
Towards Lifelong Learning of Optimal Control for Kinematically
Complex Robots*

Alexander Dettmann1, Malte Langosz2, Kai von Szadkowski1, and Sebastian Bartsch2

Abstract— Robots intended to perform mobile manipulation
in complex environments are commonly equipped with an
extensive set of sensors and motors, creating a wide range of
perception and interaction capabilities. However, to exploit all
theoretically possible abilities of such systems, a control strategy
is required that allows to determine and apply the best solution
for a given task within an appropriate time frame. In this paper,
a lifelong self-improving control scheme for kinematically com-
plex robots is presented, which uses simulation-based behavior
generation and optimization procedures to create a library of
well-performing solutions for varying tasks and conditions, and
combines it with case-based selection, evaluation, and online
adaptation methods.

I. INTRODUCTION

Behavior-based systems are best suited for changing en-
vironments, where fast response and adaptivity are cru-
cial [1]. Their distributed nature increases fault tolerance
and promotes component reuse as well as distributed devel-
opment [2], [3]. However, coordination effort of behaviors
increases with system complexity, making the control of
behavior-based systems a challenging task. This is espe-
cially true for kinematically complex robots such as walking
machines, whose different locomotion patterns, postures, or
reflexes will be more or less efficient depending on the
context, i.e., the external environment, the internal state, and
the actual task. Current systems react to context changes by
tuning parameters of their existing behaviors [4], [5], [6], but
work on online integration of new behaviors for completely
new contexts is rather sparse.

As future robots will be required to act more and more
autonomously in well-known as well as in novel environ-
ments, it is important to equip robotic systems with tools to
efficiently adapt to unknown contexts. For mobile platforms
it is thus desired to use machine learning algorithms and/or
simulation methods to create new sets of behaviors for situ-
ations in which none of the predefined locomotion behaviors
is well suited. Such newly-derived behaviors will then have
to be directly included in the running robot control to be
utilized on the spot.

*The presented work was carried out in the project LIMES, a collab-
oration between the DFKI Robotics Innovation Center and the University
of Bremen, funded by the German Space Agency (DLR, Grant numbers:
50RA1218, 50RA1219) with federal funds of the Federal Ministry of
Economics and Technology (BMWi) in accordance with the parliamentary
resolution of the German Parliament.

1Alexander Dettmann and Kai von Szadkowski are with the Faculty of
Mathematics and Computer Science, University of Bremen, 28359 Bremen,
Germany firstname.lastname@uni-bremen.de

2Sebastian Bartsch and Malte Langosz are with the German Research
Center for Artificial Intelligence - Robotics Innovation Center (DFKI RIC),
28359 Bremen, Germany firstname.lastname@dfki.de

Fig. 1. Context-based control approach

Commonly a decision layer is used on top of a control
layer, with the former generating tasks derived from de-
liberative planning processes and the latter executing these
by producing appropriate target values for the actuators.
This structure leaves a gap, as higher deliberative planning
algorithms cannot take all configuration possibilities of the
control layer into consideration. Consequently, the full poten-
tial of a robot is not used or an operator has to be included
in the loop to tune the system according to the changing
contexts in which the robot finds itself in.

As a solution for these problems, an intermediate layer is
proposed which configures the control layer autonomously
according to the inputs from higher and lower layers (Fig. 1).
This context layer receives commands specifying the desired
task from the decision layer, e.g., “move forward at a certain
speed and as stable as possible”, as well as data defining
the current state from the control layer, e.g., “hard ground
with small scattered obstacles”, and builds up a context
representation. Based on this context, the best-known config-
uration of the control layer is retrieved from a behavior-based
library (BBL) and applied on the robot. This encapsulation
of the control layer provides a robot-independent interface
to higher levels, allowing a far more abstracted design of the
deliberative control layer.

Section II describes the BBL and its components followed
by a description of how optimization in simulation can
generate additional competence (Section III). The selection
principle to choose the best configuration of the control
layer according to the current context and the data available
in the BBL is described in Section IV. SectionV details
a simple example for how the proposed approach can be
used to improve the performance of the robot by integrating
externally generated knowledge. In the last section, a brief
conclusion and an outlook are provided.



II. BEHAVIOR-BASED LIBRARY

The BBL basically represents the memory of a robot. On
the one hand, it consists of solutions in form of algorithms
and parameterizations, which both together result in config-
urations of the control layer. On the other hand, it holds all
information required for proper selection or even creation of
new solutions, i.e. performance evaluations of configurations
in diverse contexts.

