 0.172 0.979 -3.003 3.946 24.397 …
-51.692 0.050 -0.489 -2.579 56.493 9.144 …
-2.788 0.005 -0.006 5.717 56.741 1.995 …
7.702 -0.003 -0.025 0.006 -57.279 -1.347 …
0.390 0.260 1.550 -0.986 7.962 -30.937 …
-47.564 0.107 3.215 0.254 -8.544 -56.295 …
-6.380 0.114 5.058 -0.051 -4.791 -39.304 …
41.413 0.094 -1.057 -0.196 -54.183 …
17.063 -7.476

Listing 1: Excerpt of one BVH file (mngu0_s1_0001.bvh).
Note that only two EMA coil objects (T3 and upperlip) are
listed, and the motion data (shown for all 10 coils) is truncated
after the second frame.

The EST_Track files were converted to BVH format in
the following manner. Each EMA coil is interpreted as an inde-
pendent armature in the HIERARCHY and encoded as a separate
ROOT object with six channels corresponding to the Cartesian
coordinates and rotation normals of the coil’s position and ori-
entation, respectively. The values for each coil’s OFFSET from
the origin represent the coil distribution in the first data frame.
Each armature is terminated by a tip whose OFFSET is given
by a unit vector. The MOTION is simply copied from the corre-
sponding channels in the EST_Track data. An example of the
result of this conversion is given in Listing 1.

For downstream registration using the palate as a landmark
(cf. Section 3.3.1), in lieu of a dedicated palate trace sweep, the
convex hull of the tongue coil position samples was calculated
as a contour intersected with the speaker’s midsagittal plane, us-
ing VisArtico [30]. This reconstructed palate contour was then
exported as a 3D point cloud.



(a) Tessellated voxels from MRI scan. (b) Retopology cage. (c) Smoothed mesh used for deformation.

Figure 1: Tongue mesh retopology.

3.2.2. Tongue MRI data

Instead of an artificial static 3Dmodel of the tongue and teeth, as
was used for our feasibility study [22], the present paper uses a
static tongue mesh extracted from the MRI subset of the mngu0
corpus. Selecting an articulatory configuration with a clearly
visible cavity between the tongue and palate surfaces, the tongue
from the volumetric MRI scan of the sustained vowel [ɑː] was
manually segmented and exported, using OsiriX [31], which
acts as a graphical user interface to a number of toolkits for ma-
nipulating and visualizing medical imaging data.

The tongue was first enclosed in a region of interest (ROI)
annotation in each MRI slice, drawn by hand using a pen tablet.
The pixel values outside these ROIs were then set to zero. Fi-
nally, the tongue was rendered as an isosurface within the 3D
ROI formed by interpolating between the slicewise annotations,
using a threshold value, and exported as a static 3D mesh (Fig-
ure 1a).

Since this mesh is generated simply by tessellating the
anamorphic voxels of the volumetric MRI data, the mesh topol-
ogy is extremely ill-suited to the goal of realistic deformation.
As a consequence, the tongue mesh was retopologized with a
simple cage, which was “shrinkwrapped” to the surface of the
exported mesh (Figure 1b) and smoothed using Catmull-Clark
subdivision [32] (Figure 1c); this task was performed using
Blender [33].

In order to obtain a landmark to be used in subsequent reg-
istration (cf. Section 3.3.1), the hard palate was also segmented
and exported as a static mesh in a manner analogous to the
tongue extraction.

3.2.3. Dental scans

As the resolution of the dental scans was deemed too high for
efficient processing, the vertices of the maxilla and mandible
meshes were deduplicated (using MeshLab [34]) and decimated
(using Blender) to roughly 5%; this reduced the vertex count
from 927282 and 836892 to 7729 and 6976 for the maxilla and
mandible, respectively.

3.3. Vocal tract modeling

The MRI and dental cast scans were co-registered, and the re-
sulting static 3D model was rigged and animated with the EMA
data, as described below.

(a) EMA only; the palate contour is shown as a dotted line.

(b) Dental scans added.

Figure 2: Registration of EMA data and dental scan meshes.

3.3.1. Cross-modal registration

Using the palate as a landmark, the data from the different
modalities was registered into the same geometric space. The
palate contour from the EMA data was used to position the max-
illary dental mesh, while themandibular meshwas initially posi-
tioned accordingly, using the occlusal plane as a reference (Fig-
ure 2). The retopologized tongue mesh was co-registered with
the other modalities by fitting the surface of the exported palate
mesh to the palate surface of the maxillary dental scan.



