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ABSTRACT
This paper presents Swarm-Assisted Behavior Graph Evolu-
tion (Sabre), a genetic algorithm which combines elements
from genetic programming and neuroevolution to develop
Behavior Graphs (Bgs). Sabre evolves graph structure
and parameters in parallel using particle swarm optimiza-
tion (Pso) for the latter. The algorithm’s performance was
evaluated on a set of black-box function approximation prob-
lems, one of which represents part of a robot controller. We
found that Sabre performed significantly better in approxi-
mating the mathematically complex test functions than the
reference algorithms genetic programming (Gp) and Neat.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: ARTIFICIAL INTEL-
LIGENCE—Learning
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1. INTRODUCTION
In this work we present a new genetic algorithm - Swarm-

Assisted Behavior Graph Evolution (Sabre) - and vary its
components to explore two ways of improving current evo-
lutionary methods: (I) changing the properties of the struc-
tural elements and (II) applying a specialized algorithm for
tuning the structures’ parameters. Behavior Graphs (Bgs)
were recently presented as an approach combining the func-
tion representation of artificial neural networks (Anns) and
genetic programming (Gp) to allow the construction of sim-
ple network structures capable of complex calculations [?].
As for point (II), the potential of local parameter search
on evolving structures has previously been shown [?]. Par-
ticle Swarm Optimization (Pso) is a widely known search
algorithm which performs comparably well or better than
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other methods especially on complex or changing fitness
landscapes.

2. GENETIC BEHAVIOR GRAPHS
Sabre uses a genetic representation to evolve Bg struc-

tures and their parameters in parallel. The former are de-
veloped using a genetic algorithm implementation, while the
latter are subjected to Pso.

A behavior node combines the node representation used in
Gp with the representation used in Anns (Fig. ??). Possible
merge functions are weighted sum (SUM), product (PRODUCT),
the signal with the greatest weight (WTA) as well as MAX and
MIN. The mapping between the inputs and outputs is done
by a transfer function. Possible functions include PIPE which
simply maps the input to the output, the mathematical func-
tions DIV, SIN, COS, TAN, ACOS, ATAN2, POWER and SIGMOID,
as well as PHI which facilitates conditional branching. Most
of these functions take a single input and provide a single
output, except ATAN2 and POWER which take two inputs and
PHI which takes three.

In Sabre, Bgs are represented by gene strings containing
genes encoding nodes and connections. Newly developed
genes are attached to the end of the gene string, thereby
sorting the genes by age. Two nested loops are implemented,
the outer one dealing with structure development, running
continuesly, and the inner optimizing the parameters of the
gene strings, iterating n times per outer loop iteration. To
realize this hierarchical subdivision, the population is split
into subpopulations P1 through Pκ, whereby each subpopu-
lation Pi represents one structure. What varies within sub-
populations (consisting of λ individuals), are the parameters
defined in the genes. Two possibilities for varying gene pa-
rameters were used: Pso, the standard for Sabre, and a
1 + λ evolutionary strategy (Es). For the experiments de-
scribed here, n, κ and λ were set to 10.
Whenever a new gene is created, it is assigned a unique iden-
tifier – similar to the historical markers used in Neat [?].
In the Pso implementation, every particle of the swarm is
given one segment per unique gene it maps to (the segment
encoding as many parameters as required by the particular
gene). The unique identifiers of the genes ensure correct
mapping even when gene strings are cloned or of varying
sizes.

3. EXPERIMENTS
Black-box function approximations were used to evalu-

ate the performance of Sabre. In total, four variants of
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Figure 1: Different representations of nodes used in
a GP tree (a), ANN such as used in NEAT (b), and
BGs (c). A GP node defines a fix number of inputs
and one output to be used in the tree structure of
the GP phenotype (e.g. node T1 gets two inputs).
The ANN node uses a transfer function
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a variable number of inputs to one value that is used
by an activation function A. The activation function
calculates the output of the node. The BG node
mixes both concepts by defining a transfer function
T2 with a fixed number of inputs. The transfer func-
tion can also have more than one output. For each
input a merge function M1 and M2 is defined.

Sabre were tested, using a full set of transfer functions
(Sabrefull) and only the sigmoid function (Sabreσ) both
with and without Pso: Sabrefull/PSO, Sabrefull/ES , Sab-
reσ/PSO, Sabreσ/ES . A standard Gp algorithm as well as
the neuroevolutionary algorithm Neat were used for per-
formance comparison. Similar to Sabre, Gp was used in
two configurations: with a full and a reduced (only SIG and
ADD) set of transfer functions. Each of the combinations
of algorithm and benchmark function were replicated 100
times on a training set of inputs drawn randomly from a
uniform distribution U [−1, 1]. In every such setting, the
chosen algorithm was allowed to compute 500,000 fitness
evaluations. Fitness was computed as root-mean-square er-
ror (thus smaller values meaning higher fitness). It was eval-
uated on the training set, however, fitness values reached on
an independently created equally-sized test set were used to
track fitness development over time and for comparison of
fitness distributions between the algorithms. Two bench-
mark functions were used: f1 and f2. Function f1 is a com-
bination of nested sigmoid functions and sums and can be
represented by Anns with three input nodes, two hidden
nodes and two output nodes. The function is defined as:

f1out1(x1, x2, x3) = σ(0.1σ(0.25x1 + 0.4x2 − 1.2)+
0.3σ(x2 + x3 − 0.215) + 0.1123)

f1out2(x1, x2, x3) = σ(x1 + 0.0314)

Function f2 represents the inverse kinematics calculation of
a leg of the SpaceClimber robot [?] and possesses four inputs
and four outputs.

4. RESULTS & DISCUSSION
For both benchmark functions, achieved fitness on the test

set was significantly different between the examined algo-
rithms (Mann–Whitney U-test, p < 5%), with Sabreσ/PSO
performing best, followed by Sabrefull/PSO and Neat (Fig.
??). Sabreσ/ES and Sabrefull/ES show intermediate per-
formance in both functions. With both Es and Pso, Sabre
performs better with a reduced function set (only SIGMOID).
GPsigma performed worst in both tests, while GPfull was
almost as good as Neat and Sabrefull/PSO in f1.
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Figure 2: Development of average RMSE over run-
time; corresponding final RMSE distribution is dis-
played as boxplots.

The results indicate that Sabre in its standard form us-
ing Pso outperforms the variants using Es. Thus using Pso
to optimize parameters BGs seems a very promising ap-
proach. It is noteworthy that Sabre performed better with
a reduced function set, which may be explained by the com-
parably small incremental steps and thus the evolutionary
stability resulting from the use of a sigmoid transfer function
only.

As for the overall performance of Sabre, we can con-
clude from our data that for certain types of complex prob-
lems such as inverse kinematics of real robots, Sabre is able
to produce superior results compared to standard Gp and
Neat. It has to be noted that it may be possible to find
configuration parameters for the two comparison algorithms
changing these results, however we were unable to obtain
such parameter sets despite various tests.
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