The BBL can easily be used in conjunction with robotic
frameworks such as ROS1 and Rock2, and thus its function-
ality can be integrated in a large number of diverse robotic
systems.

A. Behavior Representation

In reactive control approaches, the overall robot behavior
emerges from the interaction of several behavior producing
modules, simply called behaviors. In the proposed approach
two behavior types are available, graph behaviors and pa-
rameter behaviors.

Graph behaviors are defined as nodes, as described in [7],
mapping a defined number of input ports to a defined
number of output ports (Fig. 2). This mapping is realized
via a graph of behavior producing modules, which are either
atomic transfer functions or themselves graph behaviors.
Since both are using the same interfaces, there is no need
for special handling in the different layers, thus allowing
a hierarchical decomposition of behaviors. Possible atomic
transfer functions include direct mapping of input to output,
various mathematical such as trigonometric functions or
conditional branching.

The signals used in these graphs are tuples of values
and accompanying weights, allowing flexible interactions of
the modules. Both outputs and inputs may be connected to
multiple other ports, however in the latter case, one of various
available merge functions is used to calculate a resulting
input value for each input port. If an input is not connected
a default value is used instead.

Behavior modules and their individual input and output
ports can be named and annotated with additional meta
information in the form of textual descriptions. This allows to
attach a description or information on a behavior’s suitability
for a certain scenario, providing higher control layers or
a human operator with necessary information to select an
appropriate behavior for a given context. Annotations for
ports can take the form of units and type information as
well as expected input and output ranges. The latter allow
the usage of interval analysis [8] for consistency checking.

The flexibility of this design and the common interface of
graph behaviors, no matter how complex internally, opens
many possibilities. For instance, any algorithm for which
numerical inputs and outputs can be specified can be wrapped
in a graph behavior module and thus be integrated in the
overall behavior of a robot on any level of the graph hierar-
chy. Tools for designing new and altering existing behaviors

1http://www.ros.org
2http://rock-robotics.org

Meta DataMeta Data

Meta Data

M
e
rg
e

Input 1

Meta Data

M
e
rg
e

Input N

Meta Data

M
e
rg
e

Input 2

Meta Data

Output 1

Meta Data

Output 2

Meta Data

Output N

Meta DataMeta Data

Meta Data

M
e
rg
e

Input 1

Meta Data

M
e
rg
e

Input N

Meta Data

M
e
rg
e

Input 2

Meta Data

Output 1

Meta Data

Output 2

Meta Data

Output N

Meta DataMeta Data

Meta Data

M
e
rg
e

Input 1

Meta Data

M
e
rg
e

Input N

Meta Data

M
e
rg
e

Input 2

Meta Data

Output 1

Meta Data

Output 2

Meta Data

Output N

Meta DataMeta Data

Meta Data

M
e
rg
e

Input 1

Meta Data

M
e
rg
e

Input N

Meta Data

M
e
rg
e

Input 2

Meta Data

Output 1

Meta Data

Output 2

Meta Data

Output N

Meta DataMeta Data

Meta Data

M
e
rg
e

Input 1

Meta Data

M
e
rg
e

Input N

Meta Data

M
e
rg
e

Input 2

Meta Data

Output 1

Meta Data

Output 2

Meta Data

Output N

Meta DataMeta Data

Meta Data

M
e
rg
e

Input 1

Meta Data

M
e
rg
e

Input N

Meta Data

M
e
rg
e

Input 2

Meta Data

Output 1

Meta Data

Output 2

Meta Data

Output N

Meta DataMeta Data

Meta Data

Me
rge Input 1

Meta Data

Me
rge Input N

Meta Data

Me
rge Input 2

Meta Data

Output 1

Meta Data

Output 2

Meta Data

Output N

Meta DataMeta Data

Meta Data

Me
rge Input 1

Meta Data

Me
rge Input N

Meta Data

Me
rge Input 2

Meta Data

Output 1

Meta Data

Output 2

Meta Data

Output N

Meta DataMeta Data

Meta Data

Me
rge Input 1

Meta Data

Me
rge Input N

Meta Data

Me
rge Input 2

Meta Data

Output 1

Meta Data

Output 2

Meta Data

Output N

Meta DataMeta Data

Meta Data

Me
rge Input 1

Meta Data

Me
rge Input N

Meta Data

Me
rge Input 2

Meta Data

Output 1

Meta Data

Output 2

Meta Data

Output N

Meta DataMeta Data

Meta Data

Me
rge Input 1

Meta Data

Me
rge Input N

Meta Data

Me
rge Input 2

Meta Data

Output 1

Meta Data

Output 2

Meta Data

Output N

+

*

+

*

+

Fig. 2. Graph behavior consisting of a network of atomic transfer functions
and another graph behavior