(a) Tongue mesh with spline and hooks. (b) Envelopes which determine the vertex de-
formation weights for each armature joint.

(c) Animated model, with tongue body raised
towards a velar constriction. The maxilla is
hidden to permit a better view of the tongue
surface.

Figure 3: Rigging and animating the articulatory model.

3.3.2. Rigging

A 3D non-uniform rational B-spline (NURBS) was created
along, and just under, the surface of the tongue mesh, from the
tongue root to the tip in the midsagittal plane. The three EMA
tongue coils were then configured to act as “hooks”, or control
points, modifying the shape of the spline according to their de-
viation from the initial bind pose (Figure 3a). The hooks were
then assigned as children of the respective tongue coils, so that
the EMA data determines their positions.

An armature “chain” was then created and parented to the
NURBS, following its shape using spline IK. The armature en-
velopes for this chain were expanded to enclose the upper sur-
face and sides of the tongue mesh, and vertex groups were cre-
ated for the mesh to control the tongue’s deformation, with
weights assigned automatically, based on the envelopes (Fig-
ure 3b).

For jaw motion, a simple modifier was added to rotate the
mandibular dental mesh around a hinge, tracking the EMA coil
on the mandibular incisors.

3.3.3. Animation

As a result of the rigging process described above, the EMA
data drives the motion of the jaw in the articulatory model, and
likewise controls the tongue by deforming the NURBS, which
in turn modifies the shape of the tongue armature using spline
IK. An example of the animation rendered in this manner can
be seen in Figure 3c and in the supplementary material for this
paper.

3.4. Evaluation

By comparing the motion of the tongue coils with that of three
corresponding vertices on the tongue mesh, we receive a rough
evaluation of how well the animation preserves the nature of
the articulatory data. While the sparse topology of the mesh
does entail a noticeable offset (cf. the example in Figure 4), the
overall mean correlation of 0.95 indicates that the characteristics
of the natural movements are reflected in the animation.

It should be noted that the shape of the tongue mesh, when
it is deformed by the EMA data for a given articulatory configu-
ration, cannot be expected to match that of static tongue shapes
obtained by, e.g., sustained production in a supine posture. Nev-
ertheless, it could be useful to compare the surfaces of such
tongue shapes with those obtained through deformation of the
static mesh. Since corresponding data is available in the mngu0
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Figure 4: EMA-measured and animated trajectories of the three
tongue coils and corresponding vertices for one utterance.

corpus, such comparisons are indeed planned in the near future.
A better assessment of the tongue deformation’s degree of real-
ism would however be possible by comparing it with real-time
MRI of fluent speech [35, 36]

4. Discussion and Outlook
While the kinematics of the articulatory animation appear natu-
ral, a number of issues were identified with the techniques pre-
sented here, and remain to be addressed.

• The tongue segmentation fromMRI data, and subsequent
retopology, represent a rather tedious manual process.
Automation of some or all of the aspects of these tasks
would be highly desirable.

• The manual cross-modal registration based on the palate
contour is also error-prone. Actual 3D palate trace data
in the EMAmodality would permit a more robust surface
fitting technique.

• There are currently no constraints to prohibit the 3Dmod-
els from passing through one another. By integrating col-
lision detection using a physics engine such as [37], this
could be prevented, and soft body dynamics simulated.

• The placement of EMA coils determines the animation.
This is both a blessing and a burden, since the lack of in-
dependent parameters could cause non-optimal coil lay-
outs to unduly influence the animation.



• The initial bind pose in the rigging process is critical to
subsequent animation; if the exact position of e.g., the
jaw coil relative to the mandibular mesh can only be es-
timated, the overall animation will reflect a poor choice
here.

• The MRI data was acquired in a supine position, but the
EMA data was recorded with the speaker sitting upright.
As a result, the extracted tongue mesh may well be influ-
enced by posture and gravity [38].

In conclusion, we have presented an articulatory anima-
tion technique which is driven by articulatory data in a con-
ventional motion capture based animation paradigm. It features
a lightweight implementation using off-the-shelf, open-source
software, and a footprint that is small enough to allow integra-
tion of the resulting model into applications for articulatory data
exploration and real-time visualization, as well as integration
into frameworks for AV speech synthesis for virtual characters,
where realistic animation is more important than matching the
true shape of the tongue.

Future work includes evaluating the tongue animation based
on different tongue shapes or contours in real imaging data, as
well as co-registration with the video data in the mngu0 corpus,
based on optical tracking of the visible EMA coils.
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