Dokumentation der
Arbeitspakete des Projektes

LIMES

Page: 83 of 141
Time: 13:46,
8. April 2013

kompakt ist. Außerdem existieren Bibliotheken zum Einlesen von YAML in vielen Program-
miersprachen. Das Format ist im folgenden, aus Ermangelung einer guten YAML-Schema
Sprache, in pseudo Backus-Naur-Form angegeben:
Datei = "nodes:", { Node }, "edges:", { Edge },

"networkInputIds:", { Int };
Node = "id:", Int, "type:" NodeType,

"inputs:", { Input }, "outputs:", { Output };
Input = "idx:", Int, "type:", MergeType,

"default:", Float, "bias:", Float;
Output = "idx:", Int;
Edge = "fromNodeId:", Int, "fromNodeOutputIdx:", Int,

"toNodeId:", Int, "toNodeInputIdx:", Int, "weight:", Float;
In Abb. 52 ist ein einfaches Beispiel einer solchen Datei zu sehen.

nodes:
- id: 1

type: "[PIPE]"
inputs:

idx: 0
type: "[PRODUCT]"
default: 1.0

outputs:
idx: 0

- id: 6
type: "[OUTPUT]"
inputs:

idx: 0
type: "[SUM]"

default: 1.0
outputs:
idx: 0

networkInputIds:
- 1

edges:
- fromNodeId: 1

fromNodeOutputIdx: 0
toNodeId: 6
toNodeInputIdx: 0
weight: 2.5

Figure 52: Beispiel für YAML-Datei zum Austausch von Verhaltensgraphen.

4.3.1.1 Erste Ergebnisse der Intervallanalyse In die C++-Implementierung der
Verhaltensgraphen wurde ebenfalls eine erste Version einer Intervallanalyse integriert. Diese
basiert auf der MPFI Bibliothek14, welche selber auf den etablierten C Bibliotheken MPFR15

und GMP16 basiert. Eine testweise Anwendung auf die SpaceClimber IK detektierte eine
potentielle Division durch Null. Diese tritt in einem schmalen Zylinder um das Thorax-
Gelenk auf, der in Abbildung 53 schematisch dargestellt ist. Zwar liegt dieser Bereich in
der Praxis außerhalb des Arbeitsbereichs des Beins, aber dieses Beispiel illustriert dennoch
die Nützlichkeit einer Intervallanalyse zur Validierung von Verhaltensmodulen.

4.3.2 AP3200 - Implementierung Basisverhalten
In diesem Arbeitspaket werden Basisstrukturen für Verhalten nach der in AP2100 definierten
Struktur implementiert. Dies bedeutet, dass Ein- und Ausgänge definiert sowie ein Algo-
rithmus für das jeweilige Verhaltensmodul implementiert werden. Je nach Verhaltenstyp
können feste Algorithmen implementiert werden, Variablen für spätere Optimierungen o�en
gelassen oder nur die Basisstruktur definiert werden, um anschließend mit einem Lernalgo-
rithmus die komplette Verhaltensstruktur inklusive Parameter zu lernen.

14http://mpfi.gforge.inria.fr/
15http://www.mpfr.org/
16http://gmplib.org/

All information contained in this document is property of DFKI GmbH. All rights reserved.

DFKI Deutsche Forschungszentrum für Künstliche Intelligenz GmbH DFKI Bremen Robotics Innovation Center Robert-Hooke-Strasse 5 28359 Bremen

Fig. 3. An example of a graph behavior in YAML (www.yaml.org)
format is shown. First, two nodes, one pipe and one output node are defined,
followed by the declaration of the network’s input nodes and the definition
of an edge from the input node to the output node.

can be built with little effort. One resulting advantage is
the possible application of machine learning algorithms to
change or optimize an algorithm by modifying the structure
and parameters of the corresponding behavior graph; similar
work is successfully done in the field of neuroevolution or
genetic algorithms [9], [10], [11]. The modular structure
simplifies testing, as a generic test suite can be used to
validate that a behavior operates in a given output range
and does not contain singularities such as divisions by zero.
Finally, due to the annotation with meta information, even
complex graph behavior can be saved in human readable files
such as shown in Fig. 3.

The second concept of behaviors used in the BBL is
that of parameter behaviors which parameterize the algorith-
mic graph behaviors, significantly influencing the emergent
robot behavior; e.g., the same walking pattern generator can
be switched from generating patterns for obstacle covered
slopes to patterns suitable for plain soft soil simply by
assigning different parameters. A parameter behavior can be
imagined as a behavior module having no inputs but outputs
with default values or as a parameter list as depicted in
Fig. 4(a).

B. Context-Based Behavior Evaluation

To be able to use the best-suited behaviors in the right
situation, their performance in diverse contexts needs to be



Dokumentation der
Arbeitspakete des Projektes

LIMES

Page: 12 of 48
Time: 12:29,
28. März 2014

nodes:
- id: 1

type: "[PIPE]"
inputs:

idx: 0
type: "[PRODUCT]"
default: 1.0
bias: 0.0

outputs:
idx: 0

- id: 6
type: "[OUTPUT]"
inputs:

idx: 0
type: "[SUM]"

default: 1.0
bias: 0.0

outputs:
idx: 0

networkInputIds:
- 1

edges:
- fromNodeId: 1

fromNodeOutputIdx: 0
toNodeId: 6
toNodeInputIdx: 0
weight: 2.5

Figure 3: Beispiel für YAML-Datei zum Austausch von Verhaltensgraphen.

name: planar_rigid_test3
topology: topology_0.yml
merge type: wta
behaviors:

planar_rigid_pattern3: 1
context evaluations:

- setup: real
evaluations: 53
state: planar_rigid_noSlope.yml
performance:

velocity x: [45, 3, mm/s]
velocity y: [5, 1, mm/s]
turn rate: [0, 0, ¶/s]
body height: [250, 0, mm]
body width: [890, 0, mm]
ssm: [145, 0, mm]
epd: [0.73, 0.1, Wh/m]
power consumption: [119, 7, W]

name: planar_pattern
type: parameter
behavior parameters:

walking_speed:
SpeedX: 50
LengthFactor: 0.51
LiftTime: 200
ShiftTime: 1400
TouchdownTime: 200
PhaseShift: 0.0

posture:
BodyHeight: 0.26
BodyShiftX: 0.1
BodyLean: 10.0
LegWidth: 0.42

All information contained in this document is property of DFKI GmbH. All rights reserved.

DFKI Deutsche Forschungszentrum für Künstliche Intelligenz GmbH DFKI Bremen Robotics Innovation Center Robert-Hooke-Strasse 5 28359 Bremen

(a) Parameter behavior

Dokumentation der
Arbeitspakete des Projektes

LIMES

Page: 12 of 48
Time: 12:29,
28. März 2014

nodes:
- id: 1

type: "[PIPE]"
inputs:

idx: 0
type: "[PRODUCT]"
default: 1.0
bias: 0.0

outputs:
idx: 0

- id: 6
type: "[OUTPUT]"
inputs:

idx: 0
type: "[SUM]"

default: 1.0
bias: 0.0

outputs:
idx: 0

networkInputIds:
- 1

edges:
- fromNodeId: 1

fromNodeOutputIdx: 0
toNodeId: 6
toNodeInputIdx: 0
weight: 2.5

Figure 3: Beispiel für YAML-Datei zum Austausch von Verhaltensgraphen.

name: planar_rigid_test3
topology: topology_0.yml
merge type: wta
behaviors:

planar_rigid_pattern3: 1
context evaluations:

- setup: real
evaluations: 53
state: planar_rigid_noSlope.yml
performance:

velocity x: [45, 3, mm/s]
velocity y: [5, 1, mm/s]
turn rate: [0, 0, ¶/s]
body height: [250, 0, mm]
body width: [890, 0, mm]
ssm: [145, 0, mm]
epd: [0.73, 0.1, Wh/m]
power consumption: [119, 7, W]

name: planar_pattern
type: parameter
behavior parameters:

walking_speed:
SpeedX: 50
LengthFactor: 0.51
LiftTime: 200
ShiftTime: 1400
TouchdownTime: 200
PhaseShift: 0.0

posture:
BodyHeight: 0.26
BodyShiftX: 0.1
BodyLean: 10.0
LegWidth: 0.42

All information contained in this document is property of DFKI GmbH. All rights reserved.

DFKI Deutsche Forschungszentrum für Künstliche Intelligenz GmbH DFKI Bremen Robotics Innovation Center Robert-Hooke-Strasse 5 28359 Bremen

(b) Configuration evaluation

Fig. 4. Example descriptions of components of the BBL

known. Therefore, this information is stored in the BBL as
well (Fig. 4(b)). Configuration evaluations can be generated
from experiments with the real robot or derived from opti-
mization results in simulation. They hold information about:

• the overall behavior graph (topology of behaviors)
• applied parameter behaviors and their merge method
• evaluation information for each encountered context

– setup information (useful to filter out undesired
experiences)

– number of evaluations
– all state context features
– mean and standard deviation of all performance

features

III. SIMULATION-BASED BEHAVIOR
GENERATION AND OPTIMIZATION

The efficacy of choosing context-based behaviors strongly
depends on the quality of the underlying behavior database.
This refers to both its extent, i.e. the number of contexts for
which a suitable behavior is available, and its elaborateness,
i.e. how well-tested stored behaviors are and how reliably
they perform. As it is virtually impossible to optimize
behaviors over a large number of experimental cycles on
the actual robotic system, the BBL is built not only by the
robot itself, but is also fed with simulation results. For this,
the open-source physical simulation environment MARS3

is utilized which is based on the Open Dynamics Engine
(ODE)4. Using MARS together with an integrated frame-
work for behavior learning, testing of vast sets of possible
behavioral solutions to problems posed by various contexts
and refinement of the resulting behaviors with sophisticated
optimization algorithms is made possible within reasonable
constraints of time and resources. This is further assisted by
the use of the meta information provided by the behaviors
being optimized, which allows to restrict the search space
by pre-defining dependencies, parameter ranges and other
properties of the respective modules.

3MARS (Machina Arte Robotum Simulans) is available on
https://gitorious.org/rock-simulation/mars

4http://www.ode.org/

In order to yield useful results, the simulation model of the
robot model as well as the characteristics of the simulated
environments have to be sufficiently accurate representations
of their real-world counterparts. This necessitates measure-
ments of the robot’s single components’ physical behavior as
well as including environmental factors such as soil dynamics
in the simulation. Still in most cases, behaviors evolved in
simulation will have to be adapted to be used on real robots
due to the remaining simulation-reality gap. Even given
these difficulties, developing behaviors in simulation still
constitutes a dramatically reduced effort when new strategies
are required in novel or changed contexts as compared to
developing said strategies on the real system from scratch.
Moreover, simulation allows to discard erroneous or unfit
parameter sets that might result in malfunction or damage of
the robot, providing a mechanism of safety-relevant quality
control. This is true for both offline-development of novel
behaviors in simulation as well as for online-testing of
newly-derived behaviours in the current context of a robot, an
approach becoming more and more feasible with the constant
increase in processing power.

IV. ONLINE BEHAVIOR SELECTION AND
ADAPTATION

Kinematically complex robots in real world scenarios have
a tremendous amount of possibilities to solve certain tasks.
Consequently, especially at the beginning of the lifetime of a
robot, only sparse domain knowledge and anecdotal experi-
ence are available. Thus, case-based reasoning (CBR) is used
to infer the best-suited configuration of the control layer for
a certain context. This artificial intelligence paradigm solves
problems by reusing experiences from similar, previously
solved problems [12]. A case consists of two parts. The
first part represents a solution, which is in the proposed
application a configuration of the control layer. The second
part holds a list of E performed configuration evaluations,
where each entry describes the number of evaluations, the
evaluation setup, the state context, and the evaluated perfor-
mance.

The BBL will contain several case bases which are used
in different scenarios, e.g., a six-legged locomotion scenario
and a manipulation scenario have different case bases. This
refines the case retrieval step described in the following
section. In addition, it can be beneficial to introduce new case
bases when something unpredictable occurs (as proposed
in [13]), e.g., a malfunction of a leg. Then, a corresponding
five-legged locomotion case base could be created with some
initial cases from the six-legged case base as a starting point.
These cases could then be adapted and optimized to fit the
current conditions. The BBL has the opportunity to load, use,
and store cases or switch entire case-bases according to the
current task.

In the proposed application of adaptive robot control,
the input problem is described by two feature vectors de-
scribing a robot’s current state Scur with M state features
(scur1 , ..., scurM ) and task Tcur with N performance features
(pcur1 , ..., pcurN ), where each feature is a tuple consisting



of value and weight. This format matches the description
of configuration evaluations in the BBL, with the notable
difference that the library contains mean and standard de-
viation values for the performance features prefn . To decide
which behavior configuration to deploy, the CBR algorithm
processes this input in multiple steps (Fig. 5) which are
very common for many CBR systems and are motivated
from [12]. First, the similarity of the provided context to
previously tested cases is evaluated, resulting in a number of
candidate behaviors. Then, a ballpark solution for the given
problem is derived from this set and adapted if necessary
according to the reigning conditions. The resulting behavior
configuration is checked one last time before execution
to avoid mistakes from the past. During application, the
performance is evaluated. Finally, the gained experiences are
stored in the corresponding case base. The algorithmic details
are described in the following subsections.

A. Case Retrieval

In the first step of CBR, all configuration evaluations in
the BBL are rated according to the input query. First, the
state and performance features are normalized according to
robot-specific limits, before a similarity measure is used
to determine how well a case from the case base matches
the input query. Since the input query consists of two
feature vectors of variable length, a multi-stage approach is
proposed: First, the state similarity SimState

e between the
current state features scurm and stored reference state features
srefm is calculated for each evaluation of each case, then the
task similarity SimTask is computed for the library entry
with the highest state similarity, and finally the overall case
similarity Sim is calculated.

In the first step, the weighted mean square error is used, as
it is more sensitive to large differences of one single feature
than to small differences of several features compared to
the weighted mean absolute error. The error is subtracted
from one (since normalized values are used) to get the state
similarity for each evaluation e ∈ E (1).

SimState
e = 1−

∑M
m=1(s

cur
m − srefm )2 · wS

m∑M
m=1 w

S
m

(1)

The weights for each feature variable wS
m are used to

include the confidence of the corresponding context feature
estimation. Alternatively, they could be used to model the
features’ importance, which can be learned to improve the
case retrieval [14]. If a state similarity has to be calculated
for a current state feature not listed in the evaluation,
two solutions are possible. The safest way is to set the
corresponding feature state similarity to zero. A more curious
strategy would be to set it to one. Finally, the state similarity
for the entire case SimState is represented by the maximum
state similarity of the E evaluations (2).

SimState = max(SimState
1 , ..., SimState

E ) (2)

The task similarity is calculated for the evaluation with the
highest state similarity, also using the weighted mean square

error (3),

SimTask = 1−
∑N

n=1(p
cur
n − prefn )2 · wP

n∑N
n=1 w

P
n

(3)

where wP
n are the weights of a performance ratio, which the

operator or higher layers can define to influence the robot
behavior. Therefore, the vector of performance features pcurn

contains the task-depending features (desired motion, ...) and
the evaluation features (stability, energy efficiency, ...). The
latter stay constant at their best value, e.g., the best stability
value would be one whereas the power consumption would
be zero. Finally, the overall similarity Sim of a case is the
product of both single similarities (4).

Sim = SimState · SimTask (4)

After determining the similarity of each case, the k nearest
neighbors (K-NN) are chosen, yielding a limited set of
candidates for the next processing stage. The K-NN are
limited by number and also have to reach a pre-defined
relative similarity threshold.

B. Ballpark Solution Proposal

In this step, a case solution or parts of several solutions are
extracted to form a temporary solution to be used in subse-
quent processing stages. A number of methods are available
for this, including choosing the most similar case [15],
drawing randomly from K-NN [16], or drawing from K-NN
according to the degree of similarity [17]. While the first
method simply selects the best known solution, the second
and third method avoid overusing one particular solution,
which might be beneficial in situations where the solution
with the highest similarity does not necessarily result in the
best performance. Deriving the average of K-NN solutions
is also common in case-based regression. Beyond these
methods, other merging techniques such as the application of
machine learning to explore new solutions can be imagined
as well.

C. Case Adaptation

Once a ballpark solution has been obtained, it is adapted to
fit the current needs. Here, two adaptation variants exist: con-
stant adaptation and continuous adaptation. Constant adap-
tation can be applied to vary the ballpark solution by taking
the dissimilarity between input query and ballpark solution
into consideration to enhance the expected performance.
Some rule-based approaches exist which use deep domain
knowledge to infer adaptation rules. However, this leads to
losing the generality of the overall approach. Instead, so-
called “knowledge-light” approaches use the implicit knowl-
edge of the case base to infer adaptations. For instance,
case difference heuristic approaches build adaptation rules
by comparing pairs of cases and identifying their context
and solution differences. The resulting mappings between
incoming context difference and resulting solution adaptation
are then scored according to some gradient [18], [19] or
covariance metrics [20].



Fig. 5. Processing steps of the case-based reasoning system

Continuously adapting algorithms on the other hand can
be applied in environments with low fluctuations to find
local performance maxima. Simply adding noise [15], [16]
or crouching and inverting a randomly initialized adaptation
vector [17] can lead to increasing system performance. Some
more sophisticated machine learning approaches such as
CMA-ES [21], REPS [22] or PSO [23] could certainly
improve the results. In addition, they could be used to handle
the simulation-reality gap. Imagine a behavior configuration
evolved through optimization in simulation is chosen as
a ballpark solution and finally applied. Because of the
simulation-reality gap, the performance will most certainly
differ, but probably still be close to the actual (local) opti-
mum. Thus, a lazy, fast-converging learning algorithm could
most likely be used to adapt the simulation solution to reality.
The required feedback would in this case be generated in the
evaluation step.

D. Case Criticism

Before the adapted solution is applied on the system,
it is criticized. In this processing step, solutions can be
rejected which have already been chosen and tested before
but did not perform well, thus avoiding known failures. If
this happens, a new solution has to be provided, repeating the
algorithm’s previous subroutines. This step is sparsely used
in literature. In [17] a case switching tree is used to recover
from overused cases which do not improve the situation.
Here, it is also advantageous to predict the performance of
the chosen solution. This information can help in later steps
to analyze the outcome of applying the generated solution.

E. Evaluation

The evaluation of a solution itself is separated from the
CBR algorithm since computation of the performance fea-
tures is robot-specific. The resulting performance vector only
has to match the case description. As mentioned before, the
results of the evaluation are needed in the other processing
steps. Useful performance metrics are energy efficiency,
stability, precision of task realization, processing time, or
other control-specific information.

F. Memory Storage

The last stage of a CBR system is the memory update,
which incorporates updating performance values of known
cases (configuration evaluations) or creating new cases (con-
figurations and their evaluations) if a new solution was
applied. Through gathering of new experiences, the robot
gets the opportunity to learn, i.e. increasing its performance
and competence. In addition, constantly updating the case
base incorporates wear out of the system.

V. PROOF OF CONCEPT

In order to show the possibility to include externally
generated knowledge in a robot control, the following exper-
iment was conducted in simulation and reality. The Space-
Climber [24] robot was set up to walk on a plane for 30 s as
energy-efficient as possible at a given speed of 50 mm/s. In a
first step, SpaceClimber’s BBL consisted of one configuration
evaluation holding performance information of one graph
behavior in combination with one parameter behavior. The
latter (Table I) was created with expert knowledge and has
shown good results in previous experiments [24]. During
context-dependent configuration of the control layer, this
solely available configuration evaluation was of course most
similar to the experimental context, which led to the appli-
cation of the corresponding graph and parameter behavior.

In the second step of the experiment, a new parameter
behavior was created in simulation, using a CMA-ES op-
timization aiming for energy efficiency of the previously-
tested graph behavior in the same context of walking on
plane ground. The resulting parameter behavior (Table I) was
stored in the BBL along with the corresponding configura-
tion evaluation (performance based on optimization fitness).
When repeating the 30 s walk, the optimized walking pattern
was selected by the configuration producer and applied on
the robot control because of its better performance in the
same context.

The resulting power consumption in both scenarios, sim-
ulation and reality, are depicted in Fig. 6. It is visible that
the power consumption in simulation is higher than on the
real system indicating a gap between simulation and reality.



TABLE I
PARAMETERS OF USED WALKING PATTERNS (ALL OTHER PARAMETERS

ARE KEPT AT THEIR DEFAULT VALUE AND ARE OMITTED FOR CLARITY)

pattern plane, handcrafted plane, optimized
body shift x in mm 0 100
body height in mm 250 275

speed x in mm/s 50 50
length factor [0...1] 0.5 0.5

lift time in ms 200 240
shift time in ms 1400 1560

touchdown time in ms 200 1600
phase shift [0...1] 0.0 0.0

swing amplitude in mm 100 100

Fig. 6. Power consumption while walking

While in simulation, the power consumption was lower with
the optimized locomotion pattern, this was not the case with
the real system. However, the optimized walking pattern tra-
versed 1,38 m during the 30 s while the handcrafted traversed
1,23 m. Consequently, the resulting energy per distance was
lower for the optimized locomotion pattern. The main reason
is that with the optimized pattern the feet are placed more
smoothly due to higher touchdown time resulting in less
slippage. Although the movement was improved, the walking
behavior on the real system was not optimal since the power
consumption was not less as indicated from the simulation
comparison.

VI. CONCLUSIONS AND OUTLOOK

In this paper, a control scheme for kinematically complex
robots is presented, which uses a BBL to store possible
control configurations and their performances in varying con-
texts. Real world experiences and optimization results build
the knowledge base which is continuously growing during
life-time increasing the robot’s performance and competence.
A case-based reasoner is used to find the best-known control
configuration for a given context. The given example of in-
creasing the energy efficiency of a walking pattern is a rather
simple problem. In future, the scalability of this approach
for complex problems have to be discussed. In addition, the
generation of new solutions through intelligent case merging
and adaptation as well as the storage of experiences need
to be analyzed. Though, in simulation optimized behaviors
can improve the performance of the real system, an online
optimization on the real system will be needed to handle the
simulation reality gap.

ACKNOWLEDGMENT

Special thanks are due to all team members of the project
LIMES.

REFERENCES

[1] B. Siciliano and O. Khatib, Springer handbook of robotics. Springer,
2008.

[2] R. Brooks, “A robust layered control system for a mobile robot,” IEEE
Journal of Robotics and Automation, vol. 2, no. 1, pp. 14–23, 1986.

[3] R. Arkin, Behavior-based robotics. MIT press, 1998.
[4] J. Albiez, Verhaltensnetzwerke zur adaptiven Steuerung biologisch

motivierter Laufmaschinen. GCA-Verlag, 2007.
[5] B. Gassmann, “Modellbasierte, sensorgestützte navigation von lauf-

maschinen im gelände,” Ph.D. dissertation, University Karlsruhe (TH),
2007.

[6] F. Michaud, “Selecting behaviors using fuzzy logic,” in Proceedings
of the Sixth IEEE International Conference on Fuzzy Systems. IEEE,
1997, pp. 585–592.

[7] M. Langosz, L. Quack, A. Dettmann, S. Bartsch, and F. Kirchner,
“A behavior-based library for locomotion control of kinematically
complex robots,” Proceedings of the 16th International Conference
on Climbing and Walking Robots, (CLAWAR-2013), pp. 495–502, Aug.
2013.

[8] R. E. Moore, Interval Analysis. Prentice Hall, 1966.
[9] L. Cardamone, D. Loiacono, and P. L. Lanzi, “Learning to drive in the

open racing car simulator using online neuroevolution.” IEEE Trans.
Comput. Intellig. and AI in Games, pp. 176–190, 2010.

[10] Y. Kassahun, J. de Gea Fernández, M. Römmermann, and F. Kirchner,
“On applying neuroevolutionary methods to complex robotic tasks,”
in IEEE IROS Workshops on Exploring new horizons in Evolutionary
Design of robots, 2009, pp. 26–30.

[11] M. Römmermann, M. Ahmed, L. Quack, and Y. Kassahun, “Modeling
of leg soil interaction using genetic algorithms,” in Proceedings of
International Conference of the International Society for Terrain-
Vehicle Systems, 2011.

[12] J. L. Kolodner, “An introduction to case-based reasoning,” Artificial
Intelligence Review, vol. 6, no. 1, pp. 3–34, 1992.

[13] D. Leake and R. Sooriamurthi, “When two case bases are better than
one: Exploiting multiple case bases,” Case-Based Reasoning Research
and Development, pp. 321–335, 2001.

[14] S. Gunawardena, R. Weber, and J. Stoyanovich, “Learning feature
weights from positive cases,” Case-Based Reasoning Research and
Development, pp. 134–148, 2013.

[15] A. Ram and R. Arkin, “Case-based reactive navigation: a method for
on-line selection and adaptation of reactive robotic control parame-
ters,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 27,
no. 3, pp. 376–394, 1997.

[16] M. Likhachev and R. Arkin, “Spatio-temporal case-based reasoning
for behavioral selection,” Proceedings 2001 ICRA. IEEE International
Conference on Robotics and Automation, vol. 2, pp. 1627–1634, 2001.

[17] M. Likhachev, M. Kaess, and R. Arkin, “Learning behavioral pa-
rameterization using spatio-temporal case-based reasoning,” IEEE
International Conference on Robotics and Automation, 2002.

[18] N. McDonnell and P. Cunningham, A knowledge-light approach to
regression using case-based reasoning. Springer Berlin Heidelberg,
2006, vol. 4106.

[19] V. Jalali and D. Leake, “A context-aware approach to selecting
adaptations for case-based reasoning,” Modeling and Using Context,
pp. 101–114, 2013.

[20] ——, “Extending case adaptation with automatically-generated en-
sembles of adaptation rules,” in Case-Based Reasoning Research and
Development. Springer, 2013, pp. 188–202.

[21] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evolutionary Computation, pp.
159–195, 2001.

[22] M. P. Deisenroth, G. Neumann, J. Peters, et al., “A survey on policy
search for robotics,” Foundations and Trends in Robotics, 2013.

[23] J. Kennedy and R. Eberhart, “Particle swarm optimization,” Proceed-
ings of ICNN’95 - International Conference on Neural Networks, 1995.

[24] S. Bartsch, “Development , control , and empirical evaluation of
the six-legged robot spaceclimber designed for extraterrestrial crater
exploration,” Ph.D. dissertation, University of Bremen, 2013